
Greedy Learning for Large-Scale Neural MRI
Reconstruction

Batu Ozturkler1, Arda Sahiner1, Tolga Ergen1, Arjun D. Desai1, Shreyas Vasanawala2,
John M. Pauly1, Morteza Mardani1, Mert Pilanci1
Department of Electrical Engineering1 and Radiology2

Stanford University
{ozt, sahiner, ergen, arjundd, vasanawala,

pauly, morteza, pilanci}@stanford.edu

Abstract

Model-based deep learning approaches have recently shown state-of-the-art perfor-
mance for accelerated MRI reconstruction. These methods unroll iterative proximal
gradient descent by alternating between data-consistency and a neural-network
based proximal operation. However, they demand several unrolled iterations with
sufficiently expressive proximals for high resolution and multi-dimensional imag-
ing (e.g., 3D MRI). This impedes traditional training via backpropagation due to
prohibitively intensive memory and compute needed to calculate gradients and
store intermediate activations per layer. To address this challenge, we advocate an
alternative training method by greedily relaxing the objective. We split the end-to-
end network into decoupled network modules, and optimize each network module
separately, thereby avoiding the need to compute costly end-to-end gradients. We
empirically demonstrate that the proposed greedy learning method requires 6x less
memory with no additional computations, while generalizing slightly better than
backpropagation.

1 Introduction

Magnetic resonance imaging (MRI) is a widely used medical imaging modality that provides high
resolution information of the soft tissue anatomy, but is limited by long scan times. Deep learning
methods have gained popularity for accelerated MRI, improving image quality of reconstructions
from undersampled measurements over parallel imaging and compressive sensing (CS) techniques
[1, 2]. A typical approach is model-based deep learning, where an iterative algorithm is unrolled for
a fixed number of iterations. The iterative algorithm alternates between enforcing data-consistency
with the measurement model and a neural proximal operation [3, 4]. Model-based networks are
trained with backpropagation where the parameters of the end-to-end network are jointly optimized.
The graphics processing unit (GPU) memory requirement of training model-based networks with
backpropagation increases linearly with the measurement count and the number of layers in the neural
proximal operation, limiting the number of unrolled iterations of the model-based network which in
turn limits expressivity [5]. Therefore, improving the memory footprint of training could enable the
use of such networks in high-dimensional large-scale imaging applications such as Dynamic Contrast
Enhanced (DCE) imaging, or blood flow imaging (4D-flow).

Related Works. Several works have aimed to tackle the memory bottleneck of training model-
based deep networks. One line of work uses invertible networks where intermediate activations are
calculated by reversing each layer, hence removing the need to store intermediate activations using
backpropagation [6, 7, 8]. [9] applies stochastic approximations to the data-consistency layers of
model-based networks to reduce memory complexity with increasing number of measurements. It

NeurIPS 2021 Workshop on Deep Learning and Inverse Problems, virtual.



Figure 1: Example network with N = M = 3 where N is the number of unrolled iterations, M is the number
of modules. (a) Standard end-to-end training with backpropagation. Forward pass is computed through all
modules, and gradient updates are performed for all modules in the same backward pass. (b) Proposed greedy
learning algorithm. At the end of each proximal block, loss is computed, and a local gradient update is performed
on the current module. (c) Update block consists of data-consistency with measurements, and the proximal block
consists of residual blocks.

must be noted that these approaches make modifications to the network architecture whereas our
method proposes a greedy optimization method that is compatible with any model-based network.
Thus, our method can be synergistically combined with any of these approaches to further reduce
memory.

Recent works in computer vision propose alternatives to backpropagation for convolutional neural
networks (CNNs) in the context of image classification [10, 11, 12]. One approach is layer-wise
training, where single hidden-layer subnetworks are trained sequentially until convergence while
the previous part of the network remains frozen [11]. Another alternative is to use a greedy learning
approach, where a network is split into several smaller network modules, and gradient updates for
each module are decoupled, which was shown to achieve a similar generalization performance as
backpropagation [12]. Although memory efficiency is not the primary focus of those works, greedy
learning can improve the memory footprint of training by performing local gradient updates as
opposed to end-to-end gradient updates in backpropagation.

In this work, we propose a greedy training objective for learning model-based networks. We split
the end-to-end network into decoupled network modules, and perform gradient updates on each
module independently. Since each module has a significantly lower memory footprint, the memory
requirement of the overall network decreases as well. Hence, our approach reduces memory when
the number of measurements or number of layers is large.

Contributions. Our contributions can be summarized as follows:

• We propose greedy learning for MRI reconstruction, which requires 6x less GPU memory
during training while the compute time remains the same.

• We demonstrate that greedy learning can improve generalization performance compared to
backpropagation for MRI reconstruction with model-based networks.

2 Background

The forward model of accelerated MRI with parallel imaging and compressive sensing (CS) [1, 2]
can be modeled as

y = UFSx+ ε (1)

where y is the observed measurements in Fourier space (k-space), x is the real image we would like
to reconstruct, S are coil sensitivity maps associated with the receiver coils used in parallel imaging,
F is the Fourier transform matrix, U is the undersampling mask, and ε is additive noise. Then, the

2



Algorithm 1 Greedy Learning of Model-Based Networks

Input: Samples or mini-batches {(x(0)k , xk)}k≤Nb

Initialize: Parameters {θm}m≤M
for k ∈ 1, ..., Nb do

for m ∈ 1, ...,M do
x
(m)
k ← fθm(DC(x

(m−1)
k ))

Compute∇θmL(x
(m)
k , xk)

θm ← Update Parameters(θm).
end for

end for

MRI reconstruction problem can be formulated as

x̂ = argmin
x

1

2
‖Ax− y‖22 + λR(x) (2)

whereA = UFS denotes the forward model,R is a regularization function and λ is the regularization
strength. This optimization problem can be solved in an alternating manner using proximal gradient
descent [3]

x(i+) = DC(x(i)) = x(i−1) − 2tAH(Ax(i) − y) (3)

x(i+1) = ProxR(x
(i+)) (4)

where i is the iteration number, t is the step size, AH is the Hermitian transpose of the forward model
operator A. DC denotes data-consistency, and ProxR is the proximal operator. In model-based
networks, the proximal operator is learned with a CNN with trainable parameters, and the iterative
optimization algorithm described above is unrolled for a fixed number of iterations. Then, (4) can be
rewritten as

x(i+1) = fθi(x
(i+)) (5)

where fθi is the network, and θi its parameters at ith iteration. Such a models parameters can be
jointly optimized using backpropagation

min
θ1,..,θN

∑
k

L(fθ1,..,θN (yk, Ak), xk) (6)

where fθ1,..,θN is the end-to-end network, yk is the kth undersampled image, xk is the kth fully-
sampled reference,L is the loss function, andN is the number of unrolled iterations. In our framework,
we use the unrolled neural network described above as the baseline model for comparison.

3 Greedy Learning for MRI Reconstruction

Here, we describe our method for optimizing model-based deep networks. We adapt our method
from the greedy learning aproach in [12] for training CNNs, where we extend this to model-based
networks. We consider a model-based network with N number of unrolled iterations, where the
network is split into M modules, such that NM is the number of data-consistency steps and proximal
steps in each module. For simplicity we outline the case where N =M . In particular, let x(0) = y be
the input, x the fully sampled reference, x(m) = fθm(DC(x(m−1))) the output of the mth network
module, and Nb is the number of mini-batches. For the mth network module, let the cost function be
L(fθm(DC(x(m−1))), x), where we select L to be L1 loss. Then, the parameters of module m can
be optimized using the greedy training objective:

min
θm
L(fθm(DC(x(m−1))), x) (7)

where x(m−1) = fθ∗m−1
(DC(x(m−2))) form > 1, and θ∗m−1 are the optimal weights for the previous

module. Our method to optimize the greedy training objective in Eq. 7 for M modules is outlined in
Alg 1. When a mini-batch is sampled during training, the first module computes the forward pass

3



R Method SSIM nRMSE PSNR Memory
(dB) (MB)

12x
Backpropagation 0.896 (0.006) 0.127 (0.007) 40.06 (0.33) 10016
Greedy (M = 8) 0.919 (0.001) 0.124 (0.008) 40.24 (0.36) 1679
Greedy (M = 4) 0.903 (0.004) 0.126 (0.007) 40.12 (0.33) 2603

16x
Backpropagation 0.887 (0.007) 0.134 (0.008) 39.61 (0.33) 10016
Greedy (M = 8) 0.912 (0.001) 0.131 (0.008) 39.79 (0.36) 1679
Greedy (M = 4) 0.888 (0.007) 0.134 (0.008) 39.60 (0.32) 2603

Table 1: Comparison of performance and maximum GPU memory during training for backpropagation
and greedy learning with M = 4, and M = 8. Metrics are reported as mean (standard deviation).

on the mini-batch of images, performs a gradient update based on its own local loss, and passes the
result of the forward pass to the next module. This procedure is repeated until the final module which
produces the final prediction of the network, after which a new mini-batch is sampled. Therefore,
individual updates of each set of parameters are performed independently across different modules,
which drastically reduces the memory requirement. In our approach, we update each module using
backpropagation. The model-based network trained with the proposed greedy approach is illustrated
in Fig. 1.

4 Results

We evaluated the effectiveness of our approach for two acceleration factors, R = {12, 16}. We
considered greedy learning with two different network splits M = {4, 8}. We reported structural
similarity (SSIM), normalized root-mean-square-error (nRMSE), and peak signal-to-noise ratio
(PSNR) calculated on magnitude images. Additional experimental details are provided in Appendix
A.

Table 1 shows the performance and maximum GPU memory during training comparison for greedy
learning and backpropagation. Greedy learning with M = 8 performed best across all image metrics
compared with backpropagation, and greedy learning with M = 4. Representative knee images from
the test set are illustrated in Fig. 2 in Appendix B. Greedy learning successfully recovered relevant
structural information, preserving details at least as well as backpropagation.

We benchmarked the training speed and the maximum memory required during training on a 12GB
NVIDIA Titan Xp graphics card. The maximum GPU memory used by greedy learning with M = 8
was 6x less than maximum GPU memory used in end-to-end backpropagation. On the same GPU,
training time per-iteration was same for backpropagation and greedy learning (Fig. 3). Details on the
training time comparison for backpropagation and greedy learning is provided in Appendix C.

5 Discussion and Conclusion

In this work, we presented an alternative to backpropagation for training model-based networks
via greedy learning. By performing gradient updates on several network modules, greedy learning
allows a large reduction in the memory-footprint of training. Our experiments on a knee MRI dataset
show the effectiveness of our approach in reducing memory during training while preserving, and
potentially improving, generalization performance.

A stated limitation of greedy learning is the decoupling of gradient updates, which prevents infor-
mation flow between learned features among network modules that are optimized independently,
resulting in less generalizable features. In our experiments for this application, however, we found that
greedy learning with M = 8 generalizes better compared to M = 4 and backpropagation, in addition
to great improvements to memory consumption. These memory improvements will undoubtedly
be important for enabling larger model-based networks with higher expressivity for reconstructing
images from 3D MRI, DCE imaging, or 4D-flow. The demonstrated benefits of greedy learning thus
provide a vast potential for enhanced clinical outcomes, as can be investigated in future work.

4



Acknowledgments and Disclosure of Funding

This work was supported by NIH Grants R01 EB009690, R01 EB026136 and NSF Grant DGE-
1656518.

References
[1] Klaas P. Pruessmann, Markus Weiger, Markus B. Scheidegger, and Peter Boesiger. Sense:

Sensitivity encoding for fast mri. Magnetic Resonance in Medicine, 42(5):952–962, 1999.

[2] Michael Lustig, David Donoho, and John M. Pauly. Sparse mri: The application of compressed
sensing for rapid mr imaging. Magnetic Resonance in Medicine, 58(6):1182–1195, Dec 2007.

[3] Christopher M Sandino, Joseph Y Cheng, Feiyu Chen, Morteza Mardani, John M Pauly, and
Shreyas S Vasanawala. Compressed sensing: From research to clinical practice with deep neural
networks: Shortening scan times for magnetic resonance imaging. IEEE Signal Processing
Magazine, 37(1):117–127, 2020.

[4] Hemant K. Aggarwal, Merry P. Mani, and Mathews Jacob. Modl: Model-based deep learning
architecture for inverse problems. IEEE Transactions on Medical Imaging, 38(2):394–405, Feb
2019.

[5] Morteza Mardani, Qingyun Sun, Shreyas Vasawanala, Vardan Papyan, Hatef Monajemi, John M.
Pauly, and David L. Donoho. Neural proximal gradient descent for compressive imaging. in
Proc. Neural Information Processing Systems (NeurIPS), 2018.

[6] Patrick Putzky and Max Welling. Invert to learn to invert, 2019.

[7] Michael Kellman, Kevin Zhang, Eric Markley, Jon Tamir, Emrah Bostan, Michael Lustig,
and Laura Waller. Memory-efficient learning for large-scale computational imaging. IEEE
Transactions on Computational Imaging, 6:1403–1414, 2020.

[8] Ke Wang, Michael Kellman, Christopher M. Sandino, Kevin Zhang, Shreyas S. Vasanawala,
Jonathan I. Tamir, Stella X. Yu, and Michael Lustig. Memory-efficient learning for high-
dimensional mri reconstruction, 2021.

[9] Jiaming Liu, Yu Sun, Weijie Gan, Xiaojian Xu, Brendt Wohlberg, and Ulugbek S. Kamilov.
Sgd-net: Efficient model-based deep learning with theoretical guarantees, 2021.

[10] Zhouyuan Huo, Bin Gu, Qian Yang, and Heng Huang. Decoupled parallel backpropagation
with convergence guarantee, 2018.

[11] Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Greedy layerwise learning can
scale to imagenet, 2019.

[12] Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Decoupled greedy learning of
cnns, 2020.

[13] F Ong, S Amin, S Vasanawala, and M Lustig. Mridata. org: An open archive for sharing mri
raw data. In Proc. Intl. Soc. Mag. Reson. Med, volume 26, 2018.

[14] F Ong and M Lustig. Sigpy: a python package for high performance iterative reconstruction. In
Proceedings of the ISMRM 27th Annual Meeting, Montreal, Quebec, Canada, volume 4819,
2019.

[15] Leslie Ying and Jinhua Sheng. Joint image reconstruction and sensitivity estimation in sense
(jsense). Magnetic Resonance in Medicine, 57(6):1196–1202, 2007.

[16] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. arXiv preprint arXiv:1912.01703, 2019.

[17] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

5



A Experimental Details

A.1 Dataset

Our experiments were performed with the fully-sampled 3D fast-spin echo (FSE) multi-coil knee MRI
dataset publicly available in mridata.org [13]. Each 3D volume had a matrix size of 320× 320× 256,
where training is performed 2D by treating each axial slice with size 320× 256 as separate examples.
The dataset consists of unique scans from 19 subjects, where 14 subjects (4480 slices) were used
for training, 2 subjects (640 slices) were used for validation, and 3 subjects (960 slices) were used
for testing. Sensitivity map estimation was performed in Sigpy [14] using JSENSE [15] with kernel
width of 8 for each volume. Fully-sampled references were retrospectively undersampled using a 2D
Poisson Disc undersampling mask.

A.2 Training Details

Experiments were conducted using Pytorch [16]. A modified version of the network in [3] was used
as the baseline network architecture. Our network had N = 8 unrolled blocks, where each proximal
block consisted of 2 residual blocks with 128 channels. Each residual block consisted of 2 ReLUs
followed by convolutional layers with no normalization. A batch size of 4 was used in all experiments,
which was the largest possible batch size to fit the baseline network to a 12 GB GPU. The baseline
network, as well as each network module in greedy learning were trained with the Adam optimizer
with β1 = 0.9, β2 = 0.999 [17]. All networks were trained for 80000 steps. At inference time, the
model checkpoint that achieved the lowest validation nRMSE was selected for each method.

B Sample Reconstructions

Figure 2: Reconstruction of a representative test knee slice with backpropagation, greedy learning
with M = 8, and M = 4.

C Training Time

In this section, we report the computation time per-iteration across different methods. We compare
backpropagation with greedy learning on the same GPU.

In addition, since individual updates of modules are independent, optimization of each module can be
parallelized. In parallel greedy learning, the network modules are split across multiple devices. When
a mini-batch is sampled, the forward pass is computed sequentially through all modules. After the
forward pass is computed, each backward pass can be asynchronously executed among all modules

6



in parallel. Since backward time is the primary bottleneck, asynchronous execution of the backward
operation can greatly decrease overall computation time.

Computation time comparison for backpropagation on 1 GPU, greedy learning on 1 GPU, and parallel
greedy learning on 2 GPUs are illustrated in Fig. 3. Since no additional computations are needed for
greedy learning, the training time is same as backpropagation using the same GPU. Split across two
GPUs, parallel greedy learning results in a speed up in training compared to backpropagation and
greedy learning. When multiple GPUs are available, parallel greedy learning can enable layer-wise
parallelism to reduce overall training time without compromising reconstruction performance.

Figure 3: Comparison of computation time per iteration for backpropagation on 1 GPU, greedy
learning on 1 GPU, and parallel greedy learning on 2 GPUs. Computation time for backpropagation
was normalized to 1 to show relative speed across methods. On a single GPU, backpropagation
and greedy learning have similar computation time. When independent modules in parallel greedy
learning are split across 2 GPUs, backward time can be reduced to speed up training.

7


	Introduction
	Background
	Greedy Learning for MRI Reconstruction
	Results
	Discussion and Conclusion
	Experimental Details
	Dataset
	Training Details

	Sample Reconstructions
	Training Time

