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ABSTRACT

The use of large language models (LLMs) as judges, particularly in preference
comparisons has become widespread, but this reveals a notable bias towards
longer responses, undermining the reliability of such evaluations. To better un-
derstand such bias, we propose to decompose the preference evaluation metric,
specifically the win rate, into two key components: desirability and information
mass, where the former is length-independent and related to trustworthiness such
as correctness, toxicity, and consistency, and the latter is length-dependent and
represents the amount of information in the response. We empirically demon-
strated the decomposition through controlled experiments and found that response
length impacts evaluations by influencing information mass. To derive a reli-
able evaluation metric that assesses content quality without being confounded by
response length, we propose AdapAlpaca, a simple yet effective adjustment to
win rate measurement. Specifically, AdapAlpaca ensures a fair comparison of re-
sponse quality by aligning the lengths of reference and test model responses under
equivalent length intervals.

1 INTRODUCTION

As LLMs are increasingly deployed across various domains of artificial intelligence, from natural
language processing to complex decision-making systems (Wu et al., 2023; Li et al., 2023a; Rao
et al., 2023; Song et al., 2023), ensuring their performance, reliability, and fairness has become a
critical challenge (Louis & Nenkova, 2013; Wang et al., 2023b). LLM-based auto-evaluators have
emerged as a crucial tool in this context, offering a cost-effective and scalable alternative to labor-
intensive human evaluations (Chen et al., 2023; Li et al., 2024a;b; Dubois et al., 2024b). Despite
their advantages, these automated systems are not without their shortcomings, particularly concern-
ing the introduction and perpetuation of biases (Li et al., 2023c; Zheng et al., 2023; Koo et al.,
2023; Wang et al., 2023a; Wu & Aji, 2023). One of the important biases observed in LLM-based
evaluations is the preference for longer textual responses. Previous empirical studies have explored
a strong correlation between the length of response and its perceived quality represented by win
rate (Zhao et al., 2024; Dubois et al., 2024a; Ivison et al., 2023). However, it is not reasonable to
simply attribute the preference to length since length is only the surface factor for the quality of a
sentence. Therefore, in this work, we investigate the following question: what are the major factors
contributing to the win rate?

To solve this problem, we propose a new framework that decomposes the quality of a response, as
measured by its win rate in pairwise comparisons, into two distinct components: (1) desirability,
which is independent of length and reflects the trustworthiness of the response, encompassing fac-
tors such as correctness, toxicity, and consistency; and (2) information mass, which is dependent
on length and represents the amount of information in the response, measurable through conditional
entropy. We validate our hypothesis by testing win rates in two different scenarios: (i) compar-
ing normal responses with those differing in desirability (e.g., Logical to be desired and Biased not
desired), and (ii) comparing normal responses with concise and detailed responses, which vary in in-
formation mass. Our experiments demonstrate that responses with negative desirability significantly
decrease the win rate, whereas information mass, when not negatively influenced by desirability,
is positively correlated with the win rate, thus confirming the effectiveness of our metric. Follow-
ing this finding, we design a new prompt called ”Quality Enhancement” to improve information
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Figure 1: Comparison between AlpacaEval and AdapAlpaca (Ours). In AlpacaEval, the reference
answer has a fixed length, regardless of the length of the test model’s answer. In contrast, AdapAl-
paca dynamically selects a reference answer that matches the length of the test model’s answer.

mass with positive desirability. This prompt enables GPT-4 to achieve state-of-the-art results on
AlpacaEval, increasing the win rate from 50.00% to 70.16%.

Through our decomposition of the quality of a response, we observe that response length impacts
evaluations primarily by influencing information mass. However, a reliable evaluation metric should
assess content quality without being confounded by extraneous factors such as response length (Koo
et al., 2023; Ye et al., 2024; Dubois et al., 2024a), we further propose AdapAlpaca, a benchmark
designed to improve evaluation fairness. By ensuring that responses are compared at the same
length intervals, AdapAlpaca effectively mitigates length bias, enabling accurate content quality
assessments (see Figure 1). With AdapAlpaca, we further analyze length bias in Direct Preference
Optimization (DPO) Rafailov et al. (2023) to examine the findings in prior work (Gu et al., 2024;
Ivison et al., 2023; Liu et al., 2024) that DPO lengthens model responses. Specifically, we test
TÜLU2 (Ivison et al., 2023) and TÜLU2-dpo models at 7B, 13B, and 70B scales on AlpacaEval
and AdapAlpaca. Our results indicate that DPO leads to higher human preference, but this gain
is amplified by response length, with AlpacaEval showing higher win rates gain than AdapAlpaca.
Our major findings and contributions are as follows:

• We propose a novel interpretation of win rate, emphasizing desirability and information mass,
offering a more precise LLM performance measure. Based on this interpretation, we develop
the ”Quality Enhancement” prompt, which improves win rates by boosting information mass
with positive desirability. This prompt improves win rates across multiple LLMs, with average
increases of 23.44% for GPT-3.5, 16.48% for GPT-4, 22.28% for LLAMA3-70b, and 20.40% for
Qwen1.5 72B.

• To mitigate length bias, we introduce AdapAlpaca, a method that aligns the response lengths of
the reference and test model, enabling a fair comparison of desirability and information mass
under the same length intervals.

• Using both AlpacaEval and AdapAlpaca, we analyze the impact of length bias in DPO. Our
experiments with TÜLU2 and TÜLU2-dpo models at 7B, 13B, and 70B scales show that DPO
leads to higher human preference, but this gain is amplified by response length, with AlpacaEval
showing higher win rates gain than AdapAlpaca.

2 RELATED WORK

2.1 REFERENCE-FREE EVALUATION METRICS

Reference-free evaluation metrics have a long history (Louis & Nenkova, 2013), which evaluates the
generated text based on intrinsic properties and coherence with the context. Although they achieve
high accuracy on matching inner-annotator, the achievement suffers from spurious correlations such
as perplexity and length (Durmus et al., 2022). Recently, people have started using a strong model
(e.g., GPT-4) as an evaluator to perform a zero-shot reference-free evaluation on the weak mod-
els (Shen et al., 2023; Dubois et al., 2024b; Chen et al., 2023; Hu et al., 2024). However, leveraging
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a strong model’s intrinsic knowledge to perform reference-free evaluation ignores the prompt pref-
erence of the strong model, for example, the prompt’s length.

2.2 CORRELATION BETWEEN LENGTH AND WIN RATE

Previous research reveals that sentence length will influence the evaluation of trustworthiness.
Specifically, when using a GPT-4 to represent human preference, it will prefer to choose a long
sentence rather than a short sentence (Dubois et al., 2024a; Ivison et al., 2023; Gu et al., 2024; Shen
et al., 2023; Koo et al., 2023; Wang et al., 2023a; Wu & Aji, 2023; Dubois et al., 2024b; Chen et al.,
2023; Hu et al., 2024). Such preference will introduce a length-correlated bias and help the model
with long-generation sentences gain a high score on human preference evaluation. Although these
approaches show a high correlation to human preference, debiasing such as automated evaluation is
highly valuable. (Dubois et al., 2024a) proposes a length-controlled (LC) win rate by removing the
length-correlated term in the win rate regression model. The new LC win rate shows an even per-
formance between concise and verbose input and a higher correlation when compared with human
preference.

3 UNDERSTANDING THE MAJOR FACTORS OF WIN RATE

To interpret the correlation between length and win rate, we propose a new framework based on
quality, which includes desirability (length-independent, related to trustworthiness) and information
mass (length-dependent, represented by conditional entropy). We validate our hypothesis through
two scenarios: (1) testing the impact of different desirability on win rate with the same informa-
tion mass, and (2) testing the influence of different information mass on win rate with the same
desirability.

3.1 PRELIMINARY

Evaluation protocol. We utilize the AlpacaEval dataset (Li et al., 2023c) to assess human prefer-
ences. AlpacaEval is a reference-free evaluation dataset for LLMs, encompassing 805 instructions
that reflect human interactions on the Alpaca web demo. To ensure a comprehensive evaluation
of human preferences, we extend our testing to additional datasets, including LIMA (Zhou et al.,
2023), Vicuna (Chiang et al., 2023), Koala (Vu et al., 2023), Wizardlm (Xu et al., 2023), and Self-
Instruct (Wang et al., 2022), in line with previous studies (Chen et al., 2023; Zhang et al., 2024; Du
et al., 2023; Zhao et al., 2024; Li et al., 2023b).

Base Models. In our experiments, we follow the setup in the AlpacaEval Leaderboard1, using
the GPT-4 Preview (11/06) as Baseline and the Annotator. The references to GPT-3.5, LLAMA3-
70b, and Qwen1.5 72b in the main text denote gpt-3.5-turbo-0125, meta-llama/Meta-Llama-3-70B-
Instruct 2, and Qwen/Qwen1.5-72B-Chat 3, respectively. Following previous work (Wei et al., 2024),
we calculate conditional entropy using the method described in (Von Neumann, 2013).

Win rate. Assume we have a set of instructions x. We prompt a test model m to generate a
response zm for each instruction. Similarly, we prompt a reference model b (referred to as the
”baseline” in AlpacaEval) to generate a response zb for each instruction.4 An annotator then eval-
uates these responses based on their quality and assigns a preference y ∈ {m, b}, indicating which
model’s response is superior. To properly understand the concept of win rate, we first need to define
what we mean by response quality:

Definition 1 (Response Quality), denoted as Qe(z|x), quantifies the effectiveness of the model’s
response z in addressing the given instruction x, as evaluated by an annotator e. Annotator prefer
responses with higher quality.

1https://tatsu-lab.github.io/alpaca_eval
2https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
3https://huggingface.co/Qwen/Qwen1.5-72B-Chat
4In this context, m stands for ”model” and b denotes ”baseline”, which in this paper follows the AlpacaEval

Leaderboard’s use of GPT-4 Preview (11/06).
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By leveraging the definition of quality, we can now formulate the win rate as the comparison of
sentence quality as follows:

WinRate(m, b) = Ex

[
1Qe(zm|x)>Qe(zb|x)

]
, (1)

where 1 is an indicator function and 1Qe(zm|x)>Qe(zb|x) represents the preference distribution for
each individual. Previous works (Chen et al., 2023; Li et al., 2023c; Dubois et al., 2024a;b) utilize
LLMs as zero-shot evaluators due to their exceptional performance on real-world tasks. Our exper-
imental setup adheres to the AlpacaEval Leaderboard 5 guidelines, employing the GPT-4 Preview
(11/06)6 as both the Baseline b and the Annotator e.
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Figure 2: Validation of desirability’s impact on quality for GPT-4. The results demonstrate that
desirability influences the win rate.

3.2 QUALITY DECOMPOSITION

Before discussing the composition of quality, we first define two key concepts: desirability and
information mass. Desirability reflects the inherent quality attributes of a response that make it
reliable and valuable, irrespective of its length, while information mass captures the quantity of in-
formation in the response, with longer responses generally containing more content. The definitions
of desirability and information mass are as follows:

Definition 2 (Desirability), denoted as De(z|x), measures the probability that annotator e will
accept the response z given an instruction x. It can be influenced by factors such as consistency and
toxicity and is independent of response length.

Definition 3 (Information mass), denoted as He(z|x), measures the amount of information in a
response z given an instruction x, as evaluated by annotator e. It is represented by conditional
entropy and is directly with response length.

With these definitions in place, we now present our main hypothesis on answer quality, starting with
an assumption:

5https://tatsu-lab.github.io/alpaca_eval
6In this paper, unless specified otherwise, GPT-4 refers to GPT-4 Preview (11/06).
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Figure 3: Validation of information mass’s impact on quality for GPT-4. The results demonstrate
that information mass influences the win rate.

Assumption 1 (Quality Decomposition). For a given answer z and instruction x, the quality
Qe(z|x) recognized by annotator e can be decomposed as:

Qe(z|x) ∝ De(z|x) +He(z|x), (2)

where De(z|x) denotes the desirability of the response, and He(z|x) represents the information
mass.

To systematically verify our hypothesis, we conduct two experiments targeting the manipulation of
these key components in GPT-4’s responses in Section 3.3 and Section 3.4. Additional results with
more test and annotator models are provided in Appendix J and Appendix K.

3.3 DESIRABILITY INFLUENCES QUALITY

To evaluate the impact of desirability on quality, we design experiments using eight strategies to
manipulate response desirability. These strategies include: (1) Origin: No prompt restrictions. (2)
Copy-paste: Copy GPT-4’s response three times. (3) Biased: Provide biased responses, favoring
certain ideas without justification. (4) Inconsistent: Provide contradictory information to create
confusion. Illogical: Give responses based on flawed logic or irrelevant information. (5) Verbose:
Provide lengthy responses filled with broad, unrelated details. (6) Toxic: Use offensive language
with an aggressive tone. (7) Relevant: Provide responses that align with the query. (8) Logical:
Base responses on sound reasoning and valid arguments. The results are shown in Figure 2. To
eliminate the impact of information mass on win rate, we use conditional entropy to represent infor-
mation mass and ensure the information mass of Origin and the other prompts remains as consistent
as possible. The entropy values shown in the Figure 2 represent the average conditional entropy of
the responses for each prompt. Details for these prompts and relevant implementation are shown in
Appendix I and Appendix A.1. First, we observe that although the Copy-paste and Origin prompts
maintain identical information mass (as simply replicating text does not increase information), the
win rates of Copy-paste fall below Origin (50%) due to significant consistency impairments. Sec-
ond, responses generated from negative prompts (i.e., Biased, Inconsistent, Illogical, Verbose, and
Toxic) exhibit low desirability, resulting in win rates substantially lower than Origin (50%), despite
having similar information mass. Conversely, prompts enhancing desirability (i.e., Consistent and
Logical) yield increased win rates compared to Origin. In summary, desirability plays a significant
role in determining quality.

3.4 INFORMATION MASS INFLUENCES QUALITY

To evaluate the impact of information mass on quality, we designed experiments using three distinct
strategies to manipulate the information mass of responses. These strategies include: (1) Origin:
No prompt restrictions. (2) Concise: Request brief responses focusing on the most crucial points.

5
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(3) Detailed: Request comprehensive responses covering all relevant aspects thoroughly. The cor-
responding results are illustrated in Figures 3. Importantly, to isolate the effect of information mass,
we ensured that the prompts did not impose any constraints on desirability, ensuring comparability.
Details of the prompts and implementation are in Appendix I and Appendix A.1. Our findings indi-
cate that information mass significantly affects the win rate without a negative desirability prompt.
Specifically, responses with higher information mass, measured by conditional entropy, consistently
achieved higher win rates. Thus, we observe the following relationship: Detailed > Origin >
Concise. These results confirm that information mass is a crucial factor influencing the quality of
responses.

Table 1: The content of the ”Quality Enhancement” prompt, designed to elevate both the information
mass and desirability of responses, thereby enhancing win rates. Keywords such as ”relevant” and
”logical” are used to enhance desirability, while ”detailed” is used to boost information mass.

Quality Enhancement

You are an expert assistant, delve deeply into the core of the topic, providing a richly
detailed response that explores all its dimensions. Ensure each part of your response is
relevant to the query in a logical manner. Your response should provide comprehensive
information and thoroughly cover all relevant aspects with accuracy and depth.
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Figure 4: Correlation between information mass and word count for responses of GPT-4. As the
word count increases, the information mass also increases.

3.5 QUALITY ENHANCEMENT PROMPT

Our decomposition reveals that responses with good desirability and higher information mass are
generally more favored. Building on this insight, we propose the ’Quality Enhancement’ prompt (Ta-
ble 1), designed to improve both desirability and information mass, thereby increasing win rates. The
keywords ”relevant” and ”logical” are used to enhance desirability, while ”detailed” is used to boost
information mass. Their effectiveness is validated in Section 3.2. We evaluated this prompt across
multiple models, including GPT-3.5, GPT-4, LLAMA3-70b, and Qwen1.5 72B. The results, sum-
marized in Table 2, with benchmarks such as LIMA, Vicuna, Koala, Wizardlm, and Self-Instruct.
The consistent improvement in win rates across all tested models underscores the critical role of
response quality in LLM evaluation.
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Table 2: Win rates with and without the ”Quality Enhancement” prompt, along with the correspond-
ing win rate gains (WR Gain). ”WR Gain” represents the increase in win rate due to the use of the
”Quality Enhancement”.
Models Methods AlpacaEval LIMA Koala Self-instruct Vicuna Wizardlm Avg.

GPT-3.5
w/o Quality Enhancement 15.47 9.67 11.39 21.46 8.75 16.82 13.93
with Quality Enhancement 29.89 36.53 40.34 45.93 35.88 35.62 37.36
WR Gain 14.42 26.86 28.95 24.47 27.13 18.80 23.44

GPT-4
w/o Quality Enhancement 50.00 50.00 50.00 50.00 50.00 50.00 50.00
with Quality Enhancement 70.16 65.84 58.90 67.06 73.13 63.76 66.48
WR Gain 20.16 15.84 8.90 17.06 23.13 13.76 16.48

LLAMA3-70b
w/o Quality Enhancement 34.32 36.63 40.12 39.70 36.74 36.99 37.81
with Quality Enhancement 56.50 60.39 61.30 64.81 63.49 51.70 59.70
WR Gain 22.18 23.76 21.18 25.11 26.75 14.71 22.28

Qwen1.5 72b
w/o Quality Enhancement 28.27 28.40 35.25 33.81 33.70 31.80 32.67
with Quality Enhancement 48.87 53.34 55.40 52.43 56.49 47.13 52.28
WR Gain 20.60 24.94 20.15 18.62 22.79 15.33 20.40

4 ADAPTIVE ALPACAEVAL

4.1 MOTIVATION

Here, we analyze the phenomenon observed in prior works (Dubois et al., 2024a; Chen et al., 2023;
Dubois et al., 2024b), which highlights a positive correlation between response length and win rate.
Intuitively, longer responses tend to encompass more information. To rigorously quantify this rela-
tionship, we use conditional entropy as information mass in a response z given an instruction x. This
analysis is conducted without constraints on response desirability, ensuring the correlation between
length and information mass remains independent of desirability factors. As shown in Figure 4, our
analysis demonstrates a clear trend: as the length of a response increases, the information mass also
grows. By integrating this observation with the findings from Section 3.2, we conclude that the pri-
mary mechanism through which length affects win rate is its contribution to the overall information
mass.

Adaptive AlpacaEval (AdapAlpac) is based on the premise that a reliable evaluation metric should
not only assess the content quality but also ensure that the assessment is not confounded by extrane-
ous factors such as the length of the response. Central to this approach is the concept of information
mass, which is inherently dependent on response length and can be quantified using conditional en-
tropy. Our primary aim is to mitigate scenarios where merely extending the length of a response ar-
tificially inflates its conditional entropy and, thus, its perceived quality by annotators. This approach
involves dynamically adjusting the evaluation criteria based on response length, thereby providing a
more equitable and accurate measure of a model’s performance.

4.2 DATASET GENERATION

To support the development of Adaptive AlpacaEval, we first generate a diverse dataset using a
modified prompting strategy with GPT-4, designed to produce responses within specific word count
ranges. Specifically, we analyzed the word count distribution within the AlpacaEval dataset, ob-
serving that responses predominantly fall within the 0-1000 word range. This range was chosen
to encompass the full spectrum of response lengths present in the original AlpacaEval dataset,
ensuring comprehensive evaluation coverage. To systematically explore this range, we divided
it into five equal segments, each representing a distinct dataset: AdapAlpaca-200: 0-200 words,
AdapAlpaca-400: 200-400 words, AdapAlpaca-600: 400-600 words, AdapAlpaca-800: 600-800
words, AdapAlpaca-1000: 800-1000 words. Each segment is populated by generating responses us-
ing the dataset generation prompt, with GPT-4 configured to produce responses that strictly conform
to the specified word counts. The data generation prompt and additional details for AdapAlpaca can
be found in Appendix H.
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Table 3: Comparison of five quantitative metrics related to quality: Vocabulary Size, Win Rate
relative to AlpacaEval (AlpacaWR), Entropy, Inter-sample N-gram Frequency (INGF), and Word
Counts.

Interval Vocabulary Size AlpacaWR Entropy INGF Word Counts
All Ans Avg. WR LCWR All Ans Avg.

AlpacAns Origin 38474 47.79 50.00 50.00 408.83 0.5686 7376.92 363.85
AdapAlpaca-200 22612 28.08 20.73 43.81 363.55 0.5056 1618.69 145.72
AdapAlpaca-400 36943 45.89 47.34 47.40 414.39 0.5763 6003.87 355.20
AdapAlpaca-600 47691 59.24 62.58 50.97 434.77 0.6046 9086.01 540.95
AdapAlpaca-800 55362 68.77 71.20 54.31 447.48 0.6223 10320.11 708.36
AdapAlpaca-1000 66095 82.10 66.98 36.24 456.32 0.6346 10981.84 913.44

4.3 ANALYSIS OF THE GENERATED DATA

The analysis is structured to quantify each dataset’s basic characteristics, followed by a compara-
tive assessment to identify any significant differences attributable to the varying response lengths.
Table 3 presents a comprehensive overview, providing a snapshot of the informational content
across different datasets. Specifically, it includes vocabulary size, inter-sample N-gram Frequency
(INGF) (Mishra et al., 2020), word counts of the generated dataset, win rate, length-controlled win
rate, and entropy for AlpacaEval-Origin and AdapAlpaca-200, AdapAlpaca-400, AdapAlpaca-600,
AdapAlpaca-800, and AdapAlpaca-1000. Our findings indicate the following: 1) Longer responses
generally exhibit higher vocabulary sizes and word counts, suggesting a richer linguistic structure.
2) The INGF metric reveals that while longer responses tend to include more common N-grams,
there is significant variability in the types of N-grams used, indicating a creative and diverse use
of language. 3) Under Win Rate (WR) metrics, longer responses disproportionately receive higher
preference scores due to their higher information mass. However, applying the length-controlled
win rate (LCWR) significantly mitigates this bias, leading to a more balanced distribution of scores
across different response lengths. This analysis aims to ascertain whether this phenomenon is intrin-
sic to the response quality or merely a byproduct of increased length. Our results demonstrate that
although longer responses generally possess higher information mass, the quality of information, as
measured by win rate, does not necessarily increase proportionally. Excessively lengthy responses
can result in a decline in desirability, such as reduced consistency. For instance, in Table 3, the win
rate of AdapAlpaca-1000 is lower than that of AdapAlpaca-800.

Table 4: The subscripts in the LCWR and WR columns indicate the differences between these met-
rics and the corresponding Human WR. A larger absolute value denotes a greater disparity between
the annotator’s evaluation and Human Preference. ”LLM Response” denotes different responses to
AlpacaEval questions for GPT-4, with detailed content available in Section 3.2.

LLM Response AlpacaEval AdapAlpaca

Human LCWR WR Human WR

Concise 10.81 35.16+24.35 15.96+5.15 29.56 28.44−1.12

Detailed 61.61 54.13−7.48 65.83+4.22 56.02 55.36−0.78

Quality Enhancement 66.70 49.37−17.33 70.16+3.46 58.88 57.81+1.07

4.4 RESULT OF HUMAN EVALUATION

Table 4 presents the results of the human study, with details provided in Appendix B and you can
find more results in Appendix G. First, we test the results of concise, detail, and quality enhancement
(descriptions provided in Section 3 and 3.5) using AlpacaEval, followed by AdapAlpaca. From the
gap values between LCWR and human evaluations, we observe significant misalignments, indicating
inherent problems with the LCWR metric. In contrast, the win rate calculated using AdapAlpaca
closely aligns with the human results, showing an average difference of 0.99% (1.12% + 1.07% +
0.78% / 3). Additionally, we find that the difference between human evaluation and WR decreases as
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Table 5: Win rate and response length comparison for TÜLU2 models (7B, 13B, and 70B) on
AlpacaEval and AdapAlpaca. The results indicate that while DPO increases response length and
improves win rate, the win rate gain is further amplified by the response length, leading to higher
performance in AlpacaEval compared to AdapAlpaca.

Size Model Winrate (%) Avg. Length
AlpacaEval AdapAlpaca

7B
TÜLU 2 3.60 5.84 203.60

TÜLU 2+DPO 8.33 9.04 282.92

Gain from DPO 4.73 3.20 -

13B
TÜLU 2 4.35 8.07 192.58

TÜLU 2+DPO 10.82 13.17 276.96

Gain from DPO 6.47 5.10 -

70B
TÜLU 2 7.34 10.94 184.26

TÜLU 2+DPO 15.67 17.90 267.23

Gain from DPO 8.33 6.96 -

the quality of responses improves (from concise to detailed to Quality Enhancement). This suggests
that as response quality increases, the preferences of annotators and human evaluators converge.
Moreover, we found that the smallest difference in win rate between GPT-4 and human evaluations
occurs when using the ”Quality Enhancement” prompt, which has the highest levels of desirability
and information mass. This further underscores the importance of enhancing both desirability and
information mass in model responses. Overall, while both AdapAlpaca and LCWR aim to mitigate
length bias in evaluating human preferences, their approaches differ fundamentally. AdapAlpaca
eliminates length bias from the outset, whereas LCWR attempts to correct for length bias after it
has already influenced the evaluation. The inherent issue with LCWR is that length significantly
impacts human preference, and adjusting for length retrospectively is not a reliable approach.

4.5 DPO AND ITS LENGTH BIAS

Previous work (Gu et al., 2024; Ivison et al., 2023) has shown that DPO Rafailov et al. (2023) tends
to make model responses longer, raising a natural question: Does the increase in human preference
brought by DPO partly stem from the length of the responses? In other words, does DPO generate
longer replies, thereby increasing their win rate? To investigate this issue, we conducted tests using
the widely-used TÜLU2 (Ivison et al., 2023) series models. As shown in Table 5, we tested the
models at 7B, 13B, and 70B scales on both AlpacaEval and AdapAlpaca to measure their win
rates and corresponding response lengths. The results from AlpacaEval and AdapAlpaca indicate
that while DPO does lead to longer model responses, it enhances the model’s human preference
capability (as evidenced by the increased win rate in AdapAlpaca). However, this gain is amplified
by the response length (as the win rate in AlpacaEval is higher than in AdapAlpaca). Additionally,
we found that all models have higher win rates on AdapAlpaca compared to AlpacaEval. This is
because the responses from GPT-4 (1106) on AlpacaEval are longer (363 words, see Appendix 4.3),
which unfairly amplifies the capabilities of GPT-4 due to its length. These results emphasize the
need for length control in evaluations to reflect true model performance.

5 CONCLUSION

In this paper, we identify and address the critical issue of length bias in LLM-based preference
evaluations, which undermines the reliability of win rate metrics. By decomposing win rate into
desirability and information mass, we offer a nuanced understanding of response quality. Our pro-
posed framework, AdapAlpaca, effectively mitigates length bias by dynamically adjusting reference
answer lengths to match test model responses, ensuring fairer evaluation metrics. Additionally, our
analysis of DPO demonstrates that its gains in human preference are influenced by response length,
underscoring the importance of unbiased evaluation benchmarks. Overall, AdapAlpaca provides a
robust tool for advancing reliable and equitable model evaluation.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a paper at DATA-FM workshop @ ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/
llama3/blob/main/MODEL_CARD.md.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu,
Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi
Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng
Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi
Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report. arXiv preprint
arXiv:2309.16609, 2023.

Jason Baumgartner, Savvas Zannettou, Brian Keegan, Megan Squire, and Jeremy Blackburn. The
pushshift reddit dataset. In Proceedings of the international AAAI conference on web and social
media, volume 14, pp. 830–839, 2020.

Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa Gunaratna, Vikas Yadav, Zheng Tang, Vijay
Srinivasan, Tianyi Zhou, Heng Huang, and Hongxia Jin. Alpagasus: Training a better alpaca with
fewer data. arXiv preprint arXiv:2307.08701, 2023.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//lmsys.org/blog/2023-03-30-vicuna/.

Qianlong Du, Chengqing Zong, and Jiajun Zhang. Mods: Model-oriented data selection for instruc-
tion tuning. arXiv preprint arXiv:2311.15653, 2023.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled al-
pacaeval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024a.

Yann Dubois, Chen Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos
Guestrin, Percy S Liang, and Tatsunori B Hashimoto. Alpacafarm: A simulation framework for
methods that learn from human feedback. Advances in Neural Information Processing Systems,
36, 2024b.

Esin Durmus, Faisal Ladhak, and Tatsunori B. Hashimoto. Spurious correlations in reference-free
evaluation of text generation. In Annual Meeting of the Association for Computational Linguistics,
2022. URL https://api.semanticscholar.org/CorpusID:248300077.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. Minillm: Knowledge distillation of large lan-
guage models. In The Twelfth International Conference on Learning Representations, 2024.

Zhengyu Hu, Jieyu Zhang, Zhihan Xiong, Alexander Ratner, Hui Xiong, and Ranjay Kr-
ishna. Language model preference evaluation with multiple weak evaluators. arXiv preprint
arXiv:2410.12869, 2024.

Hamish Ivison, Yizhong Wang, Valentina Pyatkin, Nathan Lambert, Matthew Peters, Pradeep
Dasigi, Joel Jang, David Wadden, Noah A Smith, Iz Beltagy, et al. Camels in a changing cli-
mate: Enhancing lm adaptation with tulu 2. arXiv preprint arXiv:2311.10702, 2023.

Ryan Koo, Minhwa Lee, Vipul Raheja, Jong Inn Park, Zae Myung Kim, and Dongyeop
Kang. Benchmarking cognitive biases in large language models as evaluators. arXiv preprint
arXiv:2309.17012, 2023.

Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Chandu,
Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, et al. Rewardbench: Evaluating reward
models for language modeling. arXiv preprint arXiv:2403.13787, 2024.

10

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://api.semanticscholar.org/CorpusID:248300077


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a paper at DATA-FM workshop @ ICLR 2025

Dawei Li, Bohan Jiang, Liangjie Huang, Alimohammad Beigi, Chengshuai Zhao, Zhen Tan, Amrita
Bhattacharjee, Yuxuan Jiang, Canyu Chen, Tianhao Wu, et al. From generation to judgment:
Opportunities and challenges of llm-as-a-judge. arXiv preprint arXiv:2411.16594, 2024a.

Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem.
Camel: Communicative agents for ”mind” exploration of large language model society. In Thirty-
seventh Conference on Neural Information Processing Systems, 2023a.

Haitao Li, Qian Dong, Junjie Chen, Huixue Su, Yujia Zhou, Qingyao Ai, Ziyi Ye, and Yiqun
Liu. Llms-as-judges: A comprehensive survey on llm-based evaluation methods. arXiv preprint
arXiv:2412.05579, 2024b.

Ming Li, Yong Zhang, Zhitao Li, Jiuhai Chen, Lichang Chen, Ning Cheng, Jianzong Wang, Tianyi
Zhou, and Jing Xiao. From quantity to quality: Boosting llm performance with self-guided data
selection for instruction tuning. arXiv preprint arXiv:2308.12032, 2023b.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-following
models. https://github.com/tatsu-lab/alpaca_eval, 2023c.

Wei Liu, Yang Bai, Chengcheng Han, Rongxiang Weng, Jun Xu, Xuezhi Cao, Jingang Wang,
and Xunliang Cai. Length desensitization in directed preference optimization. arXiv preprint
arXiv:2409.06411, 2024.

Annie Louis and Ani Nenkova. Automatically assessing machine summary content without
a gold standard. Computational Linguistics, 39:267–300, 2013. URL https://api.
semanticscholar.org/CorpusID:17829732.

Swaroop Mishra, Anjana Arunkumar, Bhavdeep Sachdeva, Chris Bryan, and Chitta Baral. Dqi:
Measuring data quality in nlp. arXiv preprint arXiv:2005.00816, 2020.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke E. Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Francis Christiano, Jan
Leike, and Ryan J. Lowe. Training language models to follow instructions with human feedback.
In NeurIPS, 2022.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.
In NeurIPS, 2023.

Abdul Sohail Rao, J. N. Kim, Meghana Kamineni, Minxia Pang, Wh Lie, and Marc D. Succi.
Evaluating chatgpt as an adjunct for radiologic decision-making. medRxiv : the preprint server
for health sciences, 2023. URL https://api.semanticscholar.org/CorpusID:
256626649.

Wei Shen, Rui Zheng, Wenyu Zhan, Jun Zhao, Shihan Dou, Tao Gui, Qi Zhang, and Xuanjing
Huang. Loose lips sink ships: Mitigating length bias in reinforcement learning from human
feedback. In Conference on Empirical Methods in Natural Language Processing, 2023. URL
https://api.semanticscholar.org/CorpusID:263831112.

Linxin Song, Jieyu Zhang, Lechao Cheng, Pengyuan Zhou, Tianyi Zhou, and Irene Li. Nlpbench:
Evaluating large language models on solving nlp problems. arXiv preprint arXiv:2309.15630,
2023.

John Von Neumann. Mathematische grundlagen der quantenmechanik. Springer-Verlag, 2013.

Thuy-Trang Vu, Xuanli He, Gholamreza Haffari, and Ehsan Shareghi. Koala: An index for quanti-
fying overlaps with pre-training corpora. arXiv preprint arXiv:2303.14770, 2023.

Peiyi Wang, Lei Li, Liang Chen, Dawei Zhu, Binghuai Lin, Yunbo Cao, Qi Liu, Tianyu Liu, and
Zhifang Sui. Large language models are not fair evaluators. arXiv preprint arXiv:2305.17926,
2023a.

11

https://github.com/tatsu-lab/alpaca_eval
https://api.semanticscholar.org/CorpusID:17829732
https://api.semanticscholar.org/CorpusID:17829732
https://api.semanticscholar.org/CorpusID:256626649
https://api.semanticscholar.org/CorpusID:256626649
https://api.semanticscholar.org/CorpusID:263831112


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a paper at DATA-FM workshop @ ICLR 2025

Yidong Wang, Zhuohao Yu, Zhengran Zeng, Linyi Yang, Cunxiang Wang, Hao Chen, Chaoya Jiang,
Rui Xie, Jindong Wang, Xing Xie, et al. Pandalm: An automatic evaluation benchmark for llm
instruction tuning optimization. arXiv preprint arXiv:2306.05087, 2023b.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language model with self generated instructions.
arXiv preprint arXiv:2212.10560, 2022.

Lai Wei, Zhiquan Tan, Chenghai Li, Jindong Wang, and Weiran Huang. Large language model
evaluation via matrix entropy. arXiv preprint arXiv:2401.17139, 2024.

Minghao Wu and Alham Fikri Aji. Style over substance: Evaluation biases for large language
models. arXiv preprint arXiv:2307.03025, 2023.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen llm applications via
multi-agent conversation framework. ArXiv, abs/2308.08155, 2023. URL https://api.
semanticscholar.org/CorpusID:260925901.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and
Daxin Jiang. Wizardlm: Empowering large language models to follow complex instructions.
arXiv preprint arXiv:2304.12244, 2023.

Jiayi Ye, Yanbo Wang, Yue Huang, Dongping Chen, Qihui Zhang, Nuno Moniz, Tian Gao, Werner
Geyer, Chao Huang, Pin-Yu Chen, et al. Justice or prejudice? quantifying biases in llm-as-a-
judge. arXiv preprint arXiv:2410.02736, 2024.

Qi Zhang, Yiming Zhang, Haobo Wang, and Junbo Zhao. Recost: External knowledge guided
data-efficient instruction tuning. arXiv preprint arXiv:2402.17355, 2024.

Hao Zhao, Maksym Andriushchenko, Francesco Croce, and Nicolas Flammarion. Long is more
for alignment: A simple but tough-to-beat baseline for instruction fine-tuning. arXiv preprint
arXiv:2402.04833, 2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Haotong Zhang, Joseph Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena. ArXiv, abs/2306.05685, 2023. URL
https://api.semanticscholar.org/CorpusID:259129398.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat,
Ping Yu, Lili Yu, et al. Lima: Less is more for alignment. arXiv preprint arXiv:2305.11206, 2023.

12

https://api.semanticscholar.org/CorpusID:260925901
https://api.semanticscholar.org/CorpusID:260925901
https://api.semanticscholar.org/CorpusID:259129398


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a paper at DATA-FM workshop @ ICLR 2025

A IMPLEMENTATION DETAIL

A.1 EXPERIMENT SETUP

In our experiments, we follow the setup in the AlpacaEval Leaderboard7, using the GPT-4 Preview
(11/06) as Baseline and the Annotator. The references to GPT-3.5, LLAMA3-70b, and Qwen1.5
72b in the main text denote gpt-3.5-turbo-0125, meta-llama/Meta-Llama-3-70B-Instruct 8, and
Qwen/Qwen1.5-72B-Chat 9, respectively. Following previous work (Wei et al., 2024), we calcu-
late conditional entropy using the method described in (Von Neumann, 2013).

A.2 DATASET

AlpacaEval (Dubois et al., 2024b) comprises 805 instructions, including 252 from the self-
instruct test set (Wang et al., 2022), 188 from the Open Assistant (OASST) test set, 129 from An-
thropic’s helpful test set (Zhou et al., 2023), 80 from the Vicuna test set (Chiang et al., 2023), and
156 from the Koala test set (Vu et al., 2023).

LIMA (Zhou et al., 2023) compiles a training dataset of 1000 prompts and responses, designed
to ensure stylistic consistency in outputs while maintaining diverse inputs. It also provides an open-
source test set of 300 prompts and a development set of 50. The dataset is sourced from a variety of
platforms, mainly community Q&A websites such as Stack Exchange, wikiHow, and the Pushshift
Reddit Dataset (Baumgartner et al., 2020), along with manually curated examples. Within these
Q&A communities, highly upvoted answers on Reddit often have a humorous or trolling tone, re-
quiring extra effort to align them with the intended helpful chat assistant style. In contrast, responses
from Stack Exchange and wikiHow naturally align with this style. The inclusion of human-authored
examples further enhances the dataset’s diversity. Our research specifically utilizes the test set from
the LIMA dataset to evaluate our models.

Vicuna (Chiang et al., 2023) divides 80 test instructions into eight distinct categories: Fermi prob-
lems, commonsense, roleplay scenarios, coding/math/writing tasks, counterfactuals, knowledge, and
generic questions. This categorization is intended to thoroughly evaluate multiple aspects of a chat-
bot’s performance. Prior research indicates that the Vicuna dataset generally includes instructions of
lower difficulty and complexity (Xu et al., 2023). In our study, we used the Vicuna test set to specif-
ically evaluate the performance of large language models across these varied instruction categories.

Self-Instruct (Wang et al., 2022) consists of 252 human-created test instructions, each associated
with a carefully designed output. This test set is curated to reflect the real-world applicability of
instruction-following models, covering a broad spectrum of domains including email composition,
social media, productivity software, and coding. The test instructions vary in style and format,
incorporating different task lengths and diverse input/output types such as bullet lists, tables, code
snippets, and mathematical equations. We employed the Self-Instruct test set in our research to
rigorously assess our model’s capability to comply with precise instructions across these varied
domains.

Wizardlm (Xu et al., 2023) comprises a training set of 70k examples with varied complexities,
initiated from 52k instructional data provided by Alpaca. Following M = 4 evolutionary cycles, the
collection expands to 250k instructions. In each cycle, from the six newly generated prompts—five
via in-depth evolution and one through in-breadth evolution—one is chosen randomly for each in-
struction. ChatGPT then generates responses, resulting in 52 × 4 × 3 = 624k instruction-response
pairs. The training subset selected for the Evol-Instruct dataset contains 70k of these instructions.
The test set, which includes 218 instructions, is sourced from a variety of platforms such as open-
source projects and online forums, encapsulating 29 unique skills identified from authentic human
tasks. These skills range from Coding Generation & Debugging to Reasoning, Mathematics, Writ-
ing, Handling Complex Formats, and Mastery over Extensive Disciplines. In our study, we utilized
the Wizardlm test set to thoroughly evaluate our model’s ability to adhere to detailed instructions.

7https://tatsu-lab.github.io/alpaca_eval
8https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
9https://huggingface.co/Qwen/Qwen1.5-72B-Chat
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Table 6: Scores given by commonly used reward models to concise, detailed, and original responses
from GPT-4. The analysis shows that the scores consistently decrease from detailed to concise
responses, highlighting the length bias within the reward model.

LLM Response Reward Model Avg.

Eurus Grmdis Grmsft UniF Debba Bebla FsfairRM Gerew Misrmr InteRM

Concise 1.819 1.984 -2.919 0.064 2.229 4.159 -1.404 -0.456 5.661 0.426 1.156

Origin 3.564 4.009 -0.505 2.901 3.305 5.142 1.830 1.066 9.440 1.558 3.231

Detailed 3.986 4.646 1.458 3.263 3.759 5.450 2.684 2.630 10.616 2.416 4.090

Koala (Vu et al., 2023) consists of 180 authentic user queries obtained from the Internet. These
queries cover a diverse array of topics and are generally characterized by a conversational tone,
underscoring their applicability to real-world chat-based applications. To prevent test-set leakage,
we exclude any query that achieves a BLEU score over 20% when compared to examples from
our training set. Furthermore, we do not consider queries related to programming or non-English
languages, as the capabilities of our crowd-sourced raters—who form our evaluation team—do not
extend to effectively assessing such content. We have exclusively utilized the Koala test set to assess
our model’s capability to process and respond to genuine user inquiries in a conversational setting.

A.3 INFORMATION ABOUT USE OF AI ASSISTANTS

We use GPT-4 as an AI assistant during the preparation of this manuscript.

Figure 5: Example of the evaluation interface used in the human study, showing two outputs for a
single input query. Participants assessed which output more accurately addressed the query, demon-
strating the interface’s role in ensuring unbiased evaluation.

B HUMAN EVALUATION PROCESS

To ensure the robustness of our findings and complement the automated evaluations, a thorough
human evaluation was conducted.
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Participants. The human evaluation involved 25 participants, all of whom are professionals or
researchers in the tech industry with specific expertise in language models. These individuals were
carefully selected to represent a broad spectrum of perspectives and expertise levels, ranging from
early-career to senior researchers. Each participant was assigned randomly to different segments of
the dataset to ensure a balanced and unbiased input across all items evaluated.

Data Segmentation and Assignment. The dataset, comprising 805 responses generated for each
prompt and compared against a default reference, was strategically divided into eight distinct parts,
each containing approximately 100 responses. This division was structured to facilitate manageabil-
ity and focus during the evaluation process. By dividing the dataset into smaller, more manageable
segments, we aimed to optimize the evaluation process without overwhelming the evaluators, thus
maintaining a high standard of analysis quality.

Each of these eight segments was then randomly assigned to five different participants. This ap-
proach ensured that every subset of the dataset was evaluated by multiple individuals, enhancing the
reliability and diversity of perspectives in the assessment process. Random assignment of partici-
pants to each segment helped minimize any potential bias, providing a balanced evaluation across
all parts of the dataset.

This method of segmenting the data and assigning evaluators ensured that each response received
sufficient attention, contributing to the robustness and credibility of the evaluation results. By im-
plementing this straightforward and strategic approach to data handling and evaluator assignment,
we maintained a high standard of reliability and fairness throughout the evaluation process.

Evaluation Interface. The evaluation was facilitated using a custom-built interface on Gradio 10,
an open platform known for its robustness in sharing interactive machine learning models. Detailed
instructions were provided to each participant to minimize user error and bias. The interface dis-
played questions along with two model outputs side-by-side, labeled ”Left” and ”Right,” with their
positions randomized to prevent positional bias. Figure 5 illustrates this setup.

This comprehensive human evaluation process not only validated the effectiveness of our proposed
methodologies but also provided critical insights that significantly enriched our understanding of
automated metric evaluations.

C POTENTIAL NEGATIVE SOCIETAL IMPACTS

While this research contributes to reducing bias in language model evaluations, it is important to
consider potential indirect societal impacts that might arise:

Dependence on Automated Decision-Making. This study’s focus on enhancing the accuracy of
automated evaluations may inadvertently promote an over-reliance on AI-driven decision-making
processes. While beneficial in many respects, such reliance could diminish the value placed on
human judgment and intuition in areas where nuanced understanding and ethical considerations are
paramount.

Perception and Trust in AI. By highlighting the capabilities and improvements in AI evaluations,
there might be an overestimation of AI reliability and fairness among the public and policymakers.
This could lead to misplaced trust in AI systems, overlooking their limitations and the necessity for
continuous oversight and human intervention.

D LENGTH BIAS ORIGINATING FROM RLHF

We believe that the length bias observed in LLMs essentially originates from the RLHF (Ouyang
et al., 2022) process. As shown in Figure 7, during the RLHF process, humans may generally prefer
more detailed responses when labeling preference data. This leads to ranking data where longer
responses are generally ranked higher than shorter ones, causing the reward model to learn this

10https://github.com/gradio-app/gradio

15

https://github.com/gradio-app/gradio


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a paper at DATA-FM workshop @ ICLR 2025

45 50 55 60 65 70 75 80
Ratio (%)

ElixLatent
Combined

Prometheus2
Policy1.4b

Lmsys
Argilla

Ultrafeedback
PreMix

Preference700K
Helpsteer

WebgptCom
SHP
HC3

AnthropicHH

Preference for "Chosen Responses"
50% Ratio

Figure 6: Analysis of the 14 commonly used preference datasets on Hugging Face. The analysis
shows that the lengths of chosen responses are generally longer than those of rejected responses,
indicating a length bias in human preference labeling.

spurious correlation and incorrectly assume that length is a factor in human preference. This bias is
further propagated to the aligned model during the training process using the reward model.

To verify our idea, we first analyze 14 commonly used preference datasets in huggingface, shown
in Figure 6. We found that the lengths of chosen responses are generally longer than those of
rejected responses. As detailed in Table 6, we also analyze the scores given by 10 commonly used
reward models (Lambert et al., 2024) to detailed, original, and concise responses from GPT-4. The
detailed description of these three prompts can be found in Section 3.4. We find that the scores
consistently decrease across all reward models. The details of these datasets and reward models
can be found in Appendix E. However, attributing human preference solely to response length is
an oversimplification, as length is merely a superficial factor in how humans judge the quality of a
sentence.

E PREFERENCE DATASET AND REWARD MODELS

In this appendix, we provide detailed information about the preference datasets and reward models
used in Appendix D.

E.1 PREFERENCE DATASETS

AnthropicHH 11: The AnthropicHH dataset evaluates the ULMA technique by replacing positive
samples in a preference dataset with high-quality ’golden’ data from GPT-4, aiming to enhance
alignment methods like RLHF, DPO, and ULMA.

11https://huggingface.co/datasets/Unified-Language-Model-Alignment/
Anthropic_HH_Golden
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Figure 7: RLHF process contributing to length bias in LLMs. Human labelers often prefer detailed
responses, leading to ranking data where longer responses are ranked higher. This creates a spurious
correlation that the reward model learns and propagates to the aligned model.

HC3 12: The HC3 dataset, presented in ”How Close is ChatGPT to Human Experts? Comparison
Corpus, Evaluation, and Detection,” offers a pioneering human-ChatGPT comparison corpus. It
enables nuanced evaluations of ChatGPT’s performance and its closeness to human expert outputs.

SHP 13: The SHP dataset, from the Stanford Human Preferences project, collects 385K human
preferences across 18 subject areas, utilizing naturally occurring human-written responses on Red-
dit to enhance RLHF reward models and NLG evaluation. This dataset emphasizes the utility of
response helpfulness over harm reduction.

WebgptCom 14: The WebgptCom dataset comprises 19,578 comparisons from the WebGPT
project, designed for reward modeling. It features pairs of model-generated answers to questions,
each scored by humans to determine preference, supporting the training of a long-form question
answering model aligned with human preferences.

Helpsteer 15: The Helpsteer dataset, utilized for refining reward models in conversational AI, in-
cludes preference data distinguishing helpful from unhelpful responses. It consists of paired entries
labeled as ’chosen’ and ’rejected’, with respective scores reflecting their utility. The dataset includes
37,131 examples in the training split, emphasizing its scale for robust model training.

Preference700K 16: The Preference700K dataset comprises 700,000 preference comparisons be-
tween two conversational responses, ’chosen’ and ’rejected’, related to the same prompt. This large-
scale dataset is structured to train and evaluate models on their ability to discern more favorable
conversational outcomes based on user interaction dynamics.

PreMix 17: The PreMix dataset features 528,029 comparisons from preprocessed preference
datasets, focusing on dialogues structured with a ’chosen’ and ’rejected’ response based on the
same prompt. This dataset aids in training models to discern the more favorable responses in con-
versational settings.

12https://huggingface.co/datasets/Hello-SimpleAI/HC3
13https://huggingface.co/datasets/stanfordnlp/SHP
14https://huggingface.co/datasets/openai/webgpt_comparisons
15https://huggingface.co/datasets/RLHFlow/Helpsteer-preference-standard
16https://huggingface.co/datasets/hendrydong/preference_700K
17https://huggingface.co/datasets/weqweasdas/preference_dataset_mix2
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Ultrafeedback 18: Ultrafeedback is an improved version of the original dataset, now cleaned and
binarized using average preference ratings. It eliminates problematic data from earlier versions,
notably those influenced by the TruthfulQA dataset, and removes contributions from ShareGPT
sources, ensuring cleaner and more reliable data for fine-tuning conversational AI on preference
discernment.

Argilla 19: The Argilla dataset is a refined version of the UltraFeedback dataset, used to train the
Zephyr-7B-β model. This dataset features 64k prompts with binarized completions, categorizing the
highest scored as ’chosen’ and one of the remaining as ’rejected’. It supports various training tech-
niques including supervised fine-tuning, preference modeling for reward systems, and generation
techniques like rejection sampling.

Lmsys 20: The Policy1.4b dataset incorporates labels from the AlpacaFarm dataset and utilizes
generated answers from a 1.4 billion parameter Pythia policy model. Responses are evaluated using
the ’reward-model-human’ as a gold standard. This dataset is pivotal for refining AI policy models
through precise human preference feedback.

Policy1.4b 21: The Prometheus2 dataset, transformed from the ”prometheus-eval/Preference-
Collection”, is crafted to enhance fine-grained evaluation capabilities in language models. This
dataset pairs instructions with two responses, scored and chosen based on preference, facilitating
nuanced evaluation and comparison aligned with human judgment.

Prometheus2 22: The Prometheus2 dataset, transformed from the ”prometheus-eval/Preference-
Collection”, is crafted to enhance fine-grained evaluation capabilities in language models. This
dataset pairs instructions with two responses, scored and chosen based on preference, facilitating
nuanced evaluation and comparison aligned with human judgment.

Combined 23: The Combined dataset integrates multiple preference datasets into a unified re-
source, all examples binarized and standardized. It aggregates data from diverse sources to create a
comprehensive set for training and evaluating language models on preference understanding.

ElixLatent 24: The ElixLatent dataset, designed around GPT-4, serves as a resource for training
and evaluating latent preference modeling. It provides pairs of latent responses (’yw’ and ’yl’)
and their corresponding contexts (’x’), allowing researchers to explore the nuances of preference
dynamics in generated text.

E.2 REWARD MODELS

Eurus 25: Eurus is a reward model trained on UltraInteract, UltraFeedback, and UltraSafety
datasets. It excels in complex reasoning tasks and outperforms larger models, including GPT-4,
by significantly enhancing language models’ reasoning capabilities.

Grmdis 26: Generalizable Reward Model (GRM), uses hidden state regularization to enhance
generalization in reward models for large language models (LLMs). Initially built on fixed weights
from a Llama-3-based model and fine-tuned only on a reward head, it significantly improves on
standard benchmarks, demonstrating enhanced reasoning and safety metrics over existing models.

18https://huggingface.co/datasets/argilla/ultrafeedback-binarized-preferences-cleaned
19https://huggingface.co/datasets/csarron/argilla-ultrafeedback-binarized-preferences-cleaned
20https://huggingface.co/datasets/lmsys/lmsys-arena-human-preference-55k
21https://huggingface.co/datasets/tlc4418/1.4b-policy_preference_data_

gold_labelled
22https://huggingface.co/datasets/RLHFlow/Prometheus2-preference-standard
23https://huggingface.co/datasets/yoonholee/combined-preference-dataset
24https://huggingface.co/datasets/Asap7772/elix_latent_preferences_gpt4
25https://huggingface.co/openbmb/Eurus-RM-7b
26https://huggingface.co/Ray2333/GRM-llama3-8B-distill
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Grmsft 27: It is part of the Generalizable Reward Model (GRM) series, aimed at enhancing LLMs
through hidden state regularization. It excels across various complex evaluative tasks, outperforming
other high-capacity models in reasoning and safety.

UniF 28: It is a reward model finetuned on the ’llm-blender/Unified-Feedback’ dataset using the
Mistral-7B-Instruct architecture. Achieving an accuracy of 0.7740 on test sets, it excels at modeling
human preferences. The model integrates diverse preference data from multiple sources, enhancing
its applicability in aligning LLMs to human judgments across various conversational contexts.

Debba 29: Debba is a reward model utilizing Deberta-v3-base, trained to evaluate QA models
and serve as a reward mechanism in RLHF by predicting which generated answer aligns better with
human judgment. It is trained on datasets such as webgpt comparisons, summarize from feedback,
and synthetic-instruct-gptj-pairwise, ensuring a consistent validation approach across varying do-
mains.

Bebla 30: It is a reward model trained to assess the quality of responses in QA evaluations and
to provide scoring in RLHF. It was developed with datasets such as webgpt comparisons, sum-
marize from feedback, and synthetic-instruct-gptj-pairwise, ensuring it can reliably predict human
preferences across diverse contexts.

FsfairRM 31: It is designed for RLHF applications including PPO, iterative SFT, and iterative
DPO. This state-of-the-art reward model is licensed under PKU-Alignment/PKU-SafeRLHF-30K,
demonstrating high performance across diverse metrics like chat, safety, and reasoning in Reward-
Bench.

Gerew 32: It is trained using BT loss on the weqweas-
das/preference dataset mixture2 and safe pku dataset. This model is designed for efficiently
evaluating and aligning LLMs, offering a baseline performance that is well-suited for smaller-scale
applications requiring rapid assessment of language model outputs.

Misrmr 33: It is a reward model tailored for iterative Synthetic Frontier Tuning (SFT) and Dy-
namic Policy Optimization (DPO). Trained to enhance language generation tasks, it supports fine-
grained reward modeling to improve the alignment and efficacy of language models in diverse ap-
plications.

InteRM 34: It is a reward model trained on the foundation of InternLM2-Chat-1.8B-SFT. This
model has been trained using over 2.4 million preference samples, both human-annotated and
AI-synthesized, achieving outstanding performance while ensuring a balance between helpful and
harmless.

F CASE STUDY

To demonstrate the superiority of AdapAlpaca, we present a case study. In Figure 8, for the given
instruction, we generate a redundant model answer (shown in the blue box). When evaluated using
the current AlpacaEval response (shown in the red box), the annotator (i.e., GPT-4) selected this
redundant answer, which is significantly unaligned from human preference, as the simplicity of
the question does not warrant such extensive verbosity. The reason GPT-4 chose this answer is
that the excessive length increases the information mass, artificially inflating the perceived quality.

27https://huggingface.co/Ray2333/GRM-llama3-8B-sftreg
28https://huggingface.co/Ray2333/reward-model-Mistral-7B-instruct-Unified-Feedback
29https://huggingface.co/OpenAssistant/reward-model-deberta-v3-base
30https://huggingface.co/OpenAssistant/reward-model-deberta-v3-large
31https://huggingface.co/sfairXC/FsfairX-LLaMA3-RM-v0.1
32https://huggingface.co/Ray2333/Gemma-2B-rewardmodel-baseline
33https://huggingface.co/hendrydong/Mistral-RM-for-RAFT-GSHF-v0
34https://huggingface.co/internlm/internlm2-1_8b-reward
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Deciding whether a tweet is offensive requires analysis of the tweet 
content, context, use of language, and potential for harm or insult to 
individuals or groups. 
                          [Omitted 575 reasoning words]
 However, to definitively classify a tweet as offensive requires 
contextual insight and understanding...Preference 

Aligned

You are given a tweet and you should decide whether it's offensive or not.
She has cer tainly taken some heat for being such an....well idiot.

Which answer do 
you prefer?

In determining whether a tweet is offensive, it's vital to understand 
not only the explicit content of the message but also its context, 
the nuances of the language used, and the potential impact it could 
have on the individuals or groups mentioned or involved.
                   [Omitted 545 reasoning words]
Such an approach not only elevates the level of discourse but also 
helps in fostering a more inclusive and respectful environment.

Determining whether a tweet or any other statement is offensive can 
be subjective and often depends on various factors including the 
context in which it was said, the audience, and cultural norms.
                         [Omitted 159 reasoning words]

Answer from AlpacaEvalLLM Answer

GPT-4
Vote

Human
Vote

Human and 
GPT-4
Vote

Answer from AdapAlpaca

Figure 8: Case study on comparing GPT-4 and human vote on AlpacaEval and AdapAlpaca. In
AlpacaEval, GPT-4 votes for the verbose answer, but humans vote for the concise reference answer,
while in AdapAlpaca, GPT-4 and humans vote for the same answer, demonstrating a better LLM-
human alignment on AdapAlpaca.

Table 7: The subscripts in the LCWR and WR columns indicate the differences between these met-
rics and the corresponding Human WR. A larger absolute value denotes a greater disparity between
the annotator’s evaluation and Human Preference. ”LLM Response” denotes different responses to
AlpacaEval questions for Llama3-70B, with detailed content available.

LLM Response AlpacaEval AdapAlpaca

Human LCWR WR Human WR

Concise 5.67 25.73+20.06 11.10+5.43 7.24 6.10−1.14

Detailed 46.12 38.62−7.50 50.80+4.68 41.99 42.98+0.99

Quality Enhancement 53.48 42.59−10.89 56.50+3.02 51.63 50.89−0.74

In contrast, when using AdapAlpaca, it allows us to control for content while varying the length,
thereby isolating the effect of length from that of content quality.

G HUMAN STUDY WITH MORE MODEL

To provide a more comprehensive view of our human evaluation study, we conducted experiments
on more LLMs, including Llama3-70B and Qwen1.5-72B. The results are summarized in Tables 7
and 8. These results further validate AdapAlpaca as a robust metric for aligning model evaluations
with human preferences, effectively addressing the shortcomings of LCWR.

H DATASET INFORMATION

The data generation prompt, as outlined in Table 9, is carefully crafted to instruct GPT-4 to generate
responses within predefined word limits. This prompt directed the model to generate content that is
relevant to the given question and strictly adheres to the specified length constraints.

H.1 DATASET DOCUMENTATIONS.

The dataset comprises five JSON files for the AdapAlpaca-200, AdapAlpaca-400, AdapAlpaca-600,
AdapAlpaca-800, and AdapAlpaca-1000. Each file is generated using our length control prompt
technique with the Alpaca dataset employing the GPT-4 1106 model.

Each data file contains a list of items with the following fields:

• instruction: the prompt is given to generate the response.
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Table 8: The subscripts in the LCWR and WR columns indicate the differences between these met-
rics and the corresponding Human WR. A larger absolute value denotes a greater disparity between
the annotator’s evaluation and Human Preference. ”LLM Response” denotes different responses to
AlpacaEval questions for Qwen1.5-72B.

LLM Response AlpacaEval AdapAlpaca

Human LCWR WR Human WR

Concise 9.24 31.03+21.79 13.20+3.96 8.56 7.40−1.16

Detailed 45.52 38.50−7.02 42.70−2.82 39.97 38.92−1.05

Quality Enhancement 46.61 40.62−5.99 48.87+2.26 43.18 44.01+0.83

Table 9: Prompt for dataset generation, with {max word}-{min word} ranges set as 0-200, 200-400,
400-600, 600-800, and 800-1000.

Dataset generation prompt

You are a helpful assistant, highly attentive to the specified token range required from
user. Respond to the following question, your reply must only be within {max word}-
{min word} words.

• generator: identifies the model used.
• dataset: specifies the dataset used.
• output word count: the word count of the generated response.
• output: the actual text generated by the model.

H.2 INTENDED USES.

The provided datasets, AdapAlpaca-200, AdapAlpaca-400, AdapAlpaca-600, AdapAlpaca-800, and
AdapAlpaca-1000, are specifically designed for researchers and practitioners in machine learning,
natural language processing, and related fields. These datasets are intended to facilitate the evalua-
tion of models that generate responses of similar lengths. They provide a standardized framework
to repeatedly test and compare the performance of different models as detailed in our accompany-
ing paper. This aims to ensure consistent evaluation and benchmarking of models under controlled
conditions that mimic real-world application scenarios.

I PROMPT CONTENT

Here, we show the 6 prompts in Table 10 we used to generate the AlpacaEval answers.

J QUALITY DECOMPOSITION ACROSS DIVERSE TEST MODEL

To ensure our conclusions are not restricted to specific model architecture, we use LLAMA3-
70b (AI@Meta, 2024), Qwen1.5-72b (Bai et al., 2023), GPT4-o (Achiam et al., 2023) and GPT-
3.5 (Achiam et al., 2023) as the backbone model. The results in Figure 9, Figure 10, Figure 11,
Figure 12, Figure 13, Figure 14, Figure 15 and Figure 16 show that different model backbone does
not change the conclusions we derived.

K QUALITY DECOMPOSITION ACROSS DIVERSE ANNOTATOR MODEL

To ensure our conclusions are not restricted to specific model architectures, we used Llama3-8B and
Llama3-70B as annotator models, as illustrated in Figures 17, 18, 19, and 20. Our findings show
that at larger model scales, such as Llama3-70B (AI@Meta, 2024), the results are consistent with
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Figure 9: Validation of desirability’s impact on quality for LLAMA3-70b.
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Figure 10: Validation of information mass’s impact on quality for LLAMA3-70b.

those obtained using GPT-4 (1106) (Achiam et al., 2023) in the main text. However, when using
Llama3-8B (AI@Meta, 2024) as the annotator model, we observe a more pronounced length bias.
This is evidenced by a significantly higher win rate for longer, copy-pasted responses, indicating
that weaker models are more affected by length bias.
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Figure 11: Validation of desirability’s impact on quality for Qwen1.5-72b.
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Figure 12: Validation of information mass’s impact on quality for Qwen1.5-72b.
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Table 10: The content of Concise, Detail, Toxic, Inconsistent, Biased, Illogical and Verbose Prompt.
Concise

Provide concise responses. Limit details to the most crucial points only.

Detail

Respond with detailed information. Cover all relevant aspects thoroughly.

Toxic

Use language that may be considered offensive or inappropriate. Prioritize aggressive tones
and disregard for sensitivity. Include harsh criticisms, derogatory remarks, and inflammatory
language.

Inconsistent

Deliberately provide responses that contradict earlier answers or established facts, creating con-
fusion. Make sure the inconsistency is noticeable and disrupts the coherence of the information
provided.

Biased

Deliver responses that show a clear prejudice, favoring certain ideas or opinions without justifi-
cation. Ignore impartiality and balance in your explanations and arguments. Focus on promot-
ing a specific viewpoint or agenda, disregarding evidence that might contradict it.

Illogical

Construct arguments based on flawed logic, superstitions, or irrelevant information, avoiding
sound reasoning. Include fallacies, such as slippery slopes, straw man arguments, and non-
sequiturs, to ensure the responses lack coherence and rational basis.

Verbose

Tasked with providing a verbose response filled with trivial information. Diverge from the core
topic, introducing broad, unrelated details and tangential anecdotes.

Relevant

Dive deeply into the core issues of the query. Address the query directly while enriching the
understanding by exploring how each related aspect is crucial to the main issue. Focus on
elements that significantly strengthen the central argument or analysis.

Logical

Ensure that your response provides a clear and logical progression from initial assumptions to
final conclusions. Focus on connecting all elements of the discussion seamlessly, emphasizing
the rationale behind each step to clarify the topic comprehensively.
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Figure 13: Validation of desirability’s impact on quality for GPT4-o.
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Figure 14: Validation of information mass’s impact on quality for GPT4-o.
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Figure 15: Validation of desirability’s impact on quality for GPT-3.5.
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Figure 16: Validation of information mass’s impact on quality for GPT-3.5.
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Figure 17: Validation of desirability’s influence on quality for GPT-4 (using Llama3-8B as the
annotator model).
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Figure 18: Validation of information mass’s influence on quality for GPT-4 (using Llama3-8B as the
annotator model).
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Figure 19: Validation of desirability’s influence on quality for GPT-4 (using Llama3-70B as the
annotator model).
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Figure 20: Validation of information mass’s influence on quality for GPT-4 (using Llama3-70B as
the annotator model).
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