
Learning Feasibility from Failure Data in
Vision–Language–Action Models

Jeongeun Park1, Jihwan Yoon1, Byungwoo Jeon2, Juhan Park1,
Namhoon Cho3, Kyungjae Lee1, Sangdoo Yun4, Sungjoon Choi1

1 Korea University, 2 Korea Advanced Institute of Science & Technology,
3 Seoul National University, 4 Naver AI Lab

Failure TrajectorySuccess Data

Success Data

Failure Data

VINE

VLA

Feasibility Aware�
Tree-of-Thoughts Planning

Successful Trajectory

Task: Put white and gray charger in plug

Failure Aware�
Finetune

Figure 1: Standard VLAs trained only on success data may produce infeasible trajectories. VINE
leverages both success and failure trajectories with a feasibility-aware Tree-of-Thoughts planner,
yielding more reliable executions.

Abstract: In this paper, we study how to improve the robustness of Vi-
sion–Language–Action (VLA) models by leveraging failure data. Existing VLAs
are often trained on successful demonstrations and make limited use of failures,
which can yield trajectories that appear plausible yet execute unreliably under
variations. We introduce VINE, a dual–system framework in which a Tree-of-
Thoughts planner (System2) is finetuned with both success and failure trajectories
to estimate reasoning-level feasibility, while a visuomotor controller (System1)
executes subgoal actions. Experiments on plug insertion show that incorporating
failure-aware value learning improves success rates, especially in unseen settings,
surpassing unified VLA baselines and few-shot VLM planners. Our results high-
light failure data as an essential yet underutilized resource for enhancing safety
and robustness in embodied reasoning.

Keywords: Vision-Language Action Model, Failure Data, Reasoning

1 Introduction

Vision–Language–Action (VLA) models [1, 2, 3, 4, 5] map language and vision to robot actions,
offering a unified route from instruction following to control. To enhance the representation of
this mapping, recent work integrates chain-of-thought (CoT) prompting [6], exposing intermediate
descriptions—scene attributes, spatial relations, and candidate subgoals—before low-level execu-
tion [7, 8, 9, 10]. One of the remaining challenges is reliability: we need a robust agent that favors

Workshop on Safe and Robust Robot Learning for Operation in the Real World at CoRL 2025.

trajectories that remain stable under variation and avoids paths prone to failure. This motivates
failure-aware reasoning: we encourage to use of evidence from both successes and failures to bias
selection toward robust plans and away from paths that are prone to fail.

A crucial but often overlooked element in training VLAs is the use of failure data [11, 12, 13].
Robot datasets, especially those collected through human teleoperation, naturally include a substan-
tial number of failed attempts, such as unstable grasps, collisions, or incomplete trajectories. These
are typically discarded as noise, yet they carry essential information about infeasible transitions and
unsafe behaviors. Incorporating failures during training allows models to distinguish between suc-
cessful and unsuccessful strategies, improving both generalization and robustness. By learning not
only from what works but also from what fails, agents can better anticipate risky outcomes and avoid
repeating unsafe patterns at deployment.

The open question is how to inject this failure signal into the reasoning loop. We address this
by interpreting CoT for embodiment as a chain of language-described state transitions (state →
next-state). In this view, each thought is a hypothesis about how the scene will change if a subgoal
is attempted. Failure examples provide counterevidence: they mark transitions that tend to produce
collisions, unstable contacts, or unrecoverable poses. Training with both successes and failures
calibrates the model’s confidence over these hypothesized transitions, discouraging steps that are
linguistically plausible yet physically unlikely. Consequently, the chain privileges transitions that
are both interpretable in language and empirically likely to succeed.

To this end, we introduce VINE, Vision-language-action with INtegrated failure-aware rEasoning.
Our goal is not to design a new backbone; we focus on finetuning existing VLA models to endow
them with failure-aware reasoning. We adopt a dual-system design: System 1 predicts executable
action chunks, while System 2 builds and evaluates a tree of thought states. Unlike prior work that
relies only on successful trajectories, System 2 is finetuned with both success and failure data to
score candidate subgoals and enforce planning-level feasibility.

Our contributions are twofold. First, we introduce a dual-system framework in which System 2 uses
both success and failure data to enforce planning-level safety while System 1 executes grounded
actions. Third, we empirically demonstrate that incorporating failure-aware reasoning significantly
improves robustness and success rates on challenging manipulation tasks. Together, these results
highlight the importance of failure data as a unique and underutilized resource for enhancing the
reasoning capabilities of VLAs.

2 Related Work

Vision Language Action Models (VLA) Vision–Language–Action (VLA) models unify percep-
tion, language, and action through end-to-end learning [14, 15, 4, 16, 17, 18]. Recent advances in-
clude OpenVLA [5, 19] for scalable cross-embodiment training, π0 and π0.5[3, 2] with PaliGemma
backbones for continuous actions, and GR00T[1], DexVLA [20], and RDT–1B for dual-system,
diffusion, and large-scale designs. Yet, these models largely omit explicit reasoning to anticipate
failures or verify feasibility, motivating reasoning-augmented VLAs.

Reasoning in VLA Recent work augments VLAs with explicit reasoning to boost generaliza-
tion and interpretability: ECoT introduces multimodal textual traces and ECoT-Lite preserves most
gains with lower supervision [7, 8]. Other modalities include image-based subgoal prediction (CoT-
VLA) and structured affordance chains (CoA-VLA) [9, 10], alongside tighter plan–act coupling or
latent-plan reinforcement (OneTwoVLA, ThinkAct, MolmoAct) and hierarchical control (Hi-Robot)
[21, 22, 23, 24]. Despite these gains, most methods remain success-driven and underuse failure tra-
jectories; we instead exploit failure-aware reasoning to calibrate value and improve robustness.

Tree of Thoughts While CoT-based VLAs organize reasoning as a linear sequence of subgoals,
Tree-of-Thoughts (ToT) [25] casts it as searches over branching thought states. In practice, ToT
commonly leverages MCTS [26, 27, 28, 29], with nodes as partial reasoning states and rollouts

2

estimating success. Recent work emphasizes value guidance—e.g., Liu et al. [30] shows that the
PPO-trained value model should guide decoding via MCTS (PPO-MCTS) to avoid prematurely
pruning useful candidates. For embodied agents, ToT enables evaluating alternative futures and
selecting safer actions, but it hinges on well-calibrated value estimates that success-only data cannot
provide. Failure trajectories supply essential negative evidence to separate feasible from infeasible
branches, making them critical for value learning.

3 Problem Formulation & Dataset

Objective. Given an imitation dataset D = (st, at, rt) consisting of multimodal states st (images
and proprioception), low–level actions at, and sparse rewards rt ∈ 0, 1 indicating whether the
trajectory reached a success set, our objective is to learn a policy πθ that maximizes the probability
of generating successful trajectories. Unlike conventional imitation learning, which often conditions
only on successful rollouts, we leverage both successful and failed trajectories to learn value–aware
reasoning that discriminates feasible subgoal sequences from those prone to failure.

For reasoning, we introduce an abstraction function ϕ : s 7→ n that maps concrete states s to
high–level nodes n (e.g., scene–graph snapshots or key images). Directed edges (ni, nj) represent
hypothesized subgoal transitions between abstract states. A candidate plan is thus a path z0:K =
(n0, e0, n1, . . . , nK) through this graph, starting from n0 = ϕ(s0) and ending at a terminal node nK .
We also define the reasoning–level feasibility of a path via the success–before–failure probability
with success/fail set G,F

Fail(z0:K) = Pr
(
terminate in F

∣∣ z0:K , ℓ
)
, Succ(z0:K) = 1− Fail(z0:K).

With the entrance-reward r(s, a, s′) = I{s′ ∈ G}, the undiscounted return equals the success indi-
cator, hence

Succ(z0:K) = Pr
(
terminate in G

∣∣ π) = Eπ

[∑
t≥0

rt

]
i.e., Succ is the value of the policy that follows z0:K .

Dataset. Our dataset is composed of human–demonstrated trajectories with both successful and
failed outcomes. Each trajectory in D includes: (i) raw streams (s0:T , a0:T−1, ℓ) and terminal r;
(ii) a subgoal segmentation {[tk, tk+1)}K−1

k=0 derived by a temporal heuristic based on gripper open
and close commands; (iii) Node–edge annotations. Each node is a 2D scene graph extracted at
subgoal boundary tk comprising: (a) the gripper’s image–plane position (projection of the measured
3D pose), (b) object bounding boxes proposed by GroundingDINO [31] and named/refined by the
multimodal LLM Gemini-2.5-flash [32], and (c) pairwise spatial relations between entities. Directed
edges connect consecutive subgoals k→k+1 (e.g., grasp-x/insert-x).

4 Proposed Method

We implement reasoning-level feasibility with a dual-system agent: System 2 (Reasoning and
Planning) explores the thought graph, proposes candidate reasoning paths, estimates their success
probabilities, and selects the most reasoning-safe plan; System 1 (Action Modeling) then executes
the next subgoal from the chosen plan with low-level actions

4.1 Architecture

Our agent has two coupled systems. System 2 operates on a thought graph T = (N , E) to propose
and score abstract plans (thought paths). System 1 is a visuomotor controller that executes the
selected subgoal chunk from the current node. Each planning cycle (i) builds a tree over T , (ii)
selects a leaf by success probability, then (iii) executes one subgoal and updates the current one with
the observation. To satisfy real-time requirements, the tree is constructed before execution.

3

=

Initial Image Task

“Insert gray and
white charger in

plug”

Value v2Edge e1 Node n2

Imaginary Roll-out �
Tree with values

Insert gray charger

Insert white charger

Insert white charger

Insert gray charger

Initial State

System 1 (Execution)

Current image

Done
signal

Action�
(Joint Trajectory)

<eoe>
Proprio.�
State Noise

Chosen path

Lower value as
infeasibility

V: 1.0

V: 0.3

System 2 (Planning)

 Edge �
 Insert gray charger

e1
Task

Node �
scene graph

n2

Done
Expert

Action Expert

Vision
Tower

Vision
Tower

Score HeadLM Head

Reasoning Adapter Action Adapter
Language Block

Figure 2: Overall pipeline. System 2 plans via tree-of-thoughts, predicting success values to select
the highest-value path (green). System 1 executes the chosen subgoal as action chunks with a done
signal. Both share a vision–language backbone with adapters.

We build on π0 [3] as a multimodal backbone that encodes (o, ℓ, a) into a unified token sequence. Be-
cause π0 targets action generation rather than text, we merge its shared layers with a PaliGemma [33]
language–vision trunk, yielding strong text generation for thought steps while preserving π0’s ac-
tion priors. Both systems add LoRA [34] adapters to this shared backbone. System 1 feeds adapted
features to (i) an action expert for low-level motor chunks and (ii) a done expert that detects subgoal
completion. System 2 uses (i) a language-modeling head to autoregress node/edge text and (ii) a
scalar value head to predict leaf success. This shares perception–language representations while
keeping reasoning and control decoupled.

4.2 System 2

System 2 instantiates Tree-of-Thoughts (ToT) with three components: (1) discrete thought steps
(nodes/edges), (2) candidate generation for nodes and edges, and (3) leaf evaluation by a value
function estimating success probability. Reasoning-level safety emerges by selecting the leaf with
the highest estimated probability of eventual success, avoiding risks of failure.

Thought steps. Reasoning steps k are distinct from execution time t. Let tk be the control time
when the k-th thought is formed. The node nk is the grounded scene graph extracted from (ℓ, otk),
encoding gripper 2d poses, object 2d poses, and relations. The edge ek is a verifiable subgoal.
including ⟨done⟩), proposing transition.

Candidate generation. We model next-node and next-edge proposals with a conditional language
model (decision model P dec

θ) that scores tokens autoregressively.

pθ(nk+1 | z0:k, ℓ, o0) =
Nc∏
j=1

P dec
θ (wj | w<j , z0:k, ℓ, o0) , (1)

pθ(ek+1 | nk+1, z0:k, ℓ, o0) =

Ne∏
j=1

P dec
θ (uj | u<j , nk+1, z0:k, ℓ, o0) . (2)

We train with a standard LM objective over demonstrations D containing reasoning traces:

LLM = −E(nk,ek,z0:k−1,ℓ,o0)∼D [log pθ(nk | z0:k−1, ℓ, o0) + log pθ(ek | nk, z0:k−1, ℓ, o0)] . (3)

4

Node evaluation. We denote the reasoning state at thought step k as

xk = (nk, z0:k−1),

the current node together with the reasoning history z0:k−1 = [n0, e0, . . . , nk−1]. Each chunk ek
terminates in either the success symbol G, the failure symbol F, or a continuation state (nk+1, z0:k) ∈
N × Z . Thus the node reward is R̄k = 1{xk+1 = G}, where G is a goal state. The value head Vθ is
trained to predict the expected thought step reward, i.e. the probability that the next reasoning state
ends in success:

Vθ(nk, z0:k−1) ≈ E[R̄k | nk, ek, z0:k−1] = Pr(xk+1 = G | (nk, z0:k−1), ek).

We train Vθ with first-exit bootstrapping: for each transition (nk, ek, nk+1, rk+1),

yk =


1, if the path succeeds and ek = ⟨done⟩,
0, if the path fails at k+1,

γ Vθ′(nk+1, z0:k), otherwise,

(4)

with γ=0.9 and a target network θ′ updated by EMA. The loss is

Lval = E
[(
Vθ(nk, z0:k−1)− yk

)2]
.

In inference, Vθ is evaluated only at leaf nodes, and the planner selects the leaf with maximal value,
i.e., the thought path most likely to succeed.

Search Algorithm We leverage the MCTS [35] style algorithm to generate the tree. Track visit
counts N , cumulative returns W , and means Q = W/max(1, N). The decision model proposes K
edges per node; we min–max normalize to priors P̃ (e | n, z). Rank edges by a convex blend

s(n, e) = αQ(n) + (1− α) P̃ (e | n, z<n).

Per iteration: pick the top-M leaves by Q; from each, expand the top-B edges by s, create successors
n′, evaluate leaves only with v = Vθ(n

′, z0:t) ∈ [0, 1], and backpropagate N←N+1, W←W+v,
Q←W/N . Terminate on budget and return the plan to

n̂ = arg max
n∈Le

Vθ(n, z≺n), ẑ = path(n0 ⇝ n̂).

Since we evaluate leaves only, maximizing Vθ at the leaf directly optimizes the estimated success
probability.

4.3 System 1

Given observations ot, instruction ℓ, current edge ek and successor node nk+1, System 1 outputs an
action chunk At∈RH×da and a termination probability for <eoe>, end-of-edge. We train System 1
on success data. Both the action and done experts read from the shared backbone, but no cross-
attention or feature exchange between the two experts.

System 1 uses an action expert vθ trained via conditional flow matching: with Gaussian path Aτ
t =

α(τ)At + σ(τ)ϵ,
Lτ = Eτ,ϵ

∥∥vθ(A
τ
t , ot, ℓ, ek, nk+1)− u(Aτ

t | At)
∥∥2
2
.

A done expert predicts subgoal termination pdone
θ (<eoe> | ek, nk+1, ot, ℓ) with focal loss

Lfocal = −αd (1− pdone
θ)γd log pdone

θ .

The joint objective is
LS1 = λflowEτ [Lτ] + λeoeLfocal.

At inference, initialize A0
t ∼N (0, σ2

0I) and integrate Aτ+δ
t = Aτ

t + δ vθ(A
τ
t , ot, ℓ, ek, nk+1) for

τ ∈ {0, δ, . . . , 1− δ} to obtain Ât; the done head then emits <eoe> or continues the current edge.

5

Unseen Environment

Unseen Placement Unseen Color Unseen Shape

Data Collection

Leader
Arm

Seen Environment

Assets

Seen Unseen

Figure 3: Plug insertion environments and data collection. We evaluate in both seen and un-
seen settings (placement, color, shape) with corresponding assets, and collect demonstrations via
a leader–follower teleoperation setup.

5 Experiments

We evaluate VINE on the manipulation task, plug insertion under seen/unseen splits, reporting
Success Rate (SR). Our study tests the following hypotheses:

H1 (Reasoning-level feasibility). A learned, failure-aware value in System 2, coupled with tree
search, improves robustness on unseen settings versus unified VLAs and prompted VLM planners.

H2 (Role of failure data). Training System 2 with both success and failure trajectories yields
higher SR than (i) success-only training and (ii) few-shot failure prompting in VLMs, indicating
that explicit value learning provides stronger generalization than textual patterning.

5.1 Environment Setup & Baselines

Environment. The environment is built upon a MuJoCo simulator. Plug insertion (seen: 9 configs)
combines three table placements with 2- or 3-socket strips and orientation variants; unseen splits
introduce novel charger placement, unseen strip color, and unseen charger shape. The strip collision
margin is slightly relaxed to reduce teleop burden. Control runs at 20 Hz with joint-position actions.

Data collection. We gather human teleoperation trajectories via a leader–follower setup (Fig. 3).
Plug insertion consists of 450 demonstrations collected over predefined insertion orders (six paths
for 3-socket and two for 2-socket), balanced per path. Each trajectory is labeled as success or fail-
ure, with outcomes naturally stochastic: for instance, PlugStrip-3 Fail dominates (38.9%, 175/450),
followed by PlugStrip-2 Success (30.4%, 137), PlugStrip-3 Success (21.1%, 95), and PlugStrip-2
Fail (9.6%, 43). This yields a multi-modal, diverse dataset where success rates vary across insertion
orders, reflecting realistic execution variability.

Baselines To assess our two-system framework, we compare against three groups: (i) unified VLA
models, (ii) VLM-as-planner baselines that replace System2 while keeping System1 fixed, and (iii)
our System 2 variants (Chain/Tree/Full) to isolate branching and failure-conditioned value. Since
our environment operates at 20Hz in a joint-position action representation, we select baselines that
can be executed under this control frequency and action format.

• Unified VLA models. OpenVLA-OFT [19], GR00T N1.5 [1], and π0 [3], plus a reward-
conditioned π0 variant using failure data [36].

• VLM-as-System 2. Replace our planner with SOTA VLMs (e.g., GPT-4o [37], Gemini-
2.5-Flash [32]) using few-shot prompting to propose subgoals/next scene graphs, with and
without failure examples; System 1 (our action executor) is fixed.

6

Table 1: Results. Success Rates on Plug Insertion.

Models Failure Data Plug Insertion
Seen Unseen Average

Unified Model
OpenVLA-OFT [19] × 0.244 0.044 0.144
GR00T N1.5 [1] × 0.422 0.244 0.333
π0 [3] × 0.689 0.267 0.477
π0 [3] + Reward Cond. [36] ✓ 0.489 0.111 0.300

SOTA VLM as System2
GPT-4o [37] × 0.733 0.311 0.522
GPT-4o [37] ✓ 0.711 0.333 0.488
Gemini-2.5-Flash [32] × 0.756 0.200 0.522
Gemini-2.5-Flash [32] ✓ 0.711 0.289 0.500

Role of failure data in Our System2
VINE-Chain × 0.733 0.244 0.488
VINE-Tree × 0.711 0.289 0.500
VINE-Full (Ours) ✓ 0.800 0.422 0.611

• Our System 2 variants. VINE-Chain (no branching without failure data), VINE-Tree
(tree search without failure data, scoring with confidence), and VINE-Full (tree search +
failure-conditioned value).

5.2 Results

H1. Reasoning-level feasibility vs. baselines. VINE -Full delivers the strongest unseen robust-
ness and the highest averages on plug (Table 1). On plug–unseen, VINE outperforms the best VLM
planner with failure prompts, GPT-4o [37] by +0.089 (+26.7% rel.), and π0 by +0.155 (+58.1%
rel.). On plug–avg, VINE attains 0.611 vs. the best non-ours 0.522 (+0.089, +17.1% rel.). No-
tably, unified VLAs overfit to seen settings (e.g., π0: 0.689→0.267 on plug). Reward-conditioning
π0 hurts plug performance (seen −0.20, unseen −0.156), suggesting that injecting failure via scalar
rewards at the state level does not impart the global, plan-level risk signals needed for generalization.

H2. Value from failure data. Failure-conditioned training of the value head is pivotal. VINE im-
proves plug–unseen from 0.244 (Chain) / 0.289 (Tree) to 0.422 and plug–avg from 0.488/0.500
to 0.611. Negative demonstrations calibrate the value and prune unsafe paths. By contrast,
confidence-only signals (LM likelihoods or success-only value) are often miscalibrated and over-
fit to seen/language regularities, yielding overconfident yet unsafe plans (plug–unseen stays at
0.244/0.289 for Chain/Tree). Few-shot failure prompting helps (plug 0.311→0.333, Gemini-2.5-
flash [32] 0.200→0.289) but still trails learned failure-aware value. We attribute this to VLM plan-
ners relying on language-only cues rather than dynamics-grounded supervision, producing linguisti-
cally plausible yet physically infeasible subgoals. Hence, a learned, failure-aware value is necessary
to reliably prune unsafe branches and achieve higher robustness under shift.

5.3 Ablation Studies

Table 2: Ablation on weight merging be-
tween PaliGemma and π0.

λ Seen SR. Unseen SR. Avg. SR.

0.5 0.756 0.356 0.555
0.6 0.800 0.422 0.611
0.7 0.733 0.289 0.511
0.8 0.422 0.244 0.333

We ablate backbone weight merging between
PaliGemma [33] and the π0 [3] trunk. Specifically,
we linearly interpolate the shared layers,

θmerge
g (λm) = λm θπ0

g + (1− λm) θPG
g ,

while keeping non-overlapping heads separate and
training LoRA on top.

Table 2 shows the effect of varying interpolation
weight λ. Performance peaks near λm=0.6 (Avg. 0.611, Unseen 0.422). Larger λm (0.7–0.8)
overweights π0, hurting generalization, while smaller λm (0.5) overweights PaliGemma, weaken-

7

(a) Seen Environment

(b) Unseen Environment - Color

System 1 Execution

System 2 Tree

Execution

System 2 Tree

Figure 4: Qualitative results in seen and unseen environments. System2 builds a failure-aware plan-
ning tree with feasibility scores, and System1 executes the selected subgoals, producing successful
trajectories.

ing low-level action modeling. This balance highlights the need to align linguistic plausibility with
feasibility. The qualitative results with trajectories and trees are demonstrated in Figure 4.

5.4 Limitations

Subgoal-level planning without mid-chunk correction or anytime updates allows disturbances be-
tween replans; failure-prompted VLM planners narrow our margin, and because System 1 is trained
only on successes it struggles to recover from low-level mistakes. In addition, representing states
as an abstract 2d scene graph may not be enough to fully capture the dynamics, leading to the re-
quirements of more precise world models. Anytime replanning, failure-aware action learning (e.g.,
offline RL), and distillation/caching to cut runtime would improve calibration and speed.

6 Conclusion

We introduced VINE, a dual–system VLA for reasoning-level feasibility that pairs a fast visuo-
motor controller (System 1) with a failure-aware Tree-of-Thoughts planner (System 2). System 2
learns a calibrated success value from successful and failed trajectories and uses MCTS to select
plans; System 1 executes the chosen subgoal via action chunks. VINE consistently improves ro-
bustness over unified VLA baselines and matches or exceeds prompted SOTA VLM planners, with
the largest gains in unseen environments. By modeling failure at the level of plans rather than indi-
vidual actions, VINE aims to improve robustness and auditability while reducing unsafe executions
and hardware wear. Remaining risks include value miscalibration under shift, motivating calibration
checks, human oversight, and runtime safety monitors in safety-critical settings.

8

References
[1] J. Bjorck, F. Castañeda, N. Cherniadev, X. Da, R. Ding, L. Fan, Y. Fang, D. Fox, F. Hu,

S. Huang, et al. Gr00t n1: An open foundation model for generalist humanoid robots. arXiv
preprint arXiv:2503.14734, 2025. 1, 2, 6, 7

[2] P. Intelligence, K. Black, N. Brown, J. Darpinian, K. Dhabalia, D. Driess, A. Esmail, M. Equi,
C. Finn, N. Fusai, M. Y. Galliker, D. Ghosh, L. Groom, K. Hausman, B. Ichter, S. Jakubczak,
T. Jones, L. Ke, D. LeBlanc, S. Levine, A. Li-Bell, M. Mothukuri, S. Nair, K. Pertsch, A. Z.
Ren, L. X. Shi, L. Smith, J. T. Springenberg, K. Stachowicz, J. Tanner, Q. Vuong, H. Walke,
A. Walling, H. Wang, L. Yu, and U. Zhilinsky. π0.5: a vision-language-action model with
open-world generalization, 2025. URL https://arxiv.org/abs/2504.16054. 1, 2

[3] K. Black, N. Brown, D. Driess, A. Esmail, M. Equi, C. Finn, N. Fusai, L. Groom, K. Hausman,
B. Ichter, et al. π0: A vision-language-action flow model for general robot control. arXiv
preprint arXiv:2410.24164, 2024. 1, 2, 4, 6, 7

[4] O. X.-E. Collaboration, A. O’Neill, A. Rehman, A. Gupta, A. Maddukuri, A. Gupta,
A. Padalkar, A. Lee, A. Pooley, A. Gupta, A. Mandlekar, A. Jain, A. Tung, A. Bewley, A. Her-
zog, A. Irpan, A. Khazatsky, A. Rai, A. Gupta, A. Wang, A. Kolobov, A. Singh, A. Garg,
A. Kembhavi, A. Xie, A. Brohan, A. Raffin, A. Sharma, A. Yavary, A. Jain, A. Balakr-
ishna, A. Wahid, B. Burgess-Limerick, B. Kim, B. Schölkopf, B. Wulfe, B. Ichter, C. Lu,
C. Xu, C. Le, C. Finn, C. Wang, C. Xu, C. Chi, C. Huang, C. Chan, C. Agia, C. Pan, C. Fu,
C. Devin, D. Xu, D. Morton, D. Driess, D. Chen, D. Pathak, D. Shah, D. Büchler, D. Ja-
yaraman, D. Kalashnikov, D. Sadigh, E. Johns, E. Foster, F. Liu, F. Ceola, F. Xia, F. Zhao,
F. V. Frujeri, F. Stulp, G. Zhou, G. S. Sukhatme, G. Salhotra, G. Yan, G. Feng, G. Schiavi,
G. Berseth, G. Kahn, G. Yang, G. Wang, H. Su, H.-S. Fang, H. Shi, H. Bao, H. B. Amor,
H. I. Christensen, H. Furuta, H. Bharadhwaj, H. Walke, H. Fang, H. Ha, I. Mordatch, I. Ra-
dosavovic, I. Leal, J. Liang, J. Abou-Chakra, J. Kim, J. Drake, J. Peters, J. Schneider, J. Hsu,
J. Vakil, J. Bohg, J. Bingham, J. Wu, J. Gao, J. Hu, J. Wu, J. Wu, J. Sun, J. Luo, J. Gu,
J. Tan, J. Oh, J. Wu, J. Lu, J. Yang, J. Malik, J. Silvério, J. Hejna, J. Booher, J. Tompson,
J. Yang, J. Salvador, J. J. Lim, J. Han, K. Wang, K. Rao, K. Pertsch, K. Hausman, K. Go,
K. Gopalakrishnan, K. Goldberg, K. Byrne, K. Oslund, K. Kawaharazuka, K. Black, K. Lin,
K. Zhang, K. Ehsani, K. Lekkala, K. Ellis, K. Rana, K. Srinivasan, K. Fang, K. P. Singh, K.-H.
Zeng, K. Hatch, K. Hsu, L. Itti, L. Y. Chen, L. Pinto, L. Fei-Fei, L. Tan, L. J. Fan, L. Ott,
L. Lee, L. Weihs, M. Chen, M. Lepert, M. Memmel, M. Tomizuka, M. Itkina, M. G. Castro,
M. Spero, M. Du, M. Ahn, M. C. Yip, M. Zhang, M. Ding, M. Heo, M. K. Srirama, M. Sharma,
M. J. Kim, M. Z. Irshad, N. Kanazawa, N. Hansen, N. Heess, N. J. Joshi, N. Suenderhauf,
N. Liu, N. D. Palo, N. M. M. Shafiullah, O. Mees, O. Kroemer, O. Bastani, P. R. Sanketi, P. T.
Miller, P. Yin, P. Wohlhart, P. Xu, P. D. Fagan, P. Mitrano, P. Sermanet, P. Abbeel, P. Sun-
daresan, Q. Chen, Q. Vuong, R. Rafailov, R. Tian, R. Doshi, R. Mart’in-Mart’in, R. Baijal,
R. Scalise, R. Hendrix, R. Lin, R. Qian, R. Zhang, R. Mendonca, R. Shah, R. Hoque, R. Ju-
lian, S. Bustamante, S. Kirmani, S. Levine, S. Lin, S. Moore, S. Bahl, S. Dass, S. Sonawani,
S. Tulsiani, S. Song, S. Xu, S. Haldar, S. Karamcheti, S. Adebola, S. Guist, S. Nasiriany,
S. Schaal, S. Welker, S. Tian, S. Ramamoorthy, S. Dasari, S. Belkhale, S. Park, S. Nair, S. Mir-
chandani, T. Osa, T. Gupta, T. Harada, T. Matsushima, T. Xiao, T. Kollar, T. Yu, T. Ding,
T. Davchev, T. Z. Zhao, T. Armstrong, T. Darrell, T. Chung, V. Jain, V. Kumar, V. Vanhoucke,
V. Guizilini, W. Zhan, W. Zhou, W. Burgard, X. Chen, X. Chen, X. Wang, X. Zhu, X. Geng,
X. Liu, X. Liangwei, X. Li, Y. Pang, Y. Lu, Y. J. Ma, Y. Kim, Y. Chebotar, Y. Zhou, Y. Zhu,
Y. Wu, Y. Xu, Y. Wang, Y. Bisk, Y. Dou, Y. Cho, Y. Lee, Y. Cui, Y. Cao, Y.-H. Wu, Y. Tang,
Y. Zhu, Y. Zhang, Y. Jiang, Y. Li, Y. Li, Y. Iwasawa, Y. Matsuo, Z. Ma, Z. Xu, Z. J. Cui,
Z. Zhang, Z. Fu, and Z. Lin. Open X-Embodiment: Robotic learning datasets and RT-X mod-
els. https://arxiv.org/abs/2310.08864, 2023. 1, 2

[5] M. J. Kim, K. Pertsch, S. Karamcheti, T. Xiao, A. Balakrishna, S. Nair, R. Rafailov, E. P.
Foster, P. R. Sanketi, Q. Vuong, T. Kollar, B. Burchfiel, R. Tedrake, D. Sadigh, S. Levine,

9

https://arxiv.org/abs/2504.16054
https://arxiv.org/abs/2310.08864

P. Liang, and C. Finn. OpenVLA: An open-source vision-language-action model. In Proc. of
the 8th Annual Conference on Robot Learning (CoRL), 2024. URL https://openreview.

net/forum?id=ZMnD6QZAE6. 1, 2

[6] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou, et al. Chain-of-
thought prompting elicits reasoning in large language models. Advances in neural information
processing systems, 35:24824–24837, 2022. 1

[7] M. Zawalski, W. Chen, K. Pertsch, O. Mees, C. Finn, and S. Levine. Robotic control via em-
bodied chain-of-thought reasoning. In Proc. of the 8th Annual Conference on Robot Learning
(CoRL), 2024. URL https://openreview.net/forum?id=S70MgnIA0v. 1, 2

[8] W. Chen, S. Belkhale, S. Mirchandani, O. Mees, D. Driess, K. Pertsch, and S. Levine. Training
strategies for efficient embodied reasoning. arXiv preprint arXiv:2505.08243, 2025. 1, 2

[9] Q. Zhao, Y. Lu, M. J. Kim, Z. Fu, Z. Zhang, Y. Wu, Z. Li, Q. Ma, S. Han, C. Finn, et al.
Cot-vla: Visual chain-of-thought reasoning for vision-language-action models. In Proc. of the
Computer Vision and Pattern Recognition Conference (CVPR), pages 1702–1713, 2025. 1, 2

[10] J. Li, Y. Zhu, Z. Tang, J. Wen, M. Zhu, X. Liu, C. Li, R. Cheng, Y. Peng, and F. Feng. Improv-
ing vision-language-action models via chain-of-affordance. arXiv preprint arXiv:2412.20451,
2024. 1, 2

[11] Z. Liu, A. Bahety, and S. Song. REFLECT: Summarizing robot experiences for failure expla-
nation and correction. In Proc. of the 7th Annual Conference on Robot Learning, 2023. URL
https://openreview.net/forum?id=8yTS_nAILxt. 2

[12] M. Diehl and K. Ramirez-Amaro. Why did i fail? a causal-based method to find explanations
for robot failures. IEEE Robotics and Automation Letters, 7(4):8925–8932, 2022. 2

[13] S. Choi, K. Lee, and S. Oh. Robust learning from demonstrations with mixed qualities using
leveraged gaussian processes. IEEE Transactions on Robotics, 35(3):564–576, 2019. doi:
10.1109/TRO.2019.2891173. 2

[14] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Haus-
man, A. Herzog, J. Hsu, et al. Rt-1: Robotics transformer for real-world control at scale. In
Proc. of the Robotics: Science and System (RSS), 2023. 2

[15] B. Zitkovich, T. Yu, S. Xu, P. Xu, T. Xiao, F. Xia, J. Wu, P. Wohlhart, S. Welker, A. Wahid,
Q. Vuong, V. Vanhoucke, H. Tran, R. Soricut, A. Singh, J. Singh, P. Sermanet, P. R. Sanketi,
G. Salazar, M. S. Ryoo, K. Reymann, K. Rao, K. Pertsch, I. Mordatch, H. Michalewski, Y. Lu,
S. Levine, L. Lee, T.-W. E. Lee, I. Leal, Y. Kuang, D. Kalashnikov, R. Julian, N. J. Joshi,
A. Irpan, B. Ichter, J. Hsu, A. Herzog, K. Hausman, K. Gopalakrishnan, C. Fu, P. Florence,
C. Finn, K. A. Dubey, D. Driess, T. Ding, K. M. Choromanski, X. Chen, Y. Chebotar, J. Car-
bajal, N. Brown, A. Brohan, M. G. Arenas, and K. Han. Rt-2: Vision-language-action models
transfer web knowledge to robotic control. In Proc. of The 7th Conference on Robot Learning
(CoRL), pages 2165–2183, 2023. 2

[16] Octo Model Team, D. Ghosh, H. Walke, K. Pertsch, K. Black, O. Mees, S. Dasari, J. Hejna,
C. Xu, J. Luo, T. Kreiman, Y. Tan, L. Y. Chen, P. Sanketi, Q. Vuong, T. Xiao, D. Sadigh,
C. Finn, and S. Levine. Octo: An open-source generalist robot policy. In Proc. of the Robotics:
Science and Systems (RSS), Delft, Netherlands, 2024. 2

[17] J. Wen, Y. Zhu, M. Zhu, Z. Tang, J. Li, Z. Zhou, X. Liu, C. Shen, Y. Peng, and F. Feng.
Diffusionvla: Scaling robot foundation models via unified diffusion and autoregression. In
Proc. of the Forty-second International Conference on Machine Learning (ICML), 2025. 2

10

https://openreview.net/forum?id=ZMnD6QZAE6
https://openreview.net/forum?id=ZMnD6QZAE6
https://openreview.net/forum?id=S70MgnIA0v
https://openreview.net/forum?id=8yTS_nAILxt
http://dx.doi.org/10.1109/TRO.2019.2891173
http://dx.doi.org/10.1109/TRO.2019.2891173

[18] T. L. Team, J. Barreiros, A. Beaulieu, A. Bhat, R. Cory, E. Cousineau, H. Dai, C.-H. Fang,
K. Hashimoto, M. Z. Irshad, M. Itkina, N. Kuppuswamy, K.-H. Lee, K. Liu, D. McConachie,
I. McMahon, H. Nishimura, C. Phillips-Grafflin, C. Richter, P. Shah, K. Srinivasan, B. Wulfe,
C. Xu, M. Zhang, A. Alspach, M. Angeles, K. Arora, V. C. Guizilini, A. Castro, D. Chen,
T.-S. Chu, S. Creasey, S. Curtis, R. Denitto, E. Dixon, E. Dusel, M. Ferreira, A. Goncalves,
G. Gould, D. Guoy, S. Gupta, X. Han, K. Hatch, B. Hathaway, A. Henry, H. Hochsztein,
P. Horgan, S. Iwase, D. Jackson, S. Karamcheti, S. Keh, J. Masterjohn, J. Mercat, P. Miller,
P. Mitiguy, T. Nguyen, J. Nimmer, Y. Noguchi, R. Ong, A. Onol, O. Pfannenstiehl, R. Poyner,
L. P. M. Rocha, G. Richardson, C. Rodriguez, D. Seale, M. Sherman, M. Smith-Jones, D. Tago,
P. Tokmakov, M. Tran, B. V. Hoorick, I. Vasiljevic, S. Zakharov, M. Zolotas, R. Ambrus,
K. Fetzer-Borelli, B. Burchfiel, H. Kress-Gazit, S. Feng, S. Ford, and R. Tedrake. A care-
ful examination of large behavior models for multitask dexterous manipulation. 2025. URL
https://arxiv.org/abs/2507.05331. 2

[19] M. J. Kim, C. Finn, and P. Liang. Fine-tuning vision-language-action models: Optimizing
speed and success. arXiv preprint arXiv:2502.19645, 2025. 2, 6, 7

[20] J. Wen, Y. Zhu, J. Li, Z. Tang, C. Shen, and F. Feng. Dexvla: Vision-language model with
plug-in diffusion expert for general robot control. arXiv preprint arXiv:2502.05855, 2025. 2

[21] F. Lin, R. Nai, Y. Hu, J. You, J. Zhao, and Y. Gao. Onetwovla: A unified vision-language-action
model with adaptive reasoning. arXiv preprint arXiv:2505.11917, 2025. 2

[22] C.-P. Huang, Y.-H. Wu, M.-H. Chen, Y.-C. F. Wang, and F.-E. Yang. Thinkact:
Vision-language-action reasoning via reinforced visual latent planning. arXiv preprint
arXiv:2507.16815, 2025. 2

[23] J. Lee, J. Duan, H. Fang, Y. Deng, S. Liu, B. Li, B. Fang, J. Zhang, Y. R. Wang, S. Lee,
et al. Molmoact: Action reasoning models that can reason in space. arXiv preprint
arXiv:2508.07917, 2025. 2

[24] L. X. Shi, B. Ichter, M. Equi, L. Ke, K. Pertsch, Q. Vuong, J. Tanner, A. Walling, H. Wang,
N. Fusai, et al. Hi robot: Open-ended instruction following with hierarchical vision-language-
action models. arXiv preprint arXiv:2502.19417, 2025. 2

[25] S. Yao, D. Yu, J. Zhao, I. Shafran, T. Griffiths, Y. Cao, and K. Narasimhan. Tree of thoughts:
Deliberate problem solving with large language models. Proc. of the Advances in neural in-
formation processing systems (NeurIPS), 36:11809–11822, 2023. 2

[26] Z. Zhao, W. S. Lee, and D. Hsu. Large language models as commonsense knowledge for large-
scale task planning. In Proc. of the Thirty-seventh Conference on Neural Information Process-
ing Systems (NeurIPS), 2023. URL https://openreview.net/forum?id=Wjp1AYB8lH.
2

[27] D. Zhang, S. Zhoubian, Z. Hu, Y. Yue, Y. Dong, and J. Tang. ReST-MCTS*: LLM self-training
via process reward guided tree search. In Proc. of the Thirty-eighth Annual Conference on
Neural Information Processing Systems (NeurIPS), 2024. URL https://openreview.net/

forum?id=8rcFOqEud5. 2

[28] Z. Gao, B. Niu, X. He, H. Xu, H. Liu, A. Liu, X. Hu, and L. Wen. Interpretable con-
trastive monte carlo tree search reasoning, 2025. URL https://openreview.net/forum?

id=F4f1afsm3R. 2

[29] Y. Chi, K. Yang, and D. Klein. ThoughtSculpt: Reasoning with intermediate revision and
search. In L. Chiruzzo, A. Ritter, and L. Wang, editors, Proc. of the Findings of the Association
for Computational Linguistics (NAACL), pages 7685–7711, Albuquerque, New Mexico, Apr.
2025. Association for Computational Linguistics. ISBN 979-8-89176-195-7. doi:10.18653/
v1/2025.findings-naacl.428. URL https://aclanthology.org/2025.findings-naacl.

428/. 2

11

https://arxiv.org/abs/2507.05331
https://openreview.net/forum?id=Wjp1AYB8lH
https://openreview.net/forum?id=8rcFOqEud5
https://openreview.net/forum?id=8rcFOqEud5
https://openreview.net/forum?id=F4f1afsm3R
https://openreview.net/forum?id=F4f1afsm3R
http://dx.doi.org/10.18653/v1/2025.findings-naacl.428
http://dx.doi.org/10.18653/v1/2025.findings-naacl.428
https://aclanthology.org/2025.findings-naacl.428/
https://aclanthology.org/2025.findings-naacl.428/

[30] J. Liu, A. Cohen, R. Pasunuru, Y. Choi, H. Hajishirzi, and A. Celikyilmaz. Don’t throw away
your value model! generating more preferable text with value-guided monte-carlo tree search
decoding. In Proc. of the First Conference on Language Modeling (CoLM), 2024. URL
https://openreview.net/forum?id=kh9Zt2Ldmn. 3

[31] S. Liu, Z. Zeng, T. Ren, F. Li, H. Zhang, J. Yang, Q. Jiang, C. Li, J. Yang, H. Su, et al.
Grounding dino: Marrying dino with grounded pre-training for open-set object detection. In
Proc. of the European conference on computer vision (ECCV), pages 38–55. Springer, 2024. 3

[32] G. Comanici, E. Bieber, M. Schaekermann, I. Pasupat, N. Sachdeva, I. Dhillon, M. Blistein,
O. Ram, D. Zhang, E. Rosen, et al. Gemini 2.5: Pushing the frontier with advanced rea-
soning, multimodality, long context, and next generation agentic capabilities. arXiv preprint
arXiv:2507.06261, 2025. 3, 6, 7

[33] L. Beyer, A. Steiner, A. S. Pinto, A. Kolesnikov, X. Wang, D. Salz, M. Neumann, I. Alabdul-
mohsin, M. Tschannen, E. Bugliarello, et al. Paligemma: A versatile 3b vlm for transfer. arXiv
preprint arXiv:2407.07726, 2024. 4, 7

[34] E. J. Hu, yelong shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen. LoRA:
Low-rank adaptation of large language models. In Proc. of the International Conference
on Learning Representations (ICLR), 2022. URL https://openreview.net/forum?id=

nZeVKeeFYf9. 4

[35] D. Silver, A. Huang, C. J. Maddison, and et al. Mastering the game of go with deep neural
networks and tree search. Nature, 529(7587):484–489, 2016. 5

[36] H. Yuan, K. Huang, C. Ni, M. Chen, and M. Wang. Reward-directed conditional diffu-
sion: Provable distribution estimation and reward improvement. In Proc. of the Thirty-
seventh Conference on Neural Information Processing Systems (NeurIPS), 2023. URL https:

//openreview.net/forum?id=58HwnnEdtF. 6, 7

[37] A. Hurst, A. Lerer, A. P. Goucher, A. Perelman, A. Ramesh, A. Clark, A. Ostrow, A. Welihinda,
A. Hayes, A. Radford, et al. Gpt-4o system card. arXiv preprint arXiv:2410.21276, 2024. 6, 7

12

https://openreview.net/forum?id=kh9Zt2Ldmn
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=58HwnnEdtF
https://openreview.net/forum?id=58HwnnEdtF

	Introduction
	Related Work
	Problem Formulation & Dataset
	Proposed Method
	Architecture
	System 2
	System 1

	Experiments
	Environment Setup & Baselines
	Results
	Ablation Studies
	Limitations

	Conclusion

