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ABSTRACT

Artificial and biological agents are unable to learn given completely random and
unstructured data. The structure of data is encoded in the distance or similarity
relationships between data points. In the context of neural networks, the neuronal
activity within a layer forms a representation reflecting the transformation that
the layer implements on its inputs. In order to utilize the structure in the data
in a truthful manner, such representations should reflect the input distances and
thus be continuous and isometric. Supporting this statement, recent findings in
neuroscience propose that generalization and robustness are tied to neural repre-
sentations being continuously differentiable. However, in machine learning, most
algorithms lack robustness and are generally thought to rely on aspects of the data
that differ from those that humans use, as is commonly seen in adversarial attacks.
During cross-entropy classification, the metric and structural properties of net-
work representations are usually broken both between and within classes. This
side effect from training can lead to instabilities under perturbations near locations
where such structure is not preserved. One of the standard solutions to obtain ro-
bustness is to train specifically by introducing perturbations in the training data.
This leads to networks that are particularly robust to specific training perturbations
but not necessarily to general perturbations. While adding ad hoc regularization
terms to improve robustness has become common practice, to our knowledge,
forcing representations to preserve the metric structure of the input data as a sta-
bilising mechanism has not yet been introduced.
In this work, we train neural networks to perform classification while simultane-
ously maintaining the metric structure within each class, leading to continuous and
isometric within-class representations. We show that such network representations
turn out to be a beneficial component for making accurate and robust inferences
about the world. By stacking layers with this property we provide the community
with an network architecture that facilitates hierarchical manipulation of internal
neural representations. Finally, we verify that our isometric regularization term
improves the robustness to adversarial attacks on MNIST.

1 INTRODUCTION

Using neuroscience as an inspiration to enforce properties in machine learning has roots dating back
to the birth of artificial neural networks (McCulloch & Pitts, 1943; Rosenblatt, 1958). One way
to study natural and artificial neural networks is to look at how they transform specific structural
properties of input data. The output of such a transformation is typically called a neural, or latent,
representation, and it carries information about the computational role of a brain region or network
layer (Kriegeskorte, 2008; Kriegeskorte & Diedrichsen, 2019; Bengio et al., 2013). Different prop-
erties of representations are helpful in different ways for both organisms and artificial agents. Some
examples of this are efficient coding Barlow et al. (1961), mixed selectivity (Rigotti et al., 2013),
sparse coding (Olshausen & Field, 2004), response normalization (Carandini & Heeger, 2012), ef-
ficiency and smoothness (Stringer et al., 2019) and expressivity (Poole et al., 2016; Raghu et al.,
2017) among others.

For example, one subsection of theories related to efficient coding proposes that neural circuits
should generate discontinuous and high-dimensional representations to pack the most information
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possible into a network (Barlow et al., 1961; Simoncelli & Olshausen, 2001). On the other hand,
empirical results point out that neural circuits generate low dimensional smooth representations
of the data (Gao & Ganguli, 2015; Gao et al., 2017). This apparent contradiction has already been
rigorously discussed in Stringer et al. (2019). According to the work of Stringer et al., neural circuits
try to be as efficient as possible while smoothly mapping inputs. Without this smoothness constraint,
infinitesimal perturbations of input stimuli could drastically change the output, thereby making such
circuits non-robust to some perturbations. Given the empirical support, it seems likely for these
properties to hold in early sensory systems and thus to be important for a broad class of machine
learning algorithms.

Organisms seem particularly robust to random input perturbations. However, artificial models suffer
from a lack of robustness to adversarial attacks Goodfellow et al. (2014). One argument for why
this happens can be deduced from Naitzat et al. (2020), in which the authors use a topological ap-
proach based on persistent homology (Carlsson, 2009; Edelsbrunner & Harer, 2022), to study the
mappings realized by neural networks performing a classification task. They claim that, in classi-
fication problems, neural networks implement structure-breaking (non-homeomorphic) mappings,
and as argued above, models implementing such mappings are unlikely to be robust. There are
many ways to improve the robustness of a network (Madry et al., 2017; Silva & Najafirad, 2020; Xu
et al., 2020). Nevertheless, of particular interest to us are strategies that try to solve this problem by
restricting the properties of the mapping realized by a network. Examples of this are Jacobian reg-
ularization (Hoffman et al., 2019), spectral regularization (Miyato et al., 2018; Nassar et al., 2020),
Lipschitz continuity (Virmaux & Scaman, 2018; Liu et al., 2022), topological regularization (Chen
et al., 2019) and manifold regularization (Jin & Rinard, 2020) among others.

While regularities in neural representations help with robustness, they do not necessarily guarantee
that the input and output representations will have the same metric relationships, thereby reflecting
the actual structure of the data. To our knowledge, there are still no methods to preserve the class
metric structure while allowing for robust classification. To achieve this behavior, we create a neural
network model with, what we call, Locally Isometric Layers (LILs) and study the representations
generated by training such networks. Furthermore, we extend these networks to generate represen-
tations in a hierarchical manner, which makes them helpful in performing classification at different
resolutions. Finally, we train LILs on MNIST and show that the isometry condition leads to an im-
provement in network robustness to both the Fast Gradient Sign Method (FGSM) and the Projected
Gradient Descent (PGD) adversarial attacks.

2 BACKGROUND AND METHODS

In this section, we summarise the mathematical background of some of the different mappings that
a neural network can implement and introduce LILs. We treat both training and test data as being
sampled from a manifold M and the neural network N as a set of maps N = {f l

i |f l
i : M → R},

with l denoting the layer and i - the index of a neuron. Another way to interpret the action of a
neural network, which will become useful later on, is to define its mapping layer-wise.

Definition 1: A Neural Network N with L layers acting on a manifold M is a set of functions
{F l : M → Rnl}Ll=1, where nl is the number of neurons in a particular layer.

To perform classification, one usually tries to train a network to realize a particular function Φ :
M → RnL , which holds easily separable representations of the data. After this, a simple linear
layer can be used for the final classification. This procedure requires the specification of a cost
function. Here we will consider the following example:

L(X,T ) = T log σ[Φ(X)] +
1

N2
||G⊙DM −G⊙DΦ||2F = LCSE + LISO, (1)

where X = {x1, ..., xN} are the inputs, T = {t1, ..., tN} are the desired labels, σ is the Softmax
function, || · ||F is the Frobenius norm, DM and DΦ are the distance matrices in the input and output
space generated by d(xi, xj) and d(Φ(xi),Φ(xj)) respectively and G is an indexing matrix. The
distance functions can be any metric, but in this work, we stick to the Euclidean distance. Given a
partition of the training set V =

⊔
k Vk, Vk ⊂ M, the indexing matrix G is defined in the following

way:
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Figure 1: A) Visualization of the three types of mappings. B) The architecture of a Locally Isometric
layer (LIL). Green nodes correspond to an input layer, purple to hidden layers and orange to a
classification layer.

G(xi, xj) =

{
1 if xi, xj ∈ Vk ,

0 otherwise .
(2)

This indexing term forces the network to maintain the local distance relationships between the input
points in the output layer. The metric preservation is enforced within each class separately, which
helps the network find representations that are easy to classify while also preserving the relational
information of the data. This second loss term works hand in hand with the first loss term, which is
just the usual cross-entropy loss regularly used in classification problems and helps to separate the
different classes. This procedure might seem reminiscent of a triplet loss, which is widely used in
contrastive learning (Hadsell et al., 2006; Mao et al., 2019). The vital difference is that instead of
minimizing the distance between points in the same class, it enforces the distances between them to
be the same as in the input data.

In this context, it is also important to mention the work of Sengupta et al. (2018), where the au-
thors imposed a similar metric constraint on ReLU networks to explain the emergence of localized
receptive fields. However, they were not attempting to solve classification tasks and, as a result,
did not adapt their loss function only to preserve metric relationships within the class. A similar
loss function, without the local within-class indexing term G, is also one of the main components
behind some unsupervised dimensionality reduction algorithms (Tenenbaum et al., 2000), especially
those based on multidimensional scaling. The main difference between our method from such algo-
rithms is that they are used to project data to a low-dimensional space in which it can be visualized.
Additionally, they are usually not realized by neural networks and are not used for classification.

2.1 THREE TYPES OF MAPPINGS

One can describe the mappings of neural networks in many ways (Hornik, 1991; Bianchini &
Scarselli, 2014; Guss & Salakhutdinov, 2018; Yang & Salman, 2019), but the main property which
is of interest to us is that of metric preservation. Using such a description, we end up with three
types of mappings: global isometries, local isometries, and non-isometries. Visual representations
of these different mappings are given in figure 1A. A definition of these concepts is in order.

Definition 2: Given a metric space (X, d) and a mapping F : X → Y . F is an isometry (i.e.
preserves the metric) if d(x, y) = d(F (x), F (y)). If this property only holds locally, meaning
d(x, y) = d(F (x), F (y)) for x, y ∈ V , where V ⊂ X , we call it a local or piecewise isometry.

To get these different regimes, we can weigh the loss in the following way,

L = αLCSE + βLISO, (3)
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with β = 0, we only maintain the standard cross-entropy term and obtain discontinuous representa-
tions. For β > 0, one gets locally isometric maps. The case with global isometry can be obtained
by setting Gij = 1, ∀i, j since then, the isometry loss is enforced for all points independent of their
class. We will refer to layers whose weights are updated with β > 0 as Locally Isometric Layers
(LIL). As mentioned before, by partitioning the data manifold M into different subsets, the network
enforces isometry on different local patches or at different resolutions.

2.2 EXPERIMENTS

Our initial experiments were done on relatively low dimensional data so that we could use small
and tractable neural networks made up of 4 layers consisting of 20 neurons with hyperbolic tangent
activation functions. So for both the entangled rings and torus task, each LIL had the following
feedforward architecture - [D,20,20,20,20,C], where D is the dimension of the dataset the LIL re-
ceives and C is the number of neurons in the final classifying layer. The networks in the toy datasets
were trained for 10000 epochs with a batch size equal to the number of training points using the
Adam optimizer (Kingma & Ba, 2014) in PyTorch (Paszke et al., 2019). The choice of a large batch
size guarantees that each time the gradient is computed, there will be more points in the same class,
and thus the distance relationships between them will contribute more to the loss. If these networks
are trained solely by stochastic gradient descent with a batch size of 1, the isometric term will not
contribute anything to the loss, which would be equivalent to only using the cross-entropy term.

When training on MNIST, we slightly increased the network size to 100 neurons and did not use
any hierarchical structure as that is not present in the labeling of MNIST. The classification was
done with a single LIL of 4 layers with 100 neurons each. We used a batch size of 100 for five
epochs for the training. To test the robustness obtained by adding the isometric loss term, we trained
six networks with the following β parameters - [0,0.001,0.01,0.1,1,10]. We performed L∞ FGSM
adversarial attacks with a step size varying logarithmically from 0.01 to 1. For the PGD attacks, we
fixed the L∞ ball size to 0.5 and took ten steps with a varying step size in the same range.

3 RESULTS

3.1 DISENTANGLING ENTANGLED DATA

Inspired by (Naitzat et al., 2020), we generated a dataset in which the two classes take the shape
of two topologically entangled rings in 3-dimensional embedding space, which means that there is
no way to separate the two without cutting one of them apart. However, the rings are not entangled
in the same way in higher dimensional spaces, as one can move one of the rings in the direction
of the fourth dimension, thereby putting it in a different subspace. Given that neural networks
project to spaces of much higher dimension, an operation like this should be simple to implement.
After training a network with LILs, we find a mapping that disentangles the two manifolds while
preserving their topological structure. This solution is very different from the one achieved by only
using the cross-entropy loss, where as expected, the topological structure is lost - see figure 2A.

In order to visualize the rings in the network’s last layer, we use the UMAP dimensionality reduction
algorithm (McInnes et al., 2018). In addition, we show the distance distributions between the points
in each ring after passing through the two networks, which heavily supports the idea that the LIL
implementation manages to preserve the within-class distance relationships almost perfectly 2B. In
contrast, using the cross-entropy loss results in no preservation of structure and instead brings points
closer together, as indicated by the exponential shape of the orange histograms, which appears even
when a log scale is used.

3.2 ISOMETRIC MAPPINGS ARE ROBUST

As seen in the previous section, imposing isometry as a condition on the output layer of a neural
network leads to a within-class continuous mapping. We propose that this is a result of the following
properties:

Definition 3: A function is called K-Lipschitz continuous if there exists a constant K ≥ 0, for which
d(F (x), F (y)) ≤ Kd(x, y).
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Figure 2: A): The initial dataset and UMAP projections (number of neighbors=40 and minimal
distance = 0.25) of the last layer with and without LIL. B): The distance distributions between the
embeddings in the last layer for each of the two rings, trained solely with CSE (orange) and with the
isometric term included (light green).

With this definition in mind, one can see that:

Proposition: Isometric mappings are 1-Lipschitz continuous.

Proof: Given the definition of an isometry: d(x, y) = d(F (x), F (y)). Simply let K = 1 + ϵ and
obtain the inequality (1 + ϵ)d(x, y) ≥ d(F (x), F (y)). The smallest value for which the equality
holds is 1, which is the Lipschitz constant.

Such a mapping has additional desirable properties like being almost everywhere differentiable due
to Rademacher’s theorem (Heinonen et al., 2001) and having derivatives bounded by the Lipschitz
constant.

Proposition: K-Lipschitz continuous mappings have a bounded derivative.

Proof: Rearrange the inequality from the previous proposition to: d(F (x),F (y))
d(x,y) ≤ K. Then take

x = y + δ, this leads to the derivative ||∇F ||∞ ≤ K.

All of these properties improve robustness to adversarial attacks since they enforce the gradients of
the loss with respect to the data to be bounded. To see this consider the gradient computed in a fast
gradient sign method (FGSM).

∇xL(x, t) = ∇xαLCSE +∇xβLISO. (4)

By expanding these terms and applying the chain rule, we obtain the following:

α∇xLCSE = −α
t

σ(Φ(xi))

∂σ(Φ(xi))

∂Φ(xi)

∂Φ(xi)

∂x
≤ −α

t

σ(Φ(xi))

∂σ(Φ(xi))

∂Φ(xi)
K, (5)

β∇xLISO =
2βG

N2

∑
i>j

Hi,jJi,j [Φi,Φj ] ≤
4βG

N2

∑
i>j

Hi,jJi,jK. (6)

Here we have compressed our notation and redefined the distance matrix difference as Hi,j =
d(xi, xj) − d(ϕ(xi), ϕ(xj)), the difference between the mapping at two different points as Ji,j =
ϕ(xi)−ϕ(xj)
d(ϕ(xi),ϕ(xj))

and the difference of the gradient evaluated at two different points as [Φ(xi),Φ(xj)] =

∇xΦ(xj)−∇xΦ(xi). To see a more detailed derivation of equation 6, see Appendix A.1.

Thus, by exploiting the isometric property, one can enforce neural networks to implement mappings
with a bounded derivative, which is expected to improve robustness because it keeps gradients with
respect to the data small.
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Figure 3: A) Robustness of a LIL to an FGSM adversarial attack. B) Robustness to a PGD adver-
sarial attack with a L∞ bounding neighborhood of size 0.5.

3.3 ROBUSTNESS TO ADVERSARIAL ATTACKS ON MNIST

To show this empirically, we trained the LIL model on MNIST, as described in 2.2. We see a
stark improvement in robustness to both FGSM and PGD attacks as the constant β controlling the
importance of the isometry condition is increased. The results are shown for FGSM and PGD in
figure 3, panels A and B, respectively. However, this improvement does not come without a cost;
see table 1, showing that increasing the importance of isometry leads to a degradation in terms
of performance. At the same time, smaller values keep the performance around the cross-entropy
baseline. Thus models which perform mappings very close to isometry are much more robust, but
they pay the price for that by having sub-optimal performance in the absence of perturbations.

Table 1: MNIST test performance as a function of the β parameter which controls to what extent the
isometry property contributes to the loss.

β=0 β=0.001 β=0.01 β=0.1 β=1 β=10
0.9701 0.9688 0.9686 0.9665 0.9588 0.8816

3.4 LOCALLY ISOMETRIC LAYERS AND HIERARCHICAL REPRESENTATIONS

Another way to use LILs is by stacking them in order to glue or cut subsets of the data manifold,
as shown in figure 4A. The first LIL implements some function Φ : M → RnL , which splits the
original manifold into C submanifolds (corresponding to the number of classes) while maintaining
the distances between the points. After the first split is performed, the following LIL operates on the
representation already split by the previous layer, giving a new partition M =

⊔
k Vk. Depending

on the choice of the partition, each following LIL can be used to either glue or cut out pieces of
the original manifold. For the gradients not to interfere, we impose the condition that for each LIL,
gradients are backpropagated only to their preceding LIL, but this assumption can be relaxed. In this
work, we also use a shared classification layer, for which we only need to train the linear projection
from each LIL. However, the same result can be achieved by appending separate classification layers
to each LIL.

In this final example case, we use this stacked LIL model to look at a simple torus split into cylin-
drical regions 4B. We sampled 1600 points from the standard three-dimensional parametrization of
the torus and added a small amount of noise ν N (0, 0.001) to it. We set the β = 100, which is
relatively high. We used only one batch, consisting of all the sampled points from a torus. This
way, the isometric condition is applied fully in all epochs. This is a rather simple example case,
and the network has to perform the task by separating the different regions of the torus into locally
isometric submanifolds - figure 4. Because, in this case, we make use of the hierarchical version
of our model, the regions of the torus are partitioned with different degrees of coarseness across
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Figure 4: A) Stacked LILs, implementing different locally isometric maps depending on the parti-
tioning (labeling) of the input data. B) UMAP visualizations (number of neighbors = 40, minimal
distance = 0.25) of the representations in a classification task in hierarchically stacked LILs.

layers. The stacked LIL network manages to separate the classes well while maintaining a high
classification rate (> 0.99).

4 DISCUSSION

4.1 ADVANTAGES OF ISOMETRIC MAPPINGS

In this work, we developed a method for classification while maintaining the local metric relation-
ships between points in the input data. This type of mapping is beneficial for the truthful represen-
tation of structural relationships in data and for improved robustness to targeted perturbations like
those used in adversarial attacks. We used a Euclidean metric to represent the structural relationships
between data points. However, the approach can also be extended to other metrics more suitable to
the data being analyzed. In our toy dataset experiments, we show that the LIL implementation
completes a classification task without destroying the local structure within each class.

At the same time, standard neural networks trained with solely cross-entropy perform non-
homeomorphic mappings. This result contrasts the reasoning in Naitzat et al. (2020), which argues
that non-homeomorphic mappings are necessary to disentangle topologically entangled data, simpli-
fying the topology of the data and allowing for separation by hyperplanes. Using LILs, comparable
classification performance is made possible while the topology and even the metric structure of the
initial data manifold are preserved within each class throughout the network. From a mathematical
perspective, this is expected as one can disentangle data in higher-dimensional spaces obtained with
a projection of wide neural network layers.

4.2 ROBUSTNESS TO ADVERSARIAL ATTACKS

Our results on MNIST indicate a clear improvement in robustness to adversarial attacks. One pos-
sible explanation for this improvement is that the isometry condition imposes a small Lipschitz
constant on the function mapping data or stimuli to neural representations. This makes the deriva-
tives of such mappings bounded. As a result, perturbation strategies that rely on computing gradients
with respect to data, like those employed in FGSM and PGD, will be weaker. One might also use
similar reasoning to explain the increased robustness observed when adding either smoothness or
more direct Lipschitz constraints, as seen in Chen et al. (2019); Hoffman et al. (2019); Jin & Rinard
(2020); Nassar et al. (2020); Liu et al. (2022), among others.

On the other hand, it is unclear what the Lipschitz constant of a traditional cross-entropy trained
neural network is, despite attempts to provide an estimate (Virmaux & Scaman, 2018). If such
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networks turned out to have an even smaller Lipschitz constant almost everywhere except at a few
breaking points where the topological structure is not maintained, they would still be expected to be
robust. In that case, there would have to be a different explanation for the improvement in robustness
that we observe.

We also point out that using the LIL strategy with large β values decreases classification perfor-
mance. This implies that, at least in this example case, there is a trade-off between performance
and robustness. This trade-off has also been found in other work (Tsipras et al., 2018) and might be
a necessity or a feature of how we achieve robustness. In any case, it is an interesting problem to
explore in future work.

4.3 HIERARCHICAL SPLITTING OF REPRESENTATIONS

Finally, we have also allowed our model to take advantage of hierarchical structure in labeled data.
Hierarchical classification has been attempted previously (Srivastava & Salakhutdinov, 2013; Deng
et al., 2014; Wehrmann et al., 2018; Scieur & Kim, 2021). However, to our knowledge, this has not
been done while also maintaining the local within-class structure of the data. At least intuitively, by
mapping the data to the first class partition in a locally isometric manner, one guarantees that the fol-
lowing more fine-grained classification network will work with a truthful representation of the data.
While we have not explored this intuition further in this work, we believe that this is something that
would be interesting to investigate in hierarchically structured datasets like Imagenet (Krizhevsky
et al., 2017) or the many of the other publicly available and more specialized alternatives (Wei et al.,
2021) in the future. Another possible application of these concepts is in the area of dimensionality
reduction and data visualization. For example, one can use hand-labeling or unsupervised hierar-
chical clustering algorithms to obtain plausible data labels. Given such labeling, LILs can be used
to project the data to a low dimensional space in which the different classes are separated while the
metric structure is maintained.

5 CONCLUSION

To summarize, we have extended the existing regularization methods by introducing a local isome-
try condition that keeps the structure within classes consistent across network layers. Nevertheless,
such a mapping still allows for different classes to be separated, which is a necessary feature of clas-
sification. Additionally, we have explored some peculiar features of this type of regularization. For
one, due to the isometry property, it is capable of continuously untying entangled data. We have also
shown that in virtue of such properties, gradients with respect to the input data are bounded, which
is expected to improve robustness to adversarial attacks. This is empirically demonstrated in simu-
lations on MNIST. Finally, we propose that our LIL model can be stacked to improve hierarchical
classification.
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A APPENDIX

A.1 DERIVATION FOR LIPSCHITZ BOUND ON THE ISOMETRIC LOSS GRADIENT.

We start be writing down the isometric loss term:

LISO =
β

N2
||G⊙DM −G⊙DΦ||2F . (7)

When taking the gradient we can rewrite it in terms of the distance generating functions d(xi, xj)
and d(ϕ(xi), ϕ(xj)). Furthermore for simplicity of notation we will abbreviate Φ(xi)

l to ϕl
i, where

l is one of the basis components (eg. a pixel of an image). Lastly for the purpose of readability, we
will omit writing out the element-wise multiplication operator for the indexing matrix G. This gives
the following:

β∇xLISO =
βG

N2
∇x

∑
i,j

(d(xi, xj)− d(ϕi, ϕj))
2. (8)

By expanding the squared brackets and applying the chain and product rules, the expression be-
comes:

2βG

N2

∑
i,j

[d(xi, xj)∇xd(xi, xj)− d(xi, xj)∇xd(ϕi, ϕj)−

d(ϕi, ϕj)∇xd(xi, xj) + d(ϕi, ϕj)∇xd(ϕi, ϕj)], (9)

rearranging these terms we get:

2βG

N2

∑
i,j

{d(xi, xj)[∇xd(xi, xj)−∇xd(ϕi, ϕj)] + d(ϕi, ϕj)[∇xd(ϕi, ϕj)−∇xd(xi, xj)]} =

2βG

N2

∑
i,j

{[d(xi, xj)− d(ϕi, ϕj)][∇xd(xi, xj)−∇xd(ϕi, ϕj)]}.

(10)

In order to continue it helps to compute the derivatives of the distance functions with respect to the
basis in which the input data is described, this gives:

∇xd(xi, xj) =
xl
i − xl

j

d(xi, xj)
el,

∇xd(ϕi, ϕj) =
ϕl
i − ϕl

j

d(ϕi, ϕj)

∂ϕ(xi)

∂xl
el,

(11)

with el being the standard basis components.

Substituting these expressions and taking advantage of the symmetry in the distance functions we
rewrite the expression as:

2βG

N2

∑
i>j

{[d(xi, xj)− d(ϕi, ϕj)]
∑
l

[
xl
i − xl

j

d(xi, xj)
el −

ϕl
i − ϕl

j

d(ϕi, ϕj)

∂ϕ(xi)

∂xl
el]

+[d(xi, xj)− d(ϕi, ϕj)]
∑
l

[
xl
j − xl

i

d(xi, xj)
el −

ϕl
j − ϕl

i

d(ϕi, ϕj)

∂ϕ(xj)

∂xl
el]},

=
2βG

N2

∑
i>j

[d(xi, xj)− d(ϕi, ϕj)]
∑
l

(
ϕl
i − ϕl

j

d(ϕi, ϕj)
)(
∂ϕ(xj)

∂xl
− ∂ϕ(xi)

∂xl
)el.

(12)
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At this point it helps to compress our notation further. We redefine the difference between the
two distance matrices as Hi,j = d(xi, xj) − d(ϕi, ϕj), the difference between the mapping at two
different points as Ji,j =

ϕi−ϕj

d(ϕi,ϕj)
and the difference of the derivative at two different points as

[ϕi, ϕj ] = ∇xϕj −∇xϕi (inspired by the notation used in Lie brackets). Given these new identifi-
cations we obtain the final form of the gradient as:

β∇xLISO =
2βG

N2

∑
i>j

Hi,jJi,j [ϕi, ϕj ]. (13)

Given that for an isometry the norm of the gradient ||∇xϕ|| ≤ 1, the difference between the gradients
evaluated at any two points is bounded by 2K. With this in mind we arrive at the final inequality,
showing that the isometric loss gradient is bounded:

β∇xLISO =
2βG

N2

∑
i>j

Hi,jJi,j [ϕi, ϕj ] ≤
4βG

N2

∑
i>j

Hi,jJi,jK. (14)

□
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