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Abstract
A key theme in the past decade has been that
when large neural networks and large datasets
combine they can produce remarkable results. In
deep reinforcement learning (RL), this paradigm
is commonly made possible through experience
replay, whereby a dataset of past experiences is
used to train a policy or value function. However,
unlike in supervised or self-supervised learning,
an RL agent has to collect its own data, which
is often limited. Thus, it is challenging to reap
the benefits of deep learning, and even small
neural networks can overfit at the start of train-
ing. In this work, we leverage the tremendous
recent progress in generative modeling and pro-
pose Synthetic Experience Replay (SYNTHER),
a diffusion-based approach to flexibly upsample
an agent’s collected experience. We show that
SYNTHER is an effective method for training RL
agents across offline and online settings, in both
proprioceptive and pixel-based environments. In
offline settings, we observe drastic improvements
when upsampling small offline datasets and see
that additional synthetic data also allows us to
effectively train larger networks. Furthermore,
SYNTHER enables online agents to train with
a much higher update-to-data ratio than before,
leading to a significant increase in sample effi-
ciency, without any algorithmic changes. Finally,
we open-source our code at https://github.
com/conglu1997/SynthER.

1. Introduction
In the past decade, the combination of large datasets (Deng
et al., 2009; Schuhmann et al., 2022) and ever deeper neural
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Figure 1: Upsampling data using SYNTHER greatly outperforms
explicit data augmentation schemes for small offline datasets and
data-efficient algorithms in online RL without any algorithmic
changes. Moreover, synthetic data from SYNTHER may readily
be added to any algorithm utilizing experience replay. Full results
in Section 4.

networks (Krizhevsky et al., 2012; He et al., 2015; Vaswani
et al., 2017; Devlin et al., 2018) has led to a series of more
generally capable models (Radford et al., 2019; Brown
et al., 2020; Ramesh et al., 2022). In reinforcement learning
(RL, Sutton & Barto (2018)), agents typically learn online
from their own experience. Thus, to leverage sufficiently
rich datasets, RL agents typically make use of experience
replay (Mnih et al., 2015; Fedus et al., 2020), where training
takes place on a dataset of recent experiences. However, this
experience is typically limited, unless an agent is distributed
over many workers which requires both high computational
cost and sufficiently fast simulation (Espeholt et al., 2018;
Kapturowski et al., 2019).

Another approach for leveraging broad datasets for train-
ing RL policies is offline RL (Agarwal et al., 2020; Levine
et al., 2020), whereby behaviors may be distilled from pre-
viously collected data either via behavior cloning (Schaal,
1996), off-policy learning (Kumar et al., 2020; Fujimoto
& Gu, 2021) or model-based methods (Yu et al., 2020; Ki-
dambi et al., 2020; Lu et al., 2022a). Offline data can also
significantly bootstrap online learning (Hester et al., 2017;
Wagenmaker & Pacchiano, 2022; Ball et al., 2023); how-
ever, it is a challenge to apply these methods when there is
a mismatch between offline data and online environment.
Thus, many of the successes rely on toy domains with trans-
fer from specific behaviors in a simple low-dimensional
proprioceptive environment.

Whilst strong results have been observed in re-using prior
data in RL, appropriate data for particular behaviors may
simply not exist and thus this approach falls short in gen-
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Figure 2: SYNTHER allows any RL agent using experience re-
play to arbitrarily upsample their experiences and train on synthetic
data. Our approach scales across proprioceptive and pixel-based
environments. By leveraging this increased data, agents can learn
effectively from smaller datasets and achieve higher sample effi-
ciency.

erality. We consider an alternative approach—rather than
passively reusing data, we leverage tremendous progress
in generative modeling to generate a large quantity of new,
synthetic data. While prior work has considered upsampling
online RL data with VAEs or GANs (Huang et al., 2017;
Imre, 2021; Ludjen, 2021), we propose making use of dif-
fusion generative models (Sohl-Dickstein et al., 2015; Ho
et al., 2020; Karras et al., 2022), which unlocks significant
new capabilities.

Our approach, which we call Synthetic Experience Replay,
or SYNTHER, is conceptually simple, whereby given a lim-
ited initial dataset, we can arbitrarily upsample the data for
an agent to use as if it was real experience. Therefore, in this
paper, we seek to answer a simple question: Can the latest
generative models replace or augment traditional datasets
in reinforcement learning? To answer this, we consider the
following settings: offline RL where we replace the original
data with data produced by a generative model, and online
RL where we upsample experiences to broaden the training
data available to the agent. In both cases, SYNTHER leads
to drastic improvements, obtaining performance comparable
to that of agents trained with substantially more real data.
Furthermore, in certain offline settings, synthetic data en-
ables effective training of larger policy and value networks,
resulting in higher performance by alleviating the repre-
sentational bottleneck. Finally, we show that SYNTHER
scales to pixel-based environments by generating data in
latent space. We thus believe this paper presents sufficient
evidence that our approach could enable entirely new, ef-
ficient, and scalable training strategies for RL agents. To
summarize, the contributions of this paper are:

• We propose SYNTHER in Section 3, a diffusion-based
approach that allows one to generate synthetic expe-
riences and thus arbitrarily upsample data for any re-
inforcement learning algorithm utilizing experience
replay.

• We validate the synthetic data generated by SYNTHER
in offline settings across proprioceptive and pixel-based
environments in Section 4.1 and Section 4.3, present-
ing the first generative approach to show parity with
real data on the standard D4RL and V-D4RL offline
datasets with a wide variety of algorithms. Further-
more, we observe considerable improvements from
upsampling for small offline datasets and scaling up
network sizes.

• We show how SYNTHER can arbitrarily upsample an
online agent’s training data in Section 4.2 by contin-
ually training the diffusion model. This allows us to
significantly increase an agent’s update-to-data (UTD)
ratio matching the efficiency of specially designed data-
efficient algorithms without any algorithmic changes.

2. Background
2.1. Reinforcement Learning

We model the environment as a Markov Decision Process
(MDP, Sutton & Barto (2018)), defined as a tuple M =
(S,A, P,R, ρ0, γ), where S and A denote the state and ac-
tion spaces respectively, P (s′|s, a) the transition dynamics,
R(s, a) the reward function, ρ0 the initial state distribution,
and γ ∈ (0, 1) the discount factor. The goal in reinforce-
ment learning is to optimize a policy π(a|s) that maximizes
the expected discounted return Eπ,P,ρ0 [

∑∞
t=0 γ

tR(st, at)].

2.2. Offline Reinforcement Learning

In offline RL (Levine et al., 2020), the policy is not de-
ployed in the environment until test time. Instead, the
algorithm only has access to a static dataset Denv =
{(st, at, rt, st+1)}Tt=1, collected by one or more behavioral
policies πb. We refer to the distribution from which Denv
was sampled as the behavioral distribution (Yu et al., 2020).
In some of the environments we consider, the environment
may be finite horizon or have early termination. In that case,
the transition tuple also contains a terminal flag dt where
dt = 1 indicates the episode ended early at timestep t and
dt = 0 otherwise.

2.3. Diffusion Models

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020) are a class of generative models inspired by non-
equilibrium thermodynamics that learn to iteratively reverse
a forward noising process and generate samples from noise.
Given a data distribution p(x) with standard deviation σdata,
we consider noised distributions p(x;σ) obtained by adding
i.i.d. Gaussian noise of standard deviation σ to the base
distribution. The forward noising process is defined by a
sequence of noised distributions following a fixed noise
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schedule σ0 = σmax > σ1 > · · · > σN = 0. When
σmax ≫ σdata, the final noised distribution p(x;σmax) is
essentially indistinguishable from random noise.

Karras et al. (2022) consider a probability-flow ODE with
the corresponding continuous noise schedule σ(t) that main-
tains the desired distribution as x evolves through time given
by Equation (1).

dx = −σ̇(t)σ(t)∇x log p(x;σ(t))dt (1)

where the dot indicates a time derivative and
∇x log p(x;σ(t)) is the score function (Hyvärinen,
2005), which points towards the data at a given noise level.
Infinitesimal forward or backward steps of this ODE either
nudge a sample away or towards the data. Karras et al.
(2022) consider training a denoiser Dθ(x;σ) on an L2
denoising objective:

min
θ

Ex∼p,σ,ϵ∼N (0,σ2I) ∥Dθ(x+ ϵ;σ)− x∥22 (2)

and then use the connection between score-
matching and denoising (Vincent, 2011) to obtain
∇x log p(x;σ) = (Dθ(x;σ) − x)/σ2. We may
then apply an ODE (or SDE as a generalization of
Equation (1)) solver to reverse the forward process.
In this paper, we train our diffusion models to ap-
proximate the online or offline behavioral distribution.

Algorithm 1 SYNTHER for online replay-based algorithms.
Our additions are highlighted in blue.

1: Input: real data ratio r ∈ [0, 1]
2: Initialize: Dreal = ∅ real replay buffer, π agent, Dsynthetic = ∅

synthetic replay buffer, M diffusion model
3: for t = 1, . . . , T do
4: Collect data with π in the environment and add them to

Dreal
5: Update diffusion model M with samples from Dreal
6: Generate samples from M and add them to Dsynthetic
7: Train π on samples from Dreal ∪ Dsynthetic mixed with ratio

r
8: end for

3. Synthetic Experience Replay
In this section, we introduce Synthetic Experience Replay
(SYNTHER), our approach to upsampling an agent’s ex-
perience using diffusion. We begin by describing the sim-
pler process used for offline RL and then how that may
be adapted to the online setting by continually training the
diffusion model.

3.1. Offline SYNTHER

For offline reinforcement learning, we take the data distri-
bution of the diffusion model p(x) to simply be the offline
behavioral distribution. In proprioceptive environments, the
full transition is low-dimensional compared with typical

Reverse Denoising Process

Noise Data

Forward Diffusion Process

Figure 3: SYNTHER generates synthetic samples using a dif-
fusion model which we visualize on the proprioceptive walker2d
environment. On the top row, we render the state component of
the transition tuple on a subset of samples; and on the bottom row,
we visualize a t-SNE (Van der Maaten & Hinton, 2008) projection
of 100,000 samples. The denoising process creates cohesive and
plausible transitions whilst also remaining diverse, as seen by the
multiple clusters that form at the end of the process in the bottom
row.

pixel-based diffusion. Therefore, the network architecture
is an important design choice; and similarly to Pearce et al.
(2023) we find it important to use a residual MLP denois-
ing (Tolstikhin et al., 2021) network. Furthermore, the
choice of the Karras et al. (2022) sampler allows us to use
a low number of diffusion steps resulting in high sampling
speed. Full details for both are provided in Appendix B. We
visualize the denoising process on a D4RL (Fu et al., 2020)
offline dataset, in Figure 3. We further validate our diffusion
model on the D4RL datasets in Figure 7 in Appendix A by
showing that the synthetic data closely matches the original
data when comparing the marginal distribution over each
dimension. In Section 4.3, we show the same model may be
used for pixel-based environments by generating data in a
low-dimensional latent space.

Next, we conduct a quantitative analysis and show that the
quality of the samples from the diffusion model is sig-
nificantly better than with prior generative models such as
VAEs (Kingma & Welling, 2014) and GANs (Goodfellow
et al., 2014). We consider the state-of-the-art Tabular VAE
(TVAE) and Conditional Tabular GAN (CTGAN) models
proposed by Xu et al. (2019) with the default hyperparame-
ters, and evaluate on the D4RL halfcheetah medium-replay
dataset. As proposed in Patki et al. (2016), we compare the
following two high-level statistics: (1) Marginal: Mean
Kolmogorov-Smirnov (Massey Jr, 1951) statistic, measur-
ing the maximum distance between empirical cumulative
distribution functions, for each dimension of the synthetic
and real data; and (2) Correlation: Mean Correlation Sim-
ilarity, measuring the difference in pairwise Pearson rank
correlations (Fieller et al., 1957) between the synthetic and
real data.

We also assess downstream offline RL performance us-
ing the synthetic data with two state-of-the-art offline
RL algorithms, TD3+BC (Fujimoto & Gu, 2021) and
IQL (Kostrikov et al., 2022), in Table 2. The full evalu-
ation protocol is described in Section 4.1. The diffusion
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Table 1: A comprehensive evaluation of SYNTHER on a wide variety of proprioceptive D4RL (Fu et al., 2020) datasets and selection of
state-of-the-art offline RL algorithms. We show that synthetic data from SYNTHER faithfully reproduces the original performance, which
allows us to completely eschew the original training data. We show the mean and standard deviation of the final performance averaged
over 4 seeds. Highlighted figures show at least parity over each group (algorithm and environment class) of results.

Environment Behavioral
Policy

TD3+BC (Fujimoto & Gu, 2021) IQL (Kostrikov et al., 2022) EDAC (An et al., 2021)
Original SYNTHER Original SYNTHER Original SYNTHER

halfcheetah-v2

random 11.3±0.8 10.9±0.4 15.2±1.2 19.4±0.3 -
mixed 44.8±0.7 45.4±0.4 43.5±0.4 46.7±0.1 62.1±1.3 62.9±1.8
medium 48.1±0.2 48.8±0.3 48.3±0.1 49.9±0.2 67.7±1.2 64.2±1.2
medexp 90.8±7.0 85.9±8.2 94.6±0.2 93.6±1.7 104.8±0.7 94.0±8.3

walker2d-v2

random 0.6±0.3 3.4±1.8 4.1±0.8 4.8±0.7 -
mixed 85.6±4.6 91.9±1.4 82.6±8.0 90.2±4.8 87.1±3.2 84.9±1.6
medium 82.7±5.5 85.2±1.1 84.0±5.4 83.2±5.6 93.4±1.6 88.2±1.6
medexp 110.0±0.4 110.1±0.3 111.7±0.6 111.8±0.7 114.8±0.9 113.6±0.5

hopper-v2

random 8.6±0.3 17.8±11.2 7.2±0.2 7.5±0.5 -
mixed 64.4±24.8 54.0±10.8 84.6±13.5 102.8±0.3 99.7±0.9 97.6±1.6
medium 60.4±4.0 63.0±4.3 62.8±6.0 71.8±4.3 101.7±0.3 101.0±0.7
medexp 101.1±10.5 102.5±10.9 106.2±6.1 97.5±8.8 105.2±11.6 109.7±0.2

locomotion average 59.0±4.9 59.9±4.3 62.1±3.5 64.9±2.3 92.9±2.4 90.7±1.9

maze2d-v1
umaze 29.4±14.2 40.5±9.8 37.7±2.0 40.5±1.0 95.3±7.4 101.5±20.6
medium 59.5±41.9 67.1±36.6 35.5±1.0 34.1±0.2 57.0±4.0 69.4±8.0
large 97.1±29.3 128.0±41.3 49.6±22.0 48.7±4.6 95.6±26.5 161.6±9.7

maze average 62.0±28.2 78.5±29.2 40.9±8.3 41.1±1.9 82.6±12.6 110.8±12.8

model is far more faithful to the original data than prior gen-
erative models which leads to substantially higher returns
on both algorithms. Thus, we hypothesize a large part of
the failure of prior methods (Imre, 2021; Ludjen, 2021) is
due to a weaker generative model.

3.2. Online SYNTHER

SYNTHER may be used to upsample an online agent’s expe-
riences by continually training the diffusion model on new
experiences. We provide pseudocode for how to incorpo-
rate SYNTHER into any online replay-based RL agent in
Algorithm 1 and visualize this in Figure 2. Concretely, a dif-
fusion model is periodically updated on the real transitions
and then used to populate a second synthetic buffer. The
agent may then be trained on a mixture of real and synthetic
data sampled with ratio r. For the results in Section 4.2,
we simply set r = 0.5 following Ball et al. (2023). The
synthetic replay buffer may also be configured with a finite
capacity to prevent overly stale data.

Table 2: SYNTHER is better at capturing both the high-level
statistics of the dataset (halfcheetah medium-replay) than prior
generative models and also leads to far higher downstream perfor-
mance. Metrics (left) computed from 100K samples from each
model, offline RL performance (right) computed using 5M sam-
ples from each model. We show the mean and standard deviation
of the final performance averaged over 4 seeds.

Model Metrics Eval. Return
Marginal Correlation TD3+BC IQL

Diffusion 0.989 0.998 45.4±0.4 46.7±0.1
VAE 0.941 0.976 12.3±5.6 6.7±1.0
GAN 0.947 0.979 11.0±3.3 4.6±2.4

4. Empirical Evaluation
We evaluate SYNTHER across a wide variety of offline
and online settings. First, we validate our approach on
offline RL, where we entirely replace the original data, and
further show large benefits from upsampling small offline
datasets. Next, we show that SYNTHER leads to large
improvements in sample efficiency in online RL, exceeding
specially designed data-efficient approaches. Finally, we
show that SYNTHER scales to pixel-based environments by
generating data in latent space.

4.1. Offline Evaluation

We first verify that synthetic samples from SYNTHER faith-
fully model the underlying distribution from the canonical
offline D4RL (Fu et al., 2020) datasets. To do this, we
evaluate SYNTHER in combination with 3 widely-used
SOTA offline RL algorithms: TD3+BC (Fujimoto & Gu
(2021), explicit policy regularization), IQL (Kostrikov et al.
(2022), expectile regression), and EDAC (An et al. (2021),
uncertainty-based regularization) on an extensive selection
of D4RL datasets. We consider the MuJoCo (Todorov et al.,
2012) locomotion (halfcheetah, walker2d, and hopper) and
maze2d environments. In these experiments, all datasets
share the same training hyperparameters in Appendix B,
with some larger datasets using a wider network. For each
dataset, we upsample the original dataset to 5M samples;
we justify this choice in Appendix C.1. We show the final
performance in Table 1.

Our results show that we achieve at least parity for all groups
of environments and algorithms as highlighted in the table,
regardless of the precise details of each algorithm. We
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Figure 4: SYNTHER is a powerful method for upsampling reduced variants of the walker2d datasets and vastly improves on explicit
data augmentation approaches for both the TD3+BC (top) and IQL (bottom) algorithms. The subsampling levels are scaled proportionally
to the original size of each dataset. We show the mean and standard deviation of the final performance averaged over 4 seeds.

note significant improvements to maze2d environments,
which are close to the ‘best’ performance as reported in
CORL (Tarasov et al., 2022) (i.e., the best iteration dur-
ing offline training) rather than the final performance. We
hypothesize this improvement is largely due to increased
data from SYNTHER, which leads to less overfitting and
increased stability. For the locomotion datasets, we largely
reproduce the original results, which we attribute to the fact
that most D4RL datasets are at least 1M in size and are
already sufficiently large. However, as detailed in Table 5
in Appendix A.1, SYNTHER allows the effective size of the
dataset to be compressed significantly, up to 12.9× on some
datasets.

4.1.1. UPSAMPLING FOR SMALL DATASETS

We investigate the benefit of SYNTHER for small offline
datasets and compare it to canonical ‘explicit’ data augmen-
tation approaches (Laskin et al., 2020; Ball et al., 2021).
Concretely, we wish to understand whether SYNTHER gen-
eralizes and generates synthetic samples that improve policy
learning compared with explicitly augmenting the data with
hand-designed inductive biases. We focus on the walker2d
(medium, medium-replay/mixed, medium-expert) datasets
in D4RL and uniformly subsample each at the transition
level. We subsample each dataset proportional to the orig-
inal dataset size so that the subsampled datasets approxi-
mately range from 20K to 200K samples. As in Section 4.1,
we then use SYNTHER to upsample each dataset to 5M
transitions. Our denoising network uses the same hyperpa-
rameters as for the original evaluation in Section 4.1.

In Figure 4, we can see that for all datasets, SYNTHER leads
to a significant gain in performance and vastly improves on
explicit data augmentation approaches. For explicit data

augmentation, we select the overall most effective augmen-
tation scheme from Laskin et al. (2020) (adding Gaussian
noise of the form ϵ ∼ N (0, 0.1)). Notably, with SYNTHER
we can achieve close to the original levels of performance
on the walker2d-medium-expert datasets starting from only
3% of the original data. In Figure 1a, we methodically
compare across both additive and multiplicative versions of
RAD, as well as dynamics augmentation (Ball et al., 2021)
on the 15% reduced walker medium-replay dataset.
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Figure 5: Comparing L2 distance from training data and dynamics
accuracy under SYNTHER and augmentations.

Why is SYNTHER better than explicit augmentation?
To provide intuition into the efficacy of SYNTHER over
canonical explicit augmentation approaches, we compare
the data generated by SYNTHER to that generated by the
best-performing data augmentation approach in Figure 1a,
namely additive noise. We wish to evaluate two properties:
1) How diverse is the data? 2) How accurate is the data for
the purposes of learning policies? To measure diversity, we
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Table 3: SYNTHER enables effective training of larger policy and value networks for TD3+BC (Fujimoto & Gu, 2021) leading to a
12.2% gain on the offline MuJoCo locomotion datasets. In comparison, simply increasing the network size with the original data does not
improve performance. We show the mean and standard deviation of the final performance averaged over 4 seeds.

Environment Behavioral
Policy Baseline Larger Network

Original Data SYNTHER

halfcheetah-v2

random 11.3±0.8 11.0±0.6 12.8±0.7
mixed 44.8±0.7 44.9±0.5 48.1±0.4
medium 48.1±0.2 48.5±0.2 53.4±0.1
medexp 90.8±7.0 91.0±3.8 101.4±1.1

walker2d-v2

random 0.6±0.3 1.8±1.8 3.5±2.0
mixed 85.6±4.6 82.5±7.3 93.6±2.3
medium 82.7±5.5 84.5±1.0 88.0±0.4
medexp 110.0±0.4 110.2±0.4 110.3±0.2

hopper-v2

random 8.6±0.3 8.2±0.8 17.0±11.3
mixed 64.4±24.8 66.2±17.5 88.8±10.8
medium 60.4±4.0 58.7±5.7 65.6±4.1
medexp 101.1±10.5 97.8±7.9 111.5±0.5

locomotion average 59.0±4.9 58.8±4.0 66.2±2.8

measure the minimum L2 distance of each datapoint from
the dataset, which allows us to see how far the upsampled
data is from the original data. To measure the validity of
the data, we follow Lu et al. (2022a) and measure the MSE
between the reward and next state proposed by SYNTHER
with the true next state and reward defined by the simulator.
We plot both these values in a joint scatter plot to compare
how they vary with respect to each other. For this, we com-
pare specifically on the reduced 15% subset of walker2d
medium-replay as in Figure 1a. As we see in Figure 5, SYN-
THER generates a significantly wider marginal distribution
over the distance from the dataset, and generally produces
samples that are further away from the dataset than explicit
augmentations. Remarkably, however, we see that these
samples are far more consistent with the true environment
dynamics. Thus, SYNTHER generates samples that have
significantly lower dynamics MSE than explicit augmenta-
tions, even for datapoints that are far away from the training
data. This implies that a high level of generalization has
been achieved by the SYNTHER model, resulting in the abil-
ity to generate novel, diverse, yet dynamically accurate
data that can be used by policies to improve performance.

4.1.2. SCALING NETWORK SIZE

A further benefit we observe from SYNTHER on the
TD3+BC algorithm is that upsampled data can enable scal-
ing of the policy and value networks leading to improved
performance. As is typical for RL algorithms, TD3+BC uses
a small value and policy network with two hidden layers,
and width of 256, and a batch size of 256. We consider in-
creasing the size of both networks to be three hidden layers
and width 512 (approximately 6× more parameters), and
the batch size to 1024 to better make use of the upsampled
data in Table 3.

We observe a large overall improvement of 12.2% for the
locomotion datasets when using a larger network with syn-

thetic data (Larger Network + SYNTHER). Notably, when
using the original data (Larger Network + Original Data),
the larger network performs the same as the baseline. This
suggests that the bottleneck in the algorithm lies in the rep-
resentation capability of the neural network and synthetic
samples from SYNTHER enables effective training of the
larger network. This could alleviate the data requirements
for scaling laws in reinforcement learning (Adaptive Agent
Team et al., 2023; Hilton et al., 2023). However, for the IQL
and EDAC algorithms, we did not observe an improvement
by increasing the network size which suggests that the bot-
tleneck there lies in the data or algorithm rather than the
architecture.

4.2. Online Evaluation

Next, we show that SYNTHER can effectively upsample
an online agent’s continually collected experiences. In this
section, we follow the sample-efficient RL literature (Chen
et al., 2021; D’Oro et al., 2023) and consider 3 environments
from the DeepMind Control Suite (DMC, Tunyasuvunakool
et al. (2020)) (cheetah-run, quadruped-walk, and reacher-
hard) and 3 environments the OpenAI Gym Suite (Brock-
man et al., 2016) (walker2d, halfcheetah, and hopper). As in
Chen et al. (2021); D’Oro et al. (2023), we choose the
base algorithm to be Soft Actor-Critic (SAC, Haarnoja
et al. (2018)), a popular off-policy entropy-regularized algo-
rithm, and benchmark against a SOTA sample-efficient vari-
ant of itself, ‘Randomized Ensembled Double Q-Learning’
(REDQ, Chen et al. (2021)). REDQ uses an ensemble of 10
Q-functions and computes target values across a random-
ized subset of them during training. By default, SAC uses
an update-to-data ratio of 1 (1 update for each transition
collected); the modifications to SAC in REDQ enable this to
be raised to 20. Our method, ‘SAC (SYNTHER)’, augments
the training data by generating 1M new samples for every
10K real samples collected and samples them with a ratio
r = 0.5. We then match REDQ and train with a UTD ratio
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Figure 6: SYNTHER greatly improves the sample efficiency of online RL algorithms by enabling an agent to train on upsampled data.
This allows an agent to use an increased update-to-data ratio (UTD=20 compared to 1 for regular SAC) without any algorithmic changes.
We show the mean and standard deviation of the online return over 4 seeds. DeepMind Control Suite environments are shown in the top
row, and OpenAI Gym environments are shown in the bottom.

of 20. We evaluate our algorithms over 200K online steps
for the DMC environments and 100K for OpenAI Gym.

In Figure 6, we see that SAC (SYNTHER) matches or
outperforms REDQ on the majority of the environments
with particularly strong results on the quadruped-walk and
halfcheetah-v2 environments. This is particularly notable
as D’Oro et al. (2023) found that UTD=20 on average de-
creased performance for SAC compared with the default
value of 1, attributable to issues with overestimation and
overfitting (Chen et al., 2021; Li et al., 2023). We aggregate
the final performance on the environments in Figure 1b, nor-
malizing the DMC returns following Lu et al. (2022b) and
OpenAI returns as in D4RL. Moreover, due to the fast speed
of training our diffusion models and fewer Q-networks, our
approach is in fact faster than REDQ based on wall-clock
time, whilst also requiring fewer algorithmic design choices,
such as large ensembles and random subsetting. Full details
on run-time are given in Appendix D.2.

4.3. Scaling to Pixel-Based Observations

Finally, we show that we can readily scale SYNTHER to
pixel-based environments by generating data in the latent
space of a CNN encoder. We consider the V-D4RL (Lu
et al., 2022b) benchmarking suite, a set of standardized
pixel-based offline datasets, and focus on the ‘cheetah-run’
and ‘walker-walk’ environments. We use the associated
DrQ+BC (Lu et al., 2022b) and BC algorithms. Whilst the
original image observations are of size 84×84×3, we note
that the CNN encoder in both algorithms generates features
that are 50 dimensional (Yarats et al., 2022). Therefore,
given a frozen encoder pre-trained on the same dataset,

we can retain the fast training and sampling speed of our
proprioceptive models but now in pixel space. We present
full details in Appendix E.

Analogously to the proprioceptive offline evaluation in Sec-
tion 4.1, we upsample 5M latent transitions for each dataset
and present downstream performance in Table 4. Since the
V-D4RL datasets are smaller than the D4RL equivalents
with a base size of 100K, we would expect synthetic data to
be beneficial. Indeed, we observe a statistically significant
increase in performance of +9.5% and +6.8% on DrQ+BC
and BC respectively; with particularly strong highlighted
results on the medium and expert datasets. We believe this
serves as compelling evidence of the scalability of SYN-
THER to high-dimensional observation spaces and leave
generating data in the original image space, or extending
this approach to the online setting for future work.

5. Related Work
Whilst generative training data has been explored in re-
inforcement learning; in general, synthetic data has not
previously performed as well as real data on standard RL
benchmarks.

Generative Training Data. Imre (2021); Ludjen (2021)
considered using VAEs and GANs to generate synthetic
data for online reinforcement learning. However, we note
that both works failed to match the original performance on
simple environments such as CartPole—this is likely due
to the use of a weaker class of generative models which
we explored in Section 3.1. Huang et al. (2017) considered
using GAN samples to pre-train an RL policy, observing a
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Table 4: We scale SYNTHER to high dimensional pixel-based environments by generating data in the latent space of a CNN encoder
pre-trained on the same offline data. Our approach is composable with algorithms that train with data augmentation and leads to a +9.5%
and +6.8% overall gain on DrQ+BC and BC respectively. We show the mean and standard deviation of the final performance averaged
over 6 seeds.

Environment DrQ+BC (Lu et al., 2022b) BC (Lu et al., 2022b)
Original SynthER Original SynthER

walker-walk

mixed 28.7±6.9 32.3±7.6 16.5±4.3 12.3±3.6
medium 46.8±2.3 44.0±2.9 40.9±3.1 40.3±3.0
medexp 86.4±5.6 83.4±6.3 47.7±3.9 45.2±4.5
expert 68.4±7.5 83.6±7.5 91.5±3.9 92.0±4.2

cheetah-run

mixed 44.8±3.6 43.8±2.7 25.0±3.6 27.9±3.4
medium 53.0±3.0 56.0±1.2 51.6±1.4 52.2±1.2
medexp 50.6±8.2 56.9±8.1 57.5±6.3 69.9±9.5
expert 34.5±8.3 52.3±7.0 67.4±6.8 85.4±3.1

Average 51.7±5.7 56.5±5.4 (+9.5%) 49.8±4.2 53.2±4.1 (+6.8%)

modest improvement in sample efficiency for CartPole. Yu
et al. (2023); Chen et al. (2023) consider augmenting the
image observations of robotic control data using a guided
diffusion model whilst maintaining the same action. This
differs from our approach which models the entire transition
and can synthesize novel action and reward labels.

Outside of reinforcement learning, He et al. (2022); Azizi
et al. (2023); Sariyildiz et al. (2023) consider generative
training data for image classification and pre-training. They
also find that synthetic data improves performance for data-
scarce settings which are especially prevalent in reinforce-
ment learning. Sehwag et al. (2022) consider generative
training data to improve adversarial robustness in image
classification.

Generative Modeling in RL. Prior work in diffusion mod-
eling for offline RL has largely sought to supplant traditional
reinforcement learning with “upside-down RL” (Schmid-
huber, 2019). Diffuser (Janner et al., 2022) models long
sequences of transitions or full episodes and can bias the
whole trajectory with guidance towards high reward or a
particular goal. It then takes the first action and re-plans
by receding horizon control. Decision Diffuser (Ajay et al.,
2022) similarly operates at the sequence level but instead
uses conditional guidance on rewards and goals. Du et al.
(2023) present a similar trajectory-based algorithm for vi-
sual data. In contrast, SYNTHER operates at the transition
level and seeks to be readily compatible with existing rein-
forcement learning algorithms. Pearce et al. (2023) consider
a diffusion-based approach to behavioral cloning, whereby
a state-conditional diffusion model may be used to sample
actions that imitate prior data.

Model-Based Reinforcement Learning. We note the par-
allels between synthetic data generation and model-based
reinforcement learning (Janner et al., 2019; Yu et al., 2020;
Lu et al., 2022a); methods that generate synthetic samples
by rolling out from observed states. Two key differences
to our method are: SYNTHER synthesizes new experiences
without the need to start from a real state and the generated
experiences are distributed exactly according to the data,

rather than subject to compounding errors due to modeling
inaccuracy. Furthermore, SYNTHER is an orthogonal ap-
proach which could in fact be combined with model-based
RL by generating initial states using diffusion, which could
lead to increased diversity.

6. Conclusion
In this paper, we proposed SYNTHER, a powerful and gen-
eral method for upsampling agent experiences in any re-
inforcement learning algorithm using experience replay.
We integrated SYNTHER with ease on six distinct algo-
rithms across proprioceptive and pixel-based environ-
ments, each fine-tuned for its own use case, with no algo-
rithmic modification. Our results show the potential of
synthetic training data when combined with modern diffu-
sion models. In offline reinforcement learning, SYNTHER
allows training from extremely small datasets, scaling up
policy and value networks, and high levels of data com-
pression. In online reinforcement learning, the additional
data allows online agents to use higher update-to-data ratios
leading to increased sample efficiency.

We have demonstrated that SYNTHER is a scalable approach
and believe that extending it to more settings would unlock
extremely exciting new capabilities for RL agents. SYN-
THER could readily be extended to n-step formulations of
experience replay by simply expanding the input space of
the diffusion model. Furthermore, whilst we demonstrated
an effective method to generate synthetic data in latent space
for pixel-based settings, exciting future work could involve
generating full transitions in the original space. For ex-
ample, one could leverage the generalization capability of
image-based diffusion models to synthesize novel views
and configurations of a pixel-based environment. Finally, by
leveraging guidance for diffusion models (Ho & Salimans,
2021), the generated synthetic data could be biased towards
certain modes, resulting in transferable and composable
sampling strategies for RL algorithms.
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Supplementary Material
A. Data Modeling
In this section, we provide further details for our data modeling. Our diffusion model generates full environment transitions
i.e., a concatenation of states, actions, rewards, next states, and terminals where they are present. For the purposes of
modeling, we normalize each continuous dimension (non-terminal) to have 0 mean and 1 std. We visualize the marginal
distributions over the state, action, and reward dimensions on the standard halfcheetah medium-replay dataset in Figure 7
and observe that the synthetic samples accurately match the high-level statistics of the original dataset.

We note the difficulties of appropriately modeling the terminal variable which is a binary variable compared to the rest
of the dimensions which are continuous for the environments we investigate. This is particularly challenging for “expert”
datasets where early termination is rare. For example, walker2d-expert only has ≈ 0.0001% terminals. In practice, we find
it sufficient to leave the terminals un-normalized and round them to 0 or 1 by thresholding the continuous diffusion samples
in the middle at 0.5. A cleaner treatment of this variable could be achieved by leveraging work on diffusion with categorical
variables (Hoogeboom et al., 2021).

Figure 7: Histograms of the empirical marginal distribution of samples from SYNTHER in blue on the halfcheetah medium-replay
dataset against the original data in orange. Dashed lines indicate the mean ± one standard deviation in the original dataset. SYNTHER
faithfully reproduces the high-level statistics of the dataset.
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A.1. Data Compression

An immediate advantage of sampling data from a generative model is compression. In Table 5, we compare the memory
requirements of SYNTHER and the original data by the number of 32-bit floating point numbers used by each for some
sample D4RL (Fu et al., 2020) datasets. For the original data, this simply scales linearly with the size of the dataset. On
other hand, SYNTHER amortizes this in the number of parameters in the denoising network, resulting in a high level of
dataset compression, at the cost of sampling speed. This property was also noted in the continual learning literature with
generative models summarizing previous tasks (Shin et al., 2017). As we discuss in Appendix B.2, sampling is fast with
100K transitions taking around 90 seconds to generate.

Table 5: SYNTHER provides high levels of dataset compression without sacrificing downstream performance in offline reinforcement
learning. Statistics shown are for the standard D4RL MuJoCo walker2d datasets which has a transition dimension of 42, and the residual
denoiser used for evaluation on these environments in Section 4.1. Figures are given to 1 decimal place.

Dataset # FP32s in
Original Dataset

# Diffusion
Parameters Compression

mixed 12.6M
6.5M

1.9×
medium 42M 6.5×
medium-expert 84M 12.9×

B. Hyperparameters
The formulation of diffusion we use in our paper is the Elucidated Diffusion Model (EDM, Karras et al. (2022)). We
parametrize the denoising network Dθ as a simple residual MLP.

B.1. Denoising Network

Our denoising network Dθ is an MLP with skip connections from the previous layer as in Tolstikhin et al. (2021). Thus
each layer has the form given in Equation (3).

xL+1 = linear(activation(xL)) + xL (3)

The hyperparameters are listed in Table 6. The noise level of the diffusion process is encoded by a Random Fourier
Feature (Rahimi & Recht, 2007) embedding. The base size of the network uses a width of 1024 and depth of 6 and thus has
≈ 6M parameters. We adjust the batch size for training based on dataset size. For online training and offline datasets with
fewer than 1 million samples (medium-replay datasets) we use a batch size of 256, and 1024 otherwise.

For the following offline datasets, we observe more performant samples by increasing the width up to 2048: halfcheetah
medium-expert, hopper medium, and hopper medium-expert. This raises the network parameters to ≈ 25M, which remains
fewer parameters than the original data as in Table 5. We provide ablations on the depth and type of network used in Table 8.

Table 6: Default Residual MLP Denoiser Hyperparameters.

Parameter Value(s)
no. layers 6
width 1024
batch size { 256 for online and medium-replay, 1024 otherwise }
RFF dimension 16
activation relu
optimizer Adam
learning rate 3× 10−4

learning rate schedule cosine annealing
model training steps 100K

B.2. Elucidated Diffusion Model

For the diffusion sampling process, we use the stochastic SDE sampler of Karras et al. (2022) with the default hyperparame-
ters used for the ImageNet, given in Table 7. We use a higher number of diffusion timesteps at 128 for improved sample fi-
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delity. We use the implementation at https://github.com/lucidrains/denoising-diffusion-pytorch
which is released under an Apache license.

Table 7: Default ImageNet-64 EDM Hyperparameters.

Parameter Value
no. diffusion steps 128
σmin 0.002
σmax 80
Schurn 80
Stmin 0.05
Stmax 50
Snoise 1.003

The diffusion model is fast to train, taking approximately 17 minutes for 100K training steps on a standard V100 GPU. It
takes approximately 90 seconds to generate 100K samples with 128 diffusion timesteps.

C. SYNTHER Ablations
We consider ablations on the number of generated samples and type of denoiser used for our offline evaluation in Section 4.1.

C.1. Size of Upsampled Dataset
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Figure 8: Ablations on the number of samples generated by SYNTHER for the offline walker medium-replay dataset. We choose 10
levels log-uniformly from the range [50K, 5M]. We find that performance eventually saturates at around 5M samples.

In our main offline evaluation in Section 4.1, we upsample each dataset (which has an original size of between 100K to 2M)
to 5M. We investigate this choice for the walker medium-replay dataset in Figure 8 and choose 10 levels log-uniformly from
the range [50K, 5M]. Similarly to He et al. (2022), we find that performance gains with synthetic data eventually saturate
and that 5M is a reasonable heuristic for all our offline datasets.

C.2. Network Ablations

We ablate the hyperparameters of the denoising network, comparing 3 settings of depth from {2, 4, 6} and analyze the
importance of skip connections. The remaining hyperparameters follow Appendix B.1. We choose the hopper medium-
expert dataset as it is a large dataset of 2M. As we can see in Table 8, we see a positive benefit from the increased depth and
skip connections which leads to our final choice in Table 6.

https://github.com/lucidrains/denoising-diffusion-pytorch
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Table 8: Ablations on the denoiser network used for SYNTHER on the hopper medium-expert dataset. We observe that greater depth
and residual connections are beneficial for downstream offline RL performance. We show the mean and standard deviation of the final
performance averaged over 4 seeds.

Network Depth Eval. Return

MLP
2 86.8±18.7
4 89.9±17.9
6 100.4± 6.9

Residual MLP
2 78.5±11.3
4 99.3±14.7
6 101.1±10.5

D. RL Implementation
For the algorithms in the offline RL evaluation in Section 4.1, we use the ‘Clean Offline Reinforcement Learning’
(CORL, Tarasov et al. (2022)) codebase. We take the final performance they report for the baseline offline evaluation. Their
code can be found at https://github.com/tinkoff-ai/CORL and is released under an Apache license.

For the online evaluation, we consider Soft Actor-Critic (SAC, Haarnoja et al. (2018)) and use the implementation from
the REDQ (Chen et al., 2021) codebase. This may be found at https://github.com/watchernyu/REDQ and is
released under an MIT license. We use the ‘dmcgym’ wrapper for the DeepMind Control Suite (Tunyasuvunakool et al.,
2020). This may be found at https://github.com/ikostrikov/dmcgym and is released under an MIT license.

D.1. Data Augmentation Hyperparameters

For the data augmentation schemes we visualize in Figure 1a, we define:

1. Additive Noise (Laskin et al., 2020): adding ϵ ∼ N (0, 0.1) to st and st+1.

2. Multiplicative Noise (Laskin et al., 2020): multiplying st and st+1 by single number ϵ ∼ Unif([0.8, 1.2]).

3. Dynamics Noise (Ball et al., 2021): multiplying the next state delta st+1 − st by ϵ ∼ Unif([0.5, 1.5]) so that
st+1 = st + ϵ · (st+1 − st).

D.2. Online Running Times

Our online implementation in Section 4.2 uses the default training hyperparameters in Appendix B.1 to train the diffusion
model every 10K online steps, and generates 1M transitions each time. On the 200K DMC experiments, ‘SAC (SynthER)’
takes ≈ 21.1 hours compared to ≈ 22.7 hours with REDQ on a V100 GPU. Both running times are dominated by the use
of an update-to-data ratio (UTD) of 20. We expect that this may be heavily sped-up with early stopping on the diffusion
training, and leave this to future work. The default SAC algorithm with UTD=1 takes ≈ 2 hours.

E. Latent Data Generation with V-D4RL
We provide full details for the experiments in Section 4.3 that scale SYNTHER to pixel-based environments by generating
data in latent space for the DrQ+BC (Lu et al., 2022b) and BC algorithms. Concretely, for the DrQ+BC algorithm, we
consider parametric networks for the shared CNN encoder, policy, and Q-functions, fξ , πϕ, and Qθ respectively. We also use
a random shifts image augmentation, aug. Therefore, the Q-value for a state s and action a is given by Qθ(fξ(aug(s)), a).
The policy is similarly conditioned on an encoding of an augmented image observation.

The policy and Q-functions both consist of an initial ‘trunk’ which further reduces the dimensionality of the CNN encoding
to dfeature = 50, followed by fully connected layers. We represent this as πϕ = πfc

ϕ ◦ πtrunk
ϕ and Qθ = Qfc

θ ◦ Qtrunk
θ . This

allows us to reduce a pixel-based transition to a low-dimensional latent version. Consider a pixel-based transition (s, a, r, s′)
where s, s′ ∈ R84×84×3. Let h = fξ(aug(s)) and h′ = fξ(aug(s′)). The latent transition we generate is:

(πtrunk
ϕ (h), Qtrunk

θ (h), a, r, πtrunk
ϕ (h′), Qtrunk

θ (h′))

https://github.com/tinkoff-ai/CORL
https://github.com/watchernyu/REDQ
https://github.com/ikostrikov/dmcgym
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This has dimension 4 · dfeature + |a|+1 and includes specific supervised features for both the actor and the critic; we analyze
this choice in Appendix E.1. For example, on the ‘cheetah-run’ environment considered in V-D4RL, since |a| = 6, the
overall dimension is 207 which is suitable for our residual MLP denoising networks using the same hyperparameters in
Table 6. This allows us to retain the fast training and sampling speed from the proprioceptive setting but now in pixel space.

To obtain a frozen encoder fξ and trunks πtrunk
ϕ , Qtrunk

θ , we simply train in two stages. The first stage trains the original
algorithm on the original data. The second stage then retrains only the fully-connected portions of the actor and critic,
πfc
ϕ and Qfc

θ , with synthetic data. Thus, our approach could also be viewed as fine-tuning the heads of the networks. The
procedure for the BC algorithm works the same but without the critic.

We use the official V-D4RL (Lu et al., 2022b) codebase for the data and algorithms in this evaluation. Their code can be
found at https://github.com/conglu1997/v-d4rl and is released under an MIT license.

E.1. Ablations On Representation

We analyze the choice of low-dimensional latent representation we use in the previous section, in particular, using specific
supervised features for both the actor and critic. We compare this against using actor-only or critic-only features for both
the actor and critic, which corresponds to a choice of πtrunk

ϕ = Qtrunk
θ , in Table 9. We note that both perform worse with an

especially large drop-off for the critic-only features. This may suggest that non-specific options for compressing the image
into low-dimensional latents, for example, using auto-encoders (Kingma & Welling, 2014), could be even less suitable for
this task.

Table 9: Ablations on the latent representation used for SYNTHER on the V-D4RL cheetah expert dataset. We observe that
separate specific supervised features are essential for downstream performance with a particularly large decrease if we only
used critic features for the actor and critic. We show the mean and standard deviation of the final performance averaged over
4 seeds.

Latent Representation Eval. Return
Actor and Critic (Ours) 52.3±7.0
Actor Only 43.5±7.3
Critic Only 16.0±2.8

https://github.com/conglu1997/v-d4rl

