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ABSTRACT

The Steiner Tree Problem (STP) is an NP-hard combinatorial optimization problem
with applications in areas like network design and facility location. Despite its
importance, learning-based solvers for STP have been hindered by the lack of large-
scale, diverse datasets necessary to train and evaluate advanced neural models. To
address this limitation, we introduce a standardized dataset comprising over a mil-
lion high-quality instances with optimal solutions, spanning various problem sizes
and graph structures. Our dataset enables benchmarking of neural combinatorial op-
timization methods across both supervised and reinforcement learning paradigms,
encompassing autoregressive and non-autoregressive inference approaches. Our
experiments show that supervised learning excels in in-distribution settings, while
reinforcement learning generalizes better to unseen problem sizes, highlighting a
trade-off between solution quality and generalization. We compare NCO methods
across different STP scales and graph types, and demonstrate that solvers trained
on our datasets generalize well to real-world instances without fine-tuning, proving
its practical utility. We hope this benchmark promotes further STP research and
advances NCO techniques for broader combinatorial optimization challenges.

1 INTRODUCTION

The Steiner Tree Problem (STP) is an NP-hard combinatorial optimization challenge focused on find-
ing the minimum-cost tree spanning a set of nodes (terminals) in a weighted graph. Solving the STP
is essential for optimizing connections between multiple objects or locations while minimizing costs
or resources. It has diverse applications, including circuit (MacGregor Smith and LIEBMAN]| |1979)
and network design (Gouveia and Magnantil 2003)), facility location (Ljubic, [2007), phylogenetics
(Lu et al.,|2003), and image processing (Russakovsky and Ng| |2010). The STP has many variant
extensions with unique characteristics such as the number of nodes, edge weight distribution, graph
structure, and other specific constraints.

Due to its significance, there are many algorithms for the STP, which can be broadly categorized into
two types: classical rule-based heuristics (Esbensen, |1995) and those solved using Mixed Integer
Linear Programming (MILP) (Gamrath et al.,[2017). Rule-based heuristics tend to be specialized for
specific scenarios, and designing such heuristics is highly non-trivial. Exact MILP solvers are more
versatile but generally suffer from poor scalability. These challenges of the classical algorithms are not
unique to STP but are common in general combinatorial optimization (CO) domains. To address these
challenges, recent research has focused on Neural Combinatorial Optimization (NCO), leveraging
neural networks to enhance solution methods. However, NCO research has mainly concentrated on a
few CO tasks, such as the Traveling Salesman Problem (TSP), Capacitated Vehicle Routing Problem
(CVRP), and Maximum Independent Set (MIS).

Learning-based solvers for combinatorial optimization problems can generally be classified by their
solution generation approach and learning paradigm. Constructive solvers generate a single solution in
one pass, while improvement solvers iteratively refine solutions through local search techniques (Chen
and Tian, [2019; L1 et al.,[2021;d O Costa et al., 2020; 'Wu et al., 2021; Hou et al.,[2022). Given the
importance of generating solutions efficiently with minimal prior knowledge, our benchmark focuses
on constructive solvers. These methods have shown promise for various CO problems, efficiently
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generating solutions in a single forward pass and minimizing the need for extensive human expertise.
However, research for the STP has been limited due to the lack of large-scale, high-quality datasets
required for training sophisticated models. Existing benchmarks, such as SteinLib (Koch et al., 2001},
provide only a few dozen instances per scenario, which are insufficient for advancing state-of-the-art
machine learning methods. In contrast, problems like the vehicle routing problems have benefited
from vast, well-organized datasets, enabling more effective training and evaluation.

To address the limitations in STP research due to the lack of large-scale datasets, we introduce
Steiner Tree Problem Benchmark (SteBen), a standardized dataset containing over a million STP
instances with exact solutions across various scenarios. Our dataset covers a wide range of graph
types, including variations in terminal node counts, data sizes, and edge distributions, making
it compatible with existing STP libraries. Our dataset supports the evaluation of NCO methods
under both supervised and reinforcement learning frameworks, covering both autoregressive and
non-autoregressive methods. To facilitate this, we provide a dataset for supervised learning and a
specialized reinforcement learning environment tailored for STP, where agents can interact and learn
within the same problem scenarios.

Using SteBen, we conducted a comprehensive comparison of NCO methods and classical algorithms,
focusing on four distinct NCO groups: (1) autoregressive supervised learning, (2) non-autoregressive
supervised learning, (3) autoregressive reinforcement learning, and (4) non-autoregressive reinforce-
ment learning. Since there has been limited research on learning-based solvers specifically for the STP,
we aimed to evaluate broad methodological categories rather than specific state-of-the-art (SOTA)
solvers, to reveal which approaches show the most promise for solving the STP.

Our contributions can be summarized as follows:

* We provide a benchmark dataset and implemented baselines for STP to evaluate a compre-
hensive range of NCO methods.

* We compare NCO methods, highlighting their strengths and weaknesses on the STP across
different scales and graph types.

* NCO solvers trained on SteBen generalize well to real-world instances without additional
fine-tuning, demonstrating its practical utility.

We hope SteBen will drive further research into NCO methods for STP and foster the development
of robust, generalizable techniques for broader combinatorial optimization challenges. By offering a
comprehensive benchmark, SteBen aims to be a key resource for the CO community.

2 RELATED WORK

2.1 CLASSIFICATION OF CONSTRUCTIVE SOLVERS

Machine-learning based constructive solvers can be divided into autoregressive, which incrementally
extend partial solutions, and non-autoregressive, which generate solutions in a single step. They
can also be classified by their learning approach: supervised learning, which uses labeled data, and
reinforcement learning, which explores the solution space without labels.

2.1.1 AUTOREGRESSIVE SOLVERS

Autoregressive supervised learning methods predict the next sequence value based on the current
one. Pointer Networks (Meire et al.,[2015) introduced this idea, predicting sequences step-by-step.
Later improvements include dividing problems into subproblems (Nowak et al.,[2018)) and using a
variational autoencoder to solve them in a compressed latent space (Hottung et al.l 2020). Recently,
Drakulic et al.|(2024) applied imitation learning techniques for enhanced performance on supervised
datasets. Autoregressive reinforcement learning methods also extend partial solutions iteratively.
This approach, which efficiently handles large combinatorial action spaces, is widely adopted in
RL-based solvers. Bello et al.| (2016)) applied reinforcement learning to Pointer Networks, while
graph embedding networks (Khalil et al., 2017) and attention modules (Kool et al.| [2018) further
refined this idea, leading to improved methods like POMO (Kwon et al.,[2020) and Sym-NCO (Kim
et al., [2022).
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2.1.2 NON-AUTOREGRESSIVE SOLVERS

Non-autoregressive methods generate solutions in a single step, avoiding the error accumulation seen
in autoregressive methods. Several studies have taken a traditional supervised learning approach
(L1 et al.l 2018 Joshi et al., |2019; [Fu et al., 2021} |Geisler et al., |2021)), while advanced generative
models like VAEs (Hottung et al., 2020), GANs (Cheng et al., [2022; [Li et al.,|2022)), and GFlowNets
(Zhang et al.| 2023) have gained traction. DIFUSCO (Sun and Yang} 2023), a GNN-based diffusion
model, has shown promising results, further enhanced by cost-guided search (Li et al.,|2024). Non-
autoregressive reinforcement learning is less common due to the complexity of large action spaces,
though |Qiu et al.|(2022) introduced a scalable approach using parameterization and the REINFORCE
algorithm.

2.2  STEINER TREE PROBLEM SOLVERS

As mentioned in Section [I| the STP has been relatively less explored within the NCO domain.
(Yan et al.| 2021)) utilized the Double Deep Q Network (DDQN) approach to tackle the STP in an
end-to-end manner. (Zhang and Ajwani, |2022) introduced an algorithm for the STP that generates
near-optimal solutions by relaxing the constraints for the Mixed Integer Linear Programming (MILP)
of the STP. (Ko et al.|[2023)) addressed the Steiner Tree Packing Problem (STPP), which is an extended
version of the STP where multiple Steiner tree problems are grouped together. Additionally, several
works have focused on a variant of the STP called the Euclidean Steiner Tree Problem, in which the
points are scattered on the Euclidean space, and the solution ensures that no two edges intersect (Ras
et al.,[2017; [Wang et al.| |2022; [Hsu et al., [2022} |Brazil et al., [ 2024)).

2.3  STEINER TREE PROBLEM DATASETS

(Koch et al.,[2001) generated a STP benchmark dataset. Their dataset consists of various STP instances
with different levels of difficulty and their corresponding solutions. On the other hand, there was a
challenge for solving STP on undirected edge-weighted graphs (Bonnet and Sikoral, 2018). However,
the numbers of instances in both datasets are limited to a few dozens, which is insufficient to be used
to train a sophisticated neural network. There are also datasets for variant versions of STPs. Pedersen
et al.| (2024) published a dataset for the Quato Steiner tree problem, which additionally considers
edge capacities when finding the Steiner tree. [Lee et al.|(2022) published Respack dataset for the
STPP.

3 PRELIMINARIES

3.1 LEARNING-BASED COMBINATORIAL OPTIMIZATION SOLVERS

Let F be the set of feasible solutions for a combinatorial optimization problem (COP) instance
s € S, where S is the space of all instances associated with a cost function ¢ : F5 — R. The
objective is to find the optimal solution f} that minimizes the cost for a given instance s:

fi =argmincg(f). 1
feFs

A learning-based combinatorial optimization solver is a parameterized algorithm fg that aims to
approximate the optimal solution for any given instance s. The goal is to learn parameters 6 € ©

such that fy(s) = fr forall s € S.

Learning-based solvers are categorized according to their learning paradigm, with detailed explana-
tions of each approach provided in Appendix [B| To tackle the challenges in complex combinatorial
optimization problems, it is essential to have access to high-quality datasets and environments that
capture the diverse and intricate nature of these instances. A standardized, large-scale dataset with
exact solutions enables the training and evaluation of advanced neural models under both supervised
and reinforcement learning paradigms. Additionally, providing specialized environments for rein-
forcement learning facilitates the development of algorithms capable of handling the intricacies of
such problems.
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3.2 THE STEINER TREE PROBLEM

An instance of the Steiner Tree Problem (STP) can be defined within this framework. The STP
instance is given as an undirected graph s = (V| E), where V is the set of vertices and E is the set of
edges, along with a subset of vertices 7' C V called ferminals. Each edge e € E has an associated
non-negative cost cs(e).

The goal is to find a tree f = (V/, E') € F; that spans all the terminals in 7', where V' C V and
E’ C E, such that the sum of the edge costs is minimized:

f¥ =argmin cs(e). 2)

We remark that the STP is NP-hard, making it infeasible to find exact solutions for large instances.
Therefore, heuristic and approximation algorithms are usually employed to solve the STP, as in other
combinatorial optimization problems.

As illustrated in Figure |1} we compare the STP with the Traveling Salesman Problem (TSP), a
well-known combinatorial optimization problem, using a toy instance. While relocating a node in
the TSP leads to minor changes in the optimal tour, adjusting the position of a terminal in the STP
significantly impacts the selected edges and can even alter the total number of edges in the optimal
Steiner tree. This demonstrates that dependencies in the STP may extend over relatively distant
regions, and small perturbations can lead to substantial variations in the solution space.

TSP STP

Figure 1: Comparing (a) TSP and (b) STP: A toy example illustrating the change in solution
distribution due to a small perturbation (Yellow nodes: terminals; Bold edges: unchanged solution
edges; Red edges: changed solution edges).

Effectively applying learning-based solvers to the STP requires addressing its unique challenges, such
as the significant impact of small perturbations on the solution space and the complex dependencies
across the graph.

4 STEBEN: A STEINER TREE PROBLEM BENCHMARK FOR NCO

4.1 DATASET

To address the challenges in complex combinatorial optimization problems, it is crucial to have access
to high-quality datasets that capture the diverse and intricate nature of the STP. SteBen provides a
standardized, large-scale dataset with exact solutions, enabling the training and evaluation of advanced
neural models under both supervised and reinforcement learning paradigms. Our dataset includes 1.28
million optimally solved samples from various graph models i.e., Erd6s-Rényi (ER), Watts-Strogatz
(WS), Random Regular (RR), and Grid. Node sizes for training include 10, 20, 30, 50, and 100, while
the test datasets cover not only these sizes but also larger instances of 200, 500, and 1000 nodes to test
the generalization capabilities of models. Additionally, SteBen offers a specialized environment for
reinforcement learning, facilitating the development of algorithms capable of handling the intricacies
of the STP across diverse problem scales and structures.

In generating the STP instances, we followed the procedures outlined in previous works (Yan et al.,
2021; |Ko et al.| |2023). Graphs were sampled from ER, WS, RR, and grid models. For grid-based
instances, nodes have 2-dimensional location features, making them analogous to Euclidean-space
combinatorial optimization problems like TSP and VRPs. In each graph, terminals were randomly
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selected with a 0.2 probability, and edge costs were assigned as random integers from a truncated
Gaussian distribution over [1,2!¢]. We ensured that all graphs were connected by repeating the
generation process if isolated nodes were present. The complete dataset generation process is detailed
in Algorithm [I]and Appendix [C|

Algorithm 1 Dataset Generation for STP Instances

Require: Number of instances /N, number of nodes n, terminal probability p; = 0.2, graph type
G € {ER,RR, WS, Grid}
1: Initialize an empty dataset D
2: fori=1to N do
3 while G is disconnected do
4: Generate graph G(V, E) based on graph type G and parameters
5: end while
6 Assign each vertex v € V to be a terminal with probability p;
7: Assign edge costs c(e) from a truncated Gaussian distribution NV (u, 02), truncated to [1, 219]
8: Add the generated graph G to dataset D
9: end for
10: return dataset D

4.2 BENCHMARKING BASELINES

SteBen offers a carefully curated set of diverse construction heuristic methods to evaluate their
performance on STP. The baselines are classified into four combinations based on two characteristics:
SL against RL, and Autoregressive versus Non-autoregressive. All models were trained on our
benchmark and evaluated under the same computational budget, using identical feature embedding
techniques and decoding strategy which is proposed by (Yan et al.| [2021) to ensure feasible STP
solutions (see Appendix [K.2). We ensured a fair comparison by excluding transductive learning
techniques i.e. active search and Monte Carlo Tree Search (MCTS).

This chapter provides a brief summary of the baselines and outlines any required modifications to
implement in STP when the baseline was not initially intended for STP.

Autogressive model and supervised learning. Autoregressive and supervised learning approaches,
such as LEHD (Luo et al.} 2024) and BQ-NCO (Drakulic et al.,2024), have recently concentrated on
exploiting the symmetries present in COPs. These methods reconstruct the problem by excluding
selected nodes and recursively considering the remaining nodes, relying on the tail-recursive property
of routing problems to enhance generalization. However, STP lacks this tail-recursive property, as
the selection of remaining edges and Steiner vertices depends heavily on partial solutions, making it
difficult to apply these methods.

To address the challenges posed by the STP and leverage the benefits of autoregressive and supervised
learning, we propose adapting PtrNet, an autoregressive, supervised learning model. To adapt PtrNet
for SteBen, we made several key modifications: (1) representing the tree solution sequentially using
level-order tree traversal, (2) prioritizing nodes based on their minimum distance to terminals rather
than lexicographic order, and (3) incorporating GNN embeddings into node features to account for
missing edge cost information and better capture graph topology. Further details and ablation studies
on these modifications are provided in Appendix [G]

Autoregressive Model and Reinforcement Learning. Cherrypick (Yan et al.|[2021)) solves the STP
using an autoregressive RL model that leverages graph embedding and deep Q-learning, optimizing a
reward function to minimize tree length and favor terminal selection. Similarly, the Attention Model
(AM) (Kool et al.| [2018) is a neural construction heuristic for routing problems that employs an
autoregressive model within a reinforcement learning framework. It uses a sequence-to-sequence
architecture with an attention mechanism to construct solutions by focusing on context vectors derived
from previously selected nodes and their positional embeddings. To adapt the AM for the STP, the
context embedding needs to be modified to reflect the specific requirements of the STP, with details
provided in Appendix [Hl Although recent methods like POMO (Kwon et al.| 2020) and Sym-NCO
(Kim et al., [2022) leverage the symmetricity of COPs based on AM, applying them to the STP is not
trivial because they do not account for the symmetricity in tree-structured solutions.
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Non-autogressive model and supervised learning. DIFUSCO (Sun and Yang| |2023)) is a novel
graph-based diffusion framework for solving combinatorial optimization problems. They formulate
NP-complete problem as {0, 1}-vector optimization problem and leverage graph-based denoising
diffusion model to generate high-quality solutions.

To incorporate additional details regarding edge cost and terminal information, we modify the
initialization of edge features in the Anisotropic Graph Neural Networks of DIFUSCO’s Graph-based
denoising network as follows:

e(L)j =W’ [f9 (Xt), WCXcosta Wixind} 3)

where fj is the embedding function in DIFUSCO and W°, W¢, W are the learnable parameters.
Furthermore, decoding strategy for STP is required to get high-quality feasible solution from generated
heatmap. To maintain consistency with other baselines, we incorporate the Cherrypick decoding
method used by other baselines.

Non-autogressive model and reinforcement learning. The Differentiable Meta Solver (DIMES)
algorithm (Qiu et al.,|2022) is a novel approach for tackling the scalability issues in extensive COPs.
In contrast to conventional DRL techniques, which suffer from by costly autoregressive decoding
and repetitive refinements, DIMES use a compact continuous space to represent the underlying
distribution of potential solutions. Massively parallel sampling enables stable training and fine-tuning
using the REINFORCE method, resulting in a substantial reduction in gradient variance. DIMES
utilizes a meta-learning framework to initialize model parameters effectively during the fine-tuning
stage. This allows it to outperform current DRL-based methods on benchmark datasets for the TSP
and MIS. For adaptation into the STP domain, DIMES employs a embedding technique and decoding
strategy utilized across all learning-based baselines.

5 BENCHMARKING EVALUATION

5.1 EXPERIMENTAL SETUP

The baselines are trained and evaluated on the Intel Xeon Gold 6240 CPU and 8 NVidia 3090 GPUs.
The accuracy of the model is measured by validating its performance on 10,000 test samples for
the in-distribution results and 500 for the out-distribution results. The networks are tested once per
instance during the greedy decoding process, and the best result is selected among 32 samples in each
instance for the sampling metric. The training samples are split into a 1 million training set and a
280,000 validation set for supervised learning methods.

In addition to the NCO approaches, we evaluate the performance of the classical solvers. Specifically,
we include the MILP-based solver SCIP-Jack(Gamrath et al., 2017 and the classical heuristic 2-
approximation algorithm(Kou et al.| [1981)) as baselines for comparison. The evaluation metrics
include the average Gap of the predicted solutions and the computation Time. The inference time
is calculated as the duration spent to process all the test samples for each algorithm. Additional
hyperparameters and experimental details specific to each approach are presented in the Appendix.

5.2 RESULTS

RQ1: Which of the four NCO methods shows the most promise for solving the STP in in-
distribution evaluations?

To address RQ1, we performed an in-distribution evaluation of four representative NCO methods: su-
pervised autoregressive (PtrNet), supervised non-autoregressive (DIFUSCO), reinforcement learning
autoregressive (AM and CherryPick), and reinforcement learning non-autoregressive (DIMES). Our
goal was to determine which of these approaches shows the most promise for solving the STP, rather
than focusing solely on achieving state-of-the-art performance.

As shown in Table [T, DIFUSCO (non-AR, SL) consistently outperformed the others, particularly
on larger graphs, suggesting that non-autoregressive, supervised models handle complex graph

"For the STP100, the PtrNet utilized 100,000 samples; it is robust even with the smaller number of samples
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structures more effectively. However, DIFUSCO’s large model size resulted in longer inference
times, highlighting a trade-off between accuracy and efficiency. PtrNet (AR, SL) also performed
well, especially on smaller graphs, offering faster training and inference times than DIFUSCO. This
indicates that autoregressive models are efficient for smaller instances. In contrast, reinforcement
learning-based methods (AM, CherryPick, DIMES) generally underperformed, likely due to their
reliance on exploration, which may be less suitable for the structured nature of the STP. In conclusion,
supervised models, particularly DIFUSCO and PtrNet, show the most promise for solving the STP
in in-distribution settings, with DIFUSCO excelling in solution quality and PtrNet offering a faster
alternative for smaller graphs.

Table 1: In-Distribution Performance on STP in Erdds-Rényi Graph. Both training and testing
are performed on datasets generated from the same graph model and problem size. Results report the
gap (%) relative to SCIP-Jack’s optimal solution, and the total runtime required to solve 10,000 test
samples.

. STP10 STP20 STP30 STP50 STP100
Algorithm Type
Gap (%) Time Gap (%) Time Gap (%) Time Gap (%) Time Gap (%) Time
SCIP-Jack Exact 0.00£0.00 3m 0.00+£0.00 3m 0004000 3m 0.00£000 5m 0.00=+0.00 lh
2-Approx Heuristics 041 +£224 6s 1.84+413 8 298+450 11s 3.84+£393 235 17.29+ 6048 82s
PtrNet AR, SL, greedy  0.75£5.04 6s 3754823 12s 7.61 £10.12 13s 14.73 £ 11.63 27s 25.72 £+ 1328 2m
AM AR,RL, greedy 2.544+9.06 7s 9.13+18.69 1ls 13.93 £21.25 14s 1723 + 1457 28s 22224+9.56 Im

CherryPick AR, RL, greedy ~ 8.42 +23.53 13m 21.19 4 20.34 40m 20.50 & 19.74 52m 29.22 +17.69 1.5h 62.17 £25.39 3h
DIMES nAR, RL, greedy 3.99 +11.41 2s 686+ 1410 4s 5.664+839 8 11.17+10.11 21s 11.134+7.00 2m
DIFUSCO nAR,SL, greedy 0.434+491 12h 0.64 £447 14h 111+642 1.6h 0.74+270 1.8h 025+096 2.4h

PtrNet AR, SL, sampling  0.03 +0.51 43s 036+153 1Im 1.15£250 2m 5.17+5.15 3m 1729 +£8.71 13m
AM AR, RL, sampling 3.11 & 10.67 2m 12.12 +£22.32 3m 1441 £ 17.80 9m 1836 £ 15.83 17m 22.73 + 10.17 40m
CherryPick AR, RL, sampling 1.12£0.05 30m 6.73 £13.30 1h 8.184+9.78 1.3h 1505+ 12.03 3h 58.13£23.75 7h

DIMES nAR, RL, sampling 0.71 £3.49 1Im 1.09+286 2m 233+£377 4m 805£6.62 I1lm 11.77+6.30 64m
DIFUSCO nAR, SL, sampling 0.22 +3.15 7.6h 031+328 8h 0.58+345 96h 0.31+1.65 1lh 021=+0.19 142h

RQ2: How well do these NCO methods solve problems of unseen sizes, and which are the most
robust?

In exploring RQ2, we evaluated the generalization capabilities of the models by testing them on STP
instances of varying sizes that differ from those seen during training. This evaluation is crucial for
learning-based solvers, as their practical utility depends on their ability to solve problems at test time
that are at different scales than those encountered during training.

As shown in Table 2] we observed that DIFUSCO, despite its strong in-distribution performance,
experienced a significant drop in performance when tested on out-of-distribution data with different
problem sizes. In contrast, the reinforcement learning autoregressive models, specifically AM and
CherryPick, demonstrated more robust performance across different scales, maintaining a relatively
stable performance relative to their in-distribution results. DIMES (reinforcement learning, non-
autoregressive) also showed consistent performance across different scales, although it did not fully
align with the trend observed for the other models.

These findings suggest that while supervised learning methods like DIFUSCO are effective within
the distribution they were trained on, reinforcement learning approaches, particularly autoregressive
models, may offer greater robustness and generalization to problem sizes not seen during training.
This highlights the importance of considering the scalability and generalization capabilities of NCO
methods when applying them to practical problems.

RQ3: Can models trained on our synthetic STP data effectively solve real-world cases and
prove more practical than classical heuristics?

To address RQ3, we evaluated the models on real-world instances from the SteinLib benchmark (Koch
et al.,|2001)), which are derived from practical scenarios such as network design and VLSI design.
This experiment aimed to determine whether models trained on our synthetic data can effectively
solve real-world problems without any fine-tuning, thereby validating their practical utility.

The results, presented in Table |3 show that the models trained on STP50 significantly outperform the
baseline heuristic (2-approximation algorithm). Notably, non-autoregressive methods like DIFUSCO
(supervised learning) and DIMES (reinforcement learning) achieved superior performance compared
to other baselines. This indicates that models trained on synthetic data can generalize to real-world
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Table 2: Out-of-distribution Generalization Performance Measured in Relative Gap. This table
reports the relative performance degradation of trained solvers when tested on graphs with node sizes
different from the training distribution, where in-distribution performance is normalized to 1. Darker
shades represent greater relative performance degradation.

Train Test Nodes
Algo. Nodes
STP10 STP20 STP30 STP50 STP100 STP200
10 1(0.75)
PtrNet 30 0.48(3.71) 1.04 (8.12) 1(7.80) 8.40 (65.52) 11.95 (93.18)
50 0.19 (2.80) 0.67 (9.91) 1.85(27.29) 1(14.74) 422(63.3) 8.44 (124.31)
10 1(2.15) 2.88(66.20 ) 431(9.26) 6.55 (14.08) 9.90 (21.29)
AM 30 0.55(6.45) 0.94 (10.95) 1(11.71) 1.28(14.98) 1.80 (21.10) 2,65 (31.06)
50 0.42 (6.85) 0.60 (9.84) 0.78 (12.72) 1(16.38) 1.29 (21.12) 1.95 (31.963)
10 1(842) 246 (20.75) 4.88(41.12) 5.45(45.89) 6.15(51.80) 6.88 (57.91)
CherryPick 30 0.23(4.78) 0.87(17.79) 1.00 (20.50) 1.27 (26.00) 2.10(42.95) 2.45(50.13)
50 0.20(5.75) 0.59 (17.15) 0.76 (22.21) 1.00 (29.22) 1.31(38.21) 1.52(44.42)
10 1(0.59)
DIFUSCO 30 11.26 (8.78) 3.01(2.35) 1(0.78) 1.81(1.41)
50 10.31 (8.66) 451(3.79) 174 ( 1.46) 1(0.84) 2.90 (2.4 ) 7.24 (6.08)
10 1(3.99) 287 (11.45) 420(16.75) 536 (21.39) 639 (25.50) 8.46 (33.75)
DIMES 30 1.01(5.70) 0.98 (5.56) 1(5.66) 1.36 (7.70) 2.18 (12.33) 3.61(20.43)
50 0.58(6.51) 0.74 (8.27) 0.86(9.59) 1(11.17) 1.45(16.21) 2.13(23.80)

instances, and non-autoregressive approaches, in particular, demonstrate strong practical applicability.

Table 3: Real-world Generalization Performance of Learning-based Solvers This table shows
the performance of models trained on synthetic Erd6s—Rényi graphs with 50 nodes when tested on
real-world instances from the SteinLib benchmark, grouped by test node sizes. Neural solvers trained
on synthetic data show competitive results, highlighting their potential for real-world applications.

Algorithm Type Test Nodes
0-100 100 - 200 200 - 500 500 - 1000

2-approx. Heuristic ~ 17.79 £ 18.38  22.87 +21.19  43.22 +27.22 48.06 £ 23.00
Pointer Network AR, SL 53.78 £ 27.01 19.10 £ 13.01 33.42 £ 25.01 35.87 + 11.65
DIFUSCO nAR, SL 5.59 + 8.81 18.5 £ 284 5.02 £ 8.84 56.53 £ 100.48
Cherrypick AR,RL 13.72 £ 3042  49.98 4+ 98.75 8.70 £ 11.20 43.34 4+ 56.24
AM AR, RL 17.51 £ 15.21 19.67 £ 15.78 30.09 £ 13.47 27.55 £ 13.39
DIMES nAR,RL 1256 + 1439 1745+ 1553  19.31 +27.33 15.92 + 19.51

6 DISCUSSION

Discussion about nAR settings and AR settings. As shown in Table [I] non-autoregressive
models outperform autoregressive models in solving the STP. This can be attributed to the fact
that STP heavily relies on the information of the currently selected partial solution, whereas AR
models may suffer from a smoothing problem when aggregating partial solution information during
the sequential node selection process. Especially, the smoothing of the embedding becomes more
prominent when the number of terminals is large or the solution sequence is long, leading to a
decrease in representation power. This explains the more significant performance degradation of AR
models on larger-scale instances. Therefore, one potential direction for improving the performance of
AR models is to enhance their representation power for partial solutions.

Training sample efficiency in supervised setting. In NCO, SL benefits from its ability to learn
quickly and reliably from high-quality labeled solutions. However, obtaining a sufficient training
dataset with high-quality solutions is typically very expensive in large-scale combinatorial optimiza-
tion domains due to their NP-hardness. If the dataset quantity is insufficient which means the model
is trained on a limited number of instances, leading to reduced generalization for unseen instances.
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Figure 2: Degradation of SL with respect to number of training sample in STP50

To show the impact of training samples size on the performance gap of SL methods, we train the
SL method with varying numbers of training samples. Figure 2| (a) shows the relative performance
degradation of each method when using reduced training samples, compared to their respective
performance with the full training set (1 million samples). As expected, the performance of both
methods deteriorates as the training sample size reduces. Concretely, DIFUSCO demonstrates higher
robustness and effectiveness in low-sample regimes, maintaining a smaller performance gap than
the Pointer Network. However, it is noteworthy that the rate of performance decline in DIFUSCO is
steeper than Pointer Network when compared to their respective peak performance with 1 million
samples. This figure highlights the importance of considering sample efficiency and the trade-offs
between different supervised learning methods when dealing with limited training data.

Limitations. State-of-the-art NCO methods require large datasets, making computational efficiency
crucial for reasonable training times. Unlike Euclidean-space routing problems like TSP, efficiently
supplying training data for STP on graphs poses significant engineering challenges in terms of
providing data in the training loop, making it difficult to train on very large-scale problems. In
addition, our STP instances do not cover the full distribution of all possible STP problems, potentially
affecting performance on different distributions. Additionally, while real-world STP problems often
have practical constraints, our study focuses on the unconstrained version, leaving constrained
versions for future work.

7 CONCLUSION

In this paper, we introduced SteBen, a comprehensive benchmark for evaluating neural combina-
torial optimization (NCO) methods on the Steiner Tree Problem (STP). Our benchmark provides
extensive datasets and environments for training state-of-the-art NCO methods with exact solutions.
Additionally, we have implemented various NCO algorithms and a classical heuristic, providing code
that allows practical experimentation across diverse scenarios. We reported the results of applying a
wide range of NCO construction heuristic methods for the STP, offering detailed comparisons and
analyses of their characteristics. Our comprehensive evaluation not only highlighted the strengths and
limitations of existing methods but also provided valuable insights for future research. We believe that
SteBen will serve as a stepping stone for researchers, facilitating the development of more effective
NCO methods and driving further advancements in solving complex combinatorial optimization
problems.
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A DATASETS & SOURCE FOR BENCHMARK EXPERIMENTS

We provide the following link to download the training and test data The datasets are stored as
pickle files based on networkxﬂ graph format, and for larger node sizes, the data is divided into
multiple pickle files. The source code for all the baseline methods we experimented with can be
found in the following GitHub repository El These are distributed under an MIT license.

B BACKGROUND ON LEARNING-BASED SOLVERS

B.1 SUPERVISED LEARNING AND REINFORCEMENT LEARNING IN NCO

In supervised learning, a model is trained on a dataset {(s, ) }sep where each instance s is paired
with a label f} representing the known optimal or high-quality solution. The model aims to imitate
the optimal solution by minimizing the difference || fo(s) — fZ|| under an appropriate metric || - ||.
The training objective is to minimize the loss function:

L) =2 = fols)ll O]

seD

In reinforcement learning, the solver learns autonomously using feedback from the cost function
¢s(+), without relying on labeled data. The solver fy(-) is considered a policy where the instance s is
regarded as the state and the output fy(s) as the action. After selecting an action, the solver receives

areward —c,(fp(s)). The training objective is to minimize the expected cost over the distribution
P(S) of instances:

R(0) = Esup(s)les(fo(s))]- ®)
B.2 AUTOREGRESSIVE AND NON-AUTOREGRESSIVE SOLVERS

Autoregressive solvers generate a sequence of partial solutions incrementally, conditioned on
previous solutions, until a feasible solution is reached. This step-by-step approach simplifies the
learning process by breaking it down into manageable stages. In the context of reinforcement learning,
the advantage of reducing the action space has made autoregressive methods the predominant choice.

Non-autoregressive solvers generate the complete solution fg(s) for a given problem instance s in a
single step. With recent progress in deep learning, particularly in models such as diffusion models
that excel in high-dimensional spaces, these solvers have become increasingly popular for tackling
large-scale combinatorial optimization problems. They avoid the error accumulation issue inherent in
sequential generation.

C STP DATASET GENERATION

C.1 INSTANCE GENERATION

To cover a diverse range of problem instances for the Steiner Tree Problem (STP), we generated graphs
using four common models: Erdés-Rényi (ER), Random-Regular (RR), Watts-Strogatz (WS), and
grid graphs. Each model introduces unique graph structures, allowing us to evaluate the performance
of neural combinatorial optimization methods across various topologies. Additionally, we applied
specific generation techniques to ensure that all graphs are connected, feasible, and suitable for
training NCO models. Below, we describe the generation process for each graph type.

2https ://drive.google.com/drive/folders/1j_vuK-MhvOmGoAXgF8FNVnlonONX—-34T?
usp=drive_link

‘https://networkx.org

4https ://anonymous.4open.science/r/steben-1471
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ER To generate ER graphs, we sampled the probability for edge creation from a uniform distribution
and used this value as the parameter for the ER model.

RR To generate RR graphs, we ensured that each node had the same number of neighbors by sampling
the degree of the graph from a Uniform({3, 4, 5}) and using this degree value as the parameter for
the RR model.

WS To generate WS graphs, we sampled the mean node degree k ~ Uniform({3,4,5,6}) and the
rewiring probability 5 ~ Uniform(0, 1) for generating random graphs.

Grid When generating grid graphs, given the number of nodes n, we determine the grid’s dimensions
by sampling combinations of width and height such that their product equals n. For example, if n is
20, we randomly sample between combinations like 4x5 or 5x4. Additionally, we ensure that at least
one dimension is greater than 4. In contrast to the other graph types, for grid-based instances, we
fixed all edge costs to 1. This design choice was made to ensure that the instances exhibit properties
more akin to those found in Euclidean space.

C.2 SOLVER FOR OPTIMAL SOLUTION

To facilitate supervised training, we provide both training and test sets with optimal solutions and
costs to measure performance gaps against these optimal benchmarks. For this purpose, we employed
the MILP-based SCIP-J ackE] solver to compute optimal solutions for the STP instances we cover.
This solver is used under the ZIB license, which allows usage by members of non-commercial and
academic institutions.

C.3 STATISTICS

The following tables describe the statistics of the training and test datasets from ER graphs. We
generated 10,000 test samples for instances with fewer than 200 nodes and 1,000 samples for instances
with 200 nodes or more, due to the exponentially increasing time required to find the optimal cost
using MILP-based solvers as the problem scale grows. While the training data includes solutions for
supervised learning, the test data only contains the optimal costs, not the solutions.

Table 4: Data statistics of training data

Type STP10 STP20 STP30 STP50 STP100

# of terminals 2.48 +0.81 4.13 +1.70 6.02 £+ 2.15 9.99 4+ 2.81 19.97 £ 4.00

# of optimal edges 2.04 £ 1.10 4.12 +£2.05 6.60 £ 2.62 11.94 £ 3.49 26.27 £5.23

# of total edges 30.06 £ 8.89 115.98 £ 43.35 253.28 £ 104.82 686.01 £ 312.42 2663.71 £ 1323.96
Optimal value 53240.31 = 28970.65 88300.01 £ 44448.35 125144.12 & 53819.80 188669.69 £ 67699.81 310943.73 £ 109333.33
Avg. edge cost 32779.54 £2088.35  32750.46 = 1111.49 32765.40 £ 762.07 32766.97 £ 484.33 32769.43 £ 264.28

Table 5: Data statistics of test data (from STP10 to STP50)

Type STP10 STP20 STP30 STP50

# of terminals 2.50 +0.84 4.07 £ 1.67 6.00 +2.17 10.07 + 2.85

# of optimal edges N/A N/A N/A N/A

# of total edges 27.96 + 9.98 109.24 + 46.57 241.80 £111.13 660.25 £ 328.60
Optimal value 56502.76 & 32505.02 92096.61 £ 48963.88 130576.33 & 60079.15 196755.18 £ 76570.06
Avg. edge cost 32756.82 £ 2236.76 32793.21 £ 1171.90 32774.25 £+ 823.30 32760.07 £ 520.62

D PERFORMANCE VS RUNTIME ANALYSIS

Figure [3]illustrates the tradeoff between runtime and performance (Gap %) for various algorithms,
including SCIP-Jack and learning-based approaches, across different STP sizes. SCIP-Jack achieves
near-optimal solutions for smaller graphs within reasonable runtime but struggles to scale efficiently

Shttps://scipjack.zib.de
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Table 6: Data statistics of test data (from STP100 to STP1000)

Type STP100 STP200 STP500 STP1000
# of terminals 20.00 + 3.95 39.94 £ 5.70 99.70 + 8.98 198.80 £+ 12.51
# of optimal edges N/A N/A N/A N/A

# of total edges
Optimal value
Avg. edge cost

2560.04 &+ 1366.75

9954.42 4+ 5610.50

63167.71 £ 34243.41

264444.55 + 136561.18

322868.13 £ 122637.03 503077.40 £ 227663.14 736329.24 4 464148.09 796172.63 £ 785896.22

32767.29 £ 278.63

32762.68 £ 147.72

32769.35 £ 61.90

32771.98 £+ 39.88

as graph sizes increase, with its runtime growing exponentially. In contrast, learning-based approaches
such as DIFUSCO and PtrNet demonstrate better scalability to larger graphs. DIFUSCO achieves the
smallest gaps consistently, albeit with higher computational cost, while PtrNet offers a balance of
runtime efficiency and solution quality for smaller STPs. Reinforcement learning methods, including
AM and DIMES, show moderate performance with varying tradeoffs across sizes. This analysis
highlights the complementary strengths of classical and neural solvers, suggesting that the choice of
algorithm depends on the runtime constraints and the scale of problems.
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Figure 3: Gap vs. Runtime Across STP Sizes for Different Solvers DIFUSCO consistently achieves
the smallest gaps, while PtrNet balances efficiency and quality. SCIP-Jack performs well for small
graphs but struggles with scalability, and reinforcement learning methods like DIMES maintain
steady performance across scales.

E EVALUATION ON OTHER GRAPH MODELS

Table 7] presents the evaluation results of various algorithms on different types of graphs, specifically
Random-Regular (RR), Watts-Strogatz (WS), and grid graphs. The table shows the performance
of each algorithm in terms of the gap (%) between the algorithm’s cost and the optimal cost for
different test node sizes. For grid graphs, experiments with node size 10 were excluded due to
the lack of diversity in grid shapes. These experiments were conducted by training the models on
instances with 50 nodes and then evaluating their performance on instances of varying scales. In
the same manner as the out-of-distribution generalization evalutions in the main paper, each test
instance set contained 500 samples. The results highlight interesting patterns, with NCO baselines
generally exhibiting smaller gaps compared to ER graph problems. Notably, DIFUSCO consistently
outperforms the heuristic solver, demonstrating superior overall performance. However, consistent
with the characteristics of non-autoregressive models, both DIFUSCO and DIMES show significant
performance degradation on STP10 compared to STP50, indicating weaker generalization capabilities.
CherryPick displays substantial performance variation depending on the graph type, while Pointer
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Network’s performance sharply declines as the problem scale increases. In contrast, AM maintains
a more consistent performance degradation across increasing problem scales, suggesting a more
stable solution quality as the problem size grows. These results provide valuable insights into the
generalization capabilities and robustness of the algorithms when applied to diverse graph structures.

Table 7: Performance Evaluation of Baseline Methods on Diverse Graph Types and Node Scales

Algorithm Graph Type Test Nodes
STP10 STP20 STP30 STP50 STP100 STP200
RR 0.43 +1.78 4.06 +2.14 3.14 £ 444 3.98 +£3.78 5.25 +£3.07 5424214
2-Approx WS 0.36 £ 2.14 1.47 £3.49 277 £ 433 3.60 £ 4.45 3.82 +£3.70 4.19 £ 3.59
Grid - 2.05 £ 491 324 +£527 3.39 +3.83 3.58 £2.55 4.04 + 1.90
RR 3.51 £10.58 3.84 £7.80 4.06 £+ 5.68 574 £5.17 96.58 +25.03  83.88 £ 22.39
PtrNet WS 2.55 +£9.09 437+ 892 5.55 £ 8.69 5.74 £9.88 26.23 £24.36  49.90 + 37.08
Grid - 7.87 £ 13.00 6.37 £ 8.62 8.07 £ 7.16 76.28 £19.65  79.84 £ 16.20
RR 6.06 £+ 15.00 6.44 £+ 10.80 7.75 £ 11.03 8.05 £ 6.41 8.33£4.93 8.55 £3.63
AM WS 1.44 +6.58 2.34 +£5.67 3.36 +5.81 3.98 +4.61 3.96 +3.74 4.27 +3.59
Grid - 212 +£533 2.65 £4.79 3.74 £ 439 520 +£3.92 6.95 +3.27
RR 10.80 2435 13.80 £21.20 1548 +16.75  16.08 1247  17.65 £ 10.28 16.63 £ 7.64
CherryPick WS 27.09 £48.50  39.79 £56.46  40.01 £42.65 4194 £3279  39.56 £31.00  39.27 + 3045
Grid - 6.02 £ 11.79 6.74 £+ 8.64 8.51 £6.81 778 £4.71 8.34 £3.27
RR 438 +14.38 1.80 £ 5.74 0.42 4+ 1.49 0.17 £ 0.74 0.71 £+ 3.09 223+ 434
DIFUSCO WS 4.43 £ 1555 2.53 £10.28 221 £9.04 1.63 £7.13 1.41 £ 3.65 3.15+4.85
Grid - 0.06 £+ 1.48 0.00 £ 0.00 0.00 £ 0.00 2.10 +£3.93 2.93 +2.98
RR 5.60 £ 16.51 3.38 £ 7.884 3.50 £ 13.39 2.96 £+ 3.34 3.96 £2.78 4.60 £ 2.11
DIMES WS 10.21 £ 30.00 4.18 +17.44 291 £ 945 2.56 +3.75 2.85+3.18 3.86 £+ 3.36
Grid - 4.05 £ 15.39 2.83 £ 8.44 378 £2.79 3.02£3.74 4.96 +2.19

F CHERRYPICK

F.1 EXPERIMENTAL DETAILS

We reimplemented the CherryPick algorithm following the original paper’s description. We contacted
the authors and received a portion of the code, but fully reproducing the experiments was impossible
due to missing parts for the STP environment. Nevertheless, this enabled us to incorporate minor
details not explicitly mentioned in the paper into our implementation. However, reproducing the
bonus term for terminal selection in the reward function exactly as described in the paper and the
received code was not possible. During each state transition, CherryPick updates its features, which
involves calculating the shortest paths from every node to all terminal nodes that need to be connected.
This process makes it challenging to efficiently train on large-scale problems due to the computational
overhead.

For training CherryPick, we increased the number of STP instances used compared to the original
paper, utilizing up to 100,000 instances. Due to the computational demands, only 6,000 instances
were used for training on STP100. Among the hyperparameters, we used a discount factor of 0.99
instead of the 0.2 specified in the original paper, as it shows better performance.

F.2 COMPARISON TO ORIGINAL PAPER

To validate the implementation of CherryPick, we compared our results on STP50 (fixed weight)
instances with ER graphs against those reported in the original paper (show Table §). In this setting,
evaluated using the same methodology as the original paper, the gap was calculated based on the
2-approximation algorithm. Our implemented version achieved slightly lower performance compared
to the original. This discrepancy can be attributed to the aforementioned challenges in perfectly
replicating the reward function, as well as potential differences in the parameters that define the graph
characteristics during the generation process.
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Table 8: Comparison Gap with Original Paper on ER Graph

Problem Implemented (ours)  Original (Yan et. al., 2021)
STP50 (Fixed Weight) —0.29 + 3.38 —2.5

F.3 REWARD FUNCTIONS OF STP ENVIRONMENT

Table 9] demonstrates the impact of including a terminal selection bonus in the reward function for
CherryPick. The results indicate that incorporating a bias towards selecting terminal nodes, in addition
to minimizing tree length, significantly improves performance. Specifically, the reward function with
the terminal bonus consistently outperforms the one without it across all test node sizes.

Table 9: Comparison Reward Functions for Cherrypick

Test Nodes
Problem
w/ terminal bonus (original) ~ w/o terminal bonus
STP10 8.42 4+ 23.53 20.70 £+ 38.41
STP20 21.19 £ 20.34 29.65 £+ 36.45
STP30 20.50 £ 19.74 64.78 +£49.23
STP50 29.22 +17.69 64.00 £ 35.71

G POINTER NETWORKS

G.1 EXPERIMENTAL DETAILS

We reused to the most of experimental settings as described in the original publications, including
a single-layer LSTM with 512 embedding, weight initialization ranging from -0.08 to 0.08, and
gradient clipping. The model was trained 300 epochs using Adam optimizer, and the best model was
selected based on 1K validation set. We used 1M training instances with a learning rate of le-4 and
and the maximum batch size allowed by the graph size. Additionally, we utilized teacher forcing, a
classic technique for stable training during the early stage.

G.2 LABEL GENERATION

To serialize nodes of the STP solution tree, we compared tree traversal methods. A general tree, where
the number of children is not limited to two can be reordered using level-order, pre-order, and post-
order traversal. Level-order traversal, also known as breadth-first search (BES), prioritizes visiting
all the children of a node before proceeding to the nodes at the next level. Pre-order Traversal, or
depth-first search, is a method where the traversal goes deeper recursively and then visits the siblings’
subtrees. Pre-order traversal prioritizes visiting the root before its children. In contrast to other two
methods, Post-order Traversal visits all the children nodes before their respective parent node. We
constructed the tree based on node indices, designating the root as the last-ordered terminal point and
sorting the children in descending order. This allows us to fix the position of terminals as the latest
embedding and assign consistent labels to aid in learning.

G.3 EDGE EMBEDDINGS

To compensate for missing edge cost information, we added a GNN embedding to node embedding.
The embedding of node i is embedded as follows:

¢;h; 6)
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where h; is a node embedding of node 4, V; is a neighbor of node , and ¢, is a normalized edge cost
(- mmte)-

G.4 ABLATION STUDIES

Table 10: PtrNet ablation experiment.

Type Gap (%)
PtrNet w/ Level (default.) 0.75 £5.04
PtrNet w/ Pre 0.80 £ 5.54
PtrNet w/ Post 472 £ 12.74
PtrNet w/ Random 1.35£5.98
PtrNet w/ Inv. sort 0.83 + 6.06
PtrNet w/o Edge Emb. 1.13 £ 8.28

In Table[I0] we represent the Gap in Erd6s-Rényi graph ablation study to show the importance of
each elements.

First, we explored various tree traversal methods, including Level, Pre, Post, and Random. The
performance of node traversal strategies exhibits significant variance depending on the traversal
method employed. The level traversal method demonstrated superior performance, while the post
traversal method exhibited a notable decrease in performance compared to random ordering. In
our experimental setup, where slight changes in node coordinates could lead to minor variations in
indices, the post traversal method proved particularly sensitive due to its exhaustive exploration of
leaf nodes, rendering the capture of such variations challenging.

Secondly, we examined the influence of node encoding order. Interestingly, encoding nodes in prox-
imity to terminals towards the end of the sequence yielded improved performance. This observation
suggests that providing crucial information about terminal-adjacent nodes just prior to the decoding
phase contributes slightly to enhanced model performance.

Lastly, regarding edge embedding, despite the small node size of 10 used in this experiment, we
observed a performance drop without it. These results imply that edge embedding contributes to
finding the optimal solution for the STP. Therefore, advanced node embedding approaches could
potentially lead to substantial performance improvements.

H AM

H.1 EXPERIMENTAL DETAILS

We implemented AM for the STP based on the RL4C(ﬂ library, because the original author’s
repository notes limited maintenance and suggests more recent implementations. We trained our
model on 1.28 million instances per epoch, as in the original study. Unlike the routing problems in
the original paper, generating the STP dataset was time-consuming, resulting in a drop in training
efficiency. To calculate the advantage, we initially used the rollout baseline from the original paper,
but it led to policy collapse. Therefore, we employed the mean baseline, which provided more robust
training. Additionally, similar to the CherryPick paper, we used the distances to the top-K nearest
terminals as node features. To reflect the problem’s edge costs, we modified the AM by incorporating
a process where the node embedding vectors are calculated by taking the weighted sum of the
embeddings of neighboring nodes, using the edge costs as weights.

H.2 CONTEXT EMBEDDING FOR STP

In the AM for STP, the problem state is represented using context embedding vectors from previously
selected nodes and their positional encodings, guiding the next node selection based on attention

®https://github.com/aidco/rldco

18


https://github.com/ai4co/rl4co

Under review as a conference paper at ICLR 2025

scores. Specifically, at time ¢, the input for TSP consists of the embedding of the graph, the previous
(last) node 7;_1, and the first node 7. For STP, we modify this as follows:

) _ [N e ] >0
hie) _{[h(N)’Vl’Vlf} R (7)

where P, is the sequence of previously selected nodes up to time ¢. The embedding h,, , is the
average of the embedding vectors of these nodes, providing a summary of the partial solution:

1 (V)
heey = 15 > B
t—1 |Pt| (3

1€Py

Similarly, 7; represents the set of remaining terminals. The embedding h, is the average of the
embedding vectors of these terminals, summarizing the remaining objectives:

1 (N)
hye = — Kt
1 |77| Z J

JET:

By adjusting the context embedding in this way, the AM can effectively handle the STP, ensuring that
the embeddings reflect the current partial solution and the remaining terminals to be connected. This
modification allows the model to focus on the key aspects of the STP during the construction process,
leveraging similar principles to those used in solving the TSP.

I DIFUSCO

I.1 EXPERIMENTAL DETAILS

In DIFUSCO, we primarily followed the experimental settings described in the official code, including
a 12 GNN layers with 256 hidden dimension, 1000/50 for diffusion steps, 0.0002 for learning rate
and 0.0001 for weight decay. We utilize the node embeddings as the distance to the terminal from
each nodes, which is the method from CherryPick. The main differences are that we changed the
default decoding scheme from the original Greedy decoding + 2-opt scheme to the decoding scheme
used in CherryPick. Since discrete diffusion consistently outperformed continuous diffusion on the
TSP and MIS datasets (Sun and Yang| 2023), we used the discrete diffusion approach in Table [T}
Additionally, we employed the 10 diffusion steps for sampling.

1.2 EDGE EMBEDDING FOR STP

As mentioned in[4.2] we propose a modification to the edge embedding initialization process in the
Graph-based denoising network to address the limitations of the DIFUSCO approach in solving STP,
where edge costs and terminal node information are crucial.

e?j = WO [f@ (Xt)v chcosta Wixind] ®)

where X ,s; 1s edge cost matrix and X;,4 is indicator matrix consisting of 1’s for existing edges
and 0’s for non-existing edges. By directly incorporating edge cost information and terminal node
indicators into the edge embedding vectors, we enable DIFUSCO to effectively capture the unique
characteristics of the STP and generate more accurate and cost-effective solutions.

1.3 ABLATION STUDIES

In this section, we conduct experiments with varying the settings of DIFUSCO. We investigate
the impact of edge embeddings, diffusion model variants, and the number of GNN layers on the
performance of DIFUSCO. The basic experiment setup is same as Table[2]

First, we examine the importance of edge embeddings by training a model that excludes them and
only uses the node features. As expected, the results demonstrate that incorporating the actual edge
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Table 11: Ablation study for DIFUSCO

i Test Nodes
Setting

STP10 STP20 STP30 STP50 STP100 STP200

DIFUSCO w/o edge embedding 39.1 £62.74  63.11 £52.16  86.29 &+ 57.29 102.34 +£49.82 13378 £50.02  190.22 &+ 76.75

DIFUSCO w/ Continuous Diffusion ~ 5.68 4= 15.87 3.01 £8.65 1.06 +4.97 2.50 £+ 15.72 11.86 £ 25.60 28.97 £ 30.83
DIFUSCO w/ GNN 3-layers 276 £ 17.12 2.74 £ 6.15 239+ 5.14 2.28 +3.57 2.89 +2.33 8.71 £ 7.48
DIFUSCO w/ GNN 6-layers 259772 2.13 £ 6.00 1.35 £4.78 0.92 4 3.09 1.56 & 5.61 6.99 +7.27
DIFUSCO w/ GNN 9-layers 4.33 +£10.95 1.83 £5.24 0.68 £+ 2.67 0.43 £3.49 1.01 £3.54 7.97 £+ 12.02

DIFUSCO 8.66 £ 18.5 379 £ 1131 1.46 524 0.84 +£2.75 244 +4.48 6.08 £ 5.69

costs and indicator matrix is crucial for the model’s preformance. This also suggests that the features
from CherryPick alone may not provide significant benefits to DIFUSCO.

Next, we compare the performance of discrete and continuous diffusion models. The experimental
results align with the finding mentioned in the (Sun and Yang},2023), indicating that discrete diffusion
models generally outperform their continuous counterparts in STP, similar to TSP and MIS. The
performance gap becomes more pronounced as the size of the STP instances increases.

Lastly, we investigate the impact of varying the number of GNN layers. While our model achieves
good results using 12 GNN layers, consistent with (Sun and Yang| 2023)), we observe an interesting
phenomenon. In certain cases, models with fewer layers exhibit better performance. Specifically,
reducing the number of layers leads to a decrease in overall performance but an increase in general-
ization power. However, as the problem size grows, models with more layers tend to perform better.
This highlights the importance of selecting an appropriate number of layers based on the size or
complexity of the problem.

J  DIMES

J.1 EXPERIMENTAL DETAILS

In DIMES, we reduced the size of the network to 6 GNN layers with 16 hidden dimensions, with an
outer learning rate of 0.0005 and an inner learning rate of 0.005 to ensure the stability of the training
process. The remaining hyperparameters are unchanged, including the outside steps of 120, an inner
sample size of 100, and the inner steps of 15. These values remain constant regardless of the number
of nodes.

The main differences are in the node embedding and decoding algorithm. The initial node embedding
in the TSP consists of (x, y) vectors representing all of the points. Nevertheless, we utilize the node
embedding from the CherryPick approach, which utilizes the distance to the terminals. Similar to in
DIFUSCO, we utilize the decoding scheme from CherryPick.

J.2  ABLATION STUDIES

As the dimes only utilized a total of 360 instances, the initial concern is whether this quantity is
enough to solve the problem. We conduct a more extended training involving 1920 iterations, with
5760 data instances, in 20 and 50 nodes. Table@] shows the result of the extended training. The
extended training leads to superior in-distribution results in both 20 and 50 nodes. The out-distribution
results show contrasting patterns in the two settings, with superior performance shown in smaller
nodes for STP20 and in bigger nodes for STP50.

K DECODING STRATEGIES IN THE STEINER TREE PROBLEM

K.1 FEASIBLE SOLUTIONS IN THE STP

In neural network models for combinatorial optimization (CO) problems, a technique is needed to
decode the neural network’s raw output Gy (s) into a feasible solution fy(s) € Fs that meets the
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Table 12: In- and Out-distribution Result on STP20 and STP50 for Extended Training

Train Train Test Nodes

Nodes  Instances STP10 STP20 STP30 STP50 STP100 STP200

stpa0 300 516+ 1406 686+ 1410 6.60+1027 749+-826  928+5.06  12.46 + 5.00
5760 296+896 490+1610 7.08+932 11.70+£951 2006+ 11.52 40.66 + 25.44

sTpsg 300 651 L 17.09 827 L1681 959 F13.63 1117 L1011 1621 £8.01 23.80 £ 11.01

5760 1536 £30.81 16.52+33.21 1243 +21.50 5.45 £ 8.09 10.75 + 8.42 9.46 + 4.05

specified constraints of CO problems. Unlike general large language models (LLMs), the constraints
in CO problems are explicit and strict, defining feasible solutions for a given CO task. For example,
in the Traveling Salesman Problem (TSP), a cycle that visits all nodes exactly once is considered
feasible. In the Maximum Independent Set (MIS) problem, a solution must ensure no two selected
nodes are adjacent. In the Steiner Tree Problem (STP), the solver must meet the following constraints:

1. All terminal nodes must be connected.
2. The selected edge set must not form any cycles to maintain a tree structure.

3. Redundant edges to connect the terminals must be excluded.

K.2 GREEDY DECODING ALGORITHM IN THE STP

Various decoding strategies can satisfy the specified constraints, each influencing the performance of
neural combinatorial optimization (NCO). To ensure a fair evaluation of the baselines in this study,
we adapted a greedy decoding algorithm, similar to CherryPick (Yan et al., [2021), for the Steiner
Tree Problem (STP) that adheres to the three constraints mentioned above. This algorithm is applied
consistently across all baselines. The detailed pseudo-code for this algorithm is provided in Algorithm

Our adapted greedy decoding approach for solving the STP is analogous to greedy decoding in
LLMs, where edges are iteratively selected based on previously chosen edges. Initially, we select an
arbitrary terminal and define a partial solution as a graph containing only this terminal. Subsequently,
we define a candidate edge set as the edges adjacent to the current partial solution. Among these
candidates, edges are selected based on scores derived from the raw output of the neural network,
denoted as Gy(s).

The decoding strategies slightly differ between autoregressive (AR) approaches, such as PtrNet (Meire
et al., 2015)), CherryPick (Yan et al.| [2021), and AM (Kool et al.l |2018), and non-autoregressive
(nAR) approaches, such as DIFUSCO (Sun and Yang, 2023) and Dimes (Qiu et al., [2022). In nAR
approaches, the values of Gy(s) for the initial state s are precomputed and are not be changed during
the decoding process, and the edge scores are calculated from these values. Alternatively, in AR
approaches, at each step of edge selection, the neural network receives the current partial solution as
input, performs a forward pass to recalculate the node scores instead of directly computing the edge
weights, and then selects the minimum weight edge that connects the partial solution graph to the
remaining graph. To remove the redundant edges, we adapt the algorithm in (Kou et al.,|1981).
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Algorithm 2 Decoding Algorithm for the STP

1: Initialize partial tree solution G, = {V,, E,} with the node set V,, = {v,} where v, € T is a
randomly selected terminal and the candidate edge set E, = {(v,v') | (v,v") € E,v € V,,, v €
V- Vp}
while T ¢ V,, do
if non-autoregressive approaches then
Choose the highest scored edge (v, v} ) := arg max.cg Go(s, e) fore € E,
end if
if autoregressive approaches then
Choose the highest scored node v}, := arg max,/cv v, Go(s, Vp,v)
Select the minimum weighted edge (v, v,) = arg minec g, cs(e)
9: end if
10 Update the partial graph set G, with the selected node v} in V), i.e., V,, = V, U {v}}
11: Update the selected edge (v, v),) in the edge set £, i.e., B, = E, U {(vs, v})}
12: end while
13: Identify and remove redundant edges to enhance the efficiency of the network

PR AR
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