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ABSTRACT

Randomized experiments (a.k.a. A/B tests) are a powerful tool for estimating
treatment effects, to inform decisions making in business, healthcare and other ap-
plications. In many problems, the treatment has a lasting effect that evolves over
time. A limitation with randomized experiments is that they do not easily extend to
measure long-term effects, since running long experiments is time-consuming and
expensive. In this paper, we take a reinforcement learning (RL) approach that esti-
mates the average reward in a Markov process. Motivated by real-world scenarios
where the observed state transition is nonstationary, we develop a new algorithm
for a class of nonstationary problems, and demonstrate promising results in two
synthetic datasets and one online store dataset.

1 INTRODUCTION

Randomized experiments (a.k.a. A/B tests) are a powerful tool for estimating treatment effects, to
inform decisions making in business, healthcare and other applications. In an experiment, units
like customers or patients are randomly split into a treatment bucket and a control bucket. For
example, in a rideshare app, drivers in the control and treatment buckets are matched to customers
in different ways (e.g., with different spatial ranges or different ranking functions). After we expose
customers to one of these options for a period of time, usually a few days or weeks, we can record
the corresponding customer engagements, and run a statistical hypothesis test on the engagement
data to detect if there is a statistically significant difference in customer preference of treatment over
control. The result will inform whether the app should launch the treatment or control.

While this method has been widely successful (e.g., in online applications (Kohavi et al., 2020)), it
typically measures treatment effect during the short experiment window. However, in many prob-
lems, a treatment has a lasting effect that evolves over time. For example, a treatment that increases
installation of a mobile app may result in a drop of short-term profit due to promotional benefits like
discounts. But the installation allows the customer to benefit from the app, which will increase future
engagements and profit in the long term. A limitation with standard randomized experiments is that
they do not easily extend to measure long-term effects. We can run a long experiment for months
or years to measure the long-term impacts, which however is time-consuming and expensive. We
can also design proxy signals that are believed to correlate with long-term engagements (Kohavi
et al., 2009), but finding a reliable proxy is challenging in practice. Another solution is the surro-
gacy method that estimates delayed treatment impacts from surrogate changes during the experi-
ment (Athey et al., 2019). However, it does not estimate long-term impacts resulting from long-term
treatment exposure, but rather from short-term exposure during the experiment.

Shi et al. (2022b) mitigates the limitation of standard randomized experiment by framing the long-
term effect as a reinforcement learning (RL) problem. Their method is closely related to recent
advances in infinite-horizon off-policy evaluation (OPE) (Liu et al., 2018; Nachum et al., 2019a;
Xie et al., 2019; Kallus & Uehara, 2020; Uehara et al., 2020; Chandak et al., 2021). However,
their solution relies on stationary Markov assumption, which fails to capture the real-world non-
stationary dynamics. Motivated by real-world scenarios where the observed state transitions are
nonstationary, we consider a class of nonstationary problems, where the observation consists of two
additive terms: an endogenous term that follows a stationary Markov process, and an exogenous
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term that is time-varying but independent of the policy. Based on this assumption, we develop a new
algorithm to jointly estimate long-term reward and the exogenous variables.

Our contributions are threefold. First, it is a novel application of RL to estimate long-term treat-
ment effects, which is challenging for standard randomized experiments. Second, we develop an
estimator for a class of nonstationary problems that are motivated by real-world scenarios, and give
a preliminary theoretical analysis. Third, we demonstrate promising results in two synthetic datasets
and one online store dataset.

2 BACKGROUND

2.1 LONG-TERM TREATMENT EFFECTS

Let π0 and π1 be the control and treatment policies, used to serve individual in respective buckets.
In the rideshare example, a policy may decide how to match a driver to a nearby request. During the
experiment, each individual (the driver) is randomly assigned to one of the policy groups, and we
observe a sequence of behavior features of that individual under the influence of the assigned policy.
We use variable D ∈ {0, 1} to denote the random assignment of an individual to one of the policies.
The observed features are denoted as a sequence of random variable in Rd

O0, O1, . . . , Ot, . . . ,

where the subscript t indicates time step in the sequence. A time step may be one day or one week,
depending on the application. Feature Ot consists of information like number of pickup orders.
We are interested in estimating the difference in average long-term reward between treatment and
control policies:

∆ = E[
∞∑
t=0

γtRt|D = 1]− E[
∞∑
t=0

γtRt|D = 0], (1)

where E averages over individuals and their stochastic sequence of engagements, Rt = r(Ot) is
the reward signal (e.g., customer rating) at time step t, following a pre-defined reward function
r : Rd → R, and γ ∈ (0, 1) is the discounted factor. The discounted factor γ is a hyper-parameter
specified by the decision maker to indicate how much they value future reward over the present. The
closer γ is to 1, the greater weight future rewards carry in the discounted sum.

Suppose we have run a randomized experiment with the two policies for a short period of T steps.
In the experiment, a set of n individuals are randomly split and exposed to one of the two policies
π0 and π1. We denote by dj ∈ {0, 1} the policy assignment of individual j, and Ii the index set of
individuals assigned to πi, i.e., j ∈ Ii iff dj = i. The in-experiment trajectory of individual j is:

τj = {oj,0, oj,1, . . . , oj,T }.
The in-experiment dataset is the collection of all individual data as Dn = {(τj , dj)}nj=1. Our goal is
to find an estimator ∆̂(Dn) ≈ ∆.

2.2 ESTIMATION UNDER STATIONARY MARKOVIAN DYNAMICS

Inspired by recent advances in off-policy evaluation (OPE) (e.g. Liu et al., 2018; Nachum et al.,
2019b), the simplest assumption is a fully observed Markov Process that the observation in each
time step can fully predict the future distribution under a stationary dynamic kernel. In this paper,
we assume the dynamics kernel and reward function are both linear, following the setting in Parr
et al. (2008). Linear representations are popular in the RL literature (e.g., Shi et al., 2022b) , and
often preferable in industrial applications due to simplicity and greater model interpretability.
Assumption 2.1. (Linear Dynamics) there is a matrix Mi such that

E[Ot+1|Ot = o,D = i] = Mio, ∀t ∈ N, i ∈ {0, 1}. (2)

Remark 2.2. Unlike standard RL, we don’t have an explicit action for a policy. The difference
between the control and treatment policy is revealed by different transition matrix M .
Assumption 2.3. (Linear Reward) There is a coefficient vector θr ∈ Rd such that

r(Ot) = θ⊤r Ot, ∀t ∈ N. (3)
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Remark 2.4. The reward signal may be one of the observed features. For example, if we are inter-
ested in customer rating, and rating is one of the observe features, then θr is just a one-hot vector
with 1 in the corresponding coordinate. When the reward is complex with unknown coefficient, we
can use ordinary least-squares to estimate the coefficient θr.
Proposition 2.5. Under Assumption 2.1 and 2.3, if the spectral norm of Mi is smaller than 1

γ , then
the expected long-term reward of policy πi, v(πi) := E[

∑∞
t=0 γ

tRt|D = i], can be obtained by:

v(πi) = θ⊤r (I − γMi)
−1Ō

(i)
0 , where Ō

(i)
0 := E[O0|D = i]. (4)

The only remaining step is to estimate Ō
(i)
0 and Mi. The former can be directly estimated from the

Monte Carlo average of the experimental data: Ô(i)
0 = 1

ni

∑
j∈Ii

o0,j , where ni = |Ii| is the number
of individuals assigned to policy πi. To estimate the latter, we may use ordinary least-squares on
observed transitions:

M̂i =

∑
j∈Ii

T−1∑
t=0

oj,t+1o
⊤
j,t

∑
j∈Ii

T−1∑
t=0

oj,to
⊤
j,t

−1

. (5)

The detailed derivation can be found in (Parr et al., 2008). Once we get the estimated value of
v̂i ≈ v(πi), the long term impact in Eq. (1) can be estimated as:

∆̂ = v̂1 − v̂0.

Remark 2.6. Although this a model-based estimator, it is equivalent to other OPE estimator in gen-
eral under linear Markovian assumption (e.g., Nachum et al., 2019b; Duan et al., 2020; Miyaguchi,
2021) and it enjoys similar statistical guarantees as other OPE estimators.

3 OUR METHOD

In Section 2.2, we assumed the observation Ot follows a stationary Markov process, and derived a
model-based closed-form solution based on linear reward Assumption 2.3.

Figure 1: An example of non-stationarity.
The weekly average metric value is highly
non-stationary during holiday season.

In reality, this model assumption has two major lim-
itations. First, real-world environments are non-
stationary. For example, in a hotel reservation sys-
tem, seasonality heavily influences the prediction of
the future booking count. Our stationary assumption
does not capture those seasonal changes, resulting in
poorly learned models and inaccurate predictions of
long-term treatment effects. Second, in practice, we
are unable to ensure that observed features fully cap-
ture the dynamics. OPE methods based on station-
ary and full observability assumptions are unlikely
to work robustly in complex, real-life scenarios.

Figure 1 illustrates nonstationarity in data from an
online store (see Section 5 for more details). The fig-
ure shows how the weekly average of a business met-
ric changes in a span of 5 months, for two policies
(C for control, and T4 for treatment). Such highly
non-statioanary data, especially during special sea-
sons towards the right end of the plot, are common.
However, the difference of the two policy groups remains much more stable. This is expected as
both policies are affected by the same exogenous affects (seasonal variations in this example).

Figure 1 motivates a relaxed model assumption (Section 3.1), by introducing a non-stationary ex-
ogenous component on top of a stationary hidden state St. Our new assumption is that the observa-
tion Ot can be decomposed additively into two parts: an endogenous part still follows a stationary
Markovian dynamic for each policy group (treatment or control); and an exogenous part which is
time-varying and shared across all groups. Based on the new assumption we propose an alternating
minimization algorithm that jointly estimates both transition dynamics and exogenous variables.
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3.1 NONSTATIONARY MODEL RELAXATION

We assume there is an exogenous noise vector zt for each time step t, to represent the linear additive
exogenous noise in the uncontrollable outside world such as seasonal effect, which applies uniformly
to every individual under each treatment bucket. We relax Assumption 2.1 as the following:
Assumption 3.1. (Linear Additive Exogenous Noise) the observational feature Ot is the sum of the
endogenous hidden features and the time-varying exogenous noise zt.

Ot = St + zt, ∀t ∈ N.
where zt does not depend on policy or any individual in the experiments and St follows the linear
Markovian kernel with transition matrix Mi:

E[St+1|St = s,D = i] = Mis, ∀t ∈ N, i ∈ {0, 1}. (6)
Remark 3.2 (Explanation of the Linear Additive Model). Our linear additive model is inspired
by the parallel trend assumption in the Difference-in-Difference (DID) estimator (Lechner et al.,
2011). In real-world environments, it is impossible to capture all the covariates that may effect the
dynamics. The linear additive exogenous noise zt can be seen as the drive from the outside that is
both unobserved and uncontrol. For example, in an intelligent agriculture system, the highly non-
stationary weather condition can be seen as exogenous which we cannot control, but the amount
of water and fertilizer that affect the growth of the plant can be seen as the hidden state that is
controlled by a pre-defined stationary policy. And we add up those two factors as the features (e.g.,
the condition of the crop) we observed in the real world.

From Assumption 3.1 and linear reward function assumption in 2.3, the closed form of v(πi) can be
rewritten as:
Proposition 3.3. Under Assumption 3.1 and 2.3, and suppose v(z∞) :=

∑∞
t=0 γ

tzt < ∞. Suppose
the spectral norm of Mi is smaller than 1

γ , the expected long-term reward can be obtained by:

v(πi) = θ⊤r (I − γMi)
−1S̄

(i)
0 + v(z∞), where S̄

(i)
0 = E[S0|D = i]. (7)

The long-term reward in Eq. (7) contains v(z∞), which depends on the unknown exogenous noise
sequence outside of the experimental window and thus is unpredictable. However, the long term
treatment effect, ∆(π1, π0) = v(π1) − v(π0), cancels out the dependency on that exogenous term
v(z∞). For simplicity, we redefine v(πi) = θ⊤r (I − γMi)

−1S̄
(i)
0 without the term of v(z∞). There-

fore, the only thing we need to estimate is S̄
(i)
0 and Mi. Once we have the access of z0, we can

estimate S̄(i)
0 similarly as Monte Carlo sample: Ŝ0 = 1

ni

∑
j∈Ii

o0,j − ẑ0. The next question is how
to estimate in-experiment exogenous variable zt and the underlying transition kernels.

3.2 OPTIMIZATION FRAMEWORK

We propose to optimize {zt}1≤t≤T and {M0,M1} jointly under a single loss function, with the
same spirit of reducing the reconstruction loss of each transition pair similar to the model-based
approach.

For each individual j in treatment group i, Assumption 3.1 implies that at time step t + 1, the
observation oj,t+1 can be written as:

oj,t+1 − zt+1 = Mi(oj,t − zt) + εj,t, ∀j ∈ Ii, 1 ≤ t ≤ T − 1, (8)
where εj,t is a noise term with zero mean, so that Mi(oj,t − zt) = E[St+1|St = oj,t − zt, D = i].

Inspired by Eq. (8), given observation history Dn, in order to minimize the empirical reconstruct
risk by each transition pair (oj,t, oj,t+1), we construct the following loss function

L(M0,M1, {zt}1≤t≤T ;Dn) =

1∑
i=0

∑
j∈Ii

T−1∑
t=0

∥oj,t+1 − zt+1 −Mi(oj,t − zt)∥22. (9)

To simplify the notation, Eq. (9) can be rewritten as a vectorized form

L(M0,M1, z;Dn) =

1∑
i=0

∑
j∈Ii

∥Ai(oj − z)∥22, (10)
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Algorithm 1 Estimating Long-Term Effect Under Non-stationary Dynamics
Input: In-experiment training Data Dn = {(τj , dj)}nj=1, where τi = (oj,0, oj,1, . . . , oj,T ) is the
in-experiment observation features for individual j, dj ∈ {0, 1} is the indicator of which policy
group individual j is assigned to.
Initialize the estimation of exogenous noise ẑ = 0.
Optimization:
while not convergent do

Update Mi as the ordinary least square solution given the current ẑ:

M̂i =

∑
j∈Ii

T−1∑
t=1

(oj,t+1 − ẑt+1)(oj,t − ẑt)
⊤

∑
j∈Ii

T−1∑
t=1

(oj,t − ẑt)(oj,t − ẑt)
⊤

−1

.

Update ẑ according to Eq. (12):

ẑ = (n0G0 + n1G1)
−1(

1∑
i=0

∑
j∈Ii

Gioj).

end while
Evaluation:

Compute v̂i = θ⊤r (I − γM̂i)
−1
(
Ô

(i)
0 − ẑ0

)
, where Ô

(i)
0 = 1

ni

∑
j∈Ii

o0,j .

Output the long-term impact estimation as ∆̂ = v̂1 − v̂0.

where oj =

 oj,0
oj,1
. . .
oj,T

 , and z =

 z0
z1
. . .
zT

 are column vector aggregate over the experiment time

horizon, and Ai is a dT × d(T + 1) matrix constructing by a block matrix Mi:

Ai =


−Mi I ...
0 −Mi ...

...

... I 0

... −Mi I


dT×d(T+1)

. (11)

3.3 ALTERNATING MINIMIZATION

To reconstruct Mi and z, we apply alternating minimization on the loss function L(M0,M1, z;Dn)
in Eq. (10). By looking at the zero-gradient point of the loss function, under proper non-degenerate
assumption (see Appendix for details), we have:
Proposition 3.4. Suppose (n0G0 + n1G1) is nonsingular, the minimizer of z given Mi is a closed-
form solution in the followings:

argmin
z

L(M0,M1, z;Dn) = (n0G0 + n1G1)
−1(

1∑
i=0

∑
j∈Ii

Gioj), where Gi = A⊤
i Ai. (12)

The minimizer of Mi given z is similar to Eq. (5), except that we subtract the exogenous part zt
from the observation:

argmin
M0,M1

L(M0,M1, z;Dn)

:=

∑
j∈Ii

T−1∑
t=1

(oj,t+1 − ẑt+1)(oj,t − ẑt)
⊤

∑
j∈Ii

T−1∑
t=1

(oj,t − ẑt)(oj,t − ẑt)
⊤

−1

. (13)

The final optimization process is summarized in Algorithm 1.

5



Under review as a conference paper at ICLR 2023

3.4 THEORETICAL ANALYSIS

We give a preliminary theoretical analysis in this section to give readers some insights on how good
our estimator is once a partial oracle information is given. We will extend our analysis to quantify
the error of the estimator at the convergence state of alternating minimization in future work.

To simplify our analysis, we first assume we get access to the true transition matrix Mi, and our goal
is to quantify the error between v̂(πi) and the true policy value v(πi) for each policy πi.
Proposition 3.5. Suppose we have bounded noise and matrices under Assumption A.1 and Assump-
tion A.2, and suppose n0 = n1 = n

2 is equally divided. When we get access of the oracle transition
matrix Mi = M∗

i , i ∈ {0, 1}, let ẑ = argminz L(M∗
0 ,M

∗
1 , z;Dn). If we plugin ẑ in the estimation

of v̂(πi), we will have

|v̂(πi)− v(πi)| = O(
1√
n
),

with probability at least 1− δ.

In the second analysis we assume that we get an accurate z. In this case, the estimation of M̂ reduces
to the stationary assumption case in Assumption 2.1 where the hidden state variable st = ot − zt is
fully recovered. We follow the analysis (e.g., Duan et al., 2020; Miyaguchi, 2021) of linear MDP to
characterize the error.
Proposition 3.6 (Proposition 11 in Miyaguchi (2021)). Suppose we get access to the oracle exoge-
nous noise z during the experimental period, let M̂i = argminMi

L({Mi}, z∗;Dn) in Eq. (13).
Under the assumption in Proposition 11 in Miyaguchi (2021), with the plugin estimator v̂ with M̂i,
we have:

|v̂(πi)− v(πi)| = O(n− 1
2d+2 ),

with probability at least 1− δ.

3.5 PRACTICAL CONSIDERATIONS

Regularize the Transition Dynamic Matrices. Degenerated case may happen during the alter-
nating minimization when either 1) the spectral norm is too large, i.e. ∥Mi∥2 ≥ 1

γ , leading the
long-term operator (I − γMi)

−1 =
∑∞

t=0 γ
tM t

i diverges in Eq. (7), or 2) the matrix inversion
calculation of Mi in Eq. (13) is not well-defined. To avoid those scenarios and stabilize the com-
putation procedure, we add a regularization term of Mi as λi∥Mi − Id∥22 in our experiment. The
intuition is that the transition matrix should be close to identity matrix as in practice the treatment
policy typically deviates from the control policy in an incremental manner.

After adding the regularization, the closed-form minimizer of Mi of the regularized loss function
becomes:

Mi =

λiId +
∑
j∈Ii

T−1∑
t=1

(oj,t+1 − zt+1)(oj,t − zt)
⊤

λiId +
∑
j∈Ii

T−1∑
t=1

(oj,t − zt)(oj,t − zt)
⊤

−1

.

Regularize the Exogenous Variable. There is a challenge in deriving the closed-form z in
Eq. (12) where n0G0+n1G1 can be degenerated or nearly degenerated. By definition, Gi is always
singular. Moreover, if there is no control of the minimal eigenvalue of (n0G0+n1G1), e.g. close to
zero, the update step on z is uncontrolled and the variance of noise can be magnified in the direction
of the minimal eigenvector. Therefore it is crucial to regularize z.

To tackle the possible degenerated circumstances, one natural idea is to include regularization of the
ℓ2 norm of z, where the regularized loss function can be written as:

Lλ(z,M0,M1;D) = L(z,M0,M1;D) + λz∥z∥22. (14)

Its corresponding minimizer of ẑ can be written as:

ẑ = (λI + n0G0 + n1G1)
−1(

1∑
i=0

∑
j∈Ii

Gioj),
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where I is the identity matrix of dimension d× (T + 1). It is worth mentioning that when the regu-
larization parameter λ increases to infinity, z will go to 0, and the solution reduces to the stationary
case in Assumption 2.1.

Extend to Multiple Treatment Policies The optimization framework can be easily extend to mul-
tiple treatment policies case. Suppose we have k different treatment policies π1, π2, · · · , πk and let
π0 be the control policy, the closed form solution for ẑ under multiple dataset of different treatment
groups can be derived as

ẑλ = (λI +

k∑
i=0

niGi)
−1(

k∑
i=0

∑
j∈Ii

Gioj).

And the closed-form update for Mi stays the same. The final estimation of the treatment effect for
policy πi is ∆̂ = v̂i − v̂0.

4 RELATED WORK

Estimating long-term treatment effects Our work is related to causal inference with temporal
data. The surrogate index method (Athey et al., 2019; 2020) makes a different assumption that the
long-term effect is independent of the treatment conditioned on the surrogate index measured dur-
ing the experiment. It then estimates long-term impacts resulting from short-term exposure during
the experiment. In contrast, our work aims to estimate long-term impacts resulting from long-term
exposure. Time series methods (e.g. Bojinov & Shephard, 2019) require probabilistic treatments,
which allow an individual to be exposed to different treatments at different time periods during an
experiment. They then estimate the temporal treatment effect, which is averaged over all the tem-
poral steps, differs from traditional treatment effect which is averaged over randomized individuals.

Our method draws inspirations from off-policy evaluation(OPE) and related areas, whose goal is to
estimate the long-term policy value, usually from a offline dataset collected under different policies.
Most early work focuses on the family of inverse propensity score estimators that are prone to high
variance in long-horizon problems (e.g., Precup et al., 2000; Murphy et al., 2001; Jiang & Li, 2016).
Recently, there are growing interests in long- and even infinite-horizon settings (Liu et al., 2018;
Nachum et al., 2019a; Xie et al., 2019; Tang et al., 2020; Uehara et al., 2020; Dai et al., 2020;
Chandak et al., 2021). In particular, Shi et al. (2022b) considers a similar problem of estimating
long-term impacts, which is comparable to our stationary baseline. However, these methods either
rely on the stationarity assumption that is violated in many applications, or consider the general
nonstationary Markov decision process (Kallus & Uehara, 2020) that does not leverage domain-
specific assumptions.

RL in nonstationary or confounded environments Our model is a special case of Partially Ob-
servable Markov Decision Process (POMDP) (Åström, 1965; Kaelbling et al., 1998). OPE in gen-
eral POMDPs remains challenging, unless various assumptions are made (e.g., Tennenholtz et al.,
2020; Bennett et al., 2021; Shi et al., 2022a). Most assumptions are on the causal relation of the
logged data, such as relation between state, action and confounded variable. In contrast, we make
an assumption motivated by real-world data, which allows our estimator to cancel out exogenous
variables from observations.

Our assumption is also related to MDP with Exogenous Variables (e.g., Dietterich et al., 2018; Chit-
nis & Lozano-Pérez, 2020), and Dynamics Parameter MDP (DPMDP) or Hidden Paramter MDP
(HiP-MDP) (Al-Shedivat et al., 2017; Xie et al., 2020). For exogenous variable, they assume obser-
vation features can be partitioned into two groups, where the exogenous group is not affected by the
action and the endogenous group evolve as in a typical MDP. The major challenge is infer the right
partition. Several recent works (e.g Misra et al., 2020; Du et al., 2019; Efroni et al., 2021) combine
exogenous variable with rich observation in RL. This is different from our assumption where we as-
sume the observation is a sum of both parts, which is a more natural assumption in applications like
e-commerce. For DPMDP and Hip-MDP, they assume a meta task variable which is non-stationary
and changed across time but the task variable dynamic can be captured by a sequential model. Our
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Figure 2: Results of Synthetic Environment. We vary parameters in the simulation to compare
the logarithmic MSE of various estimators: (a) number of trajectories; (b) horizon; (c) observation
feature dimension; (d) scale of the exogeneous noise.

assumption can be viewed as a linear special case but our focus is not to better characterize the
system but is to remove the exogenous part for better predictions.

5 EXPERIMENTS

We evaluate our methods in three problems: a synthetic dataset, a dataset from the Type-1 Diabete
RL simulator (Xie, 2019), and a real-world dataset from an online store. The ground truth ∆ is
computed either from a true simulator or using the average of the real experimental data under a
long time period. We compare our methods based on plug-in estimator of the stationary solution
in Eq. (4), its non-stationary variant in Algorithm 1, and an Naive Average baseline. The baseline
directly uses the short-term reward average as the estimate of the long-term effect.

5.1 SYNTHETIC SIMULATION

The synthetic environment generates 4 randomized matrix Mi for policies {πi}3i=0 and a trajectory
of randomized exogenous noise {zt}Tt=0. See details of the synthetic dynamic in Appendix C. The
randomized sequence follows the non-stationary dynamics with a parameter α controlling the scale
of the exogenous noise: oj,t = sj,t+αzt, ∀j, t. We collect n trajectories for each policy until t = T
(w/ varying T ). We vary the parameters of the generating sequences: number n of trajectories,
horizon T , data dimension d, and scale α of the exogenous noise. We plot the logarithmic Mean
Square Error (MSE) for each method in Figure 2. The result shows that our estimator method (the
green line) clearly outperforms all other baselines. Moreover, Figure 2(d) shows the increase of the
scale of the exogenous noise does not affect estimation accuracy of our method.

5.2 TYPE-1 DIABETE SIMULATOR

This environment is modified based on an open-source implementation1 of the FDA approved Type-
1 Diabetes simulator (T1DMS) (Man et al., 2014). The environment simulates two-day behavior
in an in-silico patient’s life. Consumption of a meal increases the blood-glucose level in the body.
If the level is too high, the patient suffers from hyperglycemia. If the level is too low, the patient
suffers from hypoglycemia. The goal is to control the blood glucose level by regulating the insulin
dosage to minimize the risk associated with both hyperglycemia and hypoglycemia.

We modify the Bagal and Bolus (BB) policy (Bastani, 2014) (control policy) in the codebase and
set two glucose target levels and different noise levels as our two treatment policies. We collect
information in the first 12-hour of all the three policies with 5000 randomized patients in each
policy group and use those information to predict the long-term effect. The observation feature
is 2-dimensional: glucose level (CGM) and the amount of insulin injection. The non-stationarity
comes from the time and amount of the consumption of a meal, which is time varying, but otherwise
shared by all patients. We average a 2-day simulation window over random 250, 000 patients as
ground truth treatment effect between policy groups.

1https://github.com/jxx123/simglucose
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Figure 3: Results of Type-1 Diabete Environment. We vary two parameters in the simulation, the
number of patients and the in-experiment horizon, to compare the performance for different methods
under two different evaluation metrics.

Similar to the synthetic simulator, we vary the number of patients and the experimental period.
Figure 3 shows that the non-stationary method performs better in the prediction accuracy compared
to stationary method in both predictions of CGM and the amount of insulin injection. Even though
the simulator is non-linear, our simple linear additive exogenous noise assumption still captures the
small local changes well, which is approximately linear.

5.3 DATA FROM AN ONLINE STORE

Metric 1 Metric 2 Metric 3 Metric 4
Naive Average 133.61% 66.09% 106.85% 37.99%
Stationary 174.77% 48.03% 98.31% 110.58%

Non-stationary 64.68% 62.00% 48.04% 67.57%

Table 1: Results in the online store dataset. The reported numbers are the median of MAPE over 7
different treatment policies. Columns correspond to business metrics of interest.

We test our methods under 4 long-running experiments in an online store with a total of 7 different
treatment policies (some experiments have more than 1 treatment). Each experiment has 1 control
policy. We evaluate 4 business metrics related to customer purchases in the store (Metrics 1-4), and
use d = 17 features. All the experiments lasted for 12 weeks. We treat the first 5 weeks as the
experiment window, and use data in those weeks to estimate long-term impacts of the 4 metrics.
The trailing 7-week average of the metrics are used as ground true to evaluate accuracy of various
estimators. Table 1 reports the median of the Mean Absolute Percentage Error (MAPE) of the
estimators; See full results in Appendix C.

Given the high cost in such long-running experiments, we cannot collect more data points for com-
parison, and for computing statistical significance. That said, there is good evidence from the re-
ported number that our method produces better predictions of long-term treatment effects than Naive
Average. Furthermore, our method improves on the stationary baseline, suggesting the practical rel-
evance of our nonstationary assumtion, and effectiveness of the proposed estimator.

6 CONCLUSIONS

In this paper we study how to estimate the long-term treatment effect by using only the in-
experimental data in the non-stationary environment. We propose a novel non-stationary RL model
and an algorithm to make prediction. A major limitation is the linear assumption in both the dynam-
ics model and the additive exogenous part. Once the real world model includes a highly non-linear
part, the prediction value can be biased. Future direction includes further relax our model to non-
linear case to better capture the real world environment.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Maruan Al-Shedivat, Trapit Bansal, Yuri Burda, Ilya Sutskever, Igor Mordatch, and Pieter Abbeel.
Continuous adaptation via meta-learning in nonstationary and competitive environments. arXiv
preprint arXiv:1710.03641, 2017.

Karl Johan Åström. Optimal control of markov processes with incomplete state information. Journal
of mathematical analysis and applications, 10(1):174–205, 1965.

Susan Athey, Raj Chetty, Guido W Imbens, and Hyunseung Kang. The surrogate index: Combining
short-term proxies to estimate long-term treatment effects more rapidly and precisely. Technical
report, National Bureau of Economic Research, 2019.

Susan Athey, Raj Chetty, and Guido Imbens. Combining experimental and observational data to
estimate treatment effects on long term outcomes. arXiv preprint arXiv:2006.09676, 2020.

Meysam Bastani. Model-free intelligent diabetes management using machine learning. PhD thesis,
University of Alberta, 2014.

Andrew Bennett, Nathan Kallus, Lihong Li, and Ali Mousavi. Off-policy evaluation in infinite-
horizon reinforcement learning with latent confounders. In The 24th International Conference on
Artificial Intelligence and Statistics, AISTATS 2021, April 13-15, 2021, Virtual Event, volume 130
of Proceedings of Machine Learning Research, pp. 1999–2007. PMLR, 2021.

Iavor Bojinov and Neil Shephard. Time series experiments and causal estimands: exact random-
ization tests and trading. Journal of the American Statistical Association, 114(528):1665–1682,
2019.

Yash Chandak, Scott Niekum, Bruno C. da Silva, Erik G. Learned-Miller, Emma Brunskill, and
Philip S. Thomas. Universal off-policy evaluation. In Advances in Neural Information Processing
Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021,
December 6-14, 2021, virtual, pp. 27475–27490, 2021.
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Appendix

A PROOF

In this section, we provide detailed proof for the theorem in the main text, as a self-contained section,
we briefly introduce the notation as below, and adopt the regularized, multiple policy groups settings
in the appendix:

• n: number of total individuals.
• Ii: the index set for policy πi; ni = |Ii| as the number of individual in under policy πi.
• k total number of different policy group.
• Dn: dataset for n individuals in the experimental period.

In the appendix, we denote the ground truth dynamic M∗
i and the ground truth exogenous noise z∗

with a star ∗ to distinguish the variables Mi and z during optmization process.

A.1 ASSUMPTIONS

The dynamic assumption of our linear additive exogenous noise assumption in Assumption 3.1 can
be rewritten as the following equation:

M∗
i (oj,t − z∗t ) = (oj,t+1 − z∗t+1) + εj,t, ∀j ∈ Ii, 0 ≤ t ≤ T − 1. (15)

where εj,t is a zero-mean noise. Let εj =

 εj,0
εj,1
. . .

εj,T−1

 ∈ Rd×T , {εj}1≤j≤n forms a martingale:

E[εj |Fj−1] = 0, (16)

where the filtration Fj = {o1, ..., oj−1} is the information up to the first j − 1 individuals.

We make addition bounded assumption on the zero-mean noise term for the proof:
Assumption A.1 (Bounded Noise assumption). Let εj = M∗

i (oj,t − z∗t )− (oj,t+1 − z∗t+1), j ∈ Ii
be the residual of the transition under the true transition matrix M∗

i , we have

∥εj∥2 ≤ Cε, ∀j, (17)

where Cε is a uniform constant independent of policy assignment.

For the empirical covariance matrix in the middle step of the calculation, we assume they are all
bounded.
Assumption A.2 (Bounded Norm for Matrices). We make the following assumptions on matrices

1. ∥M∗
i ∥ ≤ CMi

< 1
γ , ∀i.

2. ∥(Λ∗
n/n)

−1∥ ≤ CΛ.

A.2 LOSS FUNCTION AND ALTERNATING MINIMIZATION

Our loss function can be written as:

L({Mi}1≤i≤k, z;Dn) =

k∑
i=1

∑
j∈Ii

∥Ai(z − oj)∥22 + λz∥z∥22 +
k∑

i=1

λi∥Mi − Id∥2F . (18)

Lemma A.3. Fix {Mi}, denote Gi = A⊤
i Ai where Ai is defined in Eq. (11), the minimization of

z = argminz L({Mi}1≤i≤k, z;Dn) is

z({Mi}) =
(
λzId×(T+1) +

k∑
i=1

niGi

)−1
 k∑

i=1

∑
j∈Ii

Gioj

 . (19)
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Proof. By taking the gradient of the loss function, we will have:

0 =∇zL({Mi}1≤i≤k, z;Dn)

=2

k∑
i=1

∑
j∈Ii

Gi(z − oj) + 2λzz

which implies

z({Mi}) =
(
λzId×(T+1) +

k∑
i=1

niGi

)−1
 k∑

i=1

∑
j∈Ii

Gioj

 .

Here, Gi = A⊤
i Ai is semi-definite, so the inversion of the large matrix in the right side of the

expression always exists.

Similarly we can get the minimizer of Mi fixing z.
Lemma A.4. By fixing z, the minimizer of Mi can be written as

Mi(z) =

λiId +
∑
j∈Ii

T−1∑
t=1

(oj,t+1 − zt+1)(oj,t − zt)
⊤

λiId +
∑
j∈Ii

T−1∑
t=1

(oj,t − zt)(oj,t − zt)
⊤

−1

.

(20)

Proof. The proof is similarly applied by looking at the zero gradient of Mi.

If we set λi = 0 and z = 0, the minimization reduces back to estimation of M̂ in Eq. (5).

A.3 ERROR ANALYSIS

Lemma A.5. Let M∗
i be the true dynamic of the underlying state, we have:

z({M∗
i })− z∗ = −λz(Λ

∗
n)

−1z∗ + (Λ∗
n)

−1

 k∑
i=1

∑
j∈Ii

A⊤
i εj

 , (21)

where Λ∗
n = λzId×T +

∑k
i=1 niG

∗
i .

Proof. By expand the definition of z({M∗
i }, we have:

z({M∗
i }) = (Λ∗

n)
−1

 k∑
i=1

∑
j∈Ii

Gioj


=(Λ∗

n)
−1

 k∑
i=1

∑
j∈Ii

A⊤
i (Aioj)


=(Λ∗

n)
−1

 k∑
i=1

∑
j∈Ii

A⊤
i (Aiz

∗ + εj)


=(Λ∗

n)
−1

Λ∗
nz

∗ − λzz
∗ +

k∑
i=1

∑
j∈Ii

A⊤
i εj)


=z∗ − λz(Λ

∗
n)

−1z∗ + (Λ∗
n)

−1

 k∑
i=1

∑
j∈Ii

A⊤
i εj)
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Lemma A.6. Let z∗ be the true exogenous noise, we have:

Mi(z
∗)−M∗

i =

λi(Id −M∗
i ) +

∑
j∈Ii

T−1∑
t=1

εj,t(oj,t − z∗t )
⊤

 (λiId +Σ∗
n)

−1
, (22)

where Σ∗
n =

∑
j∈Ii

∑T−1
t=1 (oj,t − z∗t )(oj,t − z∗t )

⊤ is the empirical covariace matrix.

Proof. By expand the definition of Mi(z
∗), we have:

Mi(z
∗) =

λiId +
∑
j∈Ii

T−1∑
t=1

(oj,t+1 − z∗t+1)(oj,t − z∗t )
⊤

λiId +
∑
j∈Ii

T−1∑
t=1

(oj,t − z∗t )(oj,t − z∗t )
⊤

−1

(23)

=

λiId +
∑
j∈Ii

T−1∑
t=1

(εj,t +M∗
i (oj,t − z∗t )) (oj,t − z∗t )

⊤

 (λiId +Σ∗
n)

−1 (24)

=M∗
i +

λi(Id −M∗
i ) +

∑
j∈Ii

T−1∑
t=1

εj,t(oj,t − z∗t )
⊤

 (λiId +Σ∗
n)

−1 (25)

A.4 PROOF OF PROPOSITION 2.5

Proof. By induction, it is not hard to prove that
E[Ot|O0 = o,D = i] = M t

i o.

Sum up all condition on O0, we have:
E[Ot|D = i] = M t

iE[O0].

By the definition of long-term discounted reward G, we have:

v(πi) =E[
∞∑
t=0

γtRt|D = i]

=

∞∑
t=0

γtE[θ⊤r Ot|D = i]

=θ⊤r

∞∑
t=0

γtM t
iE[O0]

=θ⊤r (I − γMi)
−1E[O0],

where the last equation holds when ∥Mi∥ < 1
γ .

A.5 PROOF OF PROPOSITION 3.5

Proof. From Lemma A.5, suppose λz = 0 and (Λ∗
n)

−1 exists, we have:

z − z∗ = (Λ∗
n)

−1

 1∑
i=0

∑
j∈Ii

A⊤
i εj

 .

Consider v̂(π0) if we plugin ẑ and the true dynamic M∗
0 , the error between v̂ and v is

v̂(π0)− v(π0) =θ⊤r (I − γM∗
0 )

−1(z0 − z∗0)

:=β⊤
r (z0 − z∗0)

=(β⊤
r , 0, . . . , 0)(z0 − z∗0)

=β̃⊤
r (z0 − z∗0),
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where βr = (I − γM∗
0 )

−T θr, and β̃r is the extended vector of βr if we fill the other vector value at
other time step as 0.

Expand the difference (z0 − z∗0) we have:

v̂(π0)− v(π0) =β̃⊤
r (z0 − z∗0)

=

1∑
i=0

β̃⊤
r (Λ∗

n)
−1A⊤

i (
∑
j∈Ii

εj)

=

1∑
i=0

β̃⊤
r (

Λ∗
n

n
)−1A⊤

i (

∑
j∈Ii

εj

n
)

≤∥β̃r∥
1∑

i=0

∥(Λ
∗
n

n
)−1Ai∥∥

∑
j∈Ii

εj

n
∥.

By Assumption A.1 and Assumption A.2, the norm of β̃r is the same as βr, which is bounded by
∥βr∥ ≤ 1

1−γCMi
∥θr∥. The matrix norm in the middle factor is bounded because of Assumption A.2.

Finally, by vector concentration inequality, since εj is norm-subGaussian (Jin et al., 2019), there
exist a constant c that with probability at least 1− δ:

∥
∑

j∈Ii
εj

n
∥ ≤ c

√
log(2dT/δ)

n
.

In sum, the error is bounded by O( 1√
n
) with probability at least 1− δ, and the constant depends on

Cε, CMi
, CΛ and the norm of ∥θr∥.

A.6 PROOF OF PROPOSITION 3.6

Proof. Since we get access to the ground true z∗, the remaining problem is by changing the state
as sj,t = oj,t − z∗t and reduce the problem back to standard MDP. The detailed proof can refer to
Proposition 11 in Miyaguchi (2021).
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B REDUCE THE COMPUTATION COMPLEXITY WITH PRE-COMPUTATION

In this section, we explain how to reduce the computation complexity with pre-computation.

Pre-computation. Compute

Mi(0) =

∑
j∈Ii

T−1∑
t=1

oj,t+1o
⊤
j,t

∑
j∈Ii

T−1∑
t=1

oj,to
⊤
j,t

−1

and
ōt =

∑
j∈Ii

oj,t.

The pre-computation requires computation complexity of O(nTd2 + d3), where d2 is the computa-
tion complexity of the outer product, d3 is the computation complexity of the matrix inversion after
summing up the matrix.

In Each Iteration. The computation of M can be rewritten as

Mi(z) =

∑
j∈Ii

T−1∑
t=1

(oj,t+1 − zt+1)(oj,t − zt)
⊤

∑
j∈Ii

T−1∑
t=1

(oj,t − zt)(oj,t − zt)
⊤

−1

=Mi(0)−
T−1∑
t=1

zt+1ō
⊤
t −

T−1∑
t=1

ōt+1z
⊤
t +

T−1∑
t=1

zt+1z
⊤
t ,

which requires computation complexity of O(Td2). Similarly, the computation of

z(G) = (

k∑
i=0

niGi)
−1(

k∑
i=0

Giōj)

requires computation complexity of O(T 2d2). Both steps are computationally scalable, since it does
not rely on number of individuals n (which is often much larger than T and d).

Overall Computation Complexity. Suppose we execute the iterations for k times, then the total
computation complexity for the alternating minimization is O(nTd2 + d3 + kT 2d2). In practice,
the number of different individual n is far larger than the experiment horizon T and the feature
dimension d, therefore the computation complexity essentially scales linearly with n.
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C EXPERIMENTS DETAILS

C.1 SYNTHETIC SIMULATION

The synthetic environment generates 4 randomized matrix Mi for policies {πi}3i=0, where each
entry of Mi is a positive number randomly sample from a uniform distribution between (0, 1). We
normalize each row so that it sums up to 1, and we set M̃i = 0.5I + 0.5Mi as our final transition
matrix. The 0.5I part ensures each matrix is not too far away from each other.

We generate a set of i.i.d. random vector ηt ∼ N (0, 1.5I) and set zt+1 = zt + ηt recursively. And
we let z̃t = αt ∗ zt as the final exogenous noise, where αt = eβt and βt ∼ N (0, 0.5I), i.i.d..

All the parameters (zt and Mi) of the dynamic are fixed once generated, and we use the dynamic to
generate our observation for each individual, following

st+1 = Mist + εt, and ot = st + αzt, ∀t
where εt is independently drawn from a standard normal distribution, and α control the level of
exogenous noise.

C.2 POLICY CONSTRUCTION IN TYPE-1 DIABETE SIMULATOR

The Bagal and Bolus policy is a parametrized policy based on the amount of insulin that a person
with diabetes is instructed to inject prior to eating a meal (Bastani, 2014)

injection =
current blood glucose− target blood glucose

CF
+

meal size

CR
,

where CF and CR are parameter based on patients information such as body weights, which is
already specified in the simulator.

We set our two treatment policies with target blood glucose level at 145 and 130 (compared to
control: 140). And we increase the noise in the insulin pump simulator in both the treatment policies.

C.3 RANDOM PATIENTS GENERATION IN TYPE-1 DIABETE SIMULATOR

Type-1 Diabete simulator pre-stores 30 patients parameter. To randomly generate a new patient, we
randomly pick two different patients A and B, and use a random linear coefficient β ∼ U(0, 0.2)
and mixed the parameter of a new patient as

θ = (1− α)θA + αθB ,

where θA and θB are the parameters of patients A and B, respectively. Since patient A has more
weight of the parameter, the parameters in Bagal and Bolus policy, CF and CR, follow patient A’s
parameter.

C.4 FULL RESULTS FOR ALL THE ONLINE STORE EXPERIMENTS.

Metric 1 Metric 2 Metric 3 Metric 4
Naive Average 122.47% 93.61% 51.20% 25.28%
Stationary 174.77% 454.87% 61.71% 110.58%

Non-stationary 94.56% 12.54% 26.79% 67.57%

Table 2: Experiment # 1
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Metric 1 Metric 2 Metric 3 Metric 4
Treatment 1 Naive Average 41.91% 66.09% 3139.91% 431.44%

Stationary 51.60% 48.03% 4471.33% 275.49%
Non-stationary 64.68% 48.28% 770.27% 13.59%

Treatment 2 Naive Average 236.13% 43.44% 106.85% 122.65%
Stationary 150.97% 12.07% 98.31% 199.95%

Non-stationary 10.69% 62.00% 48.04% 109.96%

Table 3: Experiment # 2

Metric 1 Metric 2 Metric 3 Metric 4
Naive Average 396.54% 79.88% 192.84% 17.21%
Stationary 697.59% 123.43% 364.49% 6.73%

Non-stationary 98.37% 81.86% 30.65% 12.89%

Table 4: Experiment # 3

Metric 1 Metric 2 Metric 3 Metric 4
Treatment 1 Naive Average 8078.75% 43.18% 208.55% 2438.43%

Stationary 7386.81% 7.20% 154.66% 1889.47%
Non-stationary 2328.03% 114.34% 25.18% 102.84%

Treatment 2 Naive Average 126.70% 138.98% 38.60% 37.99%
Stationary 172.57% 12.01% 10.44% 46.60%

Non-stationary 29.92% 72.62% 54.16% 69.75%
Treatment 3 Naive Average 133.61% 45.67% 50.87% 17.01%

Stationary 258.88% 88.77% 27.11% 12.89%
Non-stationary 24.58% 34.89% 74.14% 66.32%

Table 5: Experiment # 4
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