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ABSTRACT

The paradigm for training Large Vision-Language Models (LVLMs) is evolving
toward autonomous problem-solving, revealing critical instabilities in complex
visual reasoning. We identify three failure modes: exploration collapse, inefficient
learning, and—most notably—ineffective reasoning, marked by logical inconsisten-
cies between reasoning traces and outputs. To mitigate these, we introduce TACO,
a reinforcement learning framework that enforces multi-level consistency. TACO
comprises three integrated components: a Think-Answer Consistency (TAC) re-
ward ensuring joint alignment of reasoning, answer, and ground truth for semantic
integrity; a Memory-Guided KL Stabilization (MKS) mechanism that dynamically
defers high-risk updates to prevent optimization collapse; and an Adaptive Diffi-
culty Sampling (ADS) module that optimizes data curation for efficient learning.
Extensive experiments validate TACO’s superiority, achieving top performance
on 15 benchmarks spanning Referring Expression Comprehension (REC), Visual
Question Answering (VQA), and long-horizon Video VQA. TACO exhibits en-
hanced generalization, sustained efficiency, and stability in long-chain reasoning,
outperforming conventional RL approaches.

1 INTRODUCTION

The training paradigm for Large Vision-Language Models (LVLMs) (Xu et al., 2016; Agrawal et al.,
2016) is evolving from imitative learning, such as Supervised Fine-Tuning (SFT) and Reinforcement
Learning from Human Feedback (RLHF) Achiam et al. (2023); Bai et al. (2025); Lu et al. (2024); Chen
et al. (2024b), toward an autonomous problem-solving approach. This new paradigm, exemplified
by Reinforcement Learning with Verifiable Rewards (RLVR) Xiao et al. (2025), aims to enhance
complex reasoning by shifting the learning objective from imitation to solution-oriented achievement.
However, directly applying this paradigm to the complex scenario of visual long-chain reasoning
exposes a series of severe challenges. These include the classic problems of “exploration collapse”,
“inefficient learning”, as well as a more deceptive failure mode that we identify as “ineffective
reasoning”, whose core pathology lies in the logical inconsistency between the model’s reasoning
process and its final output.

While prior works treat these as isolated bottlenecks, we argue that they arise from a systemic
breakdown in consistency across semantic, optimization, and learning levels. To address this, we
propose the TACO framework, which enforces multi-level consistency to construct an efficient and
stable learning process. TACO extends the foundational RL concept that constraints bring stability
Schulman et al. (2015; 2017) from a singular optimization focus to an integrated framework covering
all three levels:

• Semantic Consistency. A key challenge in complex reasoning is Ineffective Reasoning, where a
model produces a correct final answer from a flawed or irrelevant reasoning process. To combat
this issue and enforce semantic integrity, TACO introduces the Think-Answer Consistency (TAC)
reward mechanism to provide hierarchical supervision by mandating a joint alignment among the
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Figure 1: Overview of the TACO framework. It systematically resolves the disorder in LVLM training
by synergistically managing three consistency modules: Learning Consistency (ADS) for efficient
data sampling, Optimization Consistency (MKS) for training stability, and Semantic Consistency
(TAC) for coherent reasoning, ultimately achieving a significant performance advantage over the
baseline (right).

reasoning chain (Think ), the final answer (Answer ), and the ground truth (GT ), which compels
the model to learn a valid and coherent thought process.

• Optimization Consistency. Generating long, precise reasoning chains often triggers exploration
collapse. This occurs when the policy sharpens, causing a KL divergence spike and a catas-
trophic gradient imbalance where the stability penalty dominates the reward signal. TACO’s
Memory-Guided KL Stabilization (MKS) mechanism acts as a dynamic regularizer, using an
adaptive threshold to identify and defer high-risk samples via an experience buffer, thus preventing
destructive updates and ensuring training stability.

• Learning Consistency. To proactively prevent such instability and address inefficient learning,
the Adaptive Difficulty Sampling (ADS) module curates the training data stream. Inspired by the
Zone of Proximal Development (ZPD), ADS dynamically prioritizes samples that are challenging
yet achievable. This strategy maximizes the efficiency of each gradient update, accelerating
convergence by ensuring the model is optimally engaged.

In summary, we propose TACO, a reinforcement learning framework for visual reasoning in Large
Vision-Language Models (LVLMs), which enforces multi-level consistency to reframe training as a
stable, efficient, goal-oriented process. Our main contributions are threefold: 1) introducing TACO to
unify key challenges as three consistency failures, including semantic, optimization, and learning
levels; 2) designing three synergistic mechanisms (TAC, MKS, and ADS), where TAC enforces
semantic consistency through joint geometric and semantic alignment; and 3) achieving state-of-
the-art performance on 15 in-domain and out-of-domain REC and VQA benchmarks using different
foundation models, demonstrating superior generalization, sustained learning efficiency, and stable
training in long-chain reasoning where traditional RL methods falter.

2 RELATED WORK

Large Vision-Language Models (LVLMs). LVLMs bridge vision and language. Core advances
include large-scale contrastive pre-training for joint embeddings (e.g., CLIP Radford et al. (2021)) and
LLM-style instruction tuning for enhanced visual dialogue/reasoning (e.g., LLaVA Liu et al. (2023a)).
Dealing with varied image sizes is key. Dynamic methods (AnyRes Chen et al. (2024b); QwenVL
techniques Bai et al. (2023)) aid input flexibility. However, complex reasoning and generalization
remain tough.

Reinforcement Learning (RL) in LVLMs. RL offers a compelling way to enhance reasoning,
building on language successes like RL’s efficacy on logical tasks OpenAI (2024) and GRPO enabling
direct reasoning optimization (potentially bypassing SFT, DeepSeek-R1 Guo et al. (2025)). For
multimodal RL, however, addressing cross-modal consistency and stability is key. Efforts in this area
include developing specialized reasoning datasets with formalized visual inputs (R1-OneVision Yang
et al. (2025)), successfully porting RL algorithms like GRPO to VLM training (R1-V, Visual-RFT,
VLM-R1 Chen et al. (2025); Liu et al. (2025); Shen et al. (2025)), and introducing mechanisms
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Figure 2: Overview of the TACO training loop. This figure illustrates the synergistic workflow of the
three core components: ADS, MKS, and TAC within a single training step. The ADS (left) manages
input sampling, the Policy Model (center) performs exploration, and the MKS (top) identifies and
isolates high-risk outputs (orisk) via an Experience Buffer and KL divergence monitoring, ensuring
that only stable and effective signals are used for the final policy update.

like verifiable rewards Liu et al. (2025). Intriguingly, applying RL directly to base VLMs has been
shown to induce significant performance jumps or “visual epiphanies” (VisualThinker-R1-Zero
Zhou et al. (2025)), with related work observing correlations between response characteristics like
length and reasoning improvements under RL optimization (MMEureka Meng et al. (2025)). While
VLM-R1 Shen et al. (2025) shows the potential of RL, it also reveals challenges like reasoning
inconsistencies and model instability, which our work aims to address.

3 METHOD

TACO framework manages the LVLM reinforcement learning process through a synergistic closed-
loop system, as illustrated in Fig. 2. The core logic of it begins with Semantic Consistency: the
Think-Answer Consistency (TAC) reward establishes a semantically correct objective for the model’s
complex reasoning. To ensure the stability of the high-risk exploration toward this objective, the
Memory-Guided KL Stabilization (MKS) mechanism isolates risky explorations via an experience
buffer, enforcing Optimization Consistency. Finally, to enhance the efficiency of the entire learning
process, the Adaptive Difficulty Sampler (ADS) optimizes data input to achieve Learning Consistency,
thus providing the most efficient data fuel for the system’s stable operation.

3.1 PRELIMINARY

Group Relative Policy Optimization Group Relative Policy Optimization (GRPO) enhances
PPO Schulman et al. (2017) by eliminating the critic component. For input x, GRPO samples N
responses {o1, o2, . . . , oN} from policy πθ, computing rewards ri = R(x, oi). Relative performance
is evaluated using advantage values Ai , which standardizes rewards without requiring a separate
value function. The policy πθ is updated by optimizing the GRPO objective:

JGRPO(θ) = E{oi}N
i=1∼πθold (x)

[
1

N

N∑
i=1

{min(s1 ·Ai, s2 ·Ai)} − βDKL[πθ∥πref]

]
, (1)

where s1 = πθ(oi|x)
πθold (oi|x)

and s2 = clip
(

πθ(oi|x)
πθold (oi|x)

, 1− ϵ, 1 + ϵ
)

. The term DKL[πθ∥πref] represents
the Kullback-Leibler divergence between the current and reference policies, weighted by β.

Referring Expression Comprehension and Visual Question Answering. Referring Expression
Comprehension (REC) is a multimodal task enabling machines to localize target objects or regions
within a visual scene based on a natural language expression Qiao et al. (2020). Unlike traditional
object detection, REC requires complex instructions and enhanced visual perception, making it
valuable for applications like human-centric scenarios, autonomous driving, and medical image
analysis He et al. (2023). Visual Question Answering (VQA) tasks, in contrast, involve generating
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accurate natural language answers based on an image and a question Antol et al. (2015); Srivastava
et al. (2021). Successful completion of VQA demands capabilities in object recognition, attribute
understanding, and relational analysis. We extend experiments on these tasks to validate the robust
reasoning and generalization capabilities of TACO.

3.2 TAC: A HIERARCHICAL SUPERVISION SYSTEM FOR SEMANTIC CONSISTENCY

While existing works employ Long Chains of Thought (Long CoT) to boost the reasoning ability,
they risk the ineffective reasoning problem: generating a correct answer from a flawed or irrelevant
reasoning process. Standard rewards on the final output fail to penalize such logical fallacies. Unlike
standard outcome-based rewards that allow reward hacking Cobbe et al. (2021), we introduce the
Think-Answer Consistency (TAC) reward, enforcing joint alignment among the reasoning chain
(Think ), final answer (Answer ), and ground truth (GT ). The general form of the TAC reward is
expressed as:

RTAC = f (Think ,Answer ,GT ), (2)

where f is a task-specific metric function evaluating the alignment among Think , Answer , and GT .
While existing rewards only focus on the final output, leading to ineffective reasoning, TAC addresses
this issue through hierarchical supervision.

REC Task Instantiation In the Referring Expression Comprehension (REC) task, to explicitly
decouple reasoning and the final answer, we use a specific prompt format to guide the model to
output the reasoning process within <think> tags and the final localization within <answer> tags.
We instantiate the joint alignment principle as a geometric constraint on three bounding boxes: the
reasoning process (ThinkBBox), the final answer (AnswerBBox), and the ground truth (GTBBox).
The TAC reward is directly defined by their Intersection over Union (IoU):

RREC
acc = RREC

TAC = IoU(ThinkBBox,AnswerBBox,GTBBox)

=
Area(BBox1 ∩BBox2 ∩BBox3)

Area(BBox1 ∪BBox2 ∪BBox3)
,

(3)

This single metric simultaneously evaluates accuracy and consistency, as any deviation among
reasoning, answer, or ground truth reduces the reward, effectively incentivizing the model to learn a
reliable localization reasoning process. Additionally, we include a format reward Rformat, defined as
(<think>...</think><answer>...</answer>), to encourage adherence to the specified
output structure. Thus, the total reward for the REC task is RREC = RREC

TAC +Rformat.

VQA Task Instantiation For Visual Question Answering (VQA) tasks, where the answer space
is discrete text, we employ an external supervisor model S (e.g., Qwen-32B in our experiment or
a domain-specific evaluator) to programmatically assess semantic consistency. Given a question Q
and ground truth GT , the supervisor S evaluates whether the model-generated reasoning process
T logically supports an answer consistent with GT . The output score serves as the TAC reward for
VQA:

RV QA
TAC = S(Q,T,GT ), (4)

The total reward for VQA, RV QA = RV QA
TAC + RV QA

acc + Rformat, comprises three components:
the core TAC reward RV QA

TAC , which leverages the supervisor’s judgment to suppress speculative
answers; the conventional accuracy reward RV QA

acc , which provides feedback on correctness (1 or
0 for closed-ended tasks, or edit distance for open-ended tasks); and the format reward Rformat,
ensuring adherence to the output structure.

3.3 MKS: A DYNAMIC REGULARIZATION MECHANISM FOR PROACTIVE GRADIENT
IMBALANCE MANAGEMENT

Generating effective Long CoT is critical for complex visual reasoning, yet it exposes a fundamental
instability in the training process. The experimental results in Fig. 3 clearly reveal this core challenge:
while our TAC mechanism (orange line) successfully incentivizes the exploration of more effective
Long CoT compared to the baseline (purple line), it leads to a fatal collapse. After a brief period of
growth, an explosive spike in KL divergence (Fig. 3c) occurs in precise synchrony with the collapse
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(a) Response length comparison. (b) Training accuracy (IoU Reward) comparison.

(c) KL divergence comparison. (d) LISA test accuracy comparison.

Figure 3: Effectiveness of the Think-Answer Consistency (TAC) reward, comparing TACO, GRPO,
and GRPO + TAC. The subplots illustrate TAC’s influence on: (a) response length evolution; (b)
training accuracy (IoU reward) and the critical reasoning-answer alignment; (c) policy stability,
tracked via KL divergence; and (d) Performance on the LISA test set.

of all performance metrics (Figs. 3a, 3b, 3d). Our analysis pinpoints the cause of this collapse to
Optimization Inconsistency, an extreme gradient imbalance between reward maximization (greward)
and constraint (gKL) in the GRPO objective. The push to generate coherent Long CoT triggers
policy entropy collapse—a rapid sharpening of the policy distribution. This, in turn, causes the KL
divergence value to soar, making its corresponding gradient, ∥gKL∥, dominate the reward gradient.

To address the issue, we design the Memory-Guided KL Stabilization (MKS) mechanism, which
identifies high-risk samples via a dynamic threshold δ and utilizes an experience buffer for their
isolation and periodic re-evaluation. MKS hinges on an adaptive threshold, δ, that scales the KL
divergence tolerance based on the reward signal’s properties within each mini-batch. For an input x,
it generates a group of outputs with advantage values {Ai}Ni=1. We capture the signal’s magnitude
with the mean of their absolute values, µ(x) = E[|Ai|], and its volatility with the standard deviation,
σ(x). The threshold is defined as δ(x) = 1

β (µ(x) + σ(x)) . This allows for greater exploration (a
higher KL tolerance) when the reward signal is strong or volatile, while tightening the policy stability
constraint when the signal is weak and consistent.

With this adaptive threshold, the MKS mechanism manages high-risk samples via an experience
buffer (B) through a two-stage process:

1. Identification and Isolation: If a sample x’s KL divergence exceeds the current threshold
(DKL(πθ(·|x)∥πref(·|x)) > δ(x)), it is deemed high-risk. Its gradient ∇θJ (x) is masked, and the
sample is moved into the buffer: B ← B ∪ {x}.

2. Periodic Re-evaluation: At a set interval T (e.g., T = 100 steps), all samples xb in the buffer
are re-evaluated using the latest policy πθ. Samples whose KL divergence no longer exceeds the
new threshold δt are released back into the main training data stream, while the rest remain in the
buffer. The buffer is updated as follows:

B ← {xb ∈ B | DKL(πθ(·|xb)∥πref(·|xb)) > δ(xb)}. (5)

This mechanism avoids training collapse by deferring learning from samples currently beyond the
model’s capabilities, while the periodic re-evaluation ensures valuable difficult samples are re-utilized
once the model has improved, thus striking a balance between training stability and data utilization.
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3.4 ADS: FACILITATING LEARNING CONSISTENCY WITH ADAPTIVE DIFFICULTY SAMPLING

While MKS provides a reactive safeguard against optimization instability, a more fundamental
approach involves proactive regulation of the training data itself. This addresses the core challenge
of inefficient learning, where a suboptimal data stream leads to slow convergence or unstable
training. Existing data scheduling strategies, however, often prove inadequate for complex, long-
chain reasoning tasks. Two prevalent paradigms are Curriculum Learning (CL) Parashar et al.
(2025); Liu et al. (2024a) and Hard Example Mining (HEM) Zhou et al. (2024). CL typically
presents samples in an easy-to-hard progression. While intuitive, this monotonic approach becomes
computationally inefficient once the model masters easier concepts, leading to diminishing returns
from low-information-gain samples. Conversely, HEM concentrates on samples with the highest
error rates. This strategy risks destabilizing the training process, as the ”hardest” samples at any given
stage may be noisy, adversarial, or simply too far beyond the model’s current capabilities. Forcing
the model to fit these samples can introduce high-variance gradients, exacerbating the very gradient
imbalance that MKS is designed to mitigate.

To address these limitations, we propose Adaptive Difficulty Sampling (ADS), a dynamic, non-
monotonic data scheduler inspired by the Zone of Proximal Development McLeod (2012). The
core of ADS is a mechanism for dynamically assessing sample difficulty and enforcing learning
consistency by continuously aligning the difficulty of the training data with the model’s evolving state.
We ground our approach in the probability integral transform and implement this by constructing
an Empirical Cumulative Distribution Function (ECDF) from the accuracy rewards (Racc) of all
samples at the end of each training epoch. This transformation provides a robust, normalized basis
for relative difficulty. By applying the ECDF to an individual sample’s reward, R̂(i)

acc, we obtain its
normalized percentile rank, d(i) = ECDF(R̂(i)

acc). This score d(i) ∈ [0, 1] quantifies the sample’s
difficulty relative to all other samples in the current epoch.

Initially, sampling probabilities P (i) are uniform across the dataset. After each epoch, we use the
normalized difficulty scores d(i) to apply a non-monotonic update rule, adjusting the probabilities
for the subsequent epoch based on fixed percentile thresholds τL and τH (e.g., 0.2 and 0.8):

Pnew(i) ∝


αeasy · Pold(i), if d(i) > τH (easy, backprop enabled)
αmoderate · Pold(i), if τL ≤ d(i) ≤ τH (moderate, backprop enabled)
αhard · Pold(i), if d(i) < τL (hard, backprop disabled)

(6)

The update coefficients (αeasy = 0.1, αhard = 0.8, αmoderate = 1.5 in our experiments) prioritize
moderate-difficulty samples. The resulting unnormalized probabilities are then normalized across the
entire dataset to form a valid probability distribution for the next epoch.

The design of ADS directly overcomes the limitations of CL and HEM. By down-weighting and
temporarily disabling backpropagation for the hardest samples (d(i) < τL), ADS implements a
”postponed learning” strategy that avoids the instability of HEM. By reducing the sampling probability
of the easiest samples (d(i) > τH ), it prevents the computational waste of CL, while retaining them
at a low probability provides an implicit rehearsal mechanism that mitigates catastrophic forgetting.

4 EXPERIMENTS

4.1 SETUP

LVLMs. Qwen 2.5-VL-3B and InternVL2-2B serve as our base model, selected for its promising
capabilities in vision-language understanding, which we aim to further enhance using reinforcement
learning. We use the GRPO algorithm based on the VLM-R1 framework Shen et al. (2025) as our
main RL baseline, which is designed to enhance the visual reasoning capabilities of LVLMs.

Training datasets for REC. To evaluate the generalization of foundational REC skills to advanced
reasoning, our model trains on the RefCOCO/+/g splits Mao et al. (2016); Yu et al. (2016), which
focus on visual attributes like object location and appearance rather than multi-step or abstract
reasoning. Evaluation datasets for REC. ID performance is measured on the validation and test
splits of RefCOCO/+/g Mao et al. (2016); Yu et al. (2016). For OOD generalization, we use RefGTA
Tanaka et al. (2019) to test visual domain shift with synthetic human images, and the LISA-Grounding

6
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Table 1: A comprehensive performance comparison on visual grounding benchmarks. The table
contrasts general foundation models with results on Qwen2.5VL-3B and InternVL-2B base models.

Model RefCOCO RefCOCO+ RefCOCOg Avg.
val testA testB val testA testB val test

Part 1: General State-of-the-Art Models

Grounding DINO-Tiny Liu et al. (2023b) 89.2 91.9 86.0 81.1 87.4 74.7 85.2 84.9 85.1
Grounding DINO-Large Liu et al. (2023b) 90.6 93.2 88.2 82.8 89.0 75.9 86.1 87.0 86.6

HieA2G Wang et al. (2025) 87.8 90.3 84.0 80.7 85.6 72.9 83.7 83.8 83.6
InternVL2-1B Team (2024) 83.6 88.7 79.8 76.0 83.6 67.7 80.2 79.9 79.9

Part 2: Comparison on Qwen-2.5VL-3B Base Model

Qwen2.5VL-3B Bai et al. (2025) 88.4 91.2 83.6 80.6 86.9 72.8 84.2 84.7 84.1
+ GRPO 90.3(+1.9) 92.5(+1.3) 85.7(+2.1) 84.3(+3.7) 89.4(+2.5) 77.1(+4.3) 86.1(+1.9) 86.8(+2.1) 86.5(+2.4)

+ TACO (Ours) 91.8(+3.4) 93.4(+2.2) 87.7(+4.1) 86.3(+5.7) 90.8(+3.9) 79.7(+6.9) 87.8(+3.6) 88.3(+3.6) 88.2(+4.1)

Part 3: Comparison on InternVL2-2B Base Model

InternVL2-2B Team (2024) 82.3 88.2 75.9 73.5 82.8 63.3 77.6 78.3 77.7
+ GRPO 83.7(+1.4) 89.2(+1.0) 77.2(+1.3) 75.3(+1.8) 83.9(+1.1) 65.4(+2.1) 78.9(+1.3) 79.2(+0.9) 79.1(+1.4)

+ TACO (Ours) 84.6(+2.3) 90.1(+1.9) 78.6(+2.7) 76.9(+3.4) 84.9(+2.1) 67.2(+3.9) 80.4(+2.8) 82.3(+2.1) 80.6(+2.9)

Table 2: Performance comparison on OOD
LISA-Grounding Benchmark.

Model LISA RefGTA

Qwen2.5VL-3B Bai et al. (2025) 55.4 70.8
+ GRPO 61.1 71.6

+ TACO (Ours) 75.1 78.7

InternVL-2B Team (2024) 48.6 63.3
+ GRPO 51.9 64.1

+ TACO (Ours) 62.1 68.3

Table 3: Performance comparison on OCR-related Un-
derstanding Tasks.

Model InfoVQA TextVQA DocVQA

(VAL) (VAL) (VAL)

Qwen2.5VL-3B Bai et al. (2025) 75.1 78.7 93.0
+ GRPO 76.1 78.4 92.7

+ TACO (Ours) 77.7 79.7 93.2

InternVL-2B Team (2024) 58.9 73.4 86.9
+ GRPO 59.1 73.6 86.8

+ TACO (Ours) 61.2 74.4 87.3

test split Lai et al. (2024) to assess reasoning transfer in tasks requiring fine-grained visual-linguistic
and relational understanding.

Training datasets for VQA. For VQA training, we compiled a dataset of 9,600 instances by randomly
sampling from multiple sub-datasets in the R1-Vision collection Shen et al. (2024), including MathQA,
ChartQA, DeepForm, DocVQA, InfographicsVQA, TextVQA, and OCRVQA. This sample size
aligns with our 800-step training procedure. Evaluation datasets for VQA. VQA performance is
evaluated using specialized datasets such as MMStar Chen et al. (2024a), AI2D Kembhavi et al.
(2016), InfoVQA VAL Mathew et al. (2022), TextVQA VAL Singh et al. (2019), DocVQA VAL
Mathew et al. (2021), MATH-Vision-FULL Wang et al. (2024), and MMBench Liu et al. (2024b),
testing the model’s capabilities across various VQA tasks.

Training datasets for Video VQA. Long-Horizon Video VQA benchmark comprises 4,000 question-
answer samples paired with real-world videos of 20-60 seconds in duration, which is designed to
evaluate a model’s robustness in maintaining complex reasoning logic and policy stability over
extended, dynamic visual inputs.

4.2 EXPERIMENTAL RESULTS

Comparison to State of the Art REC. TACO demonstrates state-of-the-art performance and
superior learning potential across various REC benchmarks. First, in a head-to-head comparison of
final performance against existing SOTA models (see Table 1), TACO achieves the best results on all
test splits of RefCOCO/+/g. It not only significantly surpasses the baseline GRPO algorithm but also
outperforms specialized models like Grounding DINO. This initially validates the high performance
ceiling that the TACO framework can achieve upon convergence.

To delve deeper into the origins of this performance advantage, we analyze the longitudinal learning
dynamics in Table 4. This table reveals the learning capacity and generalization potential of different
methods. On in-domain (ID) datasets, the performance of SFT rapidly saturates after 200 steps, while
the baseline GRPO, though continuously learning, shows limited gains. In contrast, TACO exhibits
the steepest and most sustained learning curve, demonstrating that ADS effectively prevents learning
stagnation by continuously supplying high-information-gain signals through efficient data scheduling.
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Table 4: Performance (accuracy) comparison of SFT and RL methods on ID and OOD benchmarks.
Scores for RefCOCO/+/g represent average accuracies across sub-datasets (see Appendix for details).
All models are based on Qwen 2.5-VL-3B, with SFT and RL using RefCOCO/+/g training splits.
Scores at “Step 0” correspond to the Qwen 2.5-VL-3B model. ∆RL−SFT represents the RL model’s
gain over SFT, and ∆RL−GRPO shows our model’s advantage over GRPO.

Training Evaluation Training Steps
Method Dataset 0 200 400 600 800

SFT
Refcoco

87.79 88.08 88.16 88.21 88.27
GRPO 87.79 88.80 89.12 89.30 89.42
Ours 87.79 89.55 89.96 90.36 90.42

SFT
Refcoco+

80.63 81.60 81.31 81.19 81.28
GRPO 80.63 82.39 82.64 83.26 83.50
Ours 80.63 83.45 84.32 84.67 85.00

SFT
Refcocog

84.79 85.02 84.80 84.59 84.68
GRPO 84.79 85.36 85.86 86.38 86.46
Ours 84.79 86.57 87.31 87.40 87.70

SFT

LISA-Grounding

55.37 56.15 54.95 54.16 54.83
GRPO 55.37 61.76 62.00 60.68 61.10
Ours 55.37 62.97 64.49 65.26 66.44

∆Ours−SFT 0 +6.82 +9.54 +11.10 +11.61
∆Ours−GRPO 0 +1.21 +2.49 +4.58 +5.34

Table 5: Performance comparison on diverse multimodal benchmarks using Qwen2.5VL-3B and
InternVL-2B base models.

Model Math Vision MMBench MMStar AI2D
(Full) EN(dev) CN(dev) EN-V11 CN-V11 (test) (test)

Qwen2.5VL-3B Bai et al. (2025) 20.1 78.0 77.2 75.8 75.6 53.0 77.4
+ GRPO 21.2 79.7 77.9 78.0 76.7 54.4 78.4

+ TACO (Ours) 24.1 81.1 79.0 79.3 78.0 59.9 80.5
InternVL-2B Team (2024) – 70.4 71.1 69.8 67.6 50.0 74.1

+ GRPO – 71.5 72.2 70.9 68.7 50.9 75.2
+ TACO (Ours) – 72.8 73.3 72.6 69.4 52.1 76.7

This advantage is drastically amplified on the OOD LISA-Grounding benchmark, which demands
complex long-chain reasoning. The SFT method fails entirely on this task, proving its inability to
generalize. The baseline GRPO, while superior to SFT, also stagnates after 600 steps, empirically
validating our thesis on optimization inconsistency—unconstrained exploration eventually hits a bot-
tleneck caused by gradient conflicts. TACO, however, demonstrates sustained and stable performance
growth, achieving a performance gain of +5.34% over GRPO (∆Ours−GRPO) at 800 steps. This
provides evidence of the critical synergy between the long-chain exploration incentivized by TAC
and the stability provided by MKS, which allows the model to convert high-risk exploration into
generalizable reasoning abilities. As further confirmed in Table 2, TACO’s performance on both
LISA and RefGTA consistently surpasses all baseline methods.

VQA. The superiority of TACO also extends to a wide array of VQA tasks. As shown in Tables 5 and
3, TACO consistently outperforms the strong Qwen2.5VL-3B base model across multiple benchmarks,
including general VQA, math reasoning, chart understanding, and OCR-related tasks. The significant
improvement of +6.9% on the challenging MMStar benchmark is particularly noteworthy. This
indicates that the TACO framework enhances a general, fundamental complex reasoning ability rather
than task-specific skills. By systematically enforcing consistency at the semantic, optimization, and
learning levels, TACO enables the model to more efficiently learn generalizable and compositional
knowledge, leading to superior performance across a diverse set of challenges.

Long-Horizon Video VQA. To further test TACO’s stability on long-horizon reasoning tasks, we
evaluated it on a real-world video VQA benchmark. This task involves queries that require intricate,
step-by-step analysis across video frames (20-60 seconds), posing a significant challenge to policy
stability. The results, presented in Table 6, show that TACO (94.80%) substantially outperforms
the baseline GRPO (81.34%), which falters on such long-horizon tasks. This provides decisive
evidence that TACO’s MKS and ADS components are critical for mitigating exploration collapse and
maintaining learning consistency, ensuring stable and effective reasoning over extended sequences.
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Table 6: Performance on the long-
horizon Video VQA benchmark.

Method Accuracy (%)

Qwen-2.5VL-7B 69.50
+ GRPO 81.34
+ TACO (Ours) 94.80

Table 7: Ablation results of our method on different datasets,
evaluating the individual contributions of each component.

TAC RRS ADS RefCOCO RefCOCO+ RefCOCOg LISA

89.5 83.6 86.5 61.2
✓ 90.1 84.6 87.1 70.4
✓ ✓ 90.5 85.1 87.4 72.9
✓ ✓ ✓ 90.8 85.6 87.6 75.1

4.3 ABLATION STUDIES

Component Analysis We conducted a series of ablation studies to systematically dissect the
individual and collective contributions of the TACO framework’s core components: Think-Answer
Consistency (TAC), Memory-Guided KL Stabilization (MKS), and Adaptive Difficulty Sampling
(ADS). The results, summarized in Table 7, progressively build upon the GRPO baseline to isolate
the impact of each mechanism. The results show that introducing TAC alone significantly improves
performance by enforcing semantic consistency, confirming its role in correcting ineffective reasoning.
Layering on MKS further enhances results, demonstrating its necessity for stabilizing the long-
chain exploration that TAC encourages, thereby preventing optimization collapse. The complete
framework with ADS achieves the best performance by maximizing learning efficiency via adaptive
data scheduling. These results confirm that the components are indispensable and synergistic: TAC
provides a valid objective, MKS ensures stable optimization, and ADS accelerates learning.

Table 8: Synergy between MKS and ADS on a
1,200-sample subset. It details the initial sample
distribution and the transitions during training,
highlighting the interplay between them.

Metric Count

Initial Distribution
MKS (High-Risk) 298
ADS (Learnable) 902

Transitions During Training
MKS → ADS (Became Learnable) 266
ADS → MKS (Became High-Risk) 0

Comparison of MKS and ADS The MKS and
ADS mechanisms, while functionally distinct, are
designed to be complementary, addressing differ-
ent facets of the training process. MKS serves as a
reactive safeguard for optimization stability, while
ADS acts as a proactive regulator of learning effi-
ciency by scheduling data based on reward signals.
An experiment on a 1,200-sample subset, summa-
rized in Table 8, validates this synergy. Initially,
298 samples were identified as “high-risk” and iso-
lated by MKS due to excessive KL divergence. As
the model’s policy improved on the ADS-curated
data stream, 266 (89%) of these were later success-
fully re-integrated into the training process. This
demonstrates that MKS implements an effective “postponed learning” strategy, preserving valuable
data until the model can learn from them without collapsing. Critically, the number of samples
transitioning from the ADS “learnable” pool into the MKS “high-risk” buffer was zero. This finding
underscores that the data stream curated by ADS is inherently stable, preemptively filtering out inputs
likely to cause instability.

5 CONCLUSION

This work addresses the systemic challenge of maintaining consistency across semantic, optimization,
and learning levels during the reinforcement learning of Large Vision-Language Models (LVLMs).
We identify that common failure modes like ineffective reasoning, exploration collapse, and inefficient
learning are manifestations of this underlying multi-level inconsistency. To tackle this, we introduce
TACO, a unified framework where three synergistic mechanisms—Think-Answer Consistency (TAC),
Memory-Guided KL Stabilization (MKS), and Adaptive Difficulty Sampling (ADS)—work in concert
to enforce semantic, optimization, and learning consistency, respectively. This integrated design
enables TACO to achieve state-of-the-art performance across 15 REC and VQA benchmarks while
demonstrating superior generalization on complex reasoning tasks where conventional methods
falter. The effectiveness of TACO underscores a fundamental insight: unlocking the full potential of
RL-based training for complex reasoning requires a holistic approach that ensures coherence across
all dimensions of the learning process.
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ETHICS STATEMENT

This research was conducted in alignment with the ICLR Code of Ethics. Our work is based ex-
clusively on publicly available datasets, all of which were used in a manner that respects their
intended use licenses and terms. These datasets include RefCOCO/+/g, RefGTA, LISA-Grounding,
the R1-Vision collection (from which we sampled MathQA, ChartQA, DeepForm, DocVQA, Info-
graphicsVQA, TextVQA, and OCRVQA), MMStar, AI2D, MATH-Vision-FULL, MMBench, and
the Long-Horizon Video VQA benchmark. The study did not involve human subjects or animal
experimentation, and no personally identifiable information was processed. We were conscious of
and took steps to prevent potential biases in our data handling and model evaluation processes. We
are committed to responsible research practices and transparency.

REPRODUCIBILITY STATEMENT

To ensure our results can be fully reproduced, we have included our source code with detailed
annotations in the appendix. Furthermore, we commit to open-sourcing the entire codebase and all
experimental configurations upon publication. The main paper provides a thorough account of our
experimental setup, including training procedures and model hyperparameters. All datasets used
for training and evaluation, such as RefCOCO/+/g, LISA-Grounding, MMBench, and MMStar, are
public benchmarks, which enables consistent and comparable evaluation.
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Minesh Mathew, Viraj Bagal, Rubèn Tito, Dimosthenis Karatzas, Ernest Valveny, and CV Jawahar.
Infographicvqa. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision, pp. 1697–1706, 2022.

SA McLeod. Zone of proximal development, 2012.

Fanqing Meng, Lingxiao Du, Zongkai Liu, Zhixiang Zhou, Quanfeng Lu, Daocheng Fu, Tiancheng
Han, Botian Shi, Wenhai Wang, Junjun He, Kaipeng Zhang, Ping Luo, Yu Qiao, Qiaosheng Zhang,
and Wenqi Shao. Mm-eureka: Exploring the frontiers of multimodal reasoning with rule-based
reinforcement learning, 2025.

OpenAI. Introducing openai o1-preview. Technical report, OpenAI, 2024. URL https://openai.
com/index/introducing-openai-o1-preview/. Accessed: 2025-05-03.

Shubham Parashar, Shurui Gui, Xiner Li, Hongyi Ling, Sushil Vemuri, Blake Olson, Eric Li,
Yu Zhang, James Caverlee, Dileep Kalathil, et al. Curriculum reinforcement learning from easy to
hard tasks improves llm reasoning. arXiv preprint arXiv:2506.06632, 2025.

11

https://openai.com/index/introducing-openai-o1-preview/
https://openai.com/index/introducing-openai-o1-preview/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yanyuan Qiao, Chaorui Deng, and Qi Wu. Referring expression comprehension: A survey of methods
and datasets. IEEE Transactions on Multimedia, 23:4426–4440, 2020.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In Francis Bach and David Blei (eds.), Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Proceedings of Machine Learning Research,
pp. 1889–1897, Lille, France, 07–09 Jul 2015. PMLR. URL https://proceedings.mlr.
press/v37/schulman15.html.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun
Zhang, Kangjia Zhao, Qianqian Zhang, et al. Vlm-r1: A stable and generalizable r1-style large
vision-language model. arXiv preprint arXiv:2504.07615, 2025.

Zhelun Shen, Zitian Chen, Yushi Liu, Meiqi Chen, Zongyi Liu, Runlian Shen, Leilei Sun, Haozhe
Zhao, Hengfei Wang, Yuxiang Wei, Junchi Yan, Hongyan Liu, Xiaodan Liang, Ming-Hsuan Yang,
and Anton van den Hengel. R1-onevision: A unified benchmark for vision-language reasoning
and generation, June 2024. URL https://arxiv.org/abs/2406.00443. Code and data
available at https://github.com/Fancy-MLLM/R1-Onevision.

Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh, and
Marcus Rohrbach. Towards vqa models that can read. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 8317–8326, 2019.

Yash Srivastava, Vaishnav Murali, Shiv Ram Dubey, and Snehasis Mukherjee. Visual question
answering using deep learning: A survey and performance analysis. In Computer Vision and Image
Processing: 5th International Conference, CVIP 2020, Prayagraj, India, December 4-6, 2020,
Revised Selected Papers, Part II 5, pp. 75–86. Springer, 2021.

Mikihiro Tanaka, Takayuki Itamochi, Kenichi Narioka, Ikuro Sato, Yoshitaka Ushiku, and Tat-
suya Harada. Generating easy-to-understand referring expressions for target identifications. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5794–5803, 2019.

OpenGVLab Team. Internvl2: Better than the best—expanding performance boundaries of open-
source multimodal models with the progressive scaling strategy, 2024.

Ke Wang, Junting Pan, Weikang Shi, Zimu Lu, Houxing Ren, Aojun Zhou, Mingjie Zhan, and
Hongsheng Li. Measuring multimodal mathematical reasoning with math-vision dataset. Advances
in Neural Information Processing Systems, 37:95095–95169, 2024.

Yaxian Wang, Henghui Ding, Shuting He, Xudong Jiang, Bifan Wei, and Jun Liu. Hierarchical
alignment-enhanced adaptive grounding network for generalized referring expression comprehen-
sion. arXiv preprint arXiv:2501.01416, 2025.

Wenyi Xiao, Ziwei Huang, Leilei Gan, Wanggui He, Haoyuan Li, Zhelun Yu, Fangxun Shu, Hao
Jiang, and Linchao Zhu. Detecting and mitigating hallucination in large vision language models
via fine-grained ai feedback. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 39, pp. 25543–25551, 2025.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard
Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption generation with visual
attention, 2016.

Yi Yang, Xiaoxuan He, Hongkun Pan, Xiyan Jiang, Yan Deng, Xingtao Yang, Haoyu Lu, Dacheng
Yin, Fengyun Rao, Minfeng Zhu, et al. R1-onevision: Advancing generalized multimodal reasoning
through cross-modal formalization. arXiv preprint arXiv:2503.10615, 2025.

12

https://proceedings.mlr.press/v37/schulman15.html
https://proceedings.mlr.press/v37/schulman15.html
https://arxiv.org/abs/2406.00443
https://github.com/Fancy-MLLM/R1-Onevision


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Licheng Yu, Patrick Poirson, Shan Yang, Alexander C Berg, and Tamara L Berg. Modeling context
in referring expressions. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam,
The Netherlands, October 11-14, 2016, Proceedings, Part II 14, pp. 69–85. Springer, 2016.

Hengguang Zhou, Xirui Li, Ruochen Wang, Minhao Cheng, Tianyi Zhou, and Cho-Jui Hsieh. R1-
zero’s” aha moment” in visual reasoning on a 2b non-sft model. arXiv preprint arXiv:2503.05132,
2025.

Yang Zhou, Haoru Chen, Xiaocheng Zhang, Mengjiao Bao, and Peng Yan. Llm-based iterative hard
example mining with boosting for academic question answering. In KDD 2024 OAG-Challenge
Cup, 2024.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A LLM USAGE

In preparing this manuscript, we utilized a Large Language Model (LLM) as a writing support tool.
Its application was strictly limited to stylistic improvements, such as enhancing sentence structure,
improving readability, and checking for grammatical correctness. All scientific contributions, includ-
ing the core concepts, experimental design, reinforcement learning methodology, and analysis of the
results, originate solely from the authors. The LLM had no role in generating any of the substantive,
scientific content of this paper. The authors take full and final responsibility for all information and
claims presented herein.

B ADDITIONAL EXPERIMENTAL RESULTS

Table 9: Performance comparison of SFT and RL on in-domain and out-of-domain evaluation datasets.
All results are from Qwen 2.5-VL-3B trained on the training split of Refcoco/+/g. Step 0 represents
the results from Qwen 2.5-VL-3B itself. ∆RL−SFT denotes the improved value of the RL model
compared to the SFT model. ∆RL−GRPO denotes the improved value of ours compared to GRPO.

Training Evaluation Training Steps
Method Dataset 0 200 400 600 800

SFT
Refcocoval

88.19 88.78 88.90 88.99 88.94
GRPO 88.19 89.72 89.79 90.19 90.28
Ours 88.19 90.55 91.10 91.28 91.40
SFT

RefcocotestA

91.51 92.13 92.20 91.97 92.13
GRPO 91.51 92.12 92.08 92.65 92.63
Ours 91.51 92.63 93.02 93.37 93.44
SFT

RefcocotestB

83.67 83.32 83.38 83.67 83.75
GRPO 83.67 84.55 85.48 85.06 85.36
Ours 83.67 86.24 86.42 86.93 87.09
SFT

Refcoco+val

81.08 82.15 81.93 82.01 82.01
GRPO 81.08 83.16 83.60 83.96 84.29
Ours 81.08 84.33 85.16 85.36 85.58
SFT

Refcoco+testA

87.37 88.56 88.32 88.25 88.09
GRPO 87.37 88.35 88.42 89.45 89.38
Ours 87.37 89.37 89.84 90.03 90.25
SFT

Refcoco+testB

73.43 74.08 73.68 73.31 73.74
GRPO 73.43 75.66 75.91 76.38 76.83
Ours 73.43 76.72 77.95 78.63 79.16
SFT

Refcocogval

84.56 85.05 84.72 84.33 84.48
GRPO 84.56 85.27 85.64 86.32 86.17
Ours 84.56 86.30 87.01 87.40 87.62
SFT

Refcocogtest

85.02 84.98 84.87 84.84 84.87
GRPO 85.02 85.44 86.08 86.43 86.74
Ours 85.02 86.83 87.60 87.40 87.77

SFT

LISA-Grounding

55.37 56.15 54.95 54.16 54.83
GRPO 55.37 61.76 62.00 60.68 61.10
Ours 55.37 61.94 63.69 63.26 65.50

∆Ours−SFT 0 +5.70 +8.70 +9.10 +10.70
∆Ours−GRPO 0 +0.10 +1.70 +2.60 +4.40
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Figure 4: Prompt templates for REC, VQA, and VQA consistency judgment, illustrating specific
instructions for thought process elicitation, JSON answer formatting, and semantic consistency
evaluation.
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Figure 5: In-domain case studies from RefCOCO/+/g test splits, comparing GRPO with our method.
Both models use Qwen 2.5-VL-3B and were trained on RefCOCO/+/g. Bounding boxes: GT (orange),
GRPO (red), Our Method (green).
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Figure 6: Qualitative examples of visual grounding on LISA dataset. TACO (green), GRPO (purple),
ground truth (white).
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Figure 7: Qualitative examples of visual grounding on LISA dataset. TACO (green), GRPO (purple),
ground truth (white).

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 8: Qualitative examples of visual grounding on LISA dataset. TACO (green), GRPO (purple),
ground truth (white).
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Figure 9: Qualitative examples of visual grounding on RefGTA dataset. TACO (green), GRPO
(purple), ground truth (white).
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Figure 10: Qualitative examples of visual grounding on RefGTA dataset. TACO (green), GRPO
(purple), ground truth (white).
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Figure 11: Qualitative examples of visual grounding on RefGTA dataset. TACO (green), GRPO
(purple), ground truth (white).
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Figure 12: Case studies on the VQA training dataset and tests on statistical reasoning tasks were
conducted. We compare the response generated by our method and Qwen 2.5-VL-3B base model.
The response given by the base model is incorrect, while our method (TACO) is correct.
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Figure 13: Case studies on VQA training dataset and tests on mathematical tasks were conducted.
We compare the responses generated by our method and Qwen 2.5-VL-3B base model. The response
given by the base model is incorrect, while our method (TACO) is correct.
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Figure 14: Case studies on VQA training dataset and tests on Chart-Q&A tasks were conducted. We
compare the responses generated by our method and Qwen 2.5-VL-3B base model. The base model
lacks the thoroughness and logical rigor of our method(TACO).
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