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ABSTRACT

The paradigm for training Large Vision-Language Models (LVLMs) is evolving
toward autonomous problem-solving, revealing critical instabilities in complex
visual reasoning. We identify three failure modes: exploration collapse, inefficient
learning, and—most notably—ineffective reasoning, marked by logical inconsisten-
cies between reasoning traces and outputs. To mitigate these, we introduce TACO,
a reinforcement learning framework that enforces multi-level consistency. TACO
comprises three integrated components: a Think-Answer Consistency (TAC) re-
ward ensuring joint alignment of reasoning, answer, and ground truth for semantic
integrity; a Memory-Guided KL Stabilization (MKS) mechanism that dynamically
defers high-risk updates to prevent optimization collapse; and an Adaptive Diffi-
culty Sampling (ADS) module that optimizes data curation for efficient learning.
Extensive experiments validate TACO’s superiority, achieving top performance
on 15 benchmarks spanning Referring Expression Comprehension (REC), Visual
Question Answering (VQA), and long-horizon Video VQA. TACO exhibits en-
hanced generalization, sustained efficiency, and stability in long-chain reasoning,
outperforming conventional RL approaches.

1 INTRODUCTION

The training paradigm for Large Vision-Language Models (LVLMs) (Xu et al.|[2016; |Agrawal et al.,
2016)) is evolving from imitative learning, such as Supervised Fine-Tuning (SFT) and Reinforcement
Learning from Human Feedback (RLHF)|Achiam et al.[(2023); Bai et al.[(2025);|Lu et al.|(2024);|Chen
et al.|(2024b)), toward an autonomous problem-solving approach. This new paradigm, exemplified
by Reinforcement Learning with Verifiable Rewards (RLVR) [Xiao et al.| (2025), aims to enhance
complex reasoning by shifting the learning objective from imitation to solution-oriented achievement.
However, directly applying this paradigm to the complex scenario of visual long-chain reasoning
exposes a series of severe challenges. These include the classic problems of “exploration collapse”,
“inefficient learning”, as well as a more deceptive failure mode that we identify as “ineffective
reasoning”’, whose core pathology lies in the logical inconsistency between the model’s reasoning
process and its final output.

While prior works treat these as isolated bottlenecks, we argue that they arise from a systemic
breakdown in consistency across semantic, optimization, and learning levels. To address this, we
propose the TACO framework, which enforces multi-level consistency to construct an efficient and
stable learning process. TACO extends the foundational RL concept that constraints bring stability
Schulman et al.| (20155 2017) from a singular optimization focus to an integrated framework covering
all three levels:

* Semantic Consistency. A key challenge in complex reasoning is Ineffective Reasoning, where a
model produces a correct final answer from a flawed or irrelevant reasoning process. To combat
this issue and enforce semantic integrity, TACO introduces the Think-Answer Consistency (TAC)
reward mechanism to provide hierarchical supervision by mandating a joint alignment among the
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Figure 1: Overview of the TACO framework. It systematically resolves the disorder in LVLM training
by synergistically managing three consistency modules: Learning Consistency (ADS) for efficient
data sampling, Optimization Consistency (MKS) for training stability, and Semantic Consistency
(TAC) for coherent reasoning, ultimately achieving a significant performance advantage over the
baseline (right).

reasoning chain ( Think), the final answer (Answer), and the ground truth (GT'), which compels
the model to learn a valid and coherent thought process.

* Optimization Consistency. Generating long, precise reasoning chains often triggers exploration
collapse. This occurs when the policy sharpens, causing a KL divergence spike and a catas-
trophic gradient imbalance where the stability penalty dominates the reward signal. TACO’s
Memory-Guided KL Stabilization (MKS) mechanism acts as a dynamic regularizer, using an
adaptive threshold to identify and defer high-risk samples via an experience buffer, thus preventing
destructive updates and ensuring training stability.

* Learning Consistency. To proactively prevent such instability and address inefficient learning,
the Adaptive Difficulty Sampling (ADS) module curates the training data stream. Inspired by the
Zone of Proximal Development (ZPD), ADS dynamically prioritizes samples that are challenging
yet achievable. This strategy maximizes the efficiency of each gradient update, accelerating
convergence by ensuring the model is optimally engaged.

In summary, we propose TACO, a reinforcement learning framework for visual reasoning in Large
Vision-Language Models (LVLMs), which enforces multi-level consistency to reframe training as a
stable, efficient, goal-oriented process. Our main contributions are threefold: 1) introducing TACO to
unify key challenges as three consistency failures, including semantic, optimization, and learning
levels; 2) designing three synergistic mechanisms (TAC, MKS, and ADS), where TAC enforces
semantic consistency through joint geometric and semantic alignment; and 3) achieving state-of-
the-art performance on 15 in-domain and out-of-domain REC and VQA benchmarks using different
foundation models, demonstrating superior generalization, sustained learning efficiency, and stable
training in long-chain reasoning where traditional RL methods falter.

2 RELATED WORK

Large Vision-Language Models (LVLMs). LVLMs bridge vision and language. Core advances
include large-scale contrastive pre-training for joint embeddings (e.g., CLIP[Radford et al|(2021)) and
LLM-style instruction tuning for enhanced visual dialogue/reasoning (e.g., LLaVA [Liu et al.|(2023a)).
Dealing with varied image sizes is key. Dynamic methods (AnyRes|Chen et al.|(2024b); QwenVL
techniques (2023)) aid input flexibility. However, complex reasoning and generalization
remain tough.

Reinforcement Learning (RL) in LVLMs. RL offers a compelling way to enhance reasoning,
building on language successes like RL’s efficacy on logical tasks and GRPO enabling
direct reasoning optimization (potentially bypassing SFT, DeepSeek-R1 (2025)). For
multimodal RL, however, addressing cross-modal consistency and stability is key. Efforts in this area
include developing specialized reasoning datasets with formalized visual inputs (R1-OneVision Yang|
(2025)), successfully porting RL algorithms like GRPO to VLM training (R1-V, Visual-RFT,

VLM-R1 |Chen et al.[(2025); |Liu et al.| (2025)); Shen et al.| (2025))), and introducing mechanisms
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Figure 2: Overview of the TACO training loop. This figure illustrates the synergistic workflow of the
three core components: ADS, MKS, and TAC within a single training step. The ADS (left) manages
input sampling, the Policy Model (center) performs exploration, and the MKS (top) identifies and
isolates high-risk outputs (o,sx) via an Experience Buffer and KL divergence monitoring, ensuring
that only stable and effective signals are used for the final policy update.

like verifiable rewards Liu et al.| (2025)). Intriguingly, applying RL directly to base VLMs has been
shown to induce significant performance jumps or “visual epiphanies” (VisualThinker-R1-Zero
Zhou et al|(2025)), with related work observing correlations between response characteristics like
length and reasoning improvements under RL optimization (MMEureka Meng et al.|(2025)). While
VLM-RI1 |Shen et al.| (2025)) shows the potential of RL, it also reveals challenges like reasoning
inconsistencies and model instability, which our work aims to address.

3 METHOD

TACO framework manages the LVLM reinforcement learning process through a synergistic closed-
loop system, as illustrated in Fig.[2] The core logic of it begins with Semantic Consistency: the
Think-Answer Consistency (TAC) reward establishes a semantically correct objective for the model’s
complex reasoning. To ensure the stability of the high-risk exploration toward this objective, the
Memory-Guided KL Stabilization (MKS) mechanism isolates risky explorations via an experience
buffer, enforcing Optimization Consistency. Finally, to enhance the efficiency of the entire learning
process, the Adaptive Difficulty Sampler (ADS) optimizes data input to achieve Learning Consistency,
thus providing the most efficient data fuel for the system’s stable operation.

3.1 PRELIMINARY

Group Relative Policy Optimization Group Relative Policy Optimization (GRPO) enhances
PPO |Schulman et al.[(2017) by eliminating the critic component. For input z, GRPO samples N
responses {01, 02, ..., oy } from policy 7y, computing rewards r; = R(x, o;). Relative performance
is evaluated using advantage values A; , which standardizes rewards without requiring a separate
value function. The policy 7y is updated by optimizing the GRPO objective:

N
1 .
JGRpo(e) = E{Oi}f\jzl’vﬂ'eold(f) [N Z{mln(sl : Ai7 52 Az)} - /BDKL[WOHTFref] s (1)
i=1
where s; = % and s, = clip (%, 1—¢€1+ e). The term Dy [mg||mref] represents
old v old 2

the Kullback-Leibler divergence between the current and reference policies, weighted by .

Referring Expression Comprehension and Visual Question Answering. Referring Expression
Comprehension (REC) is a multimodal task enabling machines to localize target objects or regions
within a visual scene based on a natural language expression |Qiao et al.|(2020). Unlike traditional
object detection, REC requires complex instructions and enhanced visual perception, making it
valuable for applications like human-centric scenarios, autonomous driving, and medical image
analysis He et al.| (2023). Visual Question Answering (VQA) tasks, in contrast, involve generating
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accurate natural language answers based on an image and a question |Antol et al.|(2015)); |Srivastava
et al.| (2021)). Successful completion of VQA demands capabilities in object recognition, attribute
understanding, and relational analysis. We extend experiments on these tasks to validate the robust
reasoning and generalization capabilities of TACO.

3.2 TAC: A HIERARCHICAL SUPERVISION SYSTEM FOR SEMANTIC CONSISTENCY

While existing works employ Long Chains of Thought (Long CoT) to boost the reasoning ability,
they risk the ineffective reasoning problem: generating a correct answer from a flawed or irrelevant
reasoning process. Standard rewards on the final output fail to penalize such logical fallacies. Unlike
standard outcome-based rewards that allow reward hacking |Cobbe et al.| (2021)), we introduce the
Think-Answer Consistency (TAC) reward, enforcing joint alignment among the reasoning chain
(Think), final answer (Answer), and ground truth (GT'). The general form of the TAC reward is
expressed as:

Rrac = f(Think, Answer, GT), 2)

where f is a task-specific metric function evaluating the alignment among Think, Answer, and GT.
While existing rewards only focus on the final output, leading to ineffective reasoning, TAC addresses
this issue through hierarchical supervision.

REC Task Instantiation In the Referring Expression Comprehension (REC) task, to explicitly
decouple reasoning and the final answer, we use a specific prompt format to guide the model to
output the reasoning process within <think> tags and the final localization within <answer> tags.
We instantiate the joint alignment principle as a geometric constraint on three bounding boxes: the
reasoning process ( Think g po. ), the final answer (Answer gpp,.), and the ground truth (GT Bpoy)-
The TAC reward is directly defined by their Intersection over Union (IoU):

REEC — RREC — ToU(Think pos, Answer 3o, GT BBoz)

_ Area(BBoxy N BBoxs N BBows) 3
~ Area(BBox, U BBoxy U BBoxs)’

This single metric simultaneously evaluates accuracy and consistency, as any deviation among
reasoning, answer, or ground truth reduces the reward, effectively incentivizing the model to learn a
reliable localization reasoning process. Additionally, we include a format reward R ¢oryma¢, defined as
(<think>...</think><answer>...</answer>), to encourage adherence to the specified
output structure. Thus, the total reward for the REC task is REEC — R%ﬁﬁg + Riormat-

VQA Task Instantiation For Visual Question Answering (VQA) tasks, where the answer space
is discrete text, we employ an external supervisor model S (e.g., Qwen-32B in our experiment or
a domain-specific evaluator) to programmatically assess semantic consistency. Given a question ()
and ground truth GT', the supervisor S evaluates whether the model-generated reasoning process
T logically supports an answer consistent with GT'. The output score serves as the TAC reward for
VQA:
VQA

Ryi¢ = S(Q,T.GT), @
The total reward for VQA, RV@4 = R;g’é + R}I/chA + Rformat, comprises three components:
the core TAC reward Rq‘fgé , which leverages the supervisor’s judgment to suppress speculative
answers; the conventional accuracy reward RY 94, which provides feedback on correctness (1 or
0 for closed-ended tasks, or edit distance for open-ended tasks); and the format reward Rtormat,
ensuring adherence to the output structure.

3.3 MKS: A DYNAMIC REGULARIZATION MECHANISM FOR PROACTIVE GRADIENT
IMBALANCE MANAGEMENT

Generating effective Long CoT is critical for complex visual reasoning, yet it exposes a fundamental
instability in the training process. The experimental results in Fig.[3]clearly reveal this core challenge:
while our TAC mechanism (orange line) successfully incentivizes the exploration of more effective
Long CoT compared to the baseline (purple line), it leads to a fatal collapse. After a brief period of
growth, an explosive spike in KL divergence (Fig. occurs in precise synchrony with the collapse



Under review as a conference paper at ICLR 2026

250
TACO

GRPO
GRPO+TAC

e
©

N
=]
o

Response Length
G
o
Accuracy Reward
o o
> o

©
N

TACO
GRPO
GRPO+TAC

=
o
S

o

o

50
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Training Steps Training Steps

(a) Response length comparison. (b) Training accuracy (IoU Reward) comparison.
TACO 66

GRPO
GRPO+TAC

v

~

cy
o
N

KL Divergency
N w
ur:
(=)}
o

TACO
54 GRPO
GRPO+TAC

-

o

=)

200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Training Steps Training Steps

(c) KL divergence comparison. (d) LISA test accuracy comparison.

Figure 3: Effectiveness of the Think-Answer Consistency (TAC) reward, comparing TACO, GRPO,
and GRPO + TAC. The subplots illustrate TAC’s influence on: (a) response length evolution; (b)
training accuracy (IoU reward) and the critical reasoning-answer alignment; (c) policy stability,
tracked via KL divergence; and (d) Performance on the LISA test set.

of all performance metrics (Figs.[3a] [3b] [3d). Our analysis pinpoints the cause of this collapse to
Optimization Inconsistency, an extreme gradient imbalance between reward maximization (greward)
and constraint (ggr) in the GRPO objective. The push to generate coherent Long CoT triggers
policy entropy collapse—a rapid sharpening of the policy distribution. This, in turn, causes the KL
divergence value to soar, making its corresponding gradient, ||gky ||, dominate the reward gradient.

To address the issue, we design the Memory-Guided KL Stabilization (MKS) mechanism, which
identifies high-risk samples via a dynamic threshold ¢ and utilizes an experience buffer for their
isolation and periodic re-evaluation. MKS hinges on an adaptive threshold, ¢, that scales the KL
divergence tolerance based on the reward signal’s properties within each mini-batch. For an input z,
it generates a group of outputs with advantage values {4;}Y ;. We capture the signal’s magnitude
with the mean of their absolute values, () = E[|A;|], and its volatility with the standard deviation,
o(x). The threshold is defined as 6(x) = % (1(z) + o(x)) . This allows for greater exploration (a
higher KL tolerance) when the reward signal is strong or volatile, while tightening the policy stability
constraint when the signal is weak and consistent.

With this adaptive threshold, the MKS mechanism manages high-risk samples via an experience
buffer (B) through a two-stage process:

1. Identification and Isolation: If a sample z’s KL divergence exceeds the current threshold
(DkpL(mo(-|z) || et (+|z)) > (), it is deemed high-risk. Its gradient V7 (x) is masked, and the
sample is moved into the buffer: B <— B U {z}.

2. Periodic Re-evaluation: At a set interval 7" (e.g., 7" = 100 steps), all samples z;, in the buffer
are re-evaluated using the latest policy my. Samples whose KL divergence no longer exceeds the
new threshold d; are released back into the main training data stream, while the rest remain in the
buffer. The buffer is updated as follows:

B« {xp € B | Dxu(mo(-|wp)l|mrer(-26)) > ()} ®)

This mechanism avoids training collapse by deferring learning from samples currently beyond the
model’s capabilities, while the periodic re-evaluation ensures valuable difficult samples are re-utilized
once the model has improved, thus striking a balance between training stability and data utilization.



Under review as a conference paper at ICLR 2026

3.4 ADS: FACILITATING LEARNING CONSISTENCY WITH ADAPTIVE DIFFICULTY SAMPLING

While MKS provides a reactive safeguard against optimization instability, a more fundamental
approach involves proactive regulation of the training data itself. This addresses the core challenge
of inefficient learning, where a suboptimal data stream leads to slow convergence or unstable
training. Existing data scheduling strategies, however, often prove inadequate for complex, long-
chain reasoning tasks. Two prevalent paradigms are Curriculum Learning (CL) [Parashar et al.
(2025); IL1u et al.| (2024a) and Hard Example Mining (HEM) Zhou et al.| (2024). CL typically
presents samples in an easy-to-hard progression. While intuitive, this monotonic approach becomes
computationally inefficient once the model masters easier concepts, leading to diminishing returns
from low-information-gain samples. Conversely, HEM concentrates on samples with the highest
error rates. This strategy risks destabilizing the training process, as the “hardest” samples at any given
stage may be noisy, adversarial, or simply too far beyond the model’s current capabilities. Forcing
the model to fit these samples can introduce high-variance gradients, exacerbating the very gradient
imbalance that MKS is designed to mitigate.

To address these limitations, we propose Adaptive Difficulty Sampling (ADS), a dynamic, non-
monotonic data scheduler inspired by the Zone of Proximal Development McLeod| (2012)). The
core of ADS is a mechanism for dynamically assessing sample difficulty and enforcing learning
consistency by continuously aligning the difficulty of the training data with the model’s evolving state.
We ground our approach in the probability integral transform and implement this by constructing
an Empirical Cumulative Distribution Function (ECDF) from the accuracy rewards (R,.) of all
samples at the end of each training epoch. This transformation provides a robust, normalized basis

for relative difficulty. By applying the ECDF to an individual sample’s reward, Rgﬁg we obtain its
normalized percentile rank, d(i) = ECDF(IA%SIQ) This score d(i) € [0, 1] quantifies the sample’s
difficulty relative to all other samples in the current epoch.

Initially, sampling probabilities P(%) are uniform across the dataset. After each epoch, we use the
normalized difficulty scores d(¢) to apply a non-monotonic update rule, adjusting the probabilities
for the subsequent epoch based on fixed percentile thresholds 77, and 7 (e.g., 0.2 and 0.8):

Occasy * Poia (1), if d(¢) > 7y (easy, backprop enabled)
Phew(?) < ¢ moderate - Poa(), if 77 < d(i) < 7y (moderate, backprop enabled) 6)
Othard * Powa (), if d(i) < 71, (hard, backprop disabled)

The update coefficients ((easy = 0.1, Othara = 0.8, Amoderate = 1.5 in our experiments) prioritize
moderate-difficulty samples. The resulting unnormalized probabilities are then normalized across the
entire dataset to form a valid probability distribution for the next epoch.

The design of ADS directly overcomes the limitations of CL and HEM. By down-weighting and
temporarily disabling backpropagation for the hardest samples (d(i) < 71,), ADS implements a
“postponed learning” strategy that avoids the instability of HEM. By reducing the sampling probability
of the easiest samples (d(i) > 7p), it prevents the computational waste of CL, while retaining them
at a low probability provides an implicit rehearsal mechanism that mitigates catastrophic forgetting.

4 EXPERIMENTS

4.1 SETUP

LVLMs. Qwen 2.5-VL-3B and InternVL2-2B serve as our base model, selected for its promising
capabilities in vision-language understanding, which we aim to further enhance using reinforcement
learning. We use the GRPO algorithm based on the VLM-R1 framework [Shen et al.| (2025) as our
main RL baseline, which is designed to enhance the visual reasoning capabilities of LVLMs.

Training datasets for REC. To evaluate the generalization of foundational REC skills to advanced
reasoning, our model trains on the RefCOCO/+/g splits Mao et al.|(2016); |Yu et al.|(2016)), which
focus on visual attributes like object location and appearance rather than multi-step or abstract
reasoning. Evaluation datasets for REC. ID performance is measured on the validation and test
splits of RefCOCO/+/g|Mao et al.|(2016);|[Yu et al.|(2016). For OOD generalization, we use RefGTA
Tanaka et al.|(2019) to test visual domain shift with synthetic human images, and the LISA-Grounding
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Table 1: A comprehensive performance comparison on visual grounding benchmarks. The table
contrasts general foundation models with results on Qwen2.5VL-3B and InternVL-2B base models.

| RefCOCO | RefCOCO+ |  RefcOCOg |

Model Avg.
‘ val testA testB ‘ val testA testB ‘ val test ‘
Part 1: General State-of-the-Art Models
Grounding DINO-Tiny [Liu et al.|(2023b) 89.2 91.9 86.0 81.1 87.4 74.7 85.2 84.9 85.1
Grounding DINO-Large|Liu et al.|(2023b) 90.6 93.2 88.2 82.8 89.0 759 86.1 87.0 86.6
HieA2G|Wang et al.|(2025) 87.8 90.3 84.0 80.7 85.6 72.9 83.7 83.8 83.6
InternVL2-1B Team|(2024) 83.6 88.7 79.8 76.0 83.6 67.7 80.2 79.9 79.9
Part 2: Comparison on Qwen-2.5VL-3B Base Model
Qwen2.5VL-3B|Bai et al.|(2025) 88.4 91.2 83.6 80.6 86.9 72.8 84.2 84.7 84.1
+ GRPO 90.3(+1.9) 92.5(+1.3) 85.7(+2.1) | 84.3(+3.7) 89.4(+2.5) 77.1(+4.3)|86.1(+1.9) 86.8(+2.1)|86.5(+2.4)
+ TACO (Ours) 91.8(+3.4) 93.4(+2.2) 87.7(+4.1)|86.3(+5.7) 90.8(+3.9) 79.7(+6.9) | 87.8(+3.6) 88.3(+3.6) | 88.2(+4.1)
Part 3: Comparison on InternVL2-2B Base Model
InternVL2-2B Team |(2024) 823 88.2 75.9 73.5 82.8 63.3 77.6 78.3 71.1
+ GRPO 83.7(+1.4) 89.2(+1.0) 77.2(+1.3)|75.3(+1.8) 83.9(+1.1) 65.4(+2.1)|78.9(+1.3) 79.2(+0.9) |79.1(+1.4)
+ TACO (Ours) 84.6(+2.3) 90.1(+1.9) 78.6(+2.7)|76.9(+3.4) 84.9(+2.1) 67.2(+3.9)|80.4(+2.8) 82.3(+2.1)|80.6(+2.9)

Table 2: Performance comparison on OOD Table 3: Performance comparison on OCR-related Un-

LISA-Grounding Benchmark. derstanding Tasks.
Model LISA RefGTA Model InfoVQA  TextVQA DocVQA
Qwen2.5VL-3B[Bai etal |(2025) 554  70.8 VAL (VA (VAD
+ GRPO 61.1 71.6 Qwen2.5VL-3B Bai et al.|(2025) 75.1 78.7 93.0
+ TACO (Ours) 75.1 78.7 +GRPO 76.1 78.4 92.7
- + TACO (Ours) 71.7 79.7 93.2
InternVL-2B [Team|{2024) 43.6 63.3 InternVL-2B[Team|(2024] 589 734 86.9
+GRPO 519 64.1 + GRPO 59.1 73.6 86.8
+ TACO (Ours) 62.1 68.3 + TACO (Ours) 61.2 74.4 87.3

test split|Lai et al.|(2024)) to assess reasoning transfer in tasks requiring fine-grained visual-linguistic
and relational understanding.

Training datasets for VQA. For VQA training, we compiled a dataset of 9,600 instances by randomly
sampling from multiple sub-datasets in the R1-Vision collection|Shen et al.|(2024), including MathQA,
ChartQA, DeepForm, DocVQA, InfographicsVQA, TextVQA, and OCRVQA. This sample size
aligns with our 800-step training procedure. Evaluation datasets for VQA. VQA performance is
evaluated using specialized datasets such as MMStar [Chen et al.| (2024a), AI2D [Kembhavi et al.
(2016), InfoVQA VAL Mathew et al.|(2022), TextVQA VAL |[Singh et al.| (2019), DocVQA VAL
Mathew et al.| (2021), MATH-Vision-FULL Wang et al.| (2024), and MMBench |Liu et al.| (2024b),
testing the model’s capabilities across various VQA tasks.

Training datasets for Video VQA. Long-Horizon Video VQA benchmark comprises 4,000 question-
answer samples paired with real-world videos of 20-60 seconds in duration, which is designed to
evaluate a model’s robustness in maintaining complex reasoning logic and policy stability over
extended, dynamic visual inputs.

4.2 EXPERIMENTAL RESULTS

Comparison to State of the Art REC. TACO demonstrates state-of-the-art performance and
superior learning potential across various REC benchmarks. First, in a head-to-head comparison of
final performance against existing SOTA models (see Table[T)), TACO achieves the best results on all
test splits of RefCOCO/+/g. It not only significantly surpasses the baseline GRPO algorithm but also
outperforms specialized models like Grounding DINO. This initially validates the high performance
ceiling that the TACO framework can achieve upon convergence.

To delve deeper into the origins of this performance advantage, we analyze the longitudinal learning
dynamics in Table 4] This table reveals the learning capacity and generalization potential of different
methods. On in-domain (ID) datasets, the performance of SFT rapidly saturates after 200 steps, while
the baseline GRPO, though continuously learning, shows limited gains. In contrast, TACO exhibits
the steepest and most sustained learning curve, demonstrating that ADS effectively prevents learning
stagnation by continuously supplying high-information-gain signals through efficient data scheduling.
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Table 4: Performance (accuracy) comparison of SFT and RL methods on ID and OOD benchmarks.
Scores for RefCOCO/+/g represent average accuracies across sub-datasets (see Appendix for details).
All models are based on Qwen 2.5-VL-3B, with SFT and RL using RefCOCO/+/g training splits.
Scores at “Step 0” correspond to the Qwen 2.5-VL-3B model. Ay, gpr represents the RL model’s
gain over SFT, and Ay, grpo shows our model’s advantage over GRPO.

Training Evaluation Training Steps
Method Dataset 0 200 400 600 800
SFT 87.79 88.08 88.16 88.21 88.27
GRPO Refcoco 87.79 88.80 89.12 89.30 89.42
Ours 87.79 89.55 89.96 90.36 90.42
SFT 80.63 81.60 81.31 81.19 81.28
GRPO Refcoco+ 80.63 82.39 82.64 83.26 83.50
Ours 80.63 83.45 84.32 84.67 85.00
SFT 84.79 85.02 84.80 84.59 84.68
GRPO Refcocog 84.79 85.36 85.86 86.38 86.46
Ours 84.79 86.57 87.31 87.40 87.70
SFT 55.37 56.15 54.95 54.16 54.83
GRPO 55.37 61.76 62.00 60.68 61.10
Ours LISA-Grounding 5537 6297 6449 6526 6644
AOurs—SFT 0 +6.82 +9.54 +11.10 +11.61
AOurs—GRPO 0 +1.21 +2.49 +4.58 +5.34

Table 5: Performance comparison on diverse multimodal benchmarks using Qwen2.5VL-3B and
InternVL-2B base models.

Model Math Vision MMBench MMStar AI2D

(Full) EN(dev) CN(dev) EN-VI1 CN-VI1 (test) (test)

Qwen2.5VL-3B Bai et al.[(2025) 20.1 78.0 772 75.8 75.6 53.0 714
+ GRPO 21.2 79.7 77.9 78.0 76.7 54.4 78.4

+ TACO (Ours) 24.1 81.1 79.0 79.3 78.0 59.9 80.5
InternVL-2B Team |(2024) - 70.4 71.1 69.8 67.6 50.0 74.1

+ GRPO - 71.5 722 70.9 68.7 50.9 75.2

+ TACO (Ours) 72.8 733 72.6 69.4 52.1 76.7

This advantage is drastically amplified on the OOD LISA-Grounding benchmark, which demands
complex long-chain reasoning. The SFT method fails entirely on this task, proving its inability to
generalize. The baseline GRPO, while superior to SFT, also stagnates after 600 steps, empirically
validating our thesis on optimization inconsistency—unconstrained exploration eventually hits a bot-
tleneck caused by gradient conflicts. TACO, however, demonstrates sustained and stable performance
growth, achieving a performance gain of +5.34% over GRPO (Aopurs—crpo) at 800 steps. This
provides evidence of the critical synergy between the long-chain exploration incentivized by TAC
and the stability provided by MKS, which allows the model to convert high-risk exploration into
generalizable reasoning abilities. As further confirmed in Table 2| TACO’s performance on both
LISA and RefGTA consistently surpasses all baseline methods.

VQA. The superiority of TACO also extends to a wide array of VQA tasks. As shown in Tables [5|and
TACO consistently outperforms the strong Qwen2.5VL-3B base model across multiple benchmarks,
including general VQA, math reasoning, chart understanding, and OCR-related tasks. The significant
improvement of +6.9% on the challenging MMStar benchmark is particularly noteworthy. This
indicates that the TACO framework enhances a general, fundamental complex reasoning ability rather
than task-specific skills. By systematically enforcing consistency at the semantic, optimization, and
learning levels, TACO enables the model to more efficiently learn generalizable and compositional
knowledge, leading to superior performance across a diverse set of challenges.

Long-Horizon Video VQA. To further test TACO’s stability on long-horizon reasoning tasks, we
evaluated it on a real-world video VQA benchmark. This task involves queries that require intricate,
step-by-step analysis across video frames (20-60 seconds), posing a significant challenge to policy
stability. The results, presented in Table [6} show that TACO (94.80%) substantially outperforms
the baseline GRPO (81.34%), which falters on such long-horizon tasks. This provides decisive
evidence that TACO’s MKS and ADS components are critical for mitigating exploration collapse and
maintaining learning consistency, ensuring stable and effective reasoning over extended sequences.
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Table 6: Performance on the long- Table 7: Ablation results of our method on different datasets,

horizon Video VQA benchmark. evaluating the individual contributions of each component.
Method Accuracy (%) TAC RRS ADS RefCOCO RefCOCO+ RefCOCOg LISA
Qwen-2.5VL-7B 69.50 895 83.6 865 612
v 90.1 84.6 87.1 70.4
+ GRPO 81.34 v v 90.5 85.1 8§74 729
+ TACO (Ours) 94.80 g 4 & 90.8 85.6 87.6 75.1

4.3 ABLATION STUDIES

Component Analysis We conducted a series of ablation studies to systematically dissect the
individual and collective contributions of the TACO framework’s core components: Think-Answer
Consistency (TAC), Memory-Guided KL Stabilization (MKS), and Adaptive Difficulty Sampling
(ADS). The results, summarized in Table[/| progressively build upon the GRPO baseline to isolate
the impact of each mechanism. The results show that introducing TAC alone significantly improves
performance by enforcing semantic consistency, confirming its role in correcting ineffective reasoning.
Layering on MKS further enhances results, demonstrating its necessity for stabilizing the long-
chain exploration that TAC encourages, thereby preventing optimization collapse. The complete
framework with ADS achieves the best performance by maximizing learning efficiency via adaptive
data scheduling. These results confirm that the components are indispensable and synergistic: TAC
provides a valid objective, MKS ensures stable optimization, and ADS accelerates learning.

Comparison of MKS and ADS  The MKS and  ypje 8: Synergy between MKS and ADS on a
ADS mechanisms, while functionally distinct, are
designed to be complementary, addressing differ-
ent facets of the training process. MKS serves as a
reactive safeguard for optimization stability, while

1,200-sample subset. It details the initial sample
distribution and the transitions during training,
highlighting the interplay between them.

ADS acts as a proactive regulator of learning effi-  Metric Count
ciency by scheduling data based on reward signals. =, - "0

An experiment on a 1,200-sample subset, summa- MKS (High-Risk) 298
rized in Table E], validates this synergy. Initially, ADS (Learnable) 902
298 samples were identified as “high-risk” and iso- — y —

. . Transitions During Training

lated by MKS due to excessive KL divergence. As MKS — ADS (Became Learnable) 266
the model’s policy improved on the ADS-curated ADS — MKS (Became High-Risk) 0

data stream, 266 (89%) of these were later success-
fully re-integrated into the training process. This
demonstrates that MKS implements an effective “postponed learning” strategy, preserving valuable
data until the model can learn from them without collapsing. Critically, the number of samples
transitioning from the ADS “learnable” pool into the MKS “high-risk” buffer was zero. This finding
underscores that the data stream curated by ADS is inherently stable, preemptively filtering out inputs
likely to cause instability.

5 CONCLUSION

This work addresses the systemic challenge of maintaining consistency across semantic, optimization,
and learning levels during the reinforcement learning of Large Vision-Language Models (LVLMs).
We identify that common failure modes like ineffective reasoning, exploration collapse, and inefficient
learning are manifestations of this underlying multi-level inconsistency. To tackle this, we introduce
TACO, a unified framework where three synergistic mechanisms—Think-Answer Consistency (TAC),
Memory-Guided KL Stabilization (MKS), and Adaptive Difficulty Sampling (ADS)—work in concert
to enforce semantic, optimization, and learning consistency, respectively. This integrated design
enables TACO to achieve state-of-the-art performance across 15 REC and VQA benchmarks while
demonstrating superior generalization on complex reasoning tasks where conventional methods
falter. The effectiveness of TACO underscores a fundamental insight: unlocking the full potential of
RL-based training for complex reasoning requires a holistic approach that ensures coherence across
all dimensions of the learning process.
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This research was conducted in alignment with the ICLR Code of Ethics. Our work is based ex-
clusively on publicly available datasets, all of which were used in a manner that respects their
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the R1-Vision collection (from which we sampled MathQA, ChartQA, DeepForm, DocVQA, Info-
graphicsVQA, TextVQA, and OCRVQA), MMStar, AI2D, MATH-Vision-FULL, MMBench, and
the Long-Horizon Video VQA benchmark. The study did not involve human subjects or animal
experimentation, and no personally identifiable information was processed. We were conscious of
and took steps to prevent potential biases in our data handling and model evaluation processes. We
are committed to responsible research practices and transparency.

REPRODUCIBILITY STATEMENT

To ensure our results can be fully reproduced, we have included our source code with detailed
annotations in the appendix. Furthermore, we commit to open-sourcing the entire codebase and all
experimental configurations upon publication. The main paper provides a thorough account of our
experimental setup, including training procedures and model hyperparameters. All datasets used
for training and evaluation, such as RefCOCO/+/g, LISA-Grounding, MMBench, and MMStar, are
public benchmarks, which enables consistent and comparable evaluation.
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A LLM USAGE

In preparing this manuscript, we utilized a Large Language Model (LLM) as a writing support tool.
Its application was strictly limited to stylistic improvements, such as enhancing sentence structure,
improving readability, and checking for grammatical correctness. All scientific contributions, includ-
ing the core concepts, experimental design, reinforcement learning methodology, and analysis of the
results, originate solely from the authors. The LLM had no role in generating any of the substantive,
scientific content of this paper. The authors take full and final responsibility for all information and
claims presented herein.

B ADDITIONAL EXPERIMENTAL RESULTS

Table 9: Performance comparison of SFT and RL on in-domain and out-of-domain evaluation datasets.
All results are from Qwen 2.5-VL-3B trained on the training split of Refcoco/+/g. Step O represents
the results from Qwen 2.5-VL-3B itself. Ag;,_sprr denotes the improved value of the RL model
compared to the SFT model. Ag;_grpo denotes the improved value of ours compared to GRPO.

Training Evaluation Training Steps
Method Dataset 0 200 400 600 800
SFT 88.19 88.78 88.90 88.99 88.94
GRPO Refcocoyas 88.19 89.72 89.79 90.19 90.28
Ours 88.19 90.55 91.10 91.28 91.40
SFT 91.51 92.13 92.20 91.97 92.13
GRPO Refcocoiest 4 91.51 92.12 92.08 92.65 92.63
Ours 91.51 92.63 93.02 93.37 93.44
SFT 83.67 83.32 83.38 83.67 83.75
GRPO Refcocotest 83.67 84.55 85.48 85.06 85.36
Ours 83.67 86.24 86.42 86.93 87.09
SFT 81.08 82.15 81.93 82.01 82.01
GRPO Refcoco+yqi 81.08 83.16 83.60 83.96 84.29
Ours 81.08 84.33 85.16 85.36 85.58
SFT 87.37 88.56 88.32 88.25 88.09
GRPO Refcoco+test , 87.37 88.35 88.42 89.45 89.38
Ours 87.37 89.37 89.84 90.03 90.25
SFT 73.43 74.08 73.68 73.31 73.74
GRPO Refcoco+iest 73.43 75.66 7591 76.38 76.83
Ours 73.43 76.72 77.95 78.63 79.16
SFT 84.56 85.05 84.72 84.33 84.48
GRPO Refcocogyal 84.56 85.27 85.64 86.32 86.17
Ours 84.56 86.30 87.01 87.40 87.62
SFT 85.02 84.98 84.87 84.84 84.87
GRPO Refcocogiest 85.02 85.44 86.08 86.43 86.74
Ours 85.02 86.83 87.60 87.40 87.77
SFT 55.37 56.15 54.95 54.16 54.833
GRPO 55.37 61.76 62.00 60.68 61.10
Ours LISA-Grounding 5537 6194  63.69 6326 6550
AOurs—SFT o 707 L 1—5;79 B 74—78.7707 B 7+2.1707 3 1—170.207 .
Aours—GRPO 0 +0.10 +1.70 +2.60 +4.40
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s

Prompt Template

\§

REC

"{Question} First output the thinking process then summarize

the answer in <think> </think> tags and then output the final
answer in <answer> </answer> tags. Output the final answer in
JSON format."

VQA
A

"{Question} First output the thinking process in <think>
</think> tags and then output the final answer in <answer>

</answer> tags. Output the final answer in JSON format."
\ J

-
Consistency judgment prompt in VQA

messages=[
{

"role": "user",

"content": "As a text comprehension expert, evaluate
the semantic consistency between automatically extracted answers
based on the given corpus, questions, and reference answers,
outputting a similarity score within the [0,1] range. Output ONLY
score"

3,
{

"role": "user",
"content": f"given corpus:{think_content}, reference
answers: {solution}\nquestions: {problem}\nOutput score only"

3
]

J

Figure 4: Prompt templates for REC, VQA, and VQA consistency judgment, illustrating specific
instructions for thought process elicitation, JSON answer formatting, and semantic consistency
evaluation.
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~
811 ( GRPO_TACO 7
Question
81 2 Please provide the bounding box coordinate of the region this sentence describes: woman
in black shirt in back.
813
814 Ground Truth: [261.6,2.1,386.3,227.0] )
815 GRPO-Training Thinking Process
The woman in the black shirt is sitting on the bench behind the fence,
816 watching the baseball game. She is not directly involved in the oction but
is part of the scene.
Answer: [201.0,0.0,319.0,104.0]1 X
818
819 TACO(Ours) Thinking Process
The person described is wearing a black shirt, which is visible in the
820 bockground behind the batter. The person is sitting on a bench, and their
position suggests they arewatching the game. Given the context of a baseball
821 game. it's likely that this person is a coach or a parent observing the
player. [249,0,395,228]
822 \_ Ansver: [249.0,0.0,395.0,228.0] ¥
823 - J
~
824 Question
Please provide the bounding box coordinate of the region this sentence describes:
825 nan in front.
826 6round Truth: [0.0,161.3,240.5,513.5]
GRPO-Training Thinking Process
828 The person sitting on the chair is wearing a black shirt and blue
jeans,indicating they ore likely the one playing the video game. The other
829 person is holding a game controller, suggesting they are controlling the
game. Therefore, the person in front is the one playing the game.
830 Answer: [0.0,492.0,246.0,637.0]1 X
831 4
TACO(Ours) Thinking Process
832 The bounding box coordinates provided are [0,168,235,521], which likely
represent the person sitting on the chair. This person is facing away from
833 the camera, suggesting they are engaged with the video game controller in
their hand.
4
83 Answer: [0.0,168.0,235.0,521.0] )
835 )
837 Question
Please provide the bounding box coordinate of the region this sentence describes: lower
838 left scorf.
839 6round Truth: [1.2,93.8,137.5,427.0]
840 GRPO-Training Thinking Process
841 The person wearing a striped scarf is located on the far left side of the
image, covering the bottom half. This individual is partially visible and
842 appears to be seated or standing close to the edge of the frame.
Answer: [0.0,95.0,287.0,420.01 X )
845 TACO(Ours) Thinking Process
The bounding box coordinates for the person wearing a striped scarf on the
846 lower left side of the image are approximately [0,94,132,420].
847 \_ Ansver: [0.0, 94.0, 132.0, 420.0] v )
849 Z 2
Question
850 Please provide the bounding box coordinate of the region this sentence describes:
holding cheezits.
851
852 \_6round Truth: [0.9,1.9,115.8,275.7] )
853 GRPO-Training Thinking Process
854 The person wearing the red shirt with the "Cheez-1t" logo is holding the
remote control, indicating they are likely controlling the game.
856 Answer: [0.0, 104.0, 245.0, 420.0] X
857 ( TACO(Ours) Thinking Process
858 The person holding the Cheez-1t snack is on the left side of the image,
wearing o red shirt with yellow sleeves. The bounding box coordinates for
859 this individual are approximately [0,0, 116,273].
860 L Answer: [0.0,0.0,116.0,273.0]1 <
=
861

862 Figure 5: In-domain case studies from RefCOCO/+/g test splits, comparing GRPO with our method.
863 Both models use Qwen 2.5-VL-3B and were trained on RefCOCO/+/g. Bounding boxes: GT (orange),
GRPO (red), Our Method (green).
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864
865
866
867
868

869 Question
Whot con be utilized for mixing ingredient together while
870 making guacamole, given that it is often necessary to
combine avocados with other components to create a creamy
871 and flavorful dip? Please provide the bounding box

coordinate of this region.

872
873

874 BBOX

875 Ground Truth: [79.0, 0.0, 325.9, 210.9)

TACO: [77.0, 0.0, 325.0, 207.0) Correct
876 GRPO: [0.0. 1.0, 532.0, 392.0] Incorrect
877

878
879
880
881
882

TACO Training thinking process

The image shows a container of green guacomole with a purple
spoon inside. The purple spoon is used to mix the ingredients
together, which is essential for creating a creamy and

flavorful dip. [87.0,365,349] is the region where the purple
spoon is located.

883 GRPO Training thinking process

884 The image shows a container filled with green guacamole and a
purple spotula. Given the context of combining evocados with

885 other ingredients to moke guacomale, a spoon or o similor

utensil would be suitable for mixing the ingredients together.

886
887
888
889
890
891
892 [ Question

Advanced technology is frequently utilized in modern

893 hospitals during surgical operations to keep track of
patients' vital signs. What object can be frequently used
894 for this purpose in the image? Please provide the bounding

box coordinate of this region.
895
896 [ BBOX

897 Ground Truth: [503.0, 31.6, 941.7, 198.9]
{ | TACO: [497.0, 30.0, 928.0, 195.0] Correct
GRPO: [503.0, 71.0, 630.0, 198.0] Incorrect

898
899
900
901
902
903
904
905

| TACO Training thinking process

The image shows a medical setting with o patient on an
operating table, surrounded by medical equipment and monitors
displaying images. The presence of multiple monitors suggests
that they are being used to monitor the patient’s vital signs
These monitors are typically used to display information such
as heart rate, blood pressure, oxygen soturation levels, and
other physiological data. [390,26,728,165] contains multiple
monitors disploying images, which are likely used to monitor
the patient's vital signs.

| GRPO Training thinking process

The image shows a medical setting with various pieces of
equipment, including monitors displaying X—roy images. One of

906 the objects that can be frequently used for tracking patients'
vital signs is on EKG monitor. This device is typically used
907 to disploy heart rote ond other vital signs in real—time.

908

909

910

911

912 Figure 6: Qualitative examples of visual grounding on LISA dataset. TACO (green), GRPO (purple),
913 ground truth (white).
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| Question
What object in the bathroom serves to store toiletries or
medication? Please provide the bounding box coordinate of
this region.

| BBOX

Ground Truth: [231.8, 42.1, 319.0, 194.5]
TACO: [230.0, 76.0, 317.0, 196.0] Correct
GRPO: [223.0, 109.0, 307.0, 206.0] Incorrect

| TACO Training thinking process

The image shows a bathroom with a toilet, sink, bathtub, and
cabinets. The cabinets are likely used for storing toiletries

or medication. [483,215,667,549] is the bounding box of the
cabinets.

GRPO Training thinking process

The image shows a bathroom with a toilet, sink, bathtub, and
vanity. The sink is typically used for washing hands, but it
does not serve as a storage area for toiletries or medication.
The toilet hos a cistern above it, which is used to store
water for flushing. The vanity, which is part of the bathroom
cabinet, can be used to store toiletries and medications.
Therefore, the object that serves to store toiletries or
medication is the vanity.

| Question
What object is most commonly used together with o keyboard
when typing on a computer? Please provide the bounding box
coordinate of this region.

[ BBOX

Ground Truth: [168.5, 135.7, 188.7, 147.6]
TACO: [159.0, 136.0, 188.0, 151.0] Correct
GRPO: [156.0, 143.0, 189.0, 162.0] Incorrect

| TACO Training thinking process

The question asks for an object that is commonly used together
with a keyboard when typing on a computer. The most common
object that fits this description is a mouse. The bounding box
coordinates provided in the image indicate the location of the
mouse, which is placed to the right of the keyboard.
[334,381,395,423] is the bounding box coordinate for the
mouse.

GRPO Training thinking process

The image shows a typical office setup with a desk containing
o desktop computer, keyboard, mouse, and other peripherals.
The most common object used together with a keyboard for
typing on o computer is a mouse.

Figure 7: Qualitative examples of visual grounding on LISA dataset. TACO (green), GRPO (purple),
ground truth (white).
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| Question
What tool in the picture could be utilized to stabilize and
copture steady footage by supporting and holding the comera
or camcorder? Please provide the bounding box coordinate of
this region.

(880X

Ground Truth: [250.4, 412.9, 446.9, 750.6]
TACO: [247.0, 411.0, 445.0, 751.0] Correct
GRPO: [201.0, 86.0, 439.0, 765.0] Incorrect

| TACO Training thinking process

The image shows a setup with o smartphone mounted on a tripod,
connected to o light source. The tripod is used to stabilize

the device ond ensure steady footage. The bounding box
coordinates for the tripod would likely include the bose,

legs, and the mount where the phone s attached.
[243,389,437,710] represents the tripod.

GRPO Training thinking process

The image shows a setup with o smartphone mounted on a tripod,
which is typically used for stabilizing and capturing steady
footage. The tripod provides stabilty, allowing the camera or
camcorder to remoin steady during recording.

[ Question

In a bedroom, what object provides light to illuminate the
room? Please provide the bounding box coordinate of this

region.

| BBOX
Ground Truth: [195.6, 73.0, 233.9, 122.0]
TACO: [195.0, 72.0, 235.0, 127.0] Correct
GRPO: [187.0, 77.0, 225.0, 134.0] Incorrect

| TACO Training thinking process

The image shows a bedroom with a bed and a nightstand. The
nightstand has a lamp on it, which is used to provide light to

the room. [410,203,495,356] is the bounding box for the lamp
on the nightstand.

GRPO Training thinking process

The image shows a bedroom with a bed, nightstand, lamp, and
other items. The lomp is placed on the nightstand next to the
bed. The lamp provides light to the room.

Figure 8: Qualitative examples of visual grounding on LISA dataset. TACO (green), GRPO (purple),
ground truth (white).
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Question

Please provide the bounding box coordinate of the region

this sentence describes: o blonde woman in white dress and
red belt

BBOX

Ground Truth: [1385.2, 534.6, 1422.3, 672.6]
TACO: [1367.0, 544.0, 1422.0, 679.0] Correct
GRPO: [1498.0, 550.0, 1547.0, 683.0] Incorrect

TACO Training thinking process

The relevant information for onswering the question is the

presence of o person described as "o blonde woman in white
dress and red bel

This description matches the oppearance
of the woman walking on the sidewalk. “json

+ [638, 254, 664, 317], “label’ "a blonde woman in
white dress ond red belt'} ]

GRPO Ti

ing thinking process

The image shows a scene from o video gome, fikely Grand Theft
Auto V. The focus is on o street with severol cors, including

a red sports car and o white sports car. There are also
pedestrions visible,

luding @ woman in a yellow dress
walking on the sidewalk. The background features buildings and
a billboard.

Question

Please provide the bounding box coordinate of the region
this sentence describes: blonde lady wearing o black tank

top who is standing near the building and is looking ot her
phone.

BBOX

Ground Truth: [983.4, 529.9, 1025.2, 662.1]
TACO: [970.0, 531.0, 1026.0, 655.0]

Correct
GRPO: [1095.0, 523.0, 1146.0, 708.0]

Incorrect

TACO Training thinking process

The given coordinates describe o person stonding on the
sidewalk, but there is no specific mention of o person wearing
a black tank top or looking ot their phone. The description
focuses on the generol scene without providing details about
individuol peaple. “json {"bbox_2d": [453, 248

479, 306], "lobel"; "blonde lady wearing o black tank top who
is stonding near the building and is looking ot her phone."} ]

GRPO Training thinking process

The image shows a street scene with several people, including

& blonde woman in @ black tonk top. She appears to be stonding
near the building ond looking et her phone. The woman is
positioned on the sidewalk, facing awoy from the camera.

Figure 9: Qualitative examples of visual grounding on RefGTA dataset. TACO (green), GRPO
(purple), ground truth (white).
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Question

Please provide the bounding box coordinate of the region
this sentence describes: looks like shes going somewhere.

BBOX

Ground Truth: [780.1, 519.6, 874.9, 754.7]
TACO: [769.0, 548.0, 878.0, 760.0]

Correct
GRPO: [731.0, 536.0, 800.0, 694.0]

Incorrect

TACO Training thinking process

The sentence "looks like shes going somewhere" suggests that
the person is walking on the sidewalk, which implies they are
moving towards o destination. The presence of a person walking
down the street further supports this interpretation

"bbox_2d": [359. 256, 410, 355], “label
wolking®} ] ™

json
“person

GRPO Training thinking process
The image shows two choracters walking down o sidewalk in on
urban environment. The character in the red hoodie ppears to

be leading the way, suggesting they might be going somewhere
spesific

Question

Please provide the bounding box coordinate of the region
this sentence describes: o man is leaning backwards.

BBOX

Ground Truth: [1684.1, 544.3, 1914.4, 1058.5]
TACO: [1645.0, 606.0, 1917.0, 1071.0] Correc
GRPO: [1773.0, 608.0, 1932.0, 1091.0] Incorrect

TACO Training thinking process

The sentence "o man is leaning backwards” likely refers to the
person in the image who appears to be leaning back, possibly
in a reloxed or playful monner. “json [ {bbox_24"

(768, 283, 895, 500], "lobel": "o man is leaning backwards"} ]

GRPO Training thinking process

The image shows a cily sireet scene with various elements such
os buildings, trees, ond people. The person in the foreground
appears to be leaning bockward against a tree on the sidewolk

This pesture suggests they might be resting or observing
something.

Figure 10: Qualitative examples of visual grounding on RefGTA dataset. TACO (green), GRPO
(purple), ground truth (white).
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Question

Please provide the bounding box coordinate of the region
this sentence describes: man in blue shorts standing on
sidewalk.

BBOX

Ground Truth: [196.2, 510.7, 302.0, 798.2]
TACO: [190.0, 525.0, 306.0, 805.0]  Correct
GRPO: [109.0, 536.0, 204.0, 807.0]  Incorrect

TACO Training thinking process

The relevant information for onswering the question is the
coordinates of the man's position on the sidewalk. ““json [
{"bbox_2d": [89, 245, 143, 376]. “lobel": "man in blue shorts
standing on sidewalk."} ]

GRPO Training thinking process

The image shows two men stonding on a sidewalk near o street
corner. One of them is weoring biue shorts, which matches the
description given.

Question

Please provide the bounding box coordinate of the region
this sentence describes: woman wearing yellow shirt blonde
hair standing near street.

BBOX

Ground Truth: [1452.1, 601.6, 1488.0, 703.4]
TACO: [1442.0, 602.0, 1487.0, 709.0] Correct
GRPO: [1569.0, 607.0, 1608.0, 717.0] Incorrect

TACO Training thinking process

The relevant information is located around the coordinates
[673, 281, 694, 331]. This orea likely represents a person
wearing a yellow shirt end possibly blonde hoir, stending near
the street

GRPO Training thinking process

The image shows a cily street scene with various elements such
a5 vehicles, pedestrions, ond buildings. The woman in the

yellow shirt and blonde hair is visible on the sidewalk near

the street. | need to determine her position relative to the
street and other objects.

Figure 11: Qualitative examples of visual grounding on RefGTA dataset. TACO (green), GRPO
(purple), ground truth (white).
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r 2
Statistical Reasoning
Case  Amount of annuity  Interest rate  Deposit period (years)
A $2,500 8% 10
B 500 12 6
C 30,000 20 5
D 11,500 C 8
E 6,000 14 30
Question: For case A accompanying table, answer the questions that follow.<image 1>Calculate
the future value of the annuity, assuming that it is an ordinary annuity.
A.$126,827
B. $223,248
C.$36,216
D. $4,058
Please select the correct answer from the options above. IACQ
-
<think>The image shows a table with five cases, each having different
parameters such as the amount of annuity, interest rate, and deposit period. We
need to calculate the future value of the annuity for Case A, which has an
amount of $2,500, an interest rate of 8%, and a deposit period of 10 years.
To solve this problem, we use the formula for the future value of an ordinary
annuity:
\\[ FV=P \\times \\frac{(1+r)"n - 1}{r} \\]
Where :
- \\(P \\)is the payment amount ($2,500),
- \\(r \\)is the interest rate (8% or 0.08),
- \\(n \\)is the number of periods (1@ years).
Plugging in the values:
\\[ FV = 2500 \\times \\frac{(1+0.08)"{10} - 1}{0.08} \\]
Calculating step by step:
1. Calculate \\((1 + 0.08)"{10} \\): \\[(1.08)"{10} \\approx 2.15892 \\]
2. Subtract 1:\\[2.15892 - 1 = 1.15892 \\]
3. Divide by the interest rate:
\\[ \\frac{1.15892}{0.08} \\approx 14.4865\\]
4. Multiply by the payment amount:
\\[2500 \\times 14.4865 \\approx 36,216 \\]
Therefore, the future value of the annuity for Case A is approximately $36,216.
Looking at the options provided, C is $36,216, so that must be the correct
answer. (candidate)C(/candidate)</think><answer>{\"answer\": \"C\"</answer>
\ J
[ B. $223,248 j
\. J

Figure 12: Case studies on the VQA training dataset and tests on statistical reasoning tasks were

conducted. We compare the response generated by our method and Qwen 2.5-VL-3B base model.

The response given by the base model is incorrect, while our method (TACO) is correct.
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\

'Math

Question: Hint: Please answer the question and provide the correct option letter, e.g., A, B, C, D,
at the end.

Question: What fraction of the shape is blue?

Options:

A.3/11

B. 8/11

C.6/11

D. 3/5

Please select the correct answer from the options above.
( .ll:‘!!|ill::L‘I:I.‘\

<think>The image shows a circle divided into 11 equal
segments by lines radiating outward. Out of these 11
segments, three are shaded blue. Therefore, the fraction
of the shape that is blue is calculated as the number of
blue segments divided by the total number of segments.

So,the fraction is 3/11.
Looking at the options provided:

A.3/11
B.8/11
Cc.6/11
D.3/5

The correct answer is A.(candidate)A(/candidate)</think>
<answer>{\"answer\" :\"A\"}</answer>

Base Model

g. 6711 X j

J

Figure 13: Case studies on VQA training dataset and tests on mathematical tasks were conducted.
We compare the responses generated by our method and Qwen 2.5-VL-3B base model. The response
given by the base model is incorrect, while our method (TACO) is correct.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

‘Chart QA )
Proprietary
GPT-40 N.A. - - 85.7}
GPT-4V N.A. - - 78.5}
Public Large Models
LLaVA OneVision-72B  72B - - 83.7}
Llama 3-V 70B >70B - - 83.2
Public Small Models
Llama 3-V 8B >8B - - 78.7}
ChartLlama 7B 48.96 90.36 69.7}
LLaVA OneVision-7B 7B - - 80.0)
SynChart 4.2B 74.24 94.96 84.6)
4.2 Ablations
(re o : :
The image provided is a table that summarizes the performance of various
large language models across different categories (proprietary,public large
models, and public small models). The table includes the model names, their
sizes, and corresponding scores for two tasks: "Ablations" and "Other."
Let\'s summarize the key points from the table:
1. *xPropriety Models¥x:
- GPT-40: N.A.
- 6PT-4V: N.A.
2. *xPublic Large Models*x:
- LLCVA OneVision-72B: Score: 83.7
- Llama 3-V 70B: >70B, Score: 83.2
3. *xPublic Small Models¥:
- Llama 3-V 8B: >8B, Score: 78.7
- ChartLlama: 7B, Score:90.36
- L1aVA OneVision-7B: 7B, Score: 80.0
- SynChart: 4.2B, Score: 94.96
- From the scores listed under each model, we can see the highest score
among all models is 94.96, which is associated with the **Sync Chart*x
model.
Analyzing the scores:
- The highest score among all models is 94.96, which is achieved by the
*xSynChart** model.
(candidate)SynChart(/candidate)</think><answer>{"answer":"SynChart"}
</answer>
. )
According to the data in the table, the Synchart model performs the best on all
evaluation metrics. Specifically\n\nSynchart scored 84.6 in the Proprietary
evaluation.\n\nSynchart scored 83.2 in the Public Large Models evaluation.\n\nSynchart
scored 94.96 in the Public Small Models evaluation.\n\nTherefore, Synchart is the best-
performing model on these three evaluation metrics.
. J

Figure 14: Case studies on VQA training dataset and tests on Chart-Q&A tasks were conducted. We
compare the responses generated by our method and Qwen 2.5-VL-3B base model. The base model
lacks the thoroughness and logical rigor of our method(TACO).
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