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Abstract
Due to its potential for a universal interface001
over both data and text, data-to-text genera-002
tion is becoming increasingly popular. How-003
ever, few prior work has focused on its ap-004
plication to downstream tasks, e.g. using the005
converted data for grounding or reasoning.006
In this work, we bridge this gap and use007
the data-to-text method as a means for en-008
coding structured knowledge for knowledge-009
intensive applications, i.e. open-domain ques-010
tion answering (ODQA). Specifically, we pro-011
pose a verbalizer-retriever-reader framework012
for ODQA over data and text where verbal-013
ized tables from Wikipedia and graphs from014
Wikidata are used as augmented knowledge015
sources. We show that our Unified Data and016
Text QA, UDT-QA, can effectively benefit017
from the expanded knowledge index, leading018
to large gains over text-only baselines. No-019
tably, our approach sets the single-model state-020
of-the-art on Natural Questions. Furthermore,021
our analyses indicate that verbalized knowl-022
edge is preferred for answer reasoning for both023
adapted and hot-swap settings.024

1 Introduction025

Data-to-text generation verbalizes structured026

knowledge, e.g. tables and knowledge base (KB)027

graphs, into natural language and has a broad range028

of applications such as dialog response generation029

(Moon et al., 2019) and multi-document summa-030

rization (Fan et al., 2019). Given its potential in pro-031

viding a universal interface for data and text, it has032

became increasingly popular (Gardent et al., 2017;033

Parikh et al., 2020; Nan et al., 2021) with various034

methods developed recently (Wang et al., 2020;035

Ribeiro et al., 2020; Chen et al., 2020b). Neverthe-036

less, most existing work has focused on intrinsic037

evaluations exclusively, i.e. the quality of gener-038

ated text measured by metrics like BLEU (Papineni039

et al., 2002), leaving its usefulness on downstream040

tasks largely unknown. Moreover, it remains un-041

clear whether a single data-to-text model is able042

to verbalize heterogeneous structured data effec- 043

tively. In this work, we aim to investigate the feasi- 044

bility of using a unified data-to-text verbalizer as 045

the means for enriching the knowledge source for 046

open-domain question answering (ODQA). 047

Based on the typical retriever-reader framework 048

for ODQA, recent work (Oguz et al., 2020) has 049

demonstrated that expanding the textual knowledge 050

source with more structured tables and KBs is ben- 051

eficial. However, most existing work either only 052

considers limited size/type of data or uses different 053

knowledge retrieval methods for various sources 054

(Oguz et al., 2020; Agarwal et al., 2021). Here, we 055

propose a simple and unified verbalizer-retriever- 056

reader framework, UDT-QA, as an extension for 057

ODQA over data and text. 058

To bridge the gap between existing data-to-text 059

approaches and ODQA, we develop a novel data- 060

to-text generation paradigm for our verbalizer- 061

retriever-reader framework. First, both tables and 062

KB graphs are converted into the same format such 063

that a single data-to-text model can handle both 064

cases. Moreover, we design a method consisting 065

of data filtering and beam selection to maximize 066

the faithful coverage of the input information. To 067

remedy the lack of in-domain training data, we fur- 068

ther propose an iterative training approach to aug- 069

ment the existing data-to-text training set with se- 070

lected high quality outputs from the target domain. 071

With this verbalizer, we convert all tables from 072

Wikipedia and sub-graphs from Wikidata into vir- 073

tual documents as the additional knowledge source 074

for answering open-domain questions. 075

We first validate our data-to-text method based 076

on the existing intrinsic data-to-text metrics on 077

DART (Nan et al., 2021) and additional faithful- 078

ness promoting evaluation on the target ODQA 079

data. Remarkably, our data-to-text generation ap- 080

proach can effectively improve the target-domain 081

faithful metric without compromising the intrinsic 082

metrics. To further validate the effectiveness of 083
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the proposed UDT-QA , we carry out experiments084

on the ODQA task using a recent state-of-the-art085

(SOTA) retriever-reader pipeline, including DPR086

(Karpukhin et al., 2020) for dense retrieval and087

UnitedQA (Cheng et al., 2021) for answer reason-088

ing over the retrieved context. Consistent with089

previous work, our results also suggest that addi-090

tional knowledge source from data is beneficial091

for the ODQA task. Notably, we find that the ver-092

balized knowledge is more favored by the reader093

compared to the raw format (linearization), espe-094

cially when the structured data size is comparable095

to text, leading to more pronounced end-to-end096

improvements. Overall, UDT-QA shows large im-097

provements over text-only baselines and performs098

competitively with recent more complicated meth-099

ods on both Natural Questions (NQ) (Kwiatkowski100

et al., 2019) and WebQuestions (WebQ) (Berant101

et al., 2013). In particular, our UDT-QA achieves102

new STOA performance on NQ under the single-103

model open-book setting.104

The main contribution is summarized below.105

First, a simple and unified verbalizer-retriever-106

reader framework, UDT-QA, is proposed for107

ODQA over data and text. Second, a novel data-108

to-text approach is developed that enables building109

a large-scale collection of knowledge by verbaliz-110

ing all tables from Wikipedia and sub-graphs from111

Wikidata. Last, our proposed method achieves re-112

markable improvements on both NQ and WebQ113

with additional knowledge from data, and sets the114

new single-model SOTA on NQ.115

2 Overview of UDT-QA116

In this section, we present the overall pipeline of117

our UDT-QA framework for ODQA over data and118

text (Figure 1). The major difference between our119

approach and the popular retriever-reader ODQA120

systems (Min et al., 2021, inter alia) is the use of121

a data-to-text verbalizer (§3) for converting struc-122

tured data into natural language text, i.e. virtual doc-123

uments, as the universal knowledge source. Here,124

we consider two types of structured knowledge125

(§4.2) — tables and KB sub-graphs. After verbaliz-126

ing the structured knowledge, a subsequent pipeline127

consisting of a DPR retriever and a UnitedQA-E128

reader is used for answer inference. Since the re-129

triever and reader are not the main focus of this130

work, we only briefly describe them below.131

The DPR retriever (Karpukhin et al., 2020) is a132

bi-encoder model consisting of a question encoder133

and a context encoder, which is used for data and 134

text retrieval. Following previous work (Karpukhin 135

et al., 2020; Oguz et al., 2020), we use the un- 136

cased BERT-base (Devlin et al., 2019) model as 137

the encoder, where the [CLS]token representation 138

is used as the document/question vector. During 139

training, positive and negative pairs of (question, 140

context) are used to update the model. For infer- 141

ence, the entire document index is encoded with 142

context encoder and the encoded question vector 143

is used to retrieve the top documents with highest 144

dot-product scores. 145

The UnitedQA-E (Cheng et al., 2021) is an ex- 146

tractive reader based on ELECTRA (Clark et al., 147

2020) for answer inference. Here, a pair of a ques- 148

tion and a support passage is jointly encoded into 149

neural text representations. These representations 150

are used to compute scores of possible answer be- 151

gin and end positions, which are then used to com- 152

pute probabilities over possible answer spans. Fi- 153

nally, the answer string probabilities are computed 154

based on the aggregation over all possible answer 155

spans from the entire set of support passages. 156

3 Verbalizer: Data-to-text Generation 157

Here, we formally describe the data-to-text model 158

developed in this paper, including the input format 159

(§3.1) and the adaptation for ODQA (§3.2). 160

3.1 Input Format 161

Given a structured data input D, the data-to-text 162

generator G aims to generate a natural language 163

passage P that faithfully describes the information 164

presented in D. In the literature, the structured 165

data input can be in the form of a set of triples 166

(Nan et al., 2021), a few highlighted cells from 167

a table (Parikh et al., 2020) or a full table (Chen 168

et al., 2020a). Correspondingly, P could a simple 169

surface-form verbalization of D (e.g. when D is a 170

triple set) or a high-level summarization in case of 171

a full table or a large KB graph. Since we consider 172

(noisy) tables/KB sub-graphs of arbitrary size in 173

this paper, directly feeding the entire input into the 174

generator is not feasible, likely incurring signifi- 175

cant computation challenges. Moreover, it is also 176

desirable to maximize the information coverage 177

of P so that most relevant information in D can 178

be leveraged by the downstream QA retriever and 179

reader. Based on this, we verbalize both tables and 180

KB graphs at a fine-grained level. 181

In this work, we verbalize tables row by row, 182
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Figure 1: An overview of UDT-QA based on the verbalizer-retriever-reader pipeline.

i.e. input each table row to G individually, where183

each row is a set of cells r = {ci}ki=1, and k is the184

number of cells in the corresponding row. Most185

relevant to our setting, recent work (Nan et al.,186

2021) represents each cell in a triple. To form such187

triples, they manually annotate the tree ontology of188

column headers and then create triples using table189

title, headers, cell value and header relations, e.g.190

([TABLECONTEXT], [title], LeBron191

James), (LeBron James, League, NBA)192

where LeBron James is the parent cell. Al-193

though such triples with fine-grained ordering may194

help guide the generator, directly applying a such195

generator to a target domain with no ontology196

annotation (our case) likely results in degradation.197

To overcome this, we propose to convert the triple198

set to pairs, e.g. ([title], LeBron James),199

(League, NBA). We find such conversion has200

little impact on the intrinsic evaluation (§5). After201

all rows are verbalized, we assemble the text202

outputs back to form the verbalized table.203

For KB, we follow previous work (Agarwal et al.,204

2021) and break the KB into small sub-graphs205

based on subject entity. Here, each sub-graph con-206

tains one central entity and its neighbors. Although207

this conversion would inevitably create undesir-208

able artifacts (e.g. hurdles for multi-hop reasoning209

across sub-graphs), this preprocessing allows us210

to unify the input representations for both table211

and KB graphs, making it possible for a single ver-212

balizer to convert structured knowledge into text213

format. Specifically, we convert all KB sub-graphs214

into the same format as table cell sets above, where215

the subject entity is treated as the title and all the216

edges are represented using pairs in the form of217

(relation, object). Then we verbalize each218

sub-graph with the generator G. Examples of input 219

and output for table rows and KB sub-graphs are 220

shown in Figure 1. 221

3.2 Improved Data-to-Text Model Training 222

A known problem in data-to-text generation is that 223

the model tends to hallucinate or neglect informa- 224

tion in the input (Wang et al., 2020; Agarwal et al., 225

2021). Faithfulness and information coverage is 226

especially important when we apply the verbalized 227

output to knowledge-intensive downstream tasks 228

like ODQA. To address this, we subsample train- 229

ing data T such that the instances are filtered out 230

if they are likely to steer model towards missing 231

information. In particular, we compute ROUGE-1 232

(Lin, 2004) scores between the input and target of 233

training instances and filter out those whose scores 234

are below a certain threshold. We denote the fil- 235

tered version as T-F. Although filtered examples 236

are mostly valid, we hypothesize that their target 237

sentences may only contain partial input informa- 238

tion or high-level summaries, which may bias the 239

model towards unwanted behaviors. 240

Another challenge we face is that most data-to- 241

text training examples have succinct structured in- 242

puts. In other words, the cells in the structured 243

input are usually single words or short phrases with 244

corresponding short target sentences as well. In 245

our case, a number of of tables contain large cells 246

with dozens of words. Models trained with existing 247

data likely have a hard time verbalizing such inputs 248

faithfully. To alleviate this domain-mismatch issue, 249

we propose an iterative training set-up. In the first 250

iteration, we train a generator on T-F. Then we 251

apply the generator to our data. We then find high 252

quality verbalized outputs based on the ROUGE-1 253
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score between the input and output, and sample254

instances with score higher than a threshold for the255

next-round training. We sample instances up to256

the same size of T-F, and denote this set as ID-T.257

Finally, we mix the ID-T with T-F and train a258

second generator for verbalization.259

Following recent work (Nan et al., 2021), we use260

the pretrained T5-Large (Raffel et al., 2020) model261

as our generator. Given paired training examples262

consisting of a structured data input and a target263

sentence, we finetune the T5 model to maximize264

the log-likelihood of generating the corresponding265

target sentences. Here, we follow the same experi-266

mental setup as (Ribeiro et al., 2020).267

4 Experiment Setup268

In this section, we describe the data used for exper-269

iments and sources of structured knowledge.270

4.1 Datasets271

In this paper, we use DART (Nan et al., 2021) to272

train our verbalizer (data-to-text) and two ODQA273

datasets, NQ and WebQ, to train and evaluate our274

pipeline, with the same split as in (Lee et al., 2019)275

provided by (Karpukhin et al., 2020). Below we276

provide a brief description of each dataset and refer277

readers to their papers for details.278

DART is a data-to-text dataset containing pairs279

of (triple-set, sentences) collected from WebNLG280

(Gardent et al., 2017), E2E (Novikova et al., 2017)281

and crowdsourcing based on tables found in Wik-282

iSQL (Zhong et al., 2017) and WikiTableQues-283

tions (Pasupat and Liang, 2015). Natural Ques-284

tions contains questions mined from Google search285

queries and the answers are annotated in Wikipedia286

articles by crowd workers. WebQuestions con-287

sists of questions from Google Suggest API and288

the answers are annotated as entities in Freebase.289

We collect knowledge-answerable questions290

from NQ and WebQ in order to evaluate our verbal-291

izer and construct the retrieval training data. Specif-292

ically, we find questions in the original NQ train-293

ing set that can be answered by a table. For each294

question, we search through tables in its associ-295

ated HTML page to locate exact answer matches.296

In total, we collected 14,164 triples of (question,297

answer, gold table) from NQ train and dev sets298

as NQ-table-Q. On WebQ, we find questions299

that can be answered by KB via expanding from300

question entities and search for their 1-hop neigh-301

bors. If an answer entity is matched, we keep this302

sub-graph. In total, we collected 2,397 triples of 303

(question, answer, sub-graph) from WebQ train and 304

dev set as WebQ-KB-Q. 305

4.2 Structured Knowledge Sources 306

In addition to regular Wikipedia text passages, we 307

consider two types of structured knowledge — ta- 308

bles from Wikipedia and KB graphs from Wikidata. 309

For tables from Wikipedia, we follow OTT- 310

QA (Chen et al., 2021b) with slight modifica- 311

tions. Chen et al. (2021b) only consider tables 312

in good format, i.e. tables with no empty cell, 313

multi-column or multi-row, and restrict the tables 314

to have at most 20 rows or columns. Instead, we 315

remove such constraints and keep everything with 316

the <table> tag, resulting in a larger and noisier 317

table set. We denote this more realistic set of tables 318

as OTT-tables. 319

Note Oguz et al. (2020) only consider tables 320

from the original NQ HTMLs. In addition to 321

the size difference, OTT-tables are crawled 322

from a more recent Wikipedia dump than the 323

NQ version. To study the impact of knowl- 324

edge source size, we also process tables from the 325

NQ HTML pages with the heuristic suggested 326

by (Herzig et al., 2021) to de-duplicate tables 327

and filter lengthy cells (>80 words). We de- 328

note this set of tables as NQ-tables. To avoid 329

overlap, we remove tables from OTT-tables 330

whose page title are in NQ-tables set. In to- 331

tal, we have a All-tables set with 2.2M ta- 332

bles from OTT-tables and 210K tables from 333

NQ-tables, respectively. 334

For KB graphs, we consider using the English 335

Wikidata (Vrandečić and Krötzsch, 2014) as our 336

KB due to its broad coverage and high quality, not- 337

ing its predecessor Freebase is no longer main- 338

tained despite its popularity in research. In order 339

to be comparable with recent work (Agarwal et al., 340

2021), we directly use their partitioned KB graphs 341

from WikiData in our experiments, which is de- 342

noted as WD-graphs. 343

5 Experiments: Data-to-Text 344

In this section, we evaluate our data-to-text model 345

with both intrinsic and extrinsic metrics. Since in- 346

trinsic metrics are probably less correlated with 347

the model downstream performance, we focus on 348

using an extrinsic metric for selecting models and 349

include intrinsic metrics as a sanity check for gen- 350

eration quality. During inference, we use beam 351
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Intrinsic Eval Extrinsic Eval

Training Set # Examples BLEU METEOR TER MoverScore BERTScore BLEURT Ans Cov

DART (Nan et al., 2021) 62,659 50.66 0.40 0.43 0.54 0.95 0.44 -
DART ours (T) 62,628 51.05 0.40 0.43 0.54 0.95 0.43 95.4
DART (T-F) 55,115 51.04 0.41 0.43 0.54 0.95 0.43 96.0
DART (T-F + ID-T) 110,230 50.59 0.41 0.44 0.54 0.95 0.43 98.4

Table 1: Intrinsic and extrinsic evaluations of verbalization approaches on DART test and NQ-table-Q (§4.1),
respectively. “Ans Cov” refers to Answer coverage. All metrics are higher the better except for TER.

search with a beam size of 10 and save all com-352

pleted predictions. To retain as much input infor-353

mation as possible, a re-ranking stage is carried354

out over these predictions based on the ROUGE-1355

score. The highest ranked prediction is then used356

as the final output.357

Intrinsic Evaluation: Since our model is devel-358

oped mainly on DART, we first conduct the intrin-359

sic evaluation on the DART test set to measure360

the impact of our improved data-to-text methods,361

i.e. data filtering and iterative training. Following362

(Nan et al., 2021), we use the official evaluation363

metrics including BLEU, METEOR (Banerjee and364

Lavie, 2005), TER, MoverScore (Zhao et al., 2019),365

BERTScore (Zhang et al., 2020) and BLEURT (Sel-366

lam et al., 2020). Table 1 summarizes different367

data-to-text models on DART test. As we can see,368

the resulting model trained with our data conver-369

sion (row 2) performs on par with the model using370

the original format (row 1). More interestingly, fil-371

tering short samples has almost no impact on the372

verbalizer performance (row 3). Lastly, iterative373

training with additional target domain data (row374

4) slightly hurts on BLEU and TER and achieves375

similar performances on other metrics. Overall, our376

verbalizer with the proposed data conversion and377

improved training remains very effective on DART.378

Extrinsic Evaluation: Since we are interested in379

applying verbalized knowledge for ODQA, the QA380

model is more likely to predict the correct answer381

only if the answer still exists after the verbaliza-382

tion. Therefore, we also evaluate each generator383

using a metric more related with the downstream384

task performance: answer coverage. Specifically,385

we compute the answer coverage as the percent-386

age of examples that the answer present in the raw387

structured knowledge is still preserved in the corre-388

sponding verbalized output.389

First, we compute the answer coverage of dif-390

ferent generators discussed in the previous section391

on NQ-table-Q where tables known to contain392

question-triggering content. The scores are re-393

ported in the last column of Table 1. Due to more 394

lengthy tables in NQ-table-Q, data filtering im- 395

proves the answer coverage as expected. Moreover, 396

model trained with our iterative training demon- 397

strates substantial improvements in answer cover- 398

age, indicating that our approach is highly effective 399

for converting tables into text. Later, we use this 400

best generator to verbalize All-tables. 401

Lastly, we directly apply our best generator 402

(DART T-F + ID-T) for verbalizing KB graphs. To 403

evaluate the performance, we compare our model 404

with the recent method KELM-verbalizer (Agar- 405

wal et al., 2021) using answer coverage on the 406

set WebQ-KB-Q where KB sub-graphs are known 407

to contain answer entities. Although never tuned 408

for KB graph inputs, our model achieves 99.6 409

on answer coverage, outperforming the KELM- 410

verbalizer (97.8 on answer coverage) by a large 411

margin. This suggests that our data-to-text ap- 412

proach is highly effective for both tables and KB 413

sub-graphs. 414

6 Experiments: QA over Data and Text 415

Here we present our main experiments on ODQA 416

over data and text. For regular Wikipedia text, we 417

use the same index containing 21M passages as 418

in (Karpukhin et al., 2020). To augment text, two 419

settings are considered, i.e. the single data setting 420

and the hybrid data setting. 421

In the single data setting for NQ, we augment 422

the text index with tables from the All-tables 423

set (§4.2). For comparison, we also experiment 424

with the raw representations using a simple lin- 425

earization of tables similar to (Oguz et al., 2020). 426

For WebQ, we consider combining text with KB 427

graphs from WD-graphs in the single data set- 428

ting. Different from (Oguz et al., 2020) where a 429

separate entity-linking based retriever is used for 430

KB, we use a single model over the text index with 431

either linearization of raw KB graphs or our ver- 432

balized KB graphs. Hence, in our case, both text 433

and data (tables and KB graphs) can be handled 434
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Model NQ WebQ

Without Structured Knowledge

DPR (Karpukhin et al., 2020) 41.5 35.2
UnitedQA (Cheng et al., 2021) 51.8 48.0

With Structured Knowledge

KEALM (Agarwal et al., 2021) 41.5 43.9
UnitK-QA (Oguz et al., 2020) 54.1 57.8
UDT-QA w/ Raw Single Data 54.7 51.4
UDT-QA w/ Verbalized Single Data 55.2 52.0
UDT-QA w/ Verbalized Hybrid Data 55.1 52.5

Table 2: End-to-end open-domain QA evaluation of
UDT-QA in comparison to recent state-of-the-art mod-
els on the test sets of NQ and WebQ. Exact match
scores are reported (highest scores shown in bold).

by a unified retreiver-reader pipeline. In the hy-435

brid data setting for both NQ and WebQ, we use436

text, All-tables and WD-graphs for retrieval.437

The statistics of our knowledge index are shown in438

Table 6 in Appendix A.439

We create additional retriever training data from440

NQ-Table-Q and WebQ-KB-Q in a similar fash-441

ion as in the text-only setting, so that DPR can bet-442

ter handle additional knowledge. Followig (Oguz443

et al., 2020), we also use the iterative training set-444

up for retriever training. More training details can445

be found in Appendix B.446

To evaluate the effectiveness of our UDT-QA447

for ODQA, we first include recent state-of-the-448

art ODQA models using text as the only knowl-449

edge source, i.e. DPR (Karpukhin et al., 2020) and450

UnitedQA (Cheng et al., 2021). We also compare451

our UDT-QA with recent models using additional452

structured knowledge, i.e. KEALM (Agarwal et al.,453

2021) and UnitK-QA (Oguz et al., 2020). Follow-454

ing the literature, we report the exact match (EM)455

score for evaluation. The results are in Table 2.456

As we can see, models with additional struc-457

tured knowledge achieve better performance than458

text-only models. This indicates that both KB459

graphs and tables contain complementary knowl-460

edge which is either absent in text or harder to be461

reasoned over. For NQ, although we consider a462

significantly larger structured knowledge source463

which is likely to be more challenging, all our464

models substantially outperform UnitK-QA. As465

for WebQ, our model achieves competitive per-466

formance, although worse than UnitK-QA. We467

attribute this gap to two possible reasons. First,468

UnitK-QA uses a separate entity-linking based re-469

triever for KBs which might lead to higher retrieval470

Source Format R20 R100 EM
text - 80.8 86.1 49.6
+NQ-tables raw 85.2 90.1 51.1
+NQ-tables V 85.5 90.2 51.2
+All-tables raw 85.8 90.7 52.1
+All-tables V 86.0 90.7 52.5

text - 78.9 82.3 52.6
+WD-graphs-WebQ raw 83.4 86.1 57.1
+WD-graphs-WebQ V 83.4 85.0 55.7
+WD-graphs raw 82.8 86.1 54.3
+WD-graphs V 82.8 86.7 55.4

Table 3: Impact of knowledge index size over sepa-
rately trained retriever-reader models (Top for NQ and
bottom for WebQ). All metrics are computed on the
corresponding dev set.

recall. Second, since WebQ is fully based on Free- 471

Base, using WikiData only in our models likely suf- 472

fers from mismatch (Pellissier Tanon et al., 2016). 473

Nevertheless, our verbalizer-based models achieve 474

better performances than the corresponding raw 475

format models on both datasets, indicating that the 476

proposed verbalizer is highly effective for tables 477

and KB graphs. 478

7 Analysis 479

In this section, we present analyses over the im- 480

pact of knowledge index size, the use of additional 481

structured knowledge in a hot-swap setting, com- 482

parison to a recent KB-only data-to-text approach 483

in an end-to-end fashion, and manual exam of the 484

verbalized/raw tables for their impact on ODQA. 485

How does the size of knowledge index affect re- 486

triever and reader performance? More knowl- 487

edge is likely to have better coverage of relevant 488

information. On the other hand, larger and nois- 489

ier index also increases the reasoning complexity. 490

To understand the impact of the increased knowl- 491

edge index size, we conduct experiments with a re- 492

stricted setting where only relevant subset of knowl- 493

edge to the corresponding dataset (a prior) is used 494

for retrieval. Similar to (Oguz et al., 2020), we 495

experiment with the combined knowledge index 496

of text and NQ-tables for NQ. As for WebQ, 497

we keep documents from WD-graphs that con- 498

tain any of the question entity in WebQ to build 499

WD-graphs-WebQ, and experiment with using 500

text + WD-graphs-WebQ. In addition to EM, we 501

report R20 and R100, evaluating the retrieval ac- 502

curacy of gold passages in the top-20 and top-100 503

documents, respectively. The results are reported 504
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Knowledge Format R20 R100 EM

Text-only 81.3 87.3 51.8

+NQ-tables raw 83.9 90.3 51.7
+NQ-tables V 84.3 90.4 52.5

+All-tables raw 84.0 90.6 51.7
+All-tables V 84.5 90.6 52.7

Table 4: Hot-swap evaluation of raw vs verbalized table
using a text-only retriever-reader model on NQ test.

in Table 3.505

For NQ, in spite of being more challenging,506

we see that using All-tables yield substan-507

tial improvement in both recall and answer ex-508

act match compare to using NQ-tables. This509

indicates that, with proper training, ODQA mod-510

els are likely to benefit from enriched knowledge.511

Although the larger raw form index brings in de-512

cent improvement (+1 EM) in terms of reader513

performance (+All-tables vs+NQ-tables),514

our verbalized knowledge is more friendly for515

answer reasoning leading to a more notable QA516

improvement (+1.3 EM). Different from NQ, we517

observe that on WebQ the restricted setting with518

WD-graphs-WebQ achieves better results. We519

hypothesize that this is likely due to the scale of520

WebQ dataset. The small amount of WebQ train-521

ing makes the retriever insufficient to handle large-522

scale knowledge index. We leave the verification523

of this hypothesis for future work.524

Does a text-only retriever-reader model bene-525

fit more from verbalized knowledge compare to526

raw format (hot-swap)? Since both retriever and527

reader are based on pretrained language models,528

we hypothesize that they would probably benefit529

more from the verbalized knowledge due to its sim-530

ilar style as text. This can be particularly useful531

for a hot-swap setting where both retriever and532

reader have only seen textual knowledge during533

training. To verify that verbalized knowledge is534

more amenable, we carry out a hot-swap experi-535

ment here. Specifically, we directly use a DPR536

model trained on NQ text-only data for additionally537

indexing both NQ-tables and All-tables.538

Then, the inference retrieval is performed on the539

augmented knowledge index for an input question,540

and a text-only United-QA-E reader trained on NQ541

is applied for answer inference afterwards. The542

results are summarized in Table 4. Similar to the543

previous fully fine-tuned settings, we see that addi-544

Knowledge R20 R100 EM
KELM 78.2 85.3 51.5
WD-graphs (Ours) 78.5 85.5 52.0

Table 5: Comparison of verbalized knowledge from
our verbalizer and KELM for retriever and reader on
WebQ test. Dev results can be found in Table 8 in Ap-
pendix D.

tional knowledge still provide substantial improve- 545

ments for text-only retriever using either raw or 546

verbalized knowledge. However, the improvement 547

in recall is not reflected in the later reader perfor- 548

mance for the raw format, whereas the hot-swap 549

answer inference performance is notably improved 550

with verbalized knowledge. This observation fur- 551

ther validates our hypothesis that verbalized knowl- 552

edge is more beneficial, especially for reader. 553

How does the proposed verbalizer compare to 554

recent data-to-text models? Lastly, we compare 555

our verbalizer with the recently proposed data- 556

to-text generator for converting KB graphs only, 557

KELM (Agarwal et al., 2021). Since both KELM 558

generator and our verbalizer are based on the same 559

partitioned Wikidata, this evaluation can fully re- 560

flect their corresponding generation impacts on 561

ODQA in an end-to-end fashion. Here, we evaluate 562

using our verbalized WD-graphs and the KELM 563

corpus (Agarwal et al., 2021) as additional knowl- 564

edge on WebQ. In particular, we follow the same 565

procedure to train and evaluate our retriever and 566

reader except that we swap the WD-graphs with 567

KELM corpus in data construction and retrieval. 568

Both retriever and reader performances are reported 569

in Table 5. Note that the KELM data-to-text model 570

is customized solely for converting KB graphs and 571

trained with a much larger dataset (about 8M train- 572

ing instances), whereas our verbalizer is applicable 573

to both tables and KB graphs with a smaller training 574

data (only 110K instances). Nevertheless, consis- 575

tent with its better extrinsic performance (§5), our 576

verbalizer again outperforms the KELM generator 577

in both retrieval and reading, which provides fur- 578

ther support for the effectiveness of our approach as 579

a unified interface for ODQA over data and text. 580

What is the impact of verbalized/raw table on 581

ODQA? We also manually analyze examples of 582

verbalized and raw tables, the examples are shown 583

in Table 10 in Appendix E, as well as details of 584

annotation. Overall, we find that verbalized tables 585

help connect the information in the headers with 586
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cell values, making it easier for model to reason587

over. On the other hand, verbalization can suffer588

from the table structure loss, which may hinder the589

model from leveraging such shortcuts, e.g. answer-590

ing a ranking question where the model can directly591

look for answers in the first/last row (see example592

3&4 in Table 10). This also suggests a possible593

direction for future work: to better incorporate the594

table structure information in verbalization.595

8 Related Work596

Data-to-Text Generating text from structured data597

has been a popular task in NLP. Many dataset598

have been proposed for this task such as Wikibio599

(Lebret et al., 2016), Rotowire (Wiseman et al.,600

2017), WebNLG (Gardent et al., 2017) and E2E601

(Novikova et al., 2017), where each dataset fo-602

cuses on a particular domain. More recently, large-603

scale datasets that contains open-domain examples604

have been proposed including DART (Nan et al.,605

2021), TOTTO (Parikh et al., 2020), WikiTableT606

(Chen et al., 2021a) and GenWiki (Jin et al., 2020).607

On the modeling side, finetuning the pretrained608

models typically achieves promising performance609

(Ribeiro et al., 2020). Wang et al. (2020) propose610

customized loss functions to reduce model hallu-611

cination during generation. Muti-task learning is612

used to improve model’s robustness towards input613

variations (Hoyle et al., 2021). Chen et al. (2020b)614

introduce a generalized format and a pretrained615

model that can generate text from both table rows616

and knowledge graphs. Most previous work on617

data-to-text generation have only conducted inter-618

nal evaluation, using typical generation metrics619

such as BLEU (Papineni et al., 2002) and ROUGE620

(Lin, 2004), hence the data-to-text is considered the621

target task. In this paper, we argue that different622

training strategies and evaluation metrics should623

be adapted when applying data-to-text models to624

downstream tasks, i.e. ODQA. Related to our work,625

Agarwal et al. (2021) convert the entire Wikidata to626

natural language using a finetuned T5 model (Raf-627

fel et al., 2020). In this work, we generalize the628

data-to-text approach for verbalizing both tables629

and KB graphs in a unified fashion and study the630

verbalized knowledge on ODQA.631

QA with Data and Text As the knowledge re-632

quired to answer the questions may not be available633

in textual corpus, previous studies have sought to in-634

corporate knowledge from difference sources such635

as tables and knowledge bases. Min et al. (2019)636

use Wikidata to expand seed passages found by 637

the retriever and enhance encoded passage repre- 638

sentations in the reader. Li et al. (2021) propose a 639

hybrid framework that takes both text and tables as 640

inputs to produce answers and SQL queries. Re- 641

cently, Chen et al. (2021b) develop the OTT-QA 642

dataset containing questions that require joint rea- 643

soning over both tables and text, where the tables 644

and text come from entire Wikipedia. There is also 645

a line of work that studies model architectures for 646

tables specifically or joint encoding of tables and 647

text (Yin et al., 2020; Herzig et al., 2020; Zayats 648

et al., 2021; Glass et al., 2021). However, their 649

focus is not on open-domain QA tasks. Most simi- 650

lar to our work is (Oguz et al., 2020), where they 651

use both tables and Wikidata/Freebase knowledge 652

graph along with Wikipedia text to build retriever 653

index. However, their tables are only mined from 654

original NQ HTMLs, hence it is still a constrained 655

setting. In contrast, we consider tables from full 656

Wikipedia which is a much larger set. Additionally, 657

separate retrieval models are used for tables and 658

KB in (Oguz et al., 2020) whereas we develop a 659

unified model over text and data including tables 660

and KB graphs. 661

9 Conclusion 662

In this paper, we demonstrated that a unified 663

verbalizer-retriever-reader framework, UDT-QA, 664

for open-domain QA over data and text. We pro- 665

posed a novel data-to-text paradigm that can largely 666

improve the verbalization effectiveness for down- 667

stream knowledge-intensive applications, i.e. open- 668

domain QA, when attaining good intrinsic perfor- 669

mances. Leveraging the verbalized knowledge, we 670

achieved a new state-of-the-art result for NQ. Re- 671

markably, we showed that simply augmenting the 672

document index with the verbalized knowledge is 673

able to improve the performance without retraining 674

the model. 675

In addition to our method, there are many re- 676

cently proposed approaches for open-domain QA 677

that are orthogonal. For example, language models 678

specifically optimized for dense retrieval (Gao and 679

Callan, 2021), pretraining on large-scale QA data 680

(Oğuz et al., 2021) and hybrid system that consists 681

of retriever, reranker, extractive reader and genera- 682

tive reader (Fajcik et al., 2021). Incorporating those 683

methods may further improve the performance for 684

open-domain QA, and we leave that exploration for 685

future work. 686
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Jekaterina Novikova, Ondřej Dušek, and Verena Rieser. 906
2017. The E2E dataset: New challenges for end- 907
to-end generation. In Proceedings of the 18th An- 908
nual SIGdial Meeting on Discourse and Dialogue, 909
pages 201–206, Saarbrücken, Germany. Association 910
for Computational Linguistics. 911

Barlas Oguz, Xilun Chen, Vladimir Karpukhin, 912
Stan Peshterliev, Dmytro Okhonko, Michael 913
Schlichtkrull, Sonal Gupta, Yashar Mehdad, and 914
Scott Yih. 2020. Unik-qa: Unified representations 915

10

https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2021.findings-acl.82
https://doi.org/10.18653/v1/2021.findings-acl.82
https://doi.org/10.18653/v1/2021.findings-acl.82
https://doi.org/10.18653/v1/2020.coling-main.217
https://doi.org/10.18653/v1/2020.coling-main.217
https://doi.org/10.18653/v1/2020.coling-main.217
https://doi.org/10.18653/v1/2020.coling-main.217
https://doi.org/10.18653/v1/2020.coling-main.217
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.18653/v1/D16-1128
https://doi.org/10.18653/v1/D16-1128
https://doi.org/10.18653/v1/D16-1128
https://www.aclweb.org/anthology/P19-1612
https://www.aclweb.org/anthology/P19-1612
https://www.aclweb.org/anthology/P19-1612
https://doi.org/10.18653/v1/2021.acl-long.315
https://doi.org/10.18653/v1/2021.acl-long.315
https://doi.org/10.18653/v1/2021.acl-long.315
https://doi.org/10.18653/v1/2021.acl-long.315
https://doi.org/10.18653/v1/2021.acl-long.315
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
http://arxiv.org/abs/2101.00133
http://arxiv.org/abs/2101.00133
http://arxiv.org/abs/2101.00133
http://arxiv.org/abs/1911.03868
http://arxiv.org/abs/1911.03868
http://arxiv.org/abs/1911.03868
http://arxiv.org/abs/1911.03868
http://arxiv.org/abs/1911.03868
https://doi.org/10.18653/v1/P19-1081
https://doi.org/10.18653/v1/P19-1081
https://doi.org/10.18653/v1/P19-1081
https://doi.org/10.18653/v1/P19-1081
https://doi.org/10.18653/v1/P19-1081
https://doi.org/10.18653/v1/2021.naacl-main.37
https://doi.org/10.18653/v1/2021.naacl-main.37
https://doi.org/10.18653/v1/2021.naacl-main.37
https://doi.org/10.18653/v1/2021.naacl-main.37
https://doi.org/10.18653/v1/2021.naacl-main.37
https://doi.org/10.18653/v1/W17-5525
https://doi.org/10.18653/v1/W17-5525
https://doi.org/10.18653/v1/W17-5525
http://arxiv.org/abs/2012.14610
http://arxiv.org/abs/2012.14610


of structured and unstructured knowledge for916
open-domain question answering.917
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Source Raw Verbalized
Text 21M -
OTT-tables 4.0M 6.3M
NQ-tables 446K 572K
WD-graphs 5.7M 5.8M

Table 6: Statistics of Knowledge Index

A Knowledge Index Statistics1013

To be consistent with text passages, we also cut1014

tables and KB sub-graphs (raw or verbalized) into1015

chunks that has about 100 words. Hence the ver-1016

balized knowledge will have larger index size than1017

raw format.1018

B Training Details1019

To train the retriever to better handle knowledge1020

from tables and KB, we create additional train-1021

ing data from NQ-Table-Q and WebQ-KB-Q.1022

Given a (question, answer, gold table) from1023

NQ-Table-Q, we create a positive passage by1024

concatenating rows containing the answer. Then1025

we randomly sample and concatenate other rows in1026

the table if the passage has less than 100 words. To1027

find negative passages for training, we build a index1028

consists of all the tables and use BM25 to retrieve1029

relevant tables. Ones that do not contain the answer1030

are considered as negative tables. Then we sample1031

rows from the table to build negative passages. For1032

the raw tables, the process is the same except that1033

we also concatenate headers in the beginning to1034

build positive and negative passages. We combine1035

NQ training data with this set to train DPR.1036

For WebQ-KB-Q, we use the verbalized gold1037

sub-graphs as positive passages. For the raw for-1038

mat, this is replaced by flattening the gold sub-1039

graph. Then we build an index with all documents1040

in WD-graphs and the top ranked documents by1041

BM25 that do not contain the answer are treated1042

as negatives. Here the documents refer to con-1043

catenated triples set for raw setting and sentences1044

produced by the generator in verbalized setting.1045

Additionally, we search through answer entities1046

and their neighbors in the graph to find documents1047

that has word overlap with the question. Then we1048

build training instances in a similar fashion.1049

As pointed by previous work (Oguz et al., 2020),1050

mining harder negative passages using DPR and1051

iterative training leads to better performance. We1052

also adopted this approach in our experiments. Af-1053

Source Format R20 R100 EM
text - 81.3 87.3 51.8
+NQ-tables raw 86.0 91.2 54.8
+NQ-tables V 86.2 91.0 54.2
+All-tables raw 86.9 91.9 54.7
+All-tables V 87.0 91.7 55.2

text - 73.2 81.4 48.0
+WD-graphs-WebQ raw 80.2 85.8 51.5
+WD-graphs-WebQ V 79.7 85.3 52.6
+WD-graphs raw 78.8 85.1 51.4
+WD-graphs V 78.5 85.5 52.0

Table 7: Impact of knowledge index size over sepa-
rately trained retriever-reader models (Top for NQ and
bottom for WebQ). All metrics are computed on the
corresponding test set.

ter the first DPR is trained, we used it to retrieve 1054

passages from a joint index of text+structured 1055

knowledge. Then the negative passages are 1056

paired with the positive passages from the first 1057

round to build new sets of training data. Then 1058

we train a second DPR using the iteration1 data 1059

combined with the new training sets. 1060

For retriver training, we follow the experiment 1061

set-up as specified by (Karpukhin et al., 2020). 1062

Specifically, we use the Adam optimizer and a per- 1063

gpu batch size of 32 for NQ and 24 for WebQ, 1064

respectively. All trainings are done with a fixed 1065

learning rate of 2e − 5 and 40 epochs. We select 1066

the best model based on the retrieval accuracy on 1067

the corresponding dev set. 1068

For reader training, we follow the experiment set- 1069

up as described in (Cheng et al., 2021). Specifically, 1070

we use the Adam optimizer and a batch size of 16 1071

for NQ and 8 for Webq, respectively. We select 1072

the learning rate in {3e − 5, 5e − 5} and number 1073

of training epochs in {6, 8}. The best model is 1074

selected based on EM on the corresponding dev 1075

set. 1076

C Impact of Knowledge Index Size 1077

We report the test set results of models trained with 1078

different knowledge index in table 7 (correspond- 1079

ing to table 3). Overall, we observe similar trends. 1080

For NQ, the model benefits more from a larger 1081

knowledge index while for WebQ the restricted 1082

setting yield better performance. 1083
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Knowledge R20 R100 EM
KELM 83.1 86.7 55.1
WD-graphs (Ours) 82.8 86.7 55.4

Table 8: Dev set results of models trained on WebQ
with verbalized WD-graph and KELM

V-correct V-error
Raw-correct 1750 223
Raw-error 242 1395

Table 9: Error matrix of UDT-QA trained with
text+All-tables in raw and verbalized format

D Comparison betweeh Our Verbalizer1084

and KELM-verbalizer1085

We report the dev set results of WebQ models1086

trained with our verbalized WD-graphs in com-1087

parison with KELM in table 8 (corresponding to1088

table 5).1089

E Case Study on Raw vs Verbalized1090

Tables1091

Here, we showcase the examples of verbalized ta-1092

bles and their raw counterpart and discussion their1093

effect on our UDT-QA system.1094

We start by computing the error matrix of the NQ1095

models trained with text+All-tables in both1096

format, as shown in table 9. We then manually1097

annotated 100 examples where only 1 format of1098

knowledge successfully answered the question (501099

for each format), and we select examples where1100

at least 1 table chunk is marked as positive by the1101

retriever. Out of 50 examples where verbalized1102

tables contain the answer span, 40 of them are true1103

positives that provide direct evidence to the ques-1104

tions. In 35 out of 40 questions, the retriever for1105

the raw model actually find the same table/chunks1106

that provide the answer. However, the model failed1107

to extract answer for those cases and we think it’s1108

mainly because the raw format of the noisy tables1109

can be hard for the model to reason over. We iden-1110

tify 2 common patterns of raw table from these 351111

examples, as shown in the first 2 rows of table 10.1112

In the first example, the concatenated numbers1113

in the raw table can be hard to interpret, and1114

we have to carefully align the row with the header,1115

which is very far away. In the second example, the1116

raw infobox can be in ill-format and very long,1117

making it hard to understand. On the other hand,1118

the verbalized row clearly stated the information 1119

required by the question, making it straightforward 1120

to find the answer. 1121

We then looked at the other group of 50 ques- 1122

tions. 37 of them are true positives that contain 1123

direct evidence. Then in 30 out of 37 questions, 1124

the verbalized retriever is able to find the corre- 1125

sponding verbalized table/chunks that also contain 1126

the answer. The remaining cases are all due to re- 1127

triever failed to find the true positive table chunks. 1128

We found that raw tables are better at answering 1129

ranking questions, as the examples shown in row 1130

3&4 of table 10. When asked about the top or bot- 1131

tom ranked subject, the model can directly look for 1132

evidence from the starting or the end of the table. 1133

On the other hand, when the table is verbalized, 1134

the model can not rely on such property because 1135

the boundary of rows is not clear and the original 1136

structure of the tables are lost. Thus future work 1137

should study how to preserve structure information 1138

in verbalized tables. 1139
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Q&A V table Raw table
TITLE: List of Star Wars: The Clone Wars episodes

Q: star wars .... the theatrical film: "the new padawan" "castle of | no. in series, season, no. in season, title |
the clone wars deception" "castle of doom" "castle of salvation" is no. .... | 3-6, empty, empty, theatrical film: "the
season 3 3-6 in the series of star wars: the clone wars episodes. new padawan" "castle of deception" "castle
episode 1 "clone cadets" in season 3 of star wars: the clone of doom" "castle of salvation" | 7, 3, 1,
A: Clone Cadets wars is number 1 in season and number 7 in series. "clone cadets" | 8, 3, empty, "supply lines" |

"supply lines" is episode 8 in series and 3 in season of ....
star wars: the clone wars game ....

TITLE: Mount Ruapehu
Q: when was .... mount ruapehu is a stratovolcano mountain with | empty, empty, empty, elevation, prominence,
the last time an age of 200,000 years. the last eruption was 25 listing, coordinates, empty, translation, empty,
mount ruapehu september 2007 and the volcanic arc/belt is taupo empty, empty, age of rock, mountain type,
erupted volcanic zone. mount ruapehu was first ascent in volcanic arc/belt, last eruption, empty, first
A: 25 September 1879 by g. beetham and j. p. maxwell. the easiest ascent, easiest route | .... 200,000 years, strato-
2007 route to climb mount ruapehu is hike. volcano, taupo volcanic zone, 25 september

2007, climbing, 1879 .... |

TITLE: List of National Football League career rushing yards leaders
Q: who has emmitt smith of the dallas cowboys (1990-2002) | rank, player, team(s) by season, carries,
the most and arizona cardinals (2003-2004) was the first yards, average | 1, emmitt smith, dallas
yards per carry player on the national football league career cowboys (1990-2002) arizona cardinals
in nfl history rushing yards leaders list. walter payton of the (2003-2004), 4,409, 18,355, 4.2 | 2, walter
A: Emmitt Smith chicago bears (1975-1987) ranked second .... payton, chicago bears ....

TITLE: List of European countries by population
Q: which country .... vatican city ranks 50 on the list of european | rank, country, current population, % of
has the smallest countries by population with 1,000 current population, average relative annual growth(%),
population in population and 0.0 % of population. the list of average absolute annual growth, estimated
europe european countries by population has 0.0 average doubling time(years), official figure, date of
A: Vatican relative annual growth(%) and 0 average absolute last figure, regional grouping, source | 1 ....
City annual growth. the source is official estimate and 49 .... | 50, vatican city, 1,000, 0.0, 0.0, 0, -, 0,

the date of last figure is 2012. The total population .... 2012, empty, official estimate | empty, total, ....

Table 10: Examples of tables/chunks retrieved by our model given the question, where the evidence is bolded. In
raw table, | is the row separator and empty is the filler token used by our table parsing heuristic (to make the table
in good shape)
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