
Language Guided Operator Learning for Goal
Inference

Zachary S. Siegel
Princeton University
zss@princeton.edu

Jiayuan Mao
MIT

jiayuanm@mit.edu

Nishanth Kumar
MIT

njk@mit.edu

Tianmin Shu
Johns Hopkins University
tianmin.shu@jhu.edu

Jacob Andreas
MIT

jda@mit.edu

Abstract: Accurately predicting the goals of other agents is an essential skill
for intelligent agents deployed in interactive environments. However, existing
methods for goal inference struggle in scenarios with open-ended goal spaces or
with complex action sequences. In this work, we present a novel approach for
online goal inference based on library learning and explanation-based inference,
guided by large language models. Our algorithm learns a library of operators from
demonstrations using symbolic learning methods and guided by large language
models. At inference, it predicts other agents’ goals from partial plans by explain-
ing the agents’ past actions based on the learned library of operators. Specifically,
we introduce an algorithm called precondition parsing which analyzes observed
action sequences and hypothesizes future actions based on the relationship be-
tween observed actions. We evaluate our approach in a 2D Minecraft-like domain
and show that both the library learning and explanation-based prediction signifi-
cantly improve the ability to predict the goals of other agents.

Keywords: Goal Inference, Operator Learning, Language Models

1 Introduction

Effectively and efficiently predicting the goals of others is an important skill in embodied and multi-
agent environments, whether one is helping a friend cook in their kitchen, reading a book, or even
crossing the street. Intelligent machines that can help humans will need to be able to predict the goals
of those around them. Existing work on this topic can be roughly decomposed into two categories.
Direct learning or prompting-based methods based on large language models (LLMs) leverage la-
beled demonstrations as training data or prompts during inference [1]. However, these methods
struggle when the action sequence becomes long or significantly differs from what the system has
been trained on. On the other hand, “Bayesian” methods operate based on the idea of “analysis by
synthesis” [2, 3] and therefore generalize better to novel goals. These methods, however, often only
work in limited goal spaces and require a known transition model of the environment.

We propose a new solution that brings the advantages of both approaches. Illustrated in Figure 1,
at training time, we leverage large language models (LLMs) along with symbolic operator learning
techniques to learn a transition model of the environment. At inference time, learning a library of
operators helps explain agents’ past actions and predict what future actions might be taken, which
in turn helps the overall goal prediction. Based on these learned operators, we present an algo-
rithm called precondition parsing, which analyzes the observed sequence of actions by the inter-
dependencies of actions to hypothesize future actions. The system finally predicts agent goals inte-
grating both the commonsense priors from an LLM and the space of hypothesized future actions.

Precondition Parsing Plan Extension

wool bed

wood
plank

woodaxe

shearsiron
ingotiron orepickaxe

coal

Observed Action Sequence

(pick-up axe)
(mine-wood_2)
(craft-wood-plank)
(pick-up pickaxe)
(mine-iron-ore)
(mine-coal)
(craft-iron-ingot)
(craft-shears)

LLM

Inference Time

Training Time

Demonstrations

...

“Craft an ingot”
Operator Library

(:action craft-iron-ingot
 :parameters (?t - tile ?x - object
?ti - inventory ?t - object ?tgti -
inventory ?tgt - object)
 :precondition (...)
 :effect (...)
)

Goal Prediction

”Craft a bed”

Figure 1: Overview. During training time, we learn a library of operators from a dataset of task
demonstrations both symbolically and guided by language. During inference time, we leverage
this library of operators to perform precondition parsing over the observed action sequence, which
outputs which actions are preconditions for other actions within the plan. Using the graph outputted
by precondition parsing, we extend nodes with out-degree 0 to generate plausible extensions of the
plan. Finally, we prompt a large language model to predict the goal given the plan extensions.

The contributions of this paper are two-fold. First, we propose a new operator learning algorithm
that combines symbolic approaches to operator learning with LLMs to help discover additional pre-
conditions. Secondly, we posit a new algorithm called precondition parsing, which allows efficiently
predicting goals in an open-ended environment. We evaluate our approach in a 2D Minecraft-like
domain and show that both the library learning and explanation-based prediction significantly im-
prove the ability to predict the goals of other agents.

2 Related Work

Operator Learning. There is a long history of work that studies the problem of learning symbolic
operators for both classical and hierarchical planning approaches [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15]. We take significant inspiration from these approaches, but differ from them in two significant
ways. Firstly, prior work focuses on operator learning to enable efficient planning, whereas we are
interested in using operators towards goal inference. Secondly, our approach involves augmenting
symbolic learning with LLMs: we are thus able to leverage semantic information (the names of
provided predicates and low-level skills/actions) that many prior techniques cannot. This enables our
approach to learn from smaller amounts of data, and even partial plan traces (i.e., demonstrations),
where previous approaches would likely struggle. While there has been a body of work on leveraging
LLMs for operator learning [16, 17, 18, 19, 20, 21], our approach integrates symbolic learning with
a language-guided generation process and resamples the operators if they are not consistent with the
demonstrations.

Goal Inference. Many previous works have studied the problem of building AI systems that can
predict the goals of other agents [2, 3, 22, 23, 24, 25, 26]. However, these systems are not typically

2

designed to work in open-ended settings [2, 3, 22], or have domains with a limited number of
operators and predicates [23, 24, 25]. Our approach differs from these in a few ways. First, we
do not assume knowledge of the operators in the domain, instead learning through demonstrations,
which allows us to more easily predict goals in domains with many complex operators. Second,
our approach is built to work in open-ended goal settings and does not require enumerating over all
possible goal states. By leveraging our learned library of operators, we can more efficiently predict
what future actions might be, which in turn helps predict the goal. One paper [27] uses a probabilistic
context free grammars to predict future actions and activities from videos. Our approach, in contrast,
uses the learned operators to make predictions, which could generalize towards unseen goals.

3 Problem Setting

We consider the problem of predicting the goal of an agent given a (possibly prefix) sequence of
their actions. We assume all agents behavior in a deterministic environment1, which we write as
the tuple Env = ⟨X ,U ,Φ⟩, where X is the state space, U is the low-level action space, and Φ is a
deterministic transition function that maps Φ : X × U → X . The state space X is defined in terms
of predicates p ∈ P defined over objects in the environment. For example, the state of a kitchen
environment could be represented as {open(cabinet), on(pan, stove), cracked(egg)}.

Each task T ∈ T , instantiated in the environment, is described by the tuple ⟨x0, gt⟩, where x0 is the
initial state of the environment and gt = {p1, p2, ..., pk} is an (unknown) set of goal predicates. At
training time, the agent receives a dataset of tasks associated with demonstrations ⟨s̄, ū, T ⟩, where
s̄ is a sequence of states and ū = {u1, u2, ..., uH} is a sequence of low-level actions taken by the
agent. Our goal is to build a system that can predict gt given ū (see Figure 1). Our approach learns a
library of operators A to help predict goals. Each operator a ∈ A is a tuple of ⟨N, v̄, Pr,E+, E−⟩.
N is the name, and Pr,E+, E− are the preconditions, add effects, and delete effects, respectively,
each of which are a set of lifted atoms over the predicates P and arguments v̄.

4 Operator Learning

Our approach leverages a learned library of operators A to help predict the goals of agents (see Fig-
ure 2). We combine a symbolic approach which learns the preconditions and effects from demonstra-
tions with a language guided approach that uses the semantics of the symbolically learned operators
to infer additional preconditions.

4.1 Symbolic Operator Learning

Our operator learning algorithm is an extension of Silver et al. [12]. Here we describe the basics
of their variable-lifting based algorithm. The goal is to learn a set of operators A from a dataset of
demonstrations D = {⟨s̄, ū, T ⟩}. We assume that each low-level action u ∈ ū corresponds to the
application of an operator a ∈ A and this mapping is a bijection (i.e. we do not learn operators that
group together multiple low-level actions). Each operator (and the corresponding low-level action)
is named with natural language term u. This allows us to extract the corresponding state and next
state pairs associated with each operator. Let Oe be the affected object set of u, which is the set of
all objects that are in its add effects e+ or delete effects e−. Since each demonstration of u involves
different grounded objects, we lift all objects in u’s affected object set by replacing all objects in u
with variables of the same object type.

We learn one operator from each lifted dataset Φi. Let v̄ denote the variables from lifting the dataset.
To compute the add and delete effects, we simply replace the low-level action’s effects ⟨e+, e−⟩with
the lifted variables v̄ to get the lifted effects ⟨E+, E−⟩. To compute the preconditions, we take the

1We adhere to the environment and task representations outlined in Ada [16]. For detailed definitions of the
state and action spaces, as well as transition models, we recommend referring to the original paper.

3

(b) Symbolically Learned Operators

(d) LLM Generated Operators(a) Demonstrations

(move-to t1 t22)
(mine-beetroot1_0
t22 o8 i1 o14)
(move-to t22 t23)
(pick-up i2 o12 t23)
(move-to t23 t11)
(mine-wood_2 t11 o4
i2 o12 i3 o15)
...

(object-of-type o1
IronOreVein)
(object-at o1 t8)
(object-of-type o2
CoalOreVein)
(object-at o2 27)
(object-of-type o3
CobblestoneStash)
(object-at o3 t6)
(object-of-type o4 Tree)
(object-at o4 t11)
(object-of-type o5 Chicken)
…

Actions States

(c) Reject and Resample

(:action mine-beetroot1_0
 :parameters (?x1 - object ?x0 - inventory
?x2 - object)
 :precondition (and
 (object-of-type ?x2 BeetrootCrop)
 (inventory-empty ?x0)
 (object-of-type ?x1 Hypothetical)
)
 :effect (and ...))

(:action mine-beetroot1_0
 :parameters (?t - tile ?x - object ?toolinv -
inventory ?tool - object ?targetinv - inventory
?target - object)
 :precondition (and
 (agent-at ?t)
 (object-at ?x ?t)
 (object-of-type ?x BeetrootCrop)
 (inventory-holding ?toolinv ?tool)
 (object-of-type ?tool Pickaxe)
 (inventory-empty ?targetinv)
 (object-of-type ?target Hypothetical)
)
 :effect (and ...))

Symbolic
Checker

Augment
Operator with LLM

Figure 2: Operator Learning. (a) From a dataset of demonstrations, we symbolically learn the
preconditions and effects of all operators corresponding to observed actions in the dataset. (b)
Since the symbolically learned operators only include preconditions whose arguments are also in
effect predicates, we use an LLM to augment the operator definitions and make the operators human
interpretable. (c) We resample the LLM-generated operators if the proposed preconditions are not
satisfied in the demonstration dataset.

intersection of all lifted atoms in the initial state before executing u. That is, the preconditions from
Φi are P = ∩uj∈Φi

su, where su = abstract(xj−1) when u = uj .

However, this approach of computing the preconditions has one major limitation: the affected ob-
jects Oe may not include all relevant objects for the preconditions of an operator. If an operator has
a precondition that is not included in the affected objects set, that predicate would not be included
in the lifted state su. For example, suppose the operator mine-iron-ore has the preconditions
(holding(?t)) and (object-of-type(?t, Pickaxe)). If ?t is not found in the effects, then it
would not be included inOE . Consequently, predicates involving ?t would not be in su, so the pre-
condition (object-of-type(?t, Pickaxe)) would not be learned. To overcome this limitation,
we use LLMs to generate additional preconditions involving variables not found in OE .

4.2 Language Guided Precondition Learning

Using LLMs, we take a symbolically learned operator ω = ⟨N, v̄, Pr,E+, E−⟩ and propose a new
operator ω′ = LLM(ω, ω̄,Env), where ω̄ is a small set of ground-truth operators used to few-shot
prompt the LLM.

The LLM is prompted to generate a new operator ω′ = ⟨N ′, v̄′, P r′E+′
, E−′⟩ such that E+′

= E+,
E−′

= E−, and P ′ = P ∪ Q where Q are new predicates that weren’t symbolically learned. In
particular, the LLM leverages its knowledge of the operator name and predicate types to propose se-
mantically informed preconditions. The LLM also makes the variables v̄′ human interpretable. The
symbolically learned variables (e.g. ?x1, ?x2, ?x3) are converted into human-readable variables
(e.g. ?targetObject, ?targetInventory, ?tool) based on the semantics of the predicates of ω.

4

Algorithm 1 Precondition Parsing

Require: Sequence of actions ū = [u1, u2, . . . , uN]
Ensure: Precondition graph G = (V,E)

1: Initialize V ← ū, E ← ∅
2: for i = 2 to N do ▷ Iterate over actions
3: for j = i− 1 down to 1 do ▷ Iterate over all previous actions before ui

4: for all predicates p ∈ Preconds(ui) do
5: if p ∈ Effects(uj) then ▷ Check if p is an effect of uj

6: Add edge (uj , ui) to E, labeled with p ▷ Indicate precond. between uj and ui

7: Remove p from Preconds(ui) ▷ Prevent double-counting for later operators
8: end if
9: end for

10: end for
11: end for
12: return G = (V,E)

4.3 Operator Resampling

Although the preconditions Pr′ capture predicates with arguments not found inOE , the LLM might
propose invalid preconditions that are not always satisfied. To mitigate this, we resample the opera-
tors if the proposed preconditions Pr′ are not satisfied for each u ∈ ū. The preconditions for action
ui are considered satisfied if there exists a possible grounding of the precondition expression on the
state si−1. If the preconditions are not satisfied, the LLM regenerates w′ and repeats this process up
to k iterations.

5 Goal Inference

In this section, we address predicting the goal gt from a sequence of low-level actions ū (see Figure
1). At a high level, we first use our learned library of operators to infer the relationship between ac-
tions in the observed plan using a process called precondition parsing. This step essentially explains
the agent’s past actions. Subsequently, we predict what future plausible steps of the plan might be
given actions of the plan that haven’t been used to set up other actions.

5.1 Precondition Parsing

Using the learned operator library A, we construct a directed acyclic graph (DAG), G = (V,E),
using a method we call precondition parsing (see Algorithm 1). Each node ui ∈ V represents an
action ui ∈ ū, and each directed edge (ui, uj) ∈ E means action ui is a precondition for action uj .
Each edge is labeled to indicate which effect predicate of action ui is the precondition for action uj .
Because multiple effect predicates of ui might be preconditions for uj , there could potentially be
multiple edges between the same two nodes.

This framework allows us to reason about the underlying causality of the plan. For instance, consider
an edge e1 = (u1, u2) where u1 := open(cabinet1) and u2 := pick-up(pot2), and e1 is labeled
with the predicate is-open(cabinet1). This indicates that the action open(cabinet1) must be
performed before pick-up(pot2), as the effect is-open(cabinet1) of u1 satisfies a precondition
for u2. Precondition parsing helps identify hanging actions, which correspond to nodes in the G
with out-degree 0. Hanging actions are actions that do not satisfy the preconditions of any future
step of the plan. DefineH = {ui ∈ V | out-degree(ui) = 0} to be the set of hanging actions in G.

Assume that the plan is rational. If we have observed all steps of the plan, the hanging actions H
should directly satisfy a predicate of the goal gt, since hanging actions are executed not to set up
some future step of the plan but for their own sake. Conversely, when the plan is only partially
observed (i.e., only the first H < N steps have been observed), H provides insight into the likely
future actions, as they help to establish the preconditions necessary for a future step in the plan.

5

(move-to ...)
(pick-up ...)
(move-to ...)
(mine-wood_2 ...)
(move-to ...)
(craft-wood-plank ...)
(craft-stick_0 ...)
(move-to ...)
(pick-up ...)
(move-to ...)
(mine-iron-ore ...)
(move-to ...)
(mine-coal1_0 ...)

Observed Action Sequence

(craft-stick_0 ...)
(mine-iron-ore ...)
(mine-coal1_0 ...)

Hanging Actions Plan Extensions

(craft-arrow)

(craft-sword) (mine-feather)

Goal Predictions

”Craft a sword””Craft a sword””Craft a sword”

LLM

Figure 3: Plan Extensions. Given the action sequence of a partially observed plan, we compute
the hanging actions through precondition parsing. This allows us to come up with a set of potential
plan extensions, which are future actions that can be taken given the hanging actions, which we
recursively expand up to K iterations. We prompt a large language model with the plan extensions
to generate goal predictions.

Algorithm 2 Plan-Extend

Require: Precondition graph G = (V,E), Operator library A, Maximum steps K
Ensure: Set of plan extensionsR

1: ComputeH ← {ui ∈ V | out-degree(ui) = 0} ▷ Hanging actions in G
2: InitializeR0 ← {[h] | h ∈ H}
3: for k = 1 to K do ▷ Look K steps ahead
4: Rk ← ∅
5: for all plans p ∈ Rk−1 do ▷ Check for plan extension
6: for all operators a ∈ A do
7: if Lifted(Effect(Last(p))) ∩ Precond(a) ̸= ∅ then ▷ Extend last step of p
8: Rk ← Rk ∪ {p⊕ [a]}
9: end if

10: end for
11: end for
12: end for
13: return {R1 ∪R2 ∪ · · · ∪ RK} ▷ Return the set of all plan extensions

5.2 Plan Extension

For sequences of low-level actions ū that are from partial plans, we can generate possible future
actions the agent might take in a process called plan extension (see Algorithm 2). We use the set of
hanging actions H and the operator library A to construct the set of hypothetical actions, denoted
by R1, which contains all operators in A that have a precondition satisfied by the lifted effects
of an action in H. These hypothetical actions represent potential actions that may be executed by
the agent. For instance, if u2 := pick-up(pot2) ∈ H results in the effect holding(pot2), any
operator in A with the precondition holding(?pot) will add its corresponding action to R1. We
can then predict what future actions might be taken by executing each of the actions in Rk−1 and
formingRk from the hanging actions inRk−1. We iterate this process up to K iterations.

5.3 Language Guided Goal Predictions

We predict the goals of fully observed plans by prompting an LLM: gt = LLM(Env , ū,Eff(H), ḡt),
where Env is the environment encoded in text descriptions, ū is the sequence of observed actions,
Eff(H) represents the effect predicates of the hanging actions H, and ḡt is the set of few-shot goal
prompts used to guide the LLM. We use LLMs rather than setting the goal to Eff(H) directly since

6

Figure 4: Accuracy of proposed operators by learning method. From left-to-right, we plot symbolic
only operator learning, language guided operator learning, and language guided operator learning
with resampling.

Eff(H) could contain predicates that, based on their semantics, do not make sense as a goal (e.g.
(not(inventory-holding ?ingredient1).

For partially observed plans, we predict the goal by calling gt = LLM(Env , ū,R, ḡt) where R is
the set of hypothetical plan extensions, constructed recursively. The LLM helps filter by which of
the candidate plan extensionsR are most plausible given ū.

6 Experiments and Results

6.1 Domain

We run all experiments on Mini-Minecraft [16] a 2D procedurally generated Minecraft-like domain
where agents must collect resources and craft intermediate objects to achieve their goal of obtain-
ing certain items. There are 25 unique items that can be crafted, and plans often require several
intermediate crafting steps.

6.2 Experiments

Operator Learning. We evaluate the accuracy of three different operator learning methods: (1)
symbolic only, (2) language guided operator learning, and (3) language guided operator learning
with resampling. We measure accuracy by comparing the proposed operators to the ground truth
operators of the domain.

Goal Inference on Fully Observed Plans. We evaluate precondition parsing and LLM-only base-
lines for goal inference on fully observed plans. For each task instance T = ⟨ū, gt⟩, we set gt to be
a random conjunction of four subgoals. Each subgoal is to hold a certain item. We generate ū using
the Fast Downward planner [28]. For example, one goal might be to hold shears, stick, bowl and
wool. Since the plan contains intermediate steps, the challenge is figuring out which of the many
crafting actions are intended as the goal.

Goal Inference on Partially Observed Plans. We evaluate precondition parsing and LLM-only
baselines on fully observed plans but instead set gt to hold one item. We generate ū using Fast
Downward and truncate the last three steps of the plan. Note that the partially observed setting is
not necessarily strictly harder than the fully observed setting since the goals involve holding only
one item.

6.3 Results and Discussion

Operator Learning. Language guided operator learning with resampling is the best method, re-
covering 92% of the operators in Mini-Minecraft (see Figure 4). Without resampling, the accuracy

7

Figure 5: Pass@3 accuracy of goal inference by method. In each figure, we plot from left-to-right,
(1) an LLM baseline that predicts the goal directly from ū, (2) an LLM baseline that predicts the goal
given both ū and the learned operator library A, (3) precondition parsing with the learned operator
library A, and (4) precondition parsing with ground truth operators.

drops to 80%. The symbolic only method scores only 8%. The symbolic only method is partic-
ularly weak because many preconditions to operators in Mini-Minecraft involve variables that are
not found in the effects. For example, a precondition to the operator mine-iron-ore is (agent-at
?t). However, since ?t is not in the effects, the variable is not liftedOE or included in the precondi-
tions. Resampling helps avoid cases where the LLM proposes incorrect preconditions. For example,
when proposing preconditions for the mine-beetroot operator, the LLM initially (incorrectly) in-
cludes the precondition (inventory-holding ?toolinv ?tool), which resampling fixes.

Goal Inference on Fully Observed Plans. Precondition parsing methods are the best at inferring
the goals of partially observed plans, scoring 93.48% and 65.22% with ground-truth and learned op-
erators A, respectively (see Figure 5). An LLM-only baseline that predicts the goal, given actions ū
and learned operatorsA scores 35.87%, and an LLM-only baseline only given ū scores just 20.65%,
demonstrating the importance of knowing A. Precondition parsing is especially helpful on this task
since it filters out which steps of the plan are not directly satisfying one of the four subgoals but are
instead setting up a future action.

Goal Inference on Partially Observed Plans. Precondition parsing methods are best, achieving
88.66% and 89.69% accuracy with ground-truth and learned operator libraries, respectively (see
Figure 5). The LLM-baseline with access to A and ū gets 82.47%, but the baseline with only ū
gets 70.10%. In general, all methods do relatively well on this task since even when truncating the
last three steps of the plan, the semantics of ū often are enough to predict the final goal. However,
knowing A helps predict goals with unintuitive recipes.

6.4 Limitations and Future Work

Goal Inference. Future work could expand the goal space of the domain beyond the 25 included
recipes to leverage precondition parsing’s potential in a truly open ended setting. In addition, rather
than sampling the goals directly from an LLM, one promising approach, following Bayesian inverse
planning [2], is to rank the goals based on how rational the demonstration is given a goal.

Operator Learning. The resampling process during operator learning could be improved by pro-
viding more feedback to the LLM if the proposed preconditions are not satisfied, such as which
specific preconditions are not satisfied. Additionally, one could relax the assumption of assuming
access to the name of each operator from the dataset.

Robotics. Future work should investigate how the learned operators can perform in embodied
settings. Particularly, experiments could investigate how useful the learned operators are in learning
from demonstration settings for task and motion planning [29].

8

References
[1] T. Zhi-Xuan, P. S. Lunis, N. Fernandez Echeverri, V. Mansinghka, and J. Tenenbaum. Lan-

guage Models as Informative Goal Priors in a Bayesian Theory of Mind. In Proceedings
of the Annual Meeting of the Cognitive Science Society, volume 45, 2023. URL https:

//escholarship.org/uc/item/31t9h5v8.

[2] C. L. Baker, R. Saxe, and J. B. Tenenbaum. Action understanding as inverse planning. Cogni-
tion, 113(3):329–349, Dec. 2009. ISSN 00100277. doi:10.1016/j.cognition.2009.07.005. URL
https://linkinghub.elsevier.com/retrieve/pii/S0010027709001607.

[3] T. Zhi-Xuan, J. L. Mann, T. Silver, J. B. Tenenbaum, and V. K. Mansinghka. Online Bayesian
Goal Inference for Boundedly-Rational Planning Agents, 2020. URL https://arxiv.org/

abs/2006.07532. Version Number: 2.

[4] G. L. Drescher. Made-up minds: a constructivist approach to artificial intelligence. MIT press,
1991.

[5] K. Mourao, L. S. Zettlemoyer, R. Petrick, and M. Steedman. Learning STRIPS operators from
noisy and incomplete observations. arXiv preprint arXiv:1210.4889, 2012.

[6] H. M. Pasula, L. S. Zettlemoyer, and L. P. Kaelbling. Learning symbolic models of stochastic
domains. The Journal of Artificial Intelligence Research (JAIR), 2007.

[7] L. S. Zettlemoyer, H. M. Pasula, and L. P. Kaelbling. Learning Planning Rules in Noisy
Stochastic Worlds. In AAAI, 2005.

[8] C. Rodrigues, P. Gérard, C. Rouveirol, and H. Soldano. Active learning of relational action
models. In International Conference on Inductive Logic Programming, 2011.

[9] S. N. Cresswell, T. L. McCluskey, and M. M. West. Acquiring planning domain models using
LOCM. The Knowledge Engineering Review, 2013.

[10] D. Aineto, S. Jiménez, and E. Onaindia. Learning STRIPS action models with classical plan-
ning. In The International Conference on Automated Planning and Scheduling (ICAPS), 2018.

[11] A. Arora, H. Fiorino, D. Pellier, M. Métivier, and S. Pesty. A review of learning planning
action models. The Knowledge Engineering Review, 2018. Publisher: Cambridge University
Press.

[12] T. Silver, A. Athalye, J. B. Tenenbaum, T. Lozano-Perez, and L. P. Kaelbling. Learning Neuro-
Symbolic Skills for Bilevel Planning, 2022. URL https://arxiv.org/abs/2206.10680.
Version Number: 2.

[13] T. Silver, R. Chitnis, N. Kumar, W. McClinton, T. Lozano-Pérez, L. Kaelbling, and J. B.
Tenenbaum. Predicate invention for bilevel planning. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence (AAAI), 2023. URL https://ojs.aaai.org/index.php/

AAAI/article/view/26429/26201.

[14] T. Silver, R. Chitnis, J. Tenenbaum, L. P. Kaelbling, and T. Lozano-Pérez. Learning Sym-
bolic Operators for Task and Motion Planning. In The IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2021.

[15] N. Kumar, W. McClinton, R. Chitnis, T. Silver, T. Lozano-Pérez, and L. P. Kaelbling. Learning
Efficient Abstract Planning Models that Choose What to Predict. In Conference on Robot
Learning (CoRL), 2023. URL https://openreview.net/pdf?id=_gZLyRGGuo.

[16] L. Wong, J. Mao, P. Sharma, Z. S. Siegel, J. Feng, N. Korneev, J. B. Tenenbaum, and J. An-
dreas. Learning adaptive planning representations with natural language guidance, 2023. URL
https://arxiv.org/abs/2312.08566. Version Number: 1.

9

https://escholarship.org/uc/item/31t9h5v8
https://escholarship.org/uc/item/31t9h5v8
http://dx.doi.org/10.1016/j.cognition.2009.07.005
https://linkinghub.elsevier.com/retrieve/pii/S0010027709001607
https://arxiv.org/abs/2006.07532
https://arxiv.org/abs/2006.07532
https://arxiv.org/abs/2206.10680
https://ojs.aaai.org/index.php/AAAI/article/view/26429/26201
https://ojs.aaai.org/index.php/AAAI/article/view/26429/26201
https://openreview.net/pdf?id=_gZLyRGGuo
https://arxiv.org/abs/2312.08566

[17] Y. Chen, J. Arkin, C. Dawson, Y. Zhang, N. Roy, and C. Fan. AutoTAMP: Autoregressive
Task and Motion Planning with LLMs as Translators and Checkers, Mar. 2024. URL http:

//arxiv.org/abs/2306.06531. arXiv:2306.06531 [cs].

[18] H. Wang, G. Gonzalez-Pumariega, Y. Sharma, and S. Choudhury. Demo2Code: From Sum-
marizing Demonstrations to Synthesizing Code via Extended Chain-of-Thought, 2023. URL
https://arxiv.org/abs/2305.16744. Version Number: 3.

[19] K. Rana, J. Haviland, S. Garg, J. Abou-Chakra, I. Reid, and N. Suenderhauf. SayPlan: Ground-
ing Large Language Models using 3D Scene Graphs for Scalable Robot Task Planning, 2023.
URL https://arxiv.org/abs/2307.06135. Version Number: 2.

[20] P. Smirnov, F. Joublin, A. Ceravola, and M. Gienger. Generating consistent PDDL domains
with Large Language Models, 2024. URL https://arxiv.org/abs/2404.07751. Version
Number: 1.

[21] Y. Ding, X. Zhang, S. Amiri, N. Cao, H. Yang, A. Kaminski, C. Esselink, and S. Zhang.
Integrating Action Knowledge and LLMs for Task Planning and Situation Handling in Open
Worlds. 2023. doi:10.48550/ARXIV.2305.17590. URL https://arxiv.org/abs/2305.

17590. Publisher: arXiv Version Number: 2.

[22] T. Zhi-Xuan, L. Ying, V. Mansinghka, and J. B. Tenenbaum. Pragmatic Instruction Following
and Goal Assistance via Cooperative Language-Guided Inverse Planning, 2024. URL https:

//arxiv.org/abs/2402.17930. Version Number: 1.

[23] X. Puig, T. Shu, S. Li, Z. Wang, Y.-H. Liao, J. B. Tenenbaum, S. Fidler, and A. Torralba.
Watch-And-Help: A Challenge for Social Perception and Human-AI Collaboration, 2020.
URL https://arxiv.org/abs/2010.09890. Version Number: 2.

[24] A. Netanyahu, T. Shu, B. Katz, A. Barbu, and J. B. Tenenbaum. PHASE: PHysically-grounded
Abstract Social Events for Machine Social Perception, 2021. URL https://arxiv.org/

abs/2103.01933. Version Number: 2.

[25] A. Shah, P. Kamath, J. A. Shah, and S. Li. Bayesian Inference of Temporal Task Specifica-
tions from Demonstrations. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems, vol-
ume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_

files/paper/2018/file/13168e6a2e6c84b4b7de9390c0ef5ec5-Paper.pdf.

[26] F. Yan, D. Wang, and H. Hongsheng. Robotic Understanding of Spatial Relationships Using
Neural-Logic Learning. Oct. 2020. doi:10.1109/IROS45743.2020.9340917. Pages: 8365.

[27] S. Qi, B. Jia, S. Huang, P. Wei, and S.-C. Zhu. A Generalized Earley Parser for Human Activ-
ity Parsing and Prediction. IEEE Transactions on Pattern Analysis and Machine Intelligence,
43(8):2538–2554, Aug. 2021. ISSN 1939-3539. doi:10.1109/TPAMI.2020.2976971. URL
https://ieeexplore.ieee.org/document/9018126. Conference Name: IEEE Transac-
tions on Pattern Analysis and Machine Intelligence.

[28] M. Helmert. The Fast Downward Planning System. 2011. doi:10.48550/ARXIV.1109.6051.
URL https://arxiv.org/abs/1109.6051. Publisher: arXiv Version Number: 1.

[29] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kaelbling, and T. Lozano-Pérez.
Integrated task and motion planning. Annual review of control, robotics, and autonomous
systems, 4(1):265–293, 2021.

10

http://arxiv.org/abs/2306.06531
http://arxiv.org/abs/2306.06531
https://arxiv.org/abs/2305.16744
https://arxiv.org/abs/2307.06135
https://arxiv.org/abs/2404.07751
http://dx.doi.org/10.48550/ARXIV.2305.17590
https://arxiv.org/abs/2305.17590
https://arxiv.org/abs/2305.17590
https://arxiv.org/abs/2402.17930
https://arxiv.org/abs/2402.17930
https://arxiv.org/abs/2010.09890
https://arxiv.org/abs/2103.01933
https://arxiv.org/abs/2103.01933
https://proceedings.neurips.cc/paper_files/paper/2018/file/13168e6a2e6c84b4b7de9390c0ef5ec5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/13168e6a2e6c84b4b7de9390c0ef5ec5-Paper.pdf
http://dx.doi.org/10.1109/IROS45743.2020.9340917
http://dx.doi.org/10.1109/TPAMI.2020.2976971
https://ieeexplore.ieee.org/document/9018126
http://dx.doi.org/10.48550/ARXIV.1109.6051
https://arxiv.org/abs/1109.6051

	Introduction
	Related Work
	Problem Setting
	Operator Learning
	Symbolic Operator Learning
	Language Guided Precondition Learning
	Operator Resampling

	Goal Inference
	Precondition Parsing
	Plan Extension
	Language Guided Goal Predictions

	Experiments and Results
	Domain
	Experiments
	Results and Discussion
	Limitations and Future Work

