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Abstract

Despite recent advancements in speech gener-
ation with text prompt providing control over
speech style, voice attributes in synthesized
speech remain elusive and challenging to con-
trol. This paper introduces a novel task: voice
attribute editing with text prompt, with the goal
of making relative modifications to voice at-
tributes according to the actions described in
the text prompt. To solve this task, VoxEditor,
an end-to-end generative model, is proposed. In
VoxEditor, addressing the insufficiency of text
prompt, a Residual Memory (ResMem) block is
designed, that efficiently maps voice attributes
and these descriptors into the shared feature
space. Additionally, the ResMem block is en-
hanced with a voice attribute degree prediction
(VADP) block to align voice attributes with cor-
responding descriptors, addressing the impreci-
sion of text prompt caused by non-quantitative
descriptions of voice attributes. We also estab-
lish the open-source VCTK-RVA dataset, which
leads the way in manual annotations detailing
voice characteristic differences among differ-
ent speakers. Extensive experiments demon-
strate the effectiveness and generalizability of
our proposed method in terms of both objective
and subjective metrics. The dataset and audio
samples are available on the website !

1 Introduction

Voice characteristics, serving as an expression of
the speaker’s identity, is a crucial component of
speech. Effectively controlling voice characteris-
tics in speech has consistently been a focal point in
research. Voice conversion (VC) (Mohammadi and
Kain, 2017) stands out as a representative technol-
ogy that seeks to change the voice characteristics
from a source speaker to a target speaker while pre-
serving the linguistic content. Traditional VC tasks
depend on reference audio, but finding suitable ref-
erence audio is always challenging, especially for

1https://anonymous.4open.science/w/VoxEditor_
demo-ACL/
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Figure 1: Illustration of voice attribute editing with text
prompt.

the applications like personalized voice creation
for virtual characters and automatic movie dubbing.
Given that natural language acts as a convenient
interface for users to express the voice attributes,
which refer to human perception of voice character-
istics (e.g., "husky", "bright", "magnetic"), using
text prompts (Guo et al., 2023; Ji et al., 2023) as
guidance is a more viable approach to flexible voice
creation.

This paper introduces a novel task: voice at-
tribute editing with text prompt. As shown in Fig-
ure 1, given source speech and a text prompt that
describes the desired editing actions, i.e., relative
modifications on specific voice attributes, the task
aims to alter the source speech according to the
text prompt while keeping the linguistic content
unchanged. The voice attribute editing task fun-
damentally differs from recent speech generation
tasks with text prompt (Ji et al., 2023; Watanabe
et al., 2023; Yang et al., 2023). These related tasks
utilize text prompt for voice control rather than ref-
erence audio, resulting in speech style (e.g., gender,
emotion and rhythm) that roughly matches the in-
put text prompt, but they lack the ability to finely
modify specific voice attributes. Specific distinc-
tions are outlined in Section 2.1.

The primary two challenges encountered in the
voice attribute editing task are the insufficiency
and imprecision of text prompt. First, the insuffi-
ciency refers to the challenge posed by the multi-
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dimensional nature of the voice perception space,
making it difficult for text prompt to fully capture
all voice characteristics. This difficulty is exacer-
bated in the voice attribute editing task that only
modifies specific voice attributes, thus further com-
plicating the establishment of mapping from the
text prompt to corresponding voice attributes. Sec-
ond, the imprecision means that we always express
our perception of voice characteristics through qual-
itative descriptors rather than relying on quantita-
tive physical descriptors (Wallmark and Kendall,
2018). For the voice attribute editing task, this
results in ambiguity when expressing the detailed
differences in particular voice attributes between
speakers.

To address the aforementioned challenges, we
propose VoxEditor, the first model to deal with
the voice attribute editing task. To tackle the in-
sufficiency issue, we propose a Residual Mem-
ory (ResMem)-based text-voice alignment mod-
ule. The ResMem consists of two components:
the main memory, which utilizes trainable slots
to quantize the common space for text and voice
characteristics, and the residual memory, which
compensates for challenging-to-describe aspects
in voice characteristics. To address the impreci-
sion issue, the ResMem block is enhanced with
the voice attribute degree prediction (VADP) mod-
ule, designed to predict the difference degree of
the specific voice attribute between two speakers.
During inference, with the assistance of a large lan-
guage model (LLM), we first extract voice attribute
descriptors from the text prompt. Subsequently,
we perform semantically meaningful interpolation
between the descriptor embedding and the source
speaker embedding, resulting in the edited speaker
embedding for generating speech.

To facilitate research on the voice attribute edit-
ing task, this paper presents a manually anno-
tated dataset, VCTK-RVA, which annotates Relative
Voice Attribute differences between same-gender
speakers based on the VCTK (Veaux et al., 2023)
corpus. Initially, speech experts distilled a descrip-
tor set from a large-scale internal speech dataset to
describe common voice attributes. Then, speech
experts conducted pairwise comparisons of voice
characteristics among same-gender speakers in the
open-source VCTK corpus and selected suitable
descriptors from the set to effectively capture the
major differences in voice characteristics.

To validate the effectiveness and generalizability
of our method, we meticulously devised several

metrics for the task. Experimental results show that
VoxEditor can generate high-quality speech that
align well with the input text prompt and preserve
voice characteristics of the source speech to some
extent. These results highlight the controllability,
generality, and quality of VoxEditor.

We summarize our main contributions as fol-
lows. Firstly, we introduce a new task: voice at-
tribute editing with text prompt. This task enables
users to make relative modifications to voice at-
tributes in source speech based on the provided
text prompt, offering a convenient method for cre-
ating desired voice characteristics. Secondly, we
construct the VCTK-RVA dataset, an open-source
resource that pioneers in describing differences in
voice characteristics between speakers. Thirdly,
VoxEditor is proposed for the VE task, which inte-
grates ResMem and VADP modules to overcome
challenges caused by the insufficiency and impre-
cision of text prompt.

2 Related Work

2.1 Speech Generation with Text Prompt

Considering the success of text-guided generation
in both text and images, many recent works have
explored speech generation with text prompt (Guo
et al., 2023; Leng et al., 2023; Ji et al., 2023). How-
ever, only a few of these works focus on specific as-
pects of voice characteristics (Shimizu et al., 2023;
Zhang et al., 2023; Yao et al., 2023), primarily ad-
dressing speech style factors such as gender, speak-
ing speed, energy, and emotion.

In the context of methods, these studies com-
monly incorporated BERT(Devlin et al., 2019) to
extract textual embeddings from the input text
prompt and utilized supervised training with ref-
erence speech to establish a mapping from textual
embeddings to speaker embeddings. Prompttts2
(Leng et al., 2023) introduced Diffusion (Ho et al.,
2020) sampling to mitigate the insufficiency of text
prompt. Nevertheless, the diversity achieved during
inference remains both elusive and beyond control.
The proposed VoxEditor employs the ResMem and
VADP blocks to address the insufficiency and im-
precision issues of text prompt, allowing users to
relatively modify the target voice attribute.

Several speech datasets (Ji et al., 2023; Watanabe
et al., 2023; Yang et al., 2023) enriched with text
prompt have also been established. These datasets
provided the individual text descriptions of speech
style for each speech sample, which failed to con-



Descriptor Freq. Descriptor Freq.
Bright 17.10  Thin 13.03
Coarse 11.62 Slim 11.31
Low 7.43  Pure 5.48
Rich 471  Magnetic 3.64
Muddy 3.59 Hoarse 3.32
Round 248 Flat 2.15
Shrill 2.08  Shriveled 1.74
Muffled 1.44  Soft 0.82
Transparent 0.66  Husky 0.59

Table 1: The descriptor set is used for describing the
common voice attributes, and the Freq. represent fre-
quency (%) of each descriptor in VCTK-RVA.

vey the detailed differences in voice attributes be-
tween speakers and were unsuitable for the voice
attribute editing task. In contrast, relative attribute
annotations in the VCTK-RVA dataset allow the
speech to be ranked across various voice attributes,
facilitating alignment between independent voice
attributes and the corresponding descriptors.

2.2 Memory Network

Memory Network (Weston et al., 2015) incorpo-
rates a long-term memory module with the ability
to be both read from and written to. Recently, Key-
value memory has been employed for cross-modal
alignment across various tasks (Chen et al., 2021;
Sheng et al., 2023). However, these methods of-
ten neglect the information gap between different
modalities. Given the insufficiency issue of text
prompt, we propose the ResMem block to bridge
the gap between the text prompt and voice charac-
teristics.

3 VCTK-RVA Dataset
3.1 Descriptors for Voice Attributes

To construct a dataset suitable for the voice attribute
editing task, manual annotations are necessary to
express voice perception. However, systematic re-
search on the voice perception space is currently
lacking. Therefore, for practicality, we adopt a
descriptor set to describe the differences in voice
characteristics among speakers. Here, the descrip-
tor set refers to the keywords commonly used in
natural language to describe voice characteristics.
In terms of engineering implementation, the de-
scriptor set should be concise and cover the most
commonly used voice characteristic descriptions.
Specifically, we engaged 10 speech experts with
professional backgrounds in acoustic research to

describe the voice characteristics of 1500 speakers
based on internal 26-hour recordings in natural
language. Then we merged synonyms of keywords
in these descriptions and summarized the descriptor
set based on word frequency statistics, as shown in
Table 1.

3.2 Voice Attribute Annotations

We choose the publicly available VCTK (version
0.92) dataset (Veaux et al., 2023), which has been
widely utilized in VC and text-to-speech studies,
as the materials for annotation. The VCTK dataset
consists of speech sentences of 110 speakers, in-
cluding 62 females and 48 males. Each speaker
utters approximately 400 sentences in a reading
style, resulting in a total of 43,475 sentences.

We hired four speech experts to conduct pair-
wise comparisons of voice characteristics of same-
gender speakers. When presented with speech sam-
ples from Speaker A and SpeakerB, speech ex-
perts listened to the samples to identify the differ-
ences in voice attributes between these two speak-
ers. Subsequently, these experts selected an unre-
stricted number of descriptors v from the descriptor
set built in Section 3.1 to express that Speaker B
exhibits more prominent voice attributes v when
compared to SpeakerA. This forms an anno-
tated tuple, {SpeakerA, SpeakerB,v}, where
v € D U "Similar", with D representing the de-
scriptor set and "Similar" indicating that speech
experts perceived the voice characteristics of two
speakers as highly similar. In cases of annotation
discrepancies, experts engaged in discussions to
reach a final consensus. The current annotation
only considers a one-way form, highlighting the
more prominent voice attributes and not annotating
the diminished voice attributes. Overall, through
same-gender pairwise comparisons among 62 male
and 48 female speakers, we collected a total of
62 x 61 + 48 x 47 = 6038 annotated data points.
In the entire dataset, the percentages of v corre-
sponding to one, two, and three descriptors are
71.19%, 26.84%, and 1.97%, respectively. The
"Similar" label accounts for 6.81 %.

We randomly selected 200 annotated samples
and uploaded them on Amazon Mechanical Turk
(AMT), inviting ordinary individuals to evaluate
the annotations. Specifically, we provided multi-
ple speech samples from two speakers along with
our voice attribute annotations. Listeners were in-
structed to listen to the speech using headphones
and determine whether they agreed with our anno-
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Figure 2: The overall flowchart of our proposed VoxEditor. During the training process, two speech segments
(Speech” and Speech?) are used, along with voice attribute descriptor 2. In the inference process, the model takes
source speech and the text prompt as inputs to generate edited speech. Here Mel denotes the Mel spectrograms,
Linear denotes the linear spectrograms, s,,, demotes the recalled main speaker embeddings, s,. denotes the recalled
residual speaker embeddings and § denotes the recalled speaker embeddings.

tations. A total of 40 listeners from AMT partici-
pated in the test, and their average agreement rate
reached an impressive 91.78 %.

4 VoxEditor

4.1 Overall Architecture

Our proposed VoxEditor adopts the end-to-end
auto-encoder paradigm (Li et al., 2023), that de-
composes speech into content and speaker embed-
dings, subsequently re-synthesizing the content and
edited speaker embeddings into new speech. As
shown in Figure 2 (b), during inference, the LLM
initially analyzes the input text prompt to obtain
a specific descriptor indicating the desired voice
attribute for modification. Subsequently, the de-
scriptor embedding and speaker embedding are
extracted from the descriptor and the Mel spec-
trograms of the source speech using a descrip-
tor encoder and a speaker encoder. These em-
beddings are then input into the ResMem block
(described in Section 4.2), and the output is com-
bined through linear interpolation to derive the
edited speaker embeddings. Simultaneously, the
pretrained WavLM (Chen et al., 2022) and prior
encoder are employed to extract the content embed-
ding from source speech. Finally, the content and
speaker embeddings are fed into the decoder, which
generates the edited speech. It is worth noting that
when the text prompt contains multiple voice at-
tribute descriptors, the source speech needs to be
edited sequentially based on these descriptors.
During training, VoxEditor is provided with an

annotated tuple {SpeakerA, SpeakerB,v}. As
shown in Figure 2 (a), it takes speech segments
Speech? and Speech®, along with a randomly se-
lected voice attribute descriptor x € v, as input.
These speech segments are randomly segmented
from the respective speaker’s speech. In addition
to the mentioned modules, the VADP block (de-
scribed in Section 4.3) is employed to predict the
difference degree of the specific voice attribute be-
tween two speakers. Other model modules and
the autoencoder training strategy follow FreeVC
(Li et al., 2023), which adopts variational infer-
ence augmented with a normalizing flow and an
adversarial training process. Further details about
the perturb-based data augmentation, prior encoder,
posterior encoder and pretraining strategy can be
found in Appendix A.

4.2 ResMem Block

Considering the insufficiency issue of text prompt,
we employ a ResMem block to establish a mapping
between voice attributes and their corresponding
descriptors within the same feature space. Illus-
trated in Figure 2(c), the ResMem module accepts
either the speaker embedding s € R” or the de-
scriptor embedding t € R” as input, where s and
t are derived from the pretrained speaker encoder
and the descriptor encoder, respectively, and D
represents the dimension of descriptor or speech
embeddings. The ResMem block is composed of
a main voice-value memory M,,, € RMx*D o
residual voice-value memory M,,, € RV*P and



a descriptor-key memory M, € RM*P where M
denotes the number of the slots in M,,,,, and M,
N denotes the number of slots in M., and D is
the dimension for each slot, which equals to the di-
mension of the descriptor and speaker embeddings.

M., is designed to capture the main voice char-
acteristics that can be articulated with voice de-
scriptors, while M,.,, is utilized to address aspects
of voice characteristics that are challenging to de-
scribe in text. Specifically, when a speaker embed-
ding s is given as a query, the cosine similarity
between the query and each slot in M,,, is com-
puted, followed by softmax normalization function,
expressed as follows,

s'm!
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e = Softmax(
where m!  denotes the i-th slot in M,,, and
w;,,, represents the degree of relevance between

the m! and the speaker embedding s. We

muv
then obtain the cosine similarity vector wy,, =
[w}nvv w’?mn s 7w'r]7\z4v]T € RM by computing co-

sine similarity with all slots. Next, we generate the
recalled main speaker embedding as follows,

S =M wp,. )

Similarly, we generate the recalled residual speaker
embedding as follows,

T o)
; s'm
wl, = softmaz( rj , 3)
Il |||,
1,2 N1T N
Wry = [wrv’ Wy * " 7w7"v] € RY, (4)
8, = M, w,,, 6))

where miv denotes the j-th slot in M,.,. Then,
we obtain the recalled speaker embedding § and
calculate the mean square error (MSE) between s
and § as well as the MSE between s and §,,,.

§=35m+5, (6)

Erec: H3_§H%+ ||S—<§m”% (7)

In this manner, the slots within the M,,,,, and M,
can serve as foundational vectors for constructing
the entire voice characteristics space, allowing for
various combinations of these slots to represent a
wide range of voices.

Then, we utilize the slots in M,,,, as a stream-
lined bridge to map descriptor embeddings onto
the voice space. In detail, given the descriptor

embedding ¢, we generate the recalled descriptor
embedding £ in a similar way as the recalled main
speaker embedding as follows,

: t'mi
{ = softmaz(———"—), 8
wy = sof maa:(HtH2 HmﬁcHz) ®)
wt:[wtlvw?f"vwi]w]TGRM’ (9)
t=M, w, (10)

where m}c denotes the ¢-th slot in M., cosine simi-
larity is calculated with the slots in the descriptor-
key memory M, and aligned with the main voice-
value memory M,,,,,. In this way, descriptor em-
beddings are mapped to the main voice character-
istics space, with the slots in M, serving as the
basis vectors.

4.3 VADP Block

Considering the imprecision inherent in text
prompt, we propose the VADP block, designed to
predict the difference degree of the specific voice
attribute between two speakers. Voice characteris-
tics can exhibit local variations (Zhou et al., 2022)
due to factors such as content, rhythm, and emo-
tion. Therefore, we assume that the differences in
voice attributes between different speech samples
from two speakers are not deterministic but follows
a Gaussian distribution.

As shown in Figure 2(a), given the speaker em-
bedding s from Speech?, speaker embedding
sB from Speech? and descriptor embedding ¢, we
concatenate three embeddings to obtain a cross-
modal embedding, We then use linear layers and
ReLU activation functions to predict the mean and
variance of a Gaussian distribution. Subsequently,
we sample from this Gaussian distribution to obtain
the difference degree of specific voice attributes,
which we map through a sigmoid activation func-
tion to derive the editing degree « € [0, 1]. Similar
to Imagic (Kawar et al., 2023), we linearly interpo-
late between the recalled descriptor embedding #
and the recalled main speaker embedding §,‘?1 from
Speech™ to derive the edited speaker embedding
Sedit»

Seait = - t+(1—a)- 8, (11)

m:*

Additionally, we align the slot-weights distribu-
tions between the recalled main speaker embedding
,§ﬁ and s.4;; using Kullback-Leibler (KL) diver-
gence,

Ealign = DKL(wfw||a'wt+(1_a)'w£’w)¢ (12)



where wl, and w? denote the cosine similarity

vectors in the main voice-value memory M,,,, for
Speech® and Speech®, respectively. In this way,
we explicitly align the voice attributes with their
corresponding descriptors.

4.4 Speaker Embedding Editing

As shown in Figure. 2(b), we utilize a LLM (GPT-
3.5-TURBO) to scrutinize the input text prompt
and extract target voice attribute descriptors. In
cases where the descriptor is absent from the set,
the LLM is employed to locate the closest matching
descriptor within the set for substitution. For fur-
ther elucidation, please refer to Appendix B. Next,
we input both the target voice attribute descriptor
and source speech to obtain the recalled descriptor
embedding ¢, recalled main speaker embedding $,,
and recalled residual speaker embedding §,.. Sub-
sequently, we achieve edited speaker embedding
through linear interpolation,

Sedit =a-t+(1—a) &, +8,  (13)

where the value of editing degree « is initially set to
its recommended value 0.7 (refer to Figure 5). The
editing degree can be further adjusted within the
range [0, 1], and increasing « will progressively en-
hance the prominence of the target voice attribute.

S Experiments

5.1 Implementation Details

Our experiments were conducted using the VCTK-
RVA dataset, consisting of 98 speakers for both the
training and validation sets. Among these, 200 sen-
tences were randomly selected for validation, while
the remaining sentences were utilized for training.
For testing, speech samples were categorized into
two sets: the seen speaker set, comprising speak-
ers from the training set, and the unseen speaker
set, consisting of speakers not encountered dur-
ing training. Each set comprised 12 speakers, each
contributing three sentences. During the evaluation,
source speech underwent voice attribute editing for
each voice attribute in the descriptor set, with «
varying from O to 1 in increments of 0.1. We de-
vised 10 predefined sentence patterns, such as "/
want this sound to become more [Descriptor]". For
each edit, a sentence pattern was randomly chosen,
and [Descriptor] was replaced with the target voice
attribute descriptor to form the text prompt.

All speech samples were downsampled to 16k
Hz. Linear spectrograms and 80-band Mel spectro-

grams were computed using a short-time Fourier
transform (STFT) with FFT, window, and hop sizes
set to 1280, 1280, and 320, respectively. The di-
mensions of descriptor embeddings, speaker em-
beddings and slots were equal to D = 256. The
numbers of slots in the ResMem Block were set
to M = 32 and N = 4. We put more information
about M and N in Appendix C.

5.2 Metrics

Objective Metrics To objectively assess whether
the edited voice characteristics align with the
text prompt, we introduced Target Voice Attribute
Similarity (TVAS) metrics. Since there were
no target speakers, we statistically derived refer-
ence speakers for each gender corresponding to
each voice attribute. Specifically, a speaker oc-
curring as the SpeakerB in an annotated tuple
{SpeakerA, Speaker B, v} was defined as one of
the reference speakers for the descriptor x, where
x € v. We traversed the entire dataset to obtain the
reference weight 1 = % of the j-th refer-
ence speaker of voice attribute x, where j € [1, k],
k was the number of reference speakers of the
voice attribute z, occ; represented the occurrence
number of the j-th reference speaker of voice at-
tribute x and number, was the total occurrence
number of voice attribute x. A higher reference
weight indicated a more prominent voice attribute
of the reference speaker. Additionally, we applied
the well-known open-source speaker verification
toolkit, WeaSpeaker?, to extract speaker embed-
dings of edited speech and obtain mean speaker em-
beddings of each reference speaker. When source
speech was edited with target voice attribute z,
we calculated the cosine similarity scores o/ be-
tween the speaker embeddings of edited speech and
the mean speaker embedding of the j-th reference
speaker of the attribute x. Then all cosine similarity
scores were weighted with corresponding reference
weight, resulting in the Absolute Target Voice At-
tribute Similarity metrics under difference value of
o (ATVAS,, = ;:lf o’ -1}). Then, to better focus
on the relative change of voice attribute similari-
ties, we calculated the TVAS metrics with varying
editing degree o, TVAS, = ATVAS, — ATVASy,
and averaged TVAS,, over all « to obtain the final
TVAS metric for editing a source speech sample
on the target voice attribute.

Zhttps://github.com/wenet-e2e/wespeaker



Model Seen Unseen
TVAS MOS-Nat MOS-Cons MOS-Corr TVAS MOS-Nat MOS-Cons MOS-Corr
PromptStyle 0.0089  3.9200 2.0542 2.0321 0.0047 39112 1.9914 2.5532
VoxEditor 0.0574 39147 3.5333 3.7100 0.0561 3.9077 3.4701 3.7036
w/o Voice Res. 0.0559  3.9194 3.4942 3.4739 0.0553 3.9069 3.4586 3.4357
w/oResMem  0.0102  3.8906 2.1142 2.1934 0.0098  3.9073 2.3038 2.6086
w/o VADP 0.0526  3.9146 3.4342 3.6967 0.0504  3.9105 3.3176 3.6786

Table 2: Objective and subjective evaluation results of comparison methods. The definitions of all metrics can be

found in Section 5.2.
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Figure 3: The variation of the TAVS metric for generated speech edited with different attributes under various values

of editing degree a.

Subjective Metrics We employed three mean
opinion scores to assess various aspects of the
generated speech: speech naturalness (MOS-Nat),
descriptor-voice consistency (MOS-Cons), and
correlation between source and generated speech
(MOS-Corr). MOS-Nat quantitatively measured
the naturalness of the generated speech, with scores
ranging from 1 (completely unnatural) to 5 (com-
pletely natural). MOS-Cons evaluated the con-
sistency between the voice characteristics of the
generated speech and the text prompt, with scores
ranging from 1 (completely inconsistent) to 5 (com-
pletely consistent). Additionally, when the editing
degree approaches 1, the generated speech should
still retain some voice characteristics of the source
speech. Therefore, MOS-Corr was introduced to
assess the voice characteristics similarity between
the generated speech and source speech when the
editing degree approaches 1, with the score rang-
ing from 1 (completely unrelated voice) to 5 (very
similar voice). 100 generated speech samples cov-
ering each voice attribute were randomly selected
for each subjective evaluation. Three subjective
metrics were evaluated on the AMT platform, and
20 listeners participated in the test each time.

5.3 Evaluation Results

As pioneers in addressing the voice attribute edit-
ing task with no existing comparable methods, we
conducted a thorough comparative analysis of our
proposed method against the following baseline
and ablation models to evaluate its effectiveness:
(1) PromptStyle (Liu et al., 2023): We utilized its

style embedding generation module to replace the
edited speaker embedding generation module in
VoxEditor. Specifically, the original prompt en-
coder was modified to a speaker encoder and a
descriptor encoder. MSE loss was employed to
minimize the distance between s + t and s?. (2)
w/o Voice Res., (3) w/o ResMem, (4)w/o VADP.
More details about these ablation models can be
found in Appendix D. All objective and subjective
evaluation results are summarized in Table. 2.

We can observe that VoxEditor outperformed
other methods significantly in all metrics (p < 0.05
in paired t-tests) except for MOS-Nat. When the
ResMem block was not utilized (PromptStyle and
w/o ResMem), the model’s performance sharply
declined. This is attributed to the inability to ef-
fectively align the voice attributes with their corre-
sponding descriptors. Furthermore, the TVAS met-
ric for same-gender speakers with different editing
degrees « is illustrated in Figure 3. We noticed
that as « increases, the speech generated by our
method became increasingly prominent in the spec-
ified voice attributes. In contrast, for the Prompt-
Style method, the direction of editing was not con-
sistent with the specified voice attributes.

We found that the performance of the w/o Voice
Res. was comparable to that of our method in terms
of TVAS and MOS-Cons, but there was a signif-
icant difference in MOS-Corr. For same-gender
speakers, the voice characteristics of the generated
speech by w/o Voice Res. were very similar when
edited in the same voice attribute with o approach-
ing 1, and the correlation in voice characteristics be-
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Figure 4: The t-SNE visualization of the speaker embeddings extracted from generated speech edited with different

attributes under various values of a.

tween the generated speech and the source speech
was almost nonexistent. The removal of the VADP
block prevented the model from modelling refined
edited speaker embeddings during training, result-
ing in compromised descriptor embeddings. Con-
sequently, during inference, even when the editing
degree approached 1, the edited voice attributes
were not prominent enough, leading to a decrease
in the TVAS and MOS-Cons scores. In addition,
since these methods follow the same auto-encoder
paradigm, their performance in terms of MOS-Nat
was quite comparable.

5.4 Visual Analysis

We randomly selected an additional set of 100 ut-
terances from an unseen speaker and visualized the
speaker embeddings of the generated speech edited
with different voice attributes through t-SNE (Chan
et al., 2019), as shown in Figure 4. We observed
that, as the editing degree « increased, generated
speech edited with the same target voice attribute
gradually formed distinct clusters, which demon-
strated the stability of our method. Additionally,
due to variations in the number of voice attribute
annotations and differences in the prominence of
voice attributes, there were variations in the editing
performance of different voice attributes. When «
equalled 0.3, the speech edited on the "Hoarse" at-
tribute already exhibited clear voice features, form-
ing clusters, while generated speech edited with
other voice attributes predominantly retained the
voice characteristics of the source speech.

5.5 User Study

While the optimal value for editing degree o may
vary depending on different requirements, we aim
to determine the optimal editing range for . The
ideal voice attribute editing should involve a change
toward the specified voice attribute direction while
still preserving some voice characteristics of the
source speaker. To this end, we selected an addi-

Figure 5: MOS-Cons
and MOS-Corr scores
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tional 100 speech samples from unseen speakers
and performed editing with weights o ranging from
0 to 1 across various attributes. We evaluated the
MOS-Cons and Mos-Corr scores of all generated
speech and show the average results in Figure 5.

We observed that when the editing degree was
less than 0.4, the generated speech closely resem-
bled the source speech, and the editing had a small
impact. For o € [0.6,0.8], the generated speech
aligned well with the text prompt while also pre-
serving the some voice characteristics of source
speech. However, when the weight exceeded 0.8,
there was a significant decrease in the similarity of
voice characteristics between the generated speech
and the source speech. Therefore, we considered
the optimal editing range to be between 0.6 and 0.8,
setting the recommended value of « to 0.7.

6 Conclusion

In this work, we proposed VoxEditor, the first voice
attribute editing model with text prompt. Built
upon an auto-encoder framework, we propose the
ResMem and VADP blocks to effectively align
voice attributes and the corresponding descriptors,
facilitating quantifiable editing of speaker embed-
dings. Through experiments, we showcase the per-
formance and generalization capability of VoxEdi-
tor on both seen and unseen speakers. Experimen-
tal results demonstrate that, with an appropriate
editing degree, the generated speech not only meets
the requirements of the text prompt but also retains
the voice characteristics of source speech.



Limitations

There are still limitations in data annotation and pre-
training model aspects. In terms of data annotation,
we only annotated the prominent voice attributes
during pairwise comparisons of the speaker’s voice
characteristics, while disregarding those dimin-
ished voice attributes. Those diminished voice
attributes may be described by the text prompts
such as "I hope this sound becomes less magnetic".
If bidirectional annotations can be established, the
model would also gain the capability for bidirec-
tional voice attribute editing, thereby enhancing its
overall performance. Additionally, the number of
annotated speakers in our dataset remains limited.
Consequently, for descriptors with low frequency
in the dataset, the corresponding voice attribute
editing overly relies on a few specific speakers,
thereby constraining the model’s performance. In
the future, we plan to explore automatic annotation
models for voice characteristics, facilitating effi-
cient dataset expansion. Furthermore, constrained
by the zero-shot capability of the pre-trained VC
network, VoxEditor exhibits slightly lower perfor-
mance on the MOS-Cons and MOS-Corr metrics
under unseen conditions compared to seen condi-
tions. Therefore, scaling up our pretrained model
will be our future work to further enhance perfor-
mance.
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A Model Details

A.1 Perturb-based Data Augmentation

Following FreeVC, we distort the speaker informa-
tion in the source waveform through three steps:
(1) Obtain the original Mel spectrograms mel,,;
from the source speech waveform. (2) Apply
spectrogram-resize (SR) to the original Mel spec-
trograms mel,,; to obtain melg,. (3) Reconstruct
the waveform from mel,;.. The SR process in-
volves resizing the original Mel spectrograms along
the frequency axis by a certain ratio r, followed by
adjusting the resized Mel spectrograms to match
the original size through padding or cutting. When
r > 1, frequencies at the top are randomly re-
moved, and when r < 1, the top part of the Mel
spectrogram is supplemented with Gaussian white
noise atop the high-frequency portion.

A.2 Speaker Encoder and Descriptor Encoder

To enhance the generalization of speaker embed-
dings, the speaker encoder in the model borrows
the neural architecture from a speaker recognition
network (Desplanques et al., 2020), which is based
on 1D-convolutional neural networks (1D-CNN)
with an attentive statistics pooling layer. The de-
scriptor encoder comprises an embedding layer, a
linear layer, and a ReL.U activation function.

A.3 Prior Encoder

The prior encoder contains a bottleneck extrac-
tor and a normalizing flow. In order to remove
the speaker information in self-supervised learning
(SSL) feature extracted from the pretraind WavLM,
we use a bottleneck extractor to map the 1024-
dimension SSL feature into 192-dimension content
embedding. The huge dimension gap is designed to
discard non-essential content like noise or speaker
information. The linear projection layer above the
blocks produces the mean and variance of the nor-
mal posterior distribution. The normalizing flow is
used to improve the complexity of prior distribu-
tion.

The bottleneck extractor is consists of non-
causal WaveNet residual blocks, containing layers
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Diglogue

Given a descriptor set for describing the common voice attribute: [Bright, Thin, Coarse,
Delicate, Low, Pure, Rich, Magnetic, Muddy, Hoarse, Round, Flat, Shrill, Shriveled, Muf-
fled, Soft, Transparent, Husky], you will receive text prompt about relative modifications
on specific voice attributes. Please search for the descriptors about the timbre attributes
in the text prompt, and find the closest descriptors from the descriptor set as the answer,
if there are more than one, please search in turn. Please reply in the following format:

Sure, please provide the text prompt for me to analyze and extract the relevant voice

From the provided text prompt "I want the sound to be more magnetic," the closest

From the provided text prompt "I want the sound to be more magnetic and bright," the

From the provided text prompt "I want the sound to become more magnetic, bright, and
transparent,” the closest descriptors from the given set would be: 1. Magnetic 2. Bright 3.

From the provided text prompt "I want the voice to be hoarse and at the same time

From the provided text prompt "I want to achieve a lower-pitch sound,” the closest

LLM prompts:
1.voice attribute desciprot 1, 2. voice attribute descripor2.
Response:
attribute descriptors.
" LLM prompts: I want the sound to be more magnetic
Response:
descriptor from the given set would be: 1. Magnetic
" LLM prompts: I want the sound to be more magnetic and bright
Response:
closest descriptors from the given set would be: 1. Magnetic 2. Bright
" LLM prompts: I want the sound to become more magnetic, bright and transparent
Response:
Transparent
7 LI:l\i/[iprioﬁli)tis:i I want the voice to be hoarse and at the same time deeper
Response:
deeper," the closest descriptors from the given set would be: 1. Hoarse 2. Low
" LLM prompts: I want to achieve a lower-pitch sound.
Response:
descriptor from the given set would be: 1.Low
" LLM prompts: I'd like to add a touch of coarseness to this voice.
Response:

From the provided text prompt "I’d like to add a touch of coarseness to this voice," the
closest descriptor from the given set would be: 1. Coarse

of dilated convolutions with a gated activation unit
and skip connection. The normalizing flow is a
stack of affine coupling layers consisting of a stack
of WaveNet residual blocks.

A.4 Posterior Encoder and Decoder

Table 3: The examples of voice attributes extraction by the LLM.

of VoxEditor, we freeze the pretrained bottleneck
extractor and speaker encoder to achieve speech
representation disentanglement. The networks
were trained using the AdamW optimizer with
51 = 0.8, B2 = 0.99 and weight decay A = 0.01,
with an initial learning rate of 2 x 10~%. The pre-
trained VC and VoxEditor were both trained on a

In the posterior encoder, we employ non-causal
WaveNet residual blocks following FreeVC (Li
et al., 2023). The decoder essentially adopts the
HiFi-GAN (Kong et al., 2020) generator structure,
comprising stacked transposed convolutions, each
followed by a multi-receptive field fusion module
(MRF). The MRF’s output is the aggregate of resid-
ual block outputs with varying receptive field sizes.

A.5 Pretraining Strategy

VoxEditor pipeline consists of two training stages.
Firstly, we pretrain the FreeVC following the tra-
ditional VC task and then transfer the modules in
FreeVC to VoxEditor. During the training process
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single NVIDIA 4090 GPU with a batch size of 64
and a maximum segment length of 128 frames, for
900k steps and 150k steps, respectively.

A.6 Training Loss

In general, the training loss of VoxEditor is di-
vided into CVAE-related 1oss Leyqe, Text-Voice
alignment-related loss and GAN-related loss L,
The Lcyqe and Ly, follows autoencoder training
loss functions of FreeVC. The GAN-related loss
consists of adversarial loss L4, (D) and L4, (G)
for discriminator D and generator G and feature
matching loss £ ,,,(G) for generator G. The Text-



M N Seen Unseen
TVAS SS TVAS SS
16 4 0.0546 0.8361 0.0537 0.7012
32 4 0.0574 0.8830 0.0561 0.7252
64 8 0.0561 0.8428 0.0554 0.7202
96 16 0.0568 0.8831 0.0559 0.7251

Table 4: The performance evaluation for the VoxEditor
with different hyperparameters for the ResMem block.

Voice alignment-related loss contains £,.. in Equa-
tion 7 and L4, in Equation 12. The final loss
function during the training process of VoxEditor
is as follows,

£<g) = Ecvae + Alﬁrec + /\Q['align

+ Lado(G) + L (G), (14)

‘C(D) = ﬁadv(D)a (15)

where A1 and Ay in Equation 14 were respectively
set to be 20 and 200.

B LLM Prompts for Descriptor
Extraction from Text Prompt

Table 3 provides a detailed example of voice at-
tribute extraction, illustrating the LLM prompts
and responses.

C Hyperparameter Selection for the
ResMem Block

In this section, we provide a detailed explanation
of the hyperparameter selection for the ResMem
Block introduced in Section 4.2. The ResMem
block primarily comprises two key hyperparame-
ters: the slot number M in the main voice-value
memory M,,, and slot number N in the resid-
ual voice-value memory M,,. We trained the
VoxEditor using various combinations of M and
N, evaluating the TVAS and speaker similarity
between source speech with reconstructed speech
(SS). Here, the reconstructed speech refers to the
edited speech with o = 0. As depicted in Table 4,
the optimal overall performance of the VoxEditor
is achieved when M = 32 and N = 4.

D Ablation Models

We extensively discussed the configuration of the
ablation methods in Section 5.3 as follows.

12

w/o Voice Res. : Voice-value residual memory
in the ResMem block was removed, making re-
called speaker embeddings equal to the recalled
main speaker embeddings. The original Equation 7
and Equation 13 were transformed as follows,

Lyrec = ||s — 3|3 (16)

Sedgit = -t + (1 —a)- 3, (17)

w/o ResMem : the ResMem block was removed
and the output of speaker encoder and descriptor
encoder was directly interpolate.

w/o VADP : the VADP block was removed. The
original Equation 11 and Equation 12 were trans-

formed as follows,
Sedit =t + 815, (18)

Ealign = DKL(wﬁwat + wrfrlw) (19)
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