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Abstract

Discovering an informative, or agent-centric, state representation that encodes
only the relevant information while discarding the irrelevant is a key challenge
towards scaling reinforcement learning algorithms and efficiently applying them to
downstream tasks. Prior works studied this problem in high-dimensional Marko-
vian environments, when the current observation may be a complex object but is
sufficient to decode the informative state. In this work, we consider the problem
of discovering the agent-centric state in the more challenging high-dimensional
non-Markovian setting, when the state can be decoded from a sequence of past
observations. We establish that generalized inverse models can be adapted for
learning agent-centric state representation for this task. Our results include asymp-
totic theory as well as negative results for alternative intuitive algorithms, such as
encoding with only a forward-running sequence model. We complement these find-
ings with a thorough empirical study on the agent-centric state discovery abilities
of the different alternatives we put forward. Particularly notable is our analysis of
past actions, where we show that these can be a double-edged sword: making the
algorithms more successful when used correctly and causing dramatic failure when
used incorrectly.
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1 Introduction

Reinforcement Learning (RL) and its associated tasks of planning and exploration are dramatically
easier in a small Markovian state space than in a high-dimensional, Partially Observed Markov
Decision Process (POMDP). For example, controlling a car from a set of coordinates and velocities
is much easier than controlling a car from first-person camera images. This gap explains why many
of the successes of RL have come in domains where this minimal Markovian state space is given or
is simple to learn. At the same time, this gap suggests an opportunity:

Can we devise an unsupervised learning algorithm for automatically discovering the informative
Markovian state space from a rich non-Markovian observation space?

Having such capability has many merits. It can allow faster adaptation for downstream tasks, it
simplifies the debugging of the learned representation, and it enables the use of large corpuses of
unsupervised datasets in an efficient manner. Learning to extract effective information in complex
control systems can be notoriously difficult in general. Indeed, in recent years, much effort has been
devoted to tackling this problem in high-dimensional and Markovian systems in the RL community Li
et al. (2006); Nachum et al. (2018); Misra et al. (2020); Zhang et al. (2020); Efroni et al. (2022d);
Wang et al. (2022b). However, in many real-world control and decision problems, the immediate
observation does not contain the complete relevant information required for optimal behavior, and the
environment may be non-Markovian. Hence, in practice, an algorithm designer often faces a double
challenge: learning in the presence of both non-Markovian and high-dimensional data. To the best of
our knowledge, no prior work has focused on developing techniques for state space discovery in such
a setting.

In this work, we take a first step towards a solution for the general problem by considering a special
and prevalent class of non-Markovian environments. We consider the class of POMDPs with
finite-memory, which we refer to as FM-POMDPs, and design techniques to recover the informative
state in a high-dimensional setting. Intuitively, for an FM-POMDP, the state can be decoded from
a finite sequence of past observations and is often encountered in control and decision problems
(e.g., to decode the velocity or acceleration of an object, a few previous observations are required).
Due to the significance of such a system, many past works have put forward techniques for solving
and learning in decision problems with memory, both in practice and theory (Bakker, 2001; Graves
et al., 2016; Pritzel et al., 2017; Efroni et al., 2022b; Liu et al., 2022; Zhan et al., 2022)). Yet, none
explicitly focused on state discovery.

Provably capturing relevant agent states while discarding distractors in Markovian environments has
become a widely studied problem in both reinforcement learning theory (Efroni et al., 2022d,a; Wang
et al., 2022c) and experimentation (Islam et al., 2023; Lamb et al., 2022; Wang et al., 2022b). These
works have demonstrated the ability to discover an agent-centric state, which captures all information
that is relevant to the control of the agent while discarding exogenous noise, the information that is
present in the observations but unrelated to the control of the agent. The multi-step inverse kinematics
algorithm, studied in these prior works, consists of predicting the first action that an agent takes
between an initial observation and an observation after random k steps into the future; predicting an
action that caused a future observation from current state. Inverse kinematics has become a popular
approach as it is relatively easy to implement and has theoretical guarantees for filtering exogenous
noise. At the same time, direct implementation of this approach fails for the FM-POMDP setting
because the current observation may be insufficient to encode the state.

We first show that naive approaches to generalize multi-step inverse kinematics can fail, both
theoretically and empirically in the FM-POMDP setting. For instance, if a sequence is encoded using
an RNN (or any other directed sequence model) and the hidden states are used to predict actions, we
show that there is an “action recorder” problem where the model can learn shortcuts to representing
the true state. Under assumptions of past and future decodability, we generalize inverse models
to the high-dimensional FM-POMDP setting and establish, empirically and theoretically, that it
recovers the latent state. Our results show that our variant of the multi-step inverse model can indeed
succeed in the FM-POMDP setting. This considers the information of sequences of observations
and actions, from both the past and the future, where we can use a forward-backward sequence
model to learn agent-centric representations. Experimentally, we validate precise recovery of the state
on acceleration-control, information masking, first-person perspective control, and delayed signal
problems. Finally, we also demonstrate the usefulness of the proposed objectives in visual offline RL

2



tasks in presence of exogenous information, where we mask out randomly stacked frames and add
random masking of patches to learn representations in a partially observable offline RL setting.

2 Background and Preliminaries

Proposed Setting. We consider a finite-memory POMDP in which the state is assumed to be
decodable from a short history of observations (Efroni et al., 2022b). Further, as in many applications
in practice, we assume the observations are in high-dimension. This may give rise to the presence
of exogenous noise with non-trivial time correlation. This setting can be modelled as an Exogenous
Block MDP (Efroni et al., 2022d; Lamb et al., 2022), a rich observation setting in which the
observations consists of an agent-centric and exogenous part of the state. This definition assumes that
exogenous noise has no interaction with the agent-centric state, which is stricter than the exogenous
MDP definition introduced by Dietterich et al. (2018). Our proposed setting combines these to
consider an Agent-Centric FM-POMDP in which we assume that the agent-centric state is decodable
from a short history of observations.

Agent-Centric FM-POMDP. We consider a finite-memory episodic Partially Observable Markov
Decision Process (FM-POMDP), which can be specified by M = (S,Ξ,O,A, H,P,O, r). Here
S is the unobservable agent-centric state space, Ξ is the unobservable exogenous state space (for
convenience, Z = S × Ξ), O is the observation space, A is the action space, and H is the horizon.
P = {Ph}Hh=1 is a collection of unknown transition probabilities with P(z′ | z, a) equal to the
probability of transitioning to z′ after taking action a in state z. O = {Oh}Hh=1 are the unknown
emissions with Oh(o | s, ξ) equal to probability that the environment emits observation o when
in agent-centric state s and exogenous state ξ at the hth step. The block assumption holds if the
support of the emission distributions of any two states are disjoint, supp(q(· | z1))∩ supp(q(·|z2)) =
∅ when z1 ̸= z2., where supp(q(· | z)) = {o ∈ O | q(o | z) > 0} for any state z. We assume our
action space is finite and our agent-centric state space is also finite.

The agent-centric FM-POMDP is concerned with the structure of the state space Z . More concretely,
the state space Z = S × Ξ consists of an agent-centric state s ∈ S and ξ ∈ Ξ, such that z = (s, ξ).
The state dynamics are assumed to factorize as P(s′, ξ′|s, ξ, a) = P(s′|s, a)P(ξ′|ξ). We do not
consider the episodic setting, but only assume access to a single trajectory. The agent interacts with
the environment, generating an observation and action sequence, (z1, o1, a1, z2, o2, a2, · · · ) where
z1 ∼ µ(·). The latent dynamics follow zt+1 ∼ T (z′ | zt, at) and observations are generated from
the latent state at the same time step: ot ∼ q(· | zt). The agent does not observe the latent states
(z1, z2, · · · ), instead it receives only the observations (o1, o2, · · · ). We use Õm to denote the set of
augmented observations of length m given by Õm = (O ×A)m ×O. Moreover, we will introduce
the notation that õt = (ot, at−1), which can be seen as the observation augmented with the previous
action. Lastly, the agent chooses actions using a policy which can most generally depend on the entire
t-step history of observations and previous actions π : Õt → ∆(A), so that at ∼ π(·|õ1, ..., õt−1, õt).

We assume that the agent-centric dynamics are deterministic and that the diameter of the control-
endogenous part of the state space is bounded. In other words, there is an optimal policy to reach
any state from any other state in a finite number of steps: the length of the shortest path between
any s1 ∈ S to any s2 ∈ S is bounded by D. These assumptions are required for establishing the
theoretical guarantees in Lamb et al. (2022), we built upon in this work.

Past and Future Decodability Assumptions. We now present the key structural assumption of this
paper. We assume that a prefix of length m of the history suffices to decode the latent state and also
that a suffix of length n of the future suffices to decode the latent state.

Additionally, we will introduce some extra notation for conditioning on either the past or future
segments of a sequence. Let õP(h,m) = õmax{1,h−m}:h be the past observations and let õF(h,n) =
õmin{1,h+n}:H refer to the future observations.

Assumption 1 (m-step past decodability). There exists an unknown decoder ϕf
⋆,s : Õm → S such

that for every reachable trajectory τ = s1:H , we have sh = ϕf
⋆,s(õP(h,m)).

Assumption 2 (n-step future decodability). There exists an unknown decoder ϕb
⋆,s : Õn → S such

that for every reachable trajectory τ = s1:H , we have sh = ϕb
⋆,s(õF(h,n)).
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We note that the decodability assumption on the observation and previous action sequence ĩ is more
general than an analogous decodability assumption on the observations alone o. Indeed, in practical
applications it may be the case that prior actions are required to decode the current state, and hence
we work with this more general assumption. In fact, in the experimental section we will show that,
empirically, adding actions improves our algorithm’s performance.

3 Proposed Objectives
In this section, we describe in detail a set of possible inverse kinematic based objectives for
the FM-POMDP setting. One is All History (AH), which involves using the entire sequence of
observations to predict actions. Another is Forward Jump (FJ), in which a partial history of the
sequence is used from both the past and a number of steps in the future. Finally, Masked Inverse
Kinematics uses a partial history of the sequence from the past and a partial future of the sequence
a number of steps in the future. For all of these objectives, we will consider a variant which augments
each observation in the input sequence with the previous action. These objectives are visualized
in Figure 1 and summarized in Table 1.

Our high-level strategy will be to study which of these objectives are sufficient to obtain a reduction
to the analysis in Lamb et al. (2022), which guarantees recovery of the true minimal agent-centric
state. To do this, we will first study the Bayes-optimal solution of each objective in terms of the
true agent-centric state (section 3.1). Following this, we will study which of these Bayes-optimal
solutions are sufficient to complete the reduction in section 3.2.

3.1 The Bayes Optimal Classifier of Candidate Objectives
We start by analyzing the Bayes optimal solution of few inverse kinematics objectives, namely,
objectives that aim to predict an action from a sequence of observations. These closed form solutions
will later motivate the design of the loss objectives, and guide us towards choosing the proper
way of implementing inverse kinematics for the FM-POMDP setting. These results are proved in
Appendix A.2, A.3, A.4.

Proposed Masked-Inverse Kinematics (MIK+A). Masked inverse kinematics with actions (MIK+A)
achieves the correct Bayes-optimal classifier for the multi-step inverse model, with dependence
on only the agent-centric part of the state, i.e., st and st+k. Let st = ϕf

s (õP(t,m)), st+k =

ϕb
s(õF(t+k,n)), ξt = ϕξ(õ1:t), ξt+k = ϕξ(õ1:t+k), zt = (st, ξt). Let k ∼ U(1, D) . The follow-

ing result is proved in the appendix for any agent-centric policy π:

∀k ≥ 1, Pπ(at|õP(t,m), õF(t+k,n)) = Pπ(at|st, st+k) (1)

The MIK objective is essentially the same, except that there is no conditioning on past actions:
Pπ(at|oP(t,m), oF(t+k,n)), and would have the same Bayes-optimal classifier result if we relaxed the
past and future decodability assumptions to not require actions.

Figure 1: We examine several objectives for generalizing inverse kinematics to FM-POMDPs.
MIK+A uses past-decodability and future-decodability with a gap of k masked steps, FJ+A uses
past-decodability with a gap of k steps, while AH uses past-decodability over the entire sequence.
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All History (AH) Objective. When we condition our encoder on the entire history, the Bayes-optimal
multi-step inverse model reduces to a one-step inverse model. Intuitively, the optimal model could
simulate an internal one-step inverse model and store these predicted actions in an internal buffer,
and then retrieve them as necessary to predict the true actions. The one-step inverse model fails to
learn the full agent-centric state, with counterexamples given by Efroni et al. (2022d); Lamb et al.
(2022). Let st = ϕs(o1:t), st+k = ϕs(o1:(t+k)), ξt = ϕξ(o1:t), ξt+k = ϕξ(o1:t+k), zt = (st, ξt). Let
k ∼ U(1, D). In Appendix A.3, we prove the following:

∀k ≥ 1, Pπ(at|o1:t, o1:(t+k)) = Pπ(at|st, st+1)

All History with actions (AH+A) Objective. If the observations are augmented with the last action,
then these actions can simply be stored to a buffer and retrieved to solve the multi-step inverse
modeling problem. Thus the Bayes optimal multi-step inverse model in this setting can have no
dependence on the state. In the appendix we prove the following but note that it’s a straightforward
consequence of this objective conditioning on the action at which is being predicted:

∀k ≥ 1, Pπ(at|õ1:t, õ1:(t+k)) = 1

Forward-Jump Inverse Kinematics (FJ) Objective. By an almost identical proof as the above, this
algorithm achieves the correct Bayes optimal classifier.

∀k, k > m, k ≥ 1, Pπ(at|oP(t,m), oP(t+k,m)) = Pπ(at|st, st+k). (2)

∀k, k ≤ m, k ≥ 1, Pπ(at|oP(t,m), oP(t+k,m)) = Pπ(at|st, st+1). (3)

Forward-Jump Inverse Kinematics with Actions (FJ+A) Objective Likewise, when conditioning
on actions we have:

∀k, k > m, k ≥ 1, Pπ(at|õP(t,m), õP(t+k,m)) = Pπ(at|st, st+k). (4)

∀k, k ≤ m, k ≥ 1, Pπ(at|õP(t,m), õP(t+k,m)) = 1. (5)

3.2 Discovering the Complete Agent-Centric State
In previous section we described several inverse kinematic terms that may be useful for discovering
the agent-centric state representation of an FM-POMDP. We now claim that among this set of inverse
kinematics terms, the MIK+A is the most favorable one: the main result from Lamb et al. (2022)
(Theorem 5.1) implies that MIK+A recovers the agent-centric state representation. Further, we
elaborate on the failure of the other inverse kinematic objectives.

MIK+A Discovers the Full Agent-Centric State. Given successful recovery of the Bayes optimal
classifier for the multi-step inverse model, with dependence on only st and st+k, we can reuse the
theory from (Lamb et al., 2022), with slight modifications, as given in the appendix. The most
important modification is that we roll-out for m + n + D steps, to ensure that we have enough
steps to decode st and st+k, where D is the diameter of the agent-centric state. With the above, the
reduction to Theorem 5.1 of Lamb et al. (2022) is natural. There, the authors showed that, under
proper assumptions, if an encoder ϕ can represent inverse kinematic terms of the form Pπ(at|st, st+k)
for all k ∈ [D] then ϕ is the mapping from observations to the agent-centric state.

Failure of All History (AH) for Discovering Agent-Centric State Representation. We showed
that the AH objective can be satisfied by only solving the one-step inverse objective p(at|st, st+1). It
was shown in (Rakelly et al., 2021; Lamb et al., 2022; Efroni et al., 2022d) that the one-step inverse
objective learns an undercomplete representation. Intuitively, it may incorrectly merge states which
have locally similar dynamics but are actually far apart in the environment.

Failure of Forward-Jump (FJ and FJ+A) for Discovering Agent-Centric State Representation.
Since the Forward-Jump objectives only rely on past-decodability, it does not have correct Bayes opti-
mal classifiers for all k ≤ m. Namely, it does not recover the inverse model with k in this regime. This
prevents us from applying the result of Lamb et al. (2022), since it requires the set of all inverse models
k ∈ [D], wheres FJ only has access to k ∈ {1,m,m+ 1, .., D} but not for k in intermediate values.

Nevertheless, this give rise on an intriguing question: is there a counterexample that shows FJ or
FJ+A does not work? We establish a counterexample in which the k = 1 examples are insufficient
to distinguish all of the states and where the k > 3 examples are useless. We will then construct an
observation space for an FM-POMDP with m = 3, which will then cause both the FJ and FJ+A
objectives to fail.
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Methods Objective Correct Bayes
Optimal Classifier

Complete
Agent-Centric
State

Assumes
Past
Decodability

Assumes
Future
Decodability

Discards
Exogenous
Noise

AH Pπ(at|o1:t, o1:(t+k)) ✗ ✗ ✓ ✗ ✓
AH+A Pπ(at|õ1:t, õ1:(t+k)) ✗ ✗ ✓ ✗ ✓
FJ Pπ(at|oP(t,m), oP(t+k,m)) ✓ ✗ ✓ ✗ ✓
FJ+A Pπ(at|õP(t,m), õP(t+k,m)) ✓ ✗ ✓ ✗ ✓
MIK Pπ(at|õP(t,m), õF(t+k,n)) ✓ ✗ ✓ ✓ ✓
MIK+A Pπ(at|õP(t,m), õF(t+k,n)) ✓ ✓ ✓ ✓ ✓

Table 1: A summary of the baseline inverse kinematics approaches which we study. Our final
proposed method Masked Inverse Kinematics with actions (MIK+A) has a significant advantages
over the alternatives: it can provably recover the agent centric state representation.

Figure 2: The Forward Jump objective fails in a counterex-
ample where the observation can only be seen once every
m steps, preventing the use of k ≤ m inverse kinematics
examples, whereas the inverse examples with k > m provide
no signal for separating the states.

Consider the following agent-centric
state with two components s =
(sA, sB). sA receives four values
{0, 1, 2, 3} and follows the dynam-
ics sAt+1 = (sAt + at) mod 4, which
is a simple cycle with a period of 4,
controlled by the action a ∈ {0, 1}.
sB = at−1 simply records the pre-
vious action. We have an exoge-
nous periodic signal ct+1 = (ct +
1) mod 4. This FM-POMDP’s agent-
centric state has a diameter of D = 3,
and the true state can be recovered
with k from 1 to 3. However, all multi-step inverse problems, under the random policy, with k > 3
has the same probability of 0.5 for both actions. Concretely, for any plan to reach a goal with k > 3
steps, multiplying the actions by -1 will still yield an equally optimal plan with respect to sA, while
only the last action taken has an effect on sB , so the distribution over the first action will be uniform
(MDP shown in appendix figure 8). Now, let’s turn to the construction of the observation space of
this FM-POMDP. We will use the counter ct to control when the state can be seen in the observation,
so if ct = 0, we have ot = st, whereas if ct ̸= 0, we have ot = −1 (blank observation). It is apparent
that if ct ̸= 0, that we can’t decode the state from the current observation. However, with a history of
m = 3 past observations, we can decode the state by finding st when it is present in the observation
(i.e. when ot ̸= −1), and then simulate the last m steps using the previous actions recorded in the
observations. A simplified version of this construction (showing only sA and with m = 2) is shown
in Figure 2.

To reiterate the claim of the proof, we constructed a FM-POMDP where it is necessary to use k = 2
and k = 3 multi-step model examples to separate out the states correctly. Yet the state can only be
perfectly decoded with m = 3 steps of history. Thus, the FJ and FJ+A objectives fail to learn the
correct representation in this FM-POMDP.

4 Experimental Results

Figure 3: Visualization of the four
navigation environments. From left
to right: no curtain, one curtain, three
curtains, and first-person environments.
All include some degree of partial
observability.

We experimentally validate whether the set of inverse kine-
matic based objectives can recover the agent-centric state
in the FM-POMDP setting. To do this, we first evaluate
the objectives in a partially observable navigation environ-
ment (section 4.1) and then study whether these objectives
can learn useful representations, in presence of partially
observable offline datasets (section 4.2).

4.1 Discovering State
from Partially-Observed Navigation Environments
Experiment Setup We first consider the navigation
environments in Figure 3, with other figures and details in
Appendix figures 9 and 10, and introduce partial observability in these tasks. Details on experimental
setup are provided in appendix D.1. In this problem, m-step past decodability is achieved with m=1.
The n-step future decodability assumption subtly violated in cases where the agent collides into a
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wall and loses all of its velocity. The agent’s velocity before hitting the wall is then not decodable
from any number of future observations. We also consider an optional Self-Prediction (SP) objective
||sg(st+k) − f(st, k), where sg refers to stopping gradients. This auxiliary objective, inspired by
Guo et al. (2022); Tang et al. (2023) can help to improve the quality of representations.

Objective No
Curtain

Three
Curtains

No History 47.6 52.7
AH 9.9 13.2

AH+A 18.8 18.9
FJ 10.0 15.3

FJ+A 5.8 7.2
MIK 10.1 14.7

MIK+A 6.1 7.4

Table 2: State Estimation Errors (%) on
various tasks with exogenous noise.

Experiment Results In the acceleration-control experi-
ments (Figure 4, Table 2), we consistently found that
MIK+A has the best performance, which is aligned with
theory. The theory also suggests that AH+A has no state
dependence, and we indeed see that it has the worst perfor-
mance, when the maximum k is small. Another striking
result is that AH with any maximum k is theoretically
equivalent to AH with maximum k of 1, and these two
methods indeed have very similar errors experimentally.
Further evidence comes from investigating the action pre-
diction losses (Table 5), where we see that AH+A has
nearly zero error while AH has a very low loss, supporting
our claim that these objectives fail because they reduce the bayes optimal predictor to an overly simple
learning objective. Another finding is that FJ+A and MIK+A are fairly similar, which suggests that
the theoretical counterexample for FJ+A may not imply poor performance. Extra experiment results
of adding next-state prediction or exogenous noise are provided in appendix D.1.
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Figure 4: We compare state estimation performance (higher is better) across our various proposed
methods. We compare action-conditioned and action-free variants while also considering a self-
prediction auxiliary loss and the maximum prediction span K. We omit FJ and FJ+A in the maximum
K = 1 case because of equivalence to AH and AH+A with a shorter history.

4.2 Visual Offline RL with Partial Observability

We validate the proposed objectives in challenging pixel-based visual offline RL tasks, using the vd4rl
benchmark dataset Lu et al. (2022). For our experiments, we follow the same setup as Islam et al.
(2023), where we pre-train the representations from the visual observations and then perform fine-
tuning on the fixed representations using the TD3+BC offline RL algorithm. In our experiments, we
compare results using several variations of our proposed objectives, along with several other baselines.
We mainly compare with five other baselines, namely ACRO (Islam et al., 2023), DRIML (Mazoure
et al., 2020), HOMER (Misra et al., 2020), CURL (Laskin et al., 2020) and 1-step inverse action
prediction (Pathak et al., 2017a).
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RNN Encoder
Output

MIK + A

OFFLINE VISUAL
DATASET

Freeze
Representation

Offline RL Algorithm

Backward RNN
for Future
Sequences

Figure 5: Illustration of the visual offline RL experiment setup, in presence of partial observ-
ability. We use a forward and backward sequence model (RNN encoder) to handle past and future
observation sequences, to achieve latent state discovery in FM-POMDPs.

Experiment Setup : We consider an offline RL setting with partial observations, as illustrated in
figure 5. To do this, we use the existing vd4rl benchmark dataset Lu et al. (2022), and to turn it
into a POMDP setting, we apply masking or patching on the observation space randomly. In other
words, for each batch of samples from the offline dataset, we randomly patch each observation with a
masking of size 16× 16 to make the observations partially observable to the model. In addition to
that, since existing Lu et al. (2022) setup uses pixel-based observations and uses a framestacking of 3,
to make the setting even more challenging, we randomly zero out 2 out of 3 stacked frames. We do
this so that the model can only see both the stacked frames and each frame partially; with the goal to
see if our proposed objectives using a forward and backward running sequence model can be more
robust with the learnt representations.

Experiment Results : Our experimental results show that in presence of partial observability,
most of the existing baselines as in Islam et al. (2023) can fail considerably, for different domains
and datasets. In contrast, when we consider the history information and also additionally take into
account the action information, then performance of the proposed models can improve significantly.
Note that all our experiments here only consider the pixel-based datasets from Lu et al. (2022) with
only adding partial observability, without considering any exogenous noise in the datasets as in
the setups in Islam et al. (2023). Figure 6 shows that in presence of partial observability, all the
considered baselines can fail considerably and performance degrades significantly compared to what
was reported in the fully observed setting. In comparison, the proposed objectives can be more robust
in partial observability, and notably our key objective (MIK+A) can perform significantly compared
to other model ablations. Experimental results show that MIK + A can perform significantly better
comopared to baselines, in almost all of the tasks. Figure 7 shows results for an even more difficult
experiment setup with randomly zeroing stacked frames. Experimental results show that MIK +
A can still perform relatively better compared to other baselines, in this difficult setting, since the
forward and backward sequence models capturing the past and future observations can better capture
sufficient information from the partial observations to fully recover the agent-centric state.
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Figure 6: Visual offline datasets from Lu et al. (2022) with patching (16 × 16) to make the
observations partially observable. We compare several of the proposed objectives discussed earlier,
along with few baselines, using the representation learning setup in Islam et al. (2023). Experimental
results are compared across 3 different domains (Cheetah-Run, Walker-Walk and Humanoid-Walk)
and 2 different datasets (Expert and Medium-Expert), across 5 different random seeds.
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Figure 7: A more challenging setting where in addition to the patching of observations, we further
apply randomly zeroing of frame-stacking. We apply framestacking for visual observations, where
to make the task more difficult and partially observable, we randomly zero out 2 out of 3 frames, on
top of the masked observations.

5 Related Work

Our work builds up on two closely related line of work : (a) on short-term memory POMDPs and (b)
learning agent-centric latent states. We describe closely related work on partially observable settings,
both theoretical and empirical, and discuss why existing works fail to fully recover the agent-centric
latent state in a partially observed setting.

Theoretical Research on FM-POMDPs. Efroni et al. (2022b); Liu et al. (2022); Zhan et al. (2022);
Wang et al. (2022a) studied finite-sample guarantees under closely related m-step past and n-step
future decodability assumptions. Nevertheless, their algorithms are currently impossible to scale
and implement with standard oracles (such as log-likelihood minimization) since it requires an
optimistic optimization over a set of functions .Further, unlike our reward-free setting, their algorithm
is dependent on having a reward signal, whereas our work focuses on reward-free representation
learning. Lastly, these works did not considered the high-dimensional problem in the presence of
exogenous and time correlated noise.

Empirical Research on POMDPs. Partial observability is a central challenge in practical rein-
forcement learning settings and, as such, it has been the focus of a large body of empirical work.
Seminal large scale empirical deep RL research has considered serious partial observability, such
as the OpenAI Five program for Dota 2 (OpenAI et al., 2019) and the DeepMind AlphaStar system
(Mathieu et al., 2023). Much of this work has used a recurrent neural network or other sequence
model to handle a state with history. While much of this work is focused on directly learning a policy
or value function (Hausknecht & Stone, 2017), these approaches will fail when reward is absent.
Other work has learned a recurrent forward model to predict observations as well (Igl et al., 2018;
Hafner et al., 2019, 2020), yet this will fail when exogenous noise is dominant. To our knowledge,
none of these DeepRL POMDP works have considered our proposed setting of learning agent-centric
state with inverse kinematics. Ni et al. (2022) showed an extensive empirical benchmark where
recurrent online RL is used for POMDPs. This differs from our work principally in that it’s empirical
and focused on reward-signal, whereas our approach is reward-free and the motivation for our loss
objectives is a consequence of asymptotic theory we develop.

Research on Agent-Centric States and Inverse Kinematics. The primary line of theoretical
research on inverse kinematics and agent-centric states is exclusively concerned with the MDP
setting (Lamb et al., 2022; Efroni et al., 2022a,c,d; Islam et al., 2023; Mhammedi et al., 2023;
Hutter & Hansen, 2022). In particular, much of this work has focused on analysis showing that the
agent-centric state can be provably recovered under some assumptions. The PPE method (Efroni
et al., 2022d) introduced multi-step inverse kinematics in the deterministic dynamics, episodic setting
with fixed start states. Lamb et al. (2022) extended this to the non-episodic setting, while Efroni et al.
(2022a) handles a stochastic dynamics setting. Tomar et al. (2023); Islam et al. (2023) considered
multi-step inverse models for offline-RL, while only considering the fully-observed setting. While
Brandfonbrener et al. (2023) used pre-trained multi-step and one-step inverse models for online RL,
still in the fully-observed setting. Pathak et al. (2017b); Shelhamer et al. (2017); Badia et al. (2020);
Schmeckpeper et al. (2020); Rakelly et al. (2021) all use one-step inverse objective in fully-observed
setting to improve empirical performance. Bharadhwaj et al. (2022) InfoPower used a one-step
inverse objective along with an RNN to encode the history. Wang et al. (2022c) showed discovery
of agent-centric state using causal independence tests and was restricted to the fully-observed setting.
Wang et al. (2022b) studied learning a recurrent forward model with a factorization of the state
space into agent-centric and exogenous components. This method naturally handles POMDPs,
but requires learning both the agent-centric and exogenous states to satisfy the future observation
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prediction objective, so differs significantly from our algorithmic approach, that allows to directly
avoid learning information on the exogenous noise.

Work related to both POMDPs and Multi-step Inverse Kinematics. To our knowledge, ours is the
first work to explicitly consider inverse kinematics for learning agent-centric states in the POMDP
setting. Our counter-examples to AH and AH+A objectives, where the model can fail to learn the
state by memorizing actions, is reminiscent of the causal confusion for imitation learning work
(De Haan et al., 2019) . Baker et al. (2022) considers a one-step inverse model using a transformer
encoder, to learn an action-labeling model. While this is equivalent to our All History (AH) approach,
the focus of that work was not on learning representations. Sun et al. (2023); Goyal et al. (2022)
consider a sequence learning setup where a bidirectional sequence model masks observations and
actions in the input and predicts the masked actions. While these approaches seem consistent with
our theoretical analysis, they use a bidirectional model and therefore learn an entangled model of
ϕf
s and ϕb

s in their internal representations, where the correct usage for planning and exploration is
unclear. This makes their setting different from our focus on learning an explicit state representation
and their work doesn’t provide a theoretical analysis,

6 Conclusion

Partially observable settings in RL are often difficult to work with, theoretically without strong as-
sumptions, and empirically with a implementable algorithm, despite the generality of non-Markovian
observations that can arise naturally in practice. To recover the agent-centric full latent state that
can be considered as an information state, is quite difficult in the FM-POMDP setting. Several
works using multi-step inverse kinematics has recently been proposed for latent state discovery,
in the theoretical and empirical RL communities. However, despite the popularity, how to apply
multi-step inverse kinematics in the FM-POMDP setting has not been previously studied. Our
work shows that it’s possible to succeed in discovering agent-centric states in FM-POMDPs while
many intuitive algorithms fail. We made the assumptions of past-decodability (Efroni et al., 2022b)
while introducing a new future-decodability assumption. In this work, we demonstrated several
examples showing that the full agent-centric state can be recovered from partially observable, offline
pre-collected data for acceleration and control. Additionally, we showed that MIK+A, taking
the action information from past and future into account, can be effective for learning a latent
representation that can improve performance empirically on a challenging partially observable offline
RL task. A natural topic for future work is developing an online algorithm which discovers a policy
that achieves these decodability properties rather than assuming them.
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Appendix
In the appendix, we include proofs and counterexamples for our theoretical results, and environment
details and additional results for the experimental setup.

A Theory Details

A.1 Structural Lemma

We now describe a structural result of the agent-centric FM-POMDP model, closely following the
proof in Efroni et al. (2022d). We say that π is an agent-centric policy if it is not a function of
the exogenous noise. Formally, for any history of action-augmented observations o1 and o2, if
ϕf
⋆,s(o1) = ϕf

⋆,s(o2) then π(· | o1) = π(· | ϕf
⋆,s(o2)). Let Pπ(s

′ | s, h) be the probability to
observe the control-endogenous latent state s = ϕf

⋆,s(õP(h,m)), h time steps after observing step t,
s′ = ϕb

⋆,s(õP(t+h,m)) and following policy π, starting with action a. Note that the claim will also
hold if s or s′ use either the forward or the backward encoder. Let the exogenous state be defined
similarly as ξ = ϕ⋆

ξ(õ1:t) and ξ′ = ϕ⋆
ξ(õ1:t+h). The following result shows that, when executing an

endogenous policy, the future h time step distribution of the observation process conditioning on any
o has a decoupling property.
Lemma 1 (Decoupling property for endogenous policies Efroni et al. (2022d)). Let µ be the initial
distribution. Assume that the agent-centric and exogenous part is decoupled for the initial distribution,
µ(s, ξ) = µ(s)µ(ξ), and that π is an endogenous policy. Then, for any t ≥ 1 it holds that Pπ(o

′ |
o, a, h) = q(o′ | s′, ξ′)Pπ(s

′ | s, a, h)P(ξ′ | ξ, h).

This lemma is a key result for analyzing the Bayes optimal solution of the different inverse kinematic
objectives described in this work. We assume that the policy only depends on the state so that it rules
out the known hard problems with unobserved confounders. Some recent work in causal inference
literature mitigate the unobserved confounding issue by integrating the offline and online datasets
(Wu & Yang, 2022; Cheng et al., 2023).
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A.2 Proof that the MIK+A objective has the right Bayes optimal classifier

We analyze the Bayes optimal classifier of the MIK+A objective, by first applying Bayes theorem on
the action at and the future observation sequence starting from t+ k. We then use the decodability
assumption to introduce the latent variable zt+k and then apply the Markov assumption on the latent
space on step t+ k. We then cancel the probability over future observations because it has no action
dependence and also cancel the exogenous-noise part of the latent state.

We use the following notation for all t:

st = ϕf
s (õP(t,m))

st+k = ϕb
s(õF(t+k,n))

ξt = ϕξ(õ1:t)

ξt+k = ϕξ(õ1:t+k)

zt = (st, ξt).

We have that for all k > t:

Pπ(at|õP(t,m), õF(t+k,n)) =
Pπ(õF(t+k,n)|õm(t), at)π(at|õP(t,m))∑
a′ Pπ(õF(t+k,n)|õP(t,m), a′)π(a′|õP(t,m))

=
Pπ(õF(t+k,n)|zt, at)π(at|zt)∑
a′ Pπ(õF(t+k,n)|zt, a′)π(a′|zt)

=
Pπ(õF(t+k,n), zt+k|zt, at)π(at|zt)∑
a′ Pπ(õF(t+k,n), zt+k|zt, a′)π(a′|zt)

=
Pπ(õF(t+k,n)|zt+k)Pπ(zt+k|zt, at)π(at|zt)∑
a′ Pπ(õF(t+k,n)|zt+k)p(zt+k|zt, a′)π(a′|zt)

=
Pπ(zt+k|zt, at)π(at|zt)∑
a′ Pπ(zt+k|zt, a′)π(a′|zt)

=
Pπ(st+k|st, at)P(ξt+k|ξt)π(at|st)∑
a′ Pπ(st+k|st, a′)P(ξt+k|ξt)π(a′|st)

=
Pπ(st+k|st, at)π(at|st)∑
a′ Pπ(st+k|st, a′)π(a′|st)

= Pπ(at|st, st+k).

The first relation holds by Bayes rule. The third relation holds since zt+k is a deterministic function
of õF(t+k,n) under the future decodability assumption. The forth relation holds by Bayes rule, along
with the assumption that the future observations following t+ k are conditionally independent with
(zt, at) given zt+k (since we assume π on time step t only depends on st, since it’s an agent-centric
policy). The sixth relation holds by the decoupling lemma, Lemma 1.

A.3 Proof that All-History (AH) reduces to one-step inverse model

We analyze the Bayes-optimal classifier of the AH objective. We first apply Bayes theorem between
the observation sequence and the predicted action at. We then use the past-decodability assumption
to introduce latent variables zt and zt+1. We apply the chain rule of probability and then markov
independence of the observations given the latent states. The observations conditioned on the latents
then cancel, and then the exogenous noise dynamics also cancel, leaving the one-step inverse model
over the latent states.
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We use the following notation for all t.

st = ϕf
s (o1:t)

st+k = ϕf
s (o1:(t+k))

ξt = ϕξ(o1:t)

ξt+k = ϕξ(o1:t+k)

zt = (st, ξt)

The following relations hold.

P(at|o1:t, o1:t+k) = P(at|o1:t+k)

=
P(o1:t+k|at)P(at)∑
a′ P(o1:t+k|a′)P(a′)

=
P(o1:t, o(t+1):t+k, zt, zt+1|at)P(at)∑
a′ P(o1:t, o(t+1):t+k, zt, zt+1|a′)P(a′)

=
P(o1:t|at)P(zt|o1:t, at)P(zt+1|o1:t, zt, at)P(o(t+1):t+k|o1:t, zt, zt+1, at)P(at)∑
a′ P(o1:t|a′)P(zt|o1:t, a′)P(zt+1|o1:t, zt, a′)P(o(t+1):t+k|o1:t, zt, zt+1, a′)P(a′)

=
P(o1:t|at)P(zt|o1:t)P(zt+1|zt, at)P(o(t+1):t+k|zt+1)P(at)∑
a′ P(o1:t|a′)P(zt|o1:t)P(zt+1|zt, a′)P(o(t+1):t+k|zt+1)P(a′)

=
P(o1:t)P(zt|o1:t)P(zt+1|zt, at)P(o(t+1):t+k|zt+1)π(at|o1:t)∑
a′ P(o1:t)P(zt|o1:t)P(zt+1|zt, a′)P(o(t+1):t+k|zt+1)π(a′|o1:t)

=
P(o1:t)P(zt|o1:t)P(zt+1|zt, at)P(o(t+1):t+k|zt+1)π(at|st)∑
a′ P(o1:t)P(zt|o1:t)P(zt+1|zt, a′)P(o(t+1):t+k|zt+1)π(a′|st)

=
P(zt+1|zt, at)π(at|st)∑
a′ P(zt+1|zt, a′)π(a′|st)

=
P(st+1|st, at)P(ξt+1|ξt)π(at|st)∑
a′ P(st+1|st, a′)P(ξt+1|ξt)π(a′|st)

=
P(st+1|st, at)π(at|st)∑
a′ P(st+1|st, a′)π(a′|st)

= Pπ(at|st, st+1).

The second relation holds by Bayes rule. The third relation holds by since zt and zt+1 are deterministic
functions of the observation sequence by the decodability assumptions. The sixth relation holds by
using:

P(o1:t | at)P(at) = P(o1:t)π(at | o1:t)

due to Bayes rule. The seventh relation holds by the fact we assume π is agent centric. The ninth
relation holds by the decoupling lemma, Lemma 1.

A.4 Proof that All-History with Actions (AH+A) has no State Dependence

The Bayes-optimal classifier for the AH+A objective can be perfectly satisfied without using the
state, by simply memorizing the sequence of actions and retrieving them. Note that in practice, this is
easiest to achieve when the maximum K value is small.

The following relations holds for all k > t since there is an explicit conditioning in the probability
distribution.

P(at|x1:t, a1:t, x1:t+k, a1:t+k) = P(at|a1:t+k) = P(at|at) = 1.

This implies the AH+A Bayes solution erases the information on the agent-centric state, since the
action can be directly predicted.
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B Forward Jump Counterexample

Figure 8 contains a counter-example for the forward-jump (FJ) objective, for why FJ fails to capture
the agent-centric state in partial observability.

Figure 8: The full underlying MDP of the counterexample for the Forward Jump objective. Each of
the eight states shows (sA, sB), with the coloring used to reflect sB and the action which can reach
it. The special property of this MDP is that its multi-step inverse model examples with k ≥ 4 are
uninformative while its k = 1 examples are insufficient. This creates a counterexample for methods
solely relying on past-decodability, because the length of history required to decode the state may
overlap and prevent access to the k = 2 and k = 3 inverse kinematics examples.

With a small computer program we generated the inverse kinematics examples for this MDP from
k = 1 to k = 10. First, we generated the 16368 inverse kinematic examples and verified that
examples with 4 ≤ k ≤ 10 have a uniform distribution for the first action.

All of the inverse kinematics examples up to k = 6 are included in a text file in the supplementary
materials. A subset where the initial state is either (0,−1) or (0, 1) is shown below to give a flavor of
the structure, in which k = 4 has uniform probability over the first action whereas k = 2 has more
useful inverse kinematic examples:

k = 2 examples:
(0, -1)→ (0,−1) via a:(1, -1)
(0,−1) → (0, 1) via a:(-1, 1)
(0,−1) → (2,−1) via a:(-1, -1)
(0,−1) → (2, 1) via a:(1, 1)
(0, 1) → (0,−1) via a:(1, -1)
(0, 1) → (0, 1) via a:(-1, 1)
(0, 1) → (2,−1) via a:(-1, -1)
(0, 1) → (2, 1) via a:(1, 1)

k = 4 examples:
(0, -1)→ (0,−1) via a:(-1, -1, -1, -1)
(0,−1) → (0,−1) via a:(-1, 1, 1, -1)
(0,−1) → (0,−1) via a:(1, -1, 1, -1)
(0,−1) → (0,−1) via a:(1, 1, -1, -1)
(0,−1) → (0, 1) via a:(-1, -1, 1, 1)
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(0,−1) → (0, 1) via a:(-1, 1, -1, 1)
(0,−1) → (0, 1) via a:(1, -1, -1, 1)
(0,−1) → (0, 1) via a:(1, 1, 1, 1)
(0,−1) → (2,−1) via a:(-1, -1, 1, -1)
(0,−1) → (2,−1) via a:(-1, 1, -1, -1)
(0,−1) → (2,−1) via a:(1, -1, -1, -1)
(0,−1) → (2,−1) via a:(1, 1, 1, -1)
(0,−1) → (2, 1) via a:(-1, -1, -1, 1)
(0,−1) → (2, 1) via a:(-1, 1, 1, 1)
(0,−1) → (2, 1) via a:(1, -1, 1, 1)
(0,−1) → (2, 1) via a:(1, 1, -1, 1)
(0, 1) → (0,−1) via a:(-1, -1, -1, -1)
(0, 1) → (0,−1) via a:(-1, 1, 1, -1)
(0, 1) → (0,−1) via a:(1, -1, 1, -1)
(0, 1) → (0,−1) via a:(1, 1, -1, -1)
(0, 1) → (0, 1) via a:(-1, -1, 1, 1)
(0, 1) → (0, 1) via a:(-1, 1, -1, 1)
(0, 1) → (0, 1) via a:(1, -1, -1, 1)
(0, 1) → (0, 1) via a:(1, 1, 1, 1)
(0, 1) → (2,−1) via a:(-1, -1, 1, -1)
(0, 1) → (2,−1) via a:(-1, 1, -1, -1)
(0, 1) → (2,−1) via a:(1, -1, -1, -1)
(0, 1) → (2,−1) via a:(1, 1, 1, -1)
(0, 1) → (2, 1) via a:(-1, -1, -1, 1)
(0, 1) → (2, 1) via a:(-1, 1, 1, 1)
(0, 1) → (2, 1) via a:(1, -1, 1, 1)
(0, 1) → (2, 1) via a:(1, 1, -1, 1)

C Proof that MIK+A Recovers the full Agent-Centric State

The result in (Lamb et al., 2022) showed that given all examples of the multi-step inverse model from
1 to the diameter of the MDP, achieves the full agent-centric state in a deterministic MDP. Our claim
is a reduction to this proof.

D Additional Experimental Details and Environment Details

D.1 Pointmass Environment Details

D.1.1 Top View

The navigation environments were based on maze2d-umaze from D4RL Fu et al. (2020). The state of
the navigation is four-dimensional, including the pointmass’ position x, y and velocities vx, vy . The
action space is acceleration in each dimension, ax, ay . For our observation, we disable rendering of
the goal in the environment, render images from a camera at the top of the maze, and down-scale
them to 100x100. For the curtain experiments, the environment was modified to include both one and
three visual occlusions. Environments are visualized in Figure 3.

The data is collected using the built-in planner with Gaussian noise added to the actions. Rather
than sampling goals from the fixed set of goals in D4RL, we allow goals to be sampled uniformly at
random inside of the maze. The data is collected with no resets, and goals are re-sampled when the
pointmass is sufficiently close to the target position.

The original environment is partially observable because it cannot capture the velocity of the pointmass
in a single frame. In addition to lacking velocity, the curtain environments also contain regions where
the pointmass is partially or fully occluded, and thus the position of the pointmass is not observed.
With three curtains, there is additional uncertainty in the position of the pointmass with a single
frame, as the pointmass could be under any of the three different curtains. A trajectory can be seen in
Figure 10.
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Figure 9: Observations from the first person view environment. Unlike the top view, the global
position of the pointmass cannot always be directly inferred from a single observation. Additionally,
the maze has many different states with similar looking observations.

D.1.2 First Person View

In addition to the original D4RL environment, we create a new environment that navigates the
maze from a first person view (FPV). To do this, we add an angle, θ and angular velocity, vθ to the
pointmass’ state and change the action space to angular velocity, vθ̃ and acceleration along the axis
the pointmass is facing, ax. The Cartesian velocities vx, vy , are computed as:

vx += ax · cos θ ·∆t, vy += ax · sin θ ·∆t

where ∆t the angular velocity is set to vθ̃ and the MuJoCo simulator is stepped for frame_skip
timesteps. We render images from a camera on the pointmass facing the same direction as the axis of
acceleration and use that as our observation.

Since the action space has changed, we train a policy to navigate to goals using PPO Schulman et al.
(2017) and use the resulting policy to collect our dataset. Goals and images are modified the same as
in the top view environment.

The FPV environment is partially observable for a number of reasons. Like the top view, the velocities
cannot be inferred from a single observation. In this environment, however, the global location is not
necessarily inferable from any one frame. As can be seen in Figure 9, there are a number of different
states in the maze with a similar observation. Having a history of previous observations is required to
keep track of the position. Figure 10 shows four frames from the environment.

D.1.3 Experiment Implementation Details and Extra Experiment Results

The total sample size of the offline data for training is 500k for each navigation environment, where
each sample is a (100× 100× 3)-dimensional image. At each training iteration, we randomly sample
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Figure 10: Trajectories from the three curtain and first person environments.

16 batches with time horizon 64 in each batch. The total number of iterations of training is 200k. All
the numbers presented in the tables and Figure 4 is the average over the last 10k iterations of the
training process. The state estimation errors are the average absolute errors between the true states
and the estimated states. The results across different baselines and different navigation environments
are provided in Table 3. Since all the numbers is bounded by 1, for better visualization, we provide a
barplot of state prediction accuracy (defined as (1− state estimate error)× 100) in Figure 4. With
decomposing the state error into the position (observable) and velocity (observable) errors, the results
are provided in Table 4.

Objective Kmax No-Curtain One-Curtain Three-Curtains First Person
No History 1 49.3 49.9 53.7 11.8
No History 15 46.8 49.1 52.6 11.4

AH 1 8.6 12.7 12.8 5.3
AH 15 8.9 12.0 11.8 4.6

AH+A 1 44.3 45.6 46.8 25.3
AH+A 15 19.1 20.0 18.7 18.3

FJ 15 7.3 12.9 13.6 5.3
FJ+A 15 3.7 5.4 6.2 5.4
MIK 1 15.3 16.4 16.2 6.0
MIK 15 6.6 12.3 13.1 4.9

MIK+A 1 12.5 8.1 8.0 6.0
MIK+A 15 3.4 4.7 6.0 4.8

Table 3: State Estimation Errors (%) on various tasks with maxk=1 vs. maxk=15, with SP=False,
no-exo.

In terms of the optimizer, we use Adam optimizer to optimize the losses with learning rate 1e-4. To
avoid overfitting, we add L2 regularization on forward-running states with the decaying regularization
amount. In terms of the neural networks we are training on, there are three neural networks (Encoder,
Probe, Action Prediction) with details provided in the following.

Encoder The images are encoded using MLP-Mixer (Tolstikhin et al., 2021) with 8 layers and patch
size 10, and GRU (Chung et al., 2014) with 2 layers and hidden size 256 is used as the sequence
model. For MIK and MIK+A, there is a 2nd GRU network which runs backwards for decoding
the future. Alternatively, using a bidirectional RNN for the future works roughly equally well but
requires a slightly more involved implementation.

Probe We use a 2-hidden layer MLP with hidden size 256 aiming to train a mapping from the
latent states to the true states, which in our case is a 4-dimensional vector containing the position and
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Objective P/V No-Curtain One-Curtain Three-Curtains First Person
No History P 2.2 6.5 13.3 7.7

AH P 7.5 7.1 5.6 5.0
AH+A P 22.9 24.0 22.4 25.1

FJ P 3.2 7.1 7.1 5.0
FJ+A P 2.2 5.1 6.4 5.5
MIK P 2.5 6.1 6.5 4.7

MIK+A P 1.7 3.7 6.2 4.9
No History V 91.5 91.7 91.9 15.2

AH V 10.0 16.9 18.1 4.3
AH+A V 15.2 16.0 15.0 11.5

FJ V 11.3 18.6 20.1 5.7
FJ+A V 5.2 5.8 6.0 5.4
MIK V 10.7 18.1 19.5 5.0

MIK+A V 5.0 5.6 5.7 4.7

Table 4: Position and Velocity Estimation Errors (%) on various tasks with no exogenous noise, with
no self-prediction loss, and with maxk=15.

velocity of the agent. The loss for the probe is square loss, and no gradients pass from the probe to
the representation, such that the use of the probe does not affect the learned representation.

Action Prediction To train a mapping from the current and next latent state to the current action,
we use an embedding layer to embed the discrete variable, and then apply a 2-hidden layer MLP
with hidden size 256 with the cross entropy loss. In processing the sequence, we compute the action
prediction loss for all pairs of time-steps in parallel, thus covering all k values up to a hyperparameter
maxk. Experimentally we investigated both maxk=1 and maxk=15. Action prediction losses are
provided in Table 5. AH+A contains all the history which is a trivial question for action prediction so
that it has almost 0 loss. One optional extra step is to add Self-Prediction (SP) here, by doing this, we
use a 3-layer MLP with hidden size 512. The self-prediction objective allows gradients to flow into
st but blocks gradients into st+k. Adding self-prediction leading to improvement as shown in Table
6. Importantly, it somewhat reduces the degree of difference seen between the various objectives but
the overall ordering of results is similar to when self-prediction is not used.

Objective No-Curtain One-Curtain Three-Curtains First Person
No History 230.8 266.9 281.0 75.4

AH 9.2 54.9 61.7 12.4
AH+A 0.5 0.5 0.5 0.4

FJ 143.4 182.7 191.5 57.8
FJ+A 123.7 134.6 136.9 57.9
MIK 118.5 162.3 171.4 46.4

MIK+A 99.6 112.5 114.1 37.4

Table 5: Action-Prediction Loss (%) with Various Objectives.

Exogenous Noise To construct exogenous noise, we randomly sample images from the CIFAR-10
dataset (Krizhevsky et al., 2014) as the exogenous noise and add them to the original images. Some
examples of the no-curtain navigation environment with exogenous noise are provided in Figure 11
as an illustration. The results are provided in Table 7.

Figure 11: No-curtain navigation environment with exogenous noise.
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Objective Self-Prediction No-Curtain One-Curtain Three-Curtains First Person
No History N 46.8 49.1 52.6 11.4
No History Y 46.9 48.4 52.3 11.3

AH N 8.9 12.0 11.8 4.6
AH Y 4.1 7.9 9.2 9.9

AH+A N 19.1 20.0 18.7 18.3
AH+A Y 18.7 17.9 19.4 11.5

FJ N 7.3 12.9 13.6 5.3
FJ Y 6.2 10.1 10.9 3.8

FJ+A N 3.7 5.4 6.2 5.4
FJ+A Y 3.3 3.6 3.8 4.1
MIK N 6.6 12.3 13.1 4.9
MIK Y 6.0 9.9 10.7 3.7

MIK+A N 3.4 4.7 6.0 4.8
MIK+A Y 3.3 3.5 3.8 3.8

Table 6: State Estimation Errors (%) on various tasks without exogenous noise and with maxk=15,
where we show the effect of adding the self-prediction objective, which generally improves the quality
of results but leaves the ordering of the methods’ performance mostly unchanged.

Objective No-Curtain One-Curtain Three-Curtains First Person
No History 47.6 49.2 52.7 12.1

AH 9.9 13.3 13.2 4.9
AH+A 18.8 18.8 18.9 18.3

FJ 10.0 14.7 15.3 5.5
FJ+A 5.8 7.1 7.2 5.6
MIK 10.1 14.4 14.7 5.1

MIK+A 6.1 7.1 7.4 4.9

Table 7: State Estimation Errors (%) on various tasks with exogenous noise, and with no-SP, with
maxk=15.

D.2 Offline RL Experiment Details and Setup

We include details on our offline RL experiments including partial observability in the datasets.
Figure 12 shows few sample observations from the Cheeta-Run domain when adding random patches
to each observation. For our experiments, we use the visual dataset v-d4rl Lu et al. (2022) and to
make it partially observable, we randomly add patches of size (16× 16) to each observation. This
makes the observations non-Markovian in general, such that it is difficult to learn the agent-centric
state directly from the observations.

For the experimental setup, we follow the same pre-training of representations procedure from Islam
et al. (2023), where we train the encoders learning latent space during pre-training. We then follow
the fine-tuning procedure using the fixed representations from the encoders (keep them frozen) and
then do offline RL (specifically TD3 + BC) on top of the learnt representations. We use TD3 + BC
since it has been already shown to be a minimalistically useful algorithm to learn from offline datasets.
We do not use any other offline RL algorithm since in this work, we mainly prioritize on the ability of
the encoders to be able to recover the agent-centric state.

Our results show that the inverse kinematics based objectives can be quite useful for recovering the
agent-centric state, as stated and justified from our theoretical results; and experimental results show
that by using a forward-backward sequence model to handle past and future observations, such inverse
kinematics based objectives can be useful especially in presence of non-Markovian observation spaces.
Our expeirmental results are indeed quite better compared to the recently proposed ACRO method
Islam et al. (2023) on such visual offline datasets. We study the ability of the learnt encoders to be
able to learn robust representations from partially observable offline datasets.
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Figure 12: Illustration of patched observations from the visual offline datasets, adapted from Lu et al.
(2022). In addition, during frame-stacking when learning from pixel-based observations, we also
randomly add zero padding to 2 out of 3 of the stacked frames, to make the pixel-based offline RL
setting even more challenging.
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Figure 13: Patching of Observations : Full of Experimental Results comparing All the Inverse
Kinematics based objectives to other baselines on the 16× 16 patched observation setup.
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Figure 14: Random-Zeroing of FrameStacks : Full of Experimental Results comparing All the
Inverse Kinematics based objectives to other baselines on the randomly zeroing of framestacks setup,
where in addition to this, we also apply patching of size 16× 16.
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