
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

STEBEN: STEINER TREE PROBLEM BENCHMARK
FOR NEURAL COMBINATORIAL OPTIMIZATION ON
GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

The Steiner Tree Problem (STP) is an NP-hard combinatorial optimization problem
with applications in areas like network design and facility location. Despite its
importance, learning-based solvers for STP have been hindered by the lack of large-
scale, diverse datasets necessary to train and evaluate advanced neural models. To
address this limitation, we introduce a standardized dataset comprising over a mil-
lion high-quality instances with optimal solutions, spanning various problem sizes
and graph structures. Our dataset enables benchmarking of neural combinatorial op-
timization methods across both supervised and reinforcement learning paradigms,
encompassing autoregressive and non-autoregressive inference approaches. Our
experiments show that supervised learning excels in in-distribution settings, while
reinforcement learning generalizes better to unseen problem sizes, highlighting a
trade-off between solution quality and generalization. We compare NCO methods
across different STP scales and graph types, and demonstrate that solvers trained
on our datasets generalize well to real-world instances without fine-tuning, proving
its practical utility. We hope this benchmark promotes further STP research and
advances NCO techniques for broader combinatorial optimization challenges.

1 INTRODUCTION

The Steiner Tree Problem (STP) is an NP-hard combinatorial optimization challenge focused on find-
ing the minimum-cost tree spanning a set of nodes (terminals) in a weighted graph. Solving the STP
is essential for optimizing connections between multiple objects or locations while minimizing costs
or resources. It has diverse applications, including circuit (MacGregor Smith and LIEBMAN, 1979)
and network design (Gouveia and Magnanti, 2003), facility location (Ljubić, 2007), phylogenetics
(Lu et al., 2003), and image processing (Russakovsky and Ng, 2010). The STP has many variant
extensions with unique characteristics such as the number of nodes, edge weight distribution, graph
structure, and other specific constraints.

Due to its significance, there are many algorithms for the STP, which can be broadly categorized into
two types: classical rule-based heuristics (Esbensen, 1995) and those solved using Mixed Integer
Linear Programming (MILP) (Gamrath et al., 2017). Rule-based heuristics tend to be specialized for
specific scenarios, and designing such heuristics is highly non-trivial. Exact MILP solvers are more
versatile but generally suffer from poor scalability. These challenges of the classical algorithms are not
unique to STP but are common in general combinatorial optimization (CO) domains. To address these
challenges, recent research has focused on Neural Combinatorial Optimization (NCO), leveraging
neural networks to enhance solution methods. However, NCO research has mainly concentrated on a
few CO tasks, such as the Traveling Salesman Problem (TSP), Capacitated Vehicle Routing Problem
(CVRP), and Maximum Independent Set (MIS).

Learning-based solvers for combinatorial optimization problems can generally be classified by their
solution generation approach and learning paradigm. Constructive solvers generate a single solution in
one pass, while improvement solvers iteratively refine solutions through local search techniques (Chen
and Tian, 2019; Li et al., 2021; d O Costa et al., 2020; Wu et al., 2021; Hou et al., 2022). Given the
importance of generating solutions efficiently with minimal prior knowledge, our benchmark focuses
on constructive solvers. These methods have shown promise for various CO problems, efficiently

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

generating solutions in a single forward pass and minimizing the need for extensive human expertise.
However, research for the STP has been limited due to the lack of large-scale, high-quality datasets
required for training sophisticated models. Existing benchmarks, such as SteinLib (Koch et al., 2001),
provide only a few dozen instances per scenario, which are insufficient for advancing state-of-the-art
machine learning methods. In contrast, problems like the vehicle routing problems have benefited
from vast, well-organized datasets, enabling more effective training and evaluation.

To address the limitations in STP research due to the lack of large-scale datasets, we introduce
Steiner Tree Problem Benchmark (SteBen), a standardized dataset containing over a million STP
instances with exact solutions across various scenarios. Our dataset covers a wide range of graph
types, including variations in terminal node counts, data sizes, and edge distributions, making
it compatible with existing STP libraries. Our dataset supports the evaluation of NCO methods
under both supervised and reinforcement learning frameworks, covering both autoregressive and
non-autoregressive methods. To facilitate this, we provide a dataset for supervised learning and a
specialized reinforcement learning environment tailored for STP, where agents can interact and learn
within the same problem scenarios.

Using SteBen, we conducted a comprehensive comparison of NCO methods and classical algorithms,
focusing on four distinct NCO groups: (1) autoregressive supervised learning, (2) non-autoregressive
supervised learning, (3) autoregressive reinforcement learning, and (4) non-autoregressive reinforce-
ment learning. Since there has been limited research on learning-based solvers specifically for the STP,
we aimed to evaluate broad methodological categories rather than specific state-of-the-art (SOTA)
solvers, to reveal which approaches show the most promise for solving the STP.

Our contributions can be summarized as follows:

• We provide a benchmark dataset and implemented baselines for STP to evaluate a compre-
hensive range of NCO methods.

• We compare NCO methods, highlighting their strengths and weaknesses on the STP across
different scales and graph types.

• NCO solvers trained on SteBen generalize well to real-world instances without additional
fine-tuning, demonstrating its practical utility.

We hope SteBen will drive further research into NCO methods for STP and foster the development
of robust, generalizable techniques for broader combinatorial optimization challenges. By offering a
comprehensive benchmark, SteBen aims to be a key resource for the CO community.

2 RELATED WORK

2.1 CLASSIFICATION OF CONSTRUCTIVE SOLVERS

Machine-learning based constructive solvers can be divided into autoregressive, which incrementally
extend partial solutions, and non-autoregressive, which generate solutions in a single step. They
can also be classified by their learning approach: supervised learning, which uses labeled data, and
reinforcement learning, which explores the solution space without labels.

2.1.1 AUTOREGRESSIVE SOLVERS

Autoregressive supervised learning methods predict the next sequence value based on the current
one. Pointer Networks (Meire et al., 2015) introduced this idea, predicting sequences step-by-step.
Later improvements include dividing problems into subproblems (Nowak et al., 2018) and using a
variational autoencoder to solve them in a compressed latent space (Hottung et al., 2020). Recently,
Drakulic et al. (2024) applied imitation learning techniques for enhanced performance on supervised
datasets. Autoregressive reinforcement learning methods also extend partial solutions iteratively.
This approach, which efficiently handles large combinatorial action spaces, is widely adopted in
RL-based solvers. Bello et al. (2016) applied reinforcement learning to Pointer Networks, while
graph embedding networks (Khalil et al., 2017) and attention modules (Kool et al., 2018) further
refined this idea, leading to improved methods like POMO (Kwon et al., 2020) and Sym-NCO (Kim
et al., 2022).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.1.2 NON-AUTOREGRESSIVE SOLVERS

Non-autoregressive methods generate solutions in a single step, avoiding the error accumulation seen
in autoregressive methods. Several studies have taken a traditional supervised learning approach
(Li et al., 2018; Joshi et al., 2019; Fu et al., 2021; Geisler et al., 2021), while advanced generative
models like VAEs (Hottung et al., 2020), GANs (Cheng et al., 2022; Li et al., 2022), and GFlowNets
(Zhang et al., 2023) have gained traction. DIFUSCO (Sun and Yang, 2023), a GNN-based diffusion
model, has shown promising results, further enhanced by cost-guided search (Li et al., 2024). Non-
autoregressive reinforcement learning is less common due to the complexity of large action spaces,
though Qiu et al. (2022) introduced a scalable approach using parameterization and the REINFORCE
algorithm.

2.2 STEINER TREE PROBLEM SOLVERS

As mentioned in Section 1, the STP has been relatively less explored within the NCO domain.
(Yan et al., 2021) utilized the Double Deep Q Network (DDQN) approach to tackle the STP in an
end-to-end manner. (Zhang and Ajwani, 2022) introduced an algorithm for the STP that generates
near-optimal solutions by relaxing the constraints for the Mixed Integer Linear Programming (MILP)
of the STP. (Ko et al., 2023) addressed the Steiner Tree Packing Problem (STPP), which is an extended
version of the STP where multiple Steiner tree problems are grouped together. Additionally, several
works have focused on a variant of the STP called the Euclidean Steiner Tree Problem, in which the
points are scattered on the Euclidean space, and the solution ensures that no two edges intersect (Ras
et al., 2017; Wang et al., 2022; Hsu et al., 2022; Brazil et al., 2024).

2.3 STEINER TREE PROBLEM DATASETS

(Koch et al., 2001) generated a STP benchmark dataset. Their dataset consists of various STP instances
with different levels of difficulty and their corresponding solutions. On the other hand, there was a
challenge for solving STP on undirected edge-weighted graphs (Bonnet and Sikora, 2018). However,
the numbers of instances in both datasets are limited to a few dozens, which is insufficient to be used
to train a sophisticated neural network. There are also datasets for variant versions of STPs. Pedersen
et al. (2024) published a dataset for the Quato Steiner tree problem, which additionally considers
edge capacities when finding the Steiner tree. Lee et al. (2022) published Respack dataset for the
STPP.

3 PRELIMINARIES

3.1 LEARNING-BASED COMBINATORIAL OPTIMIZATION SOLVERS

Let Fs be the set of feasible solutions for a combinatorial optimization problem (COP) instance
s ∈ S, where S is the space of all instances associated with a cost function cs : Fs → R. The
objective is to find the optimal solution f⋆

s that minimizes the cost for a given instance s:

f⋆
s = argmin

f∈Fs

cs(f). (1)

A learning-based combinatorial optimization solver is a parameterized algorithm f̂θ that aims to
approximate the optimal solution for any given instance s. The goal is to learn parameters θ ∈ Θ

such that f̂θ(s) ≈ f⋆
s for all s ∈ S.

Learning-based solvers are categorized according to their learning paradigm, with detailed explana-
tions of each approach provided in Appendix B. To tackle the challenges in complex combinatorial
optimization problems, it is essential to have access to high-quality datasets and environments that
capture the diverse and intricate nature of these instances. A standardized, large-scale dataset with
exact solutions enables the training and evaluation of advanced neural models under both supervised
and reinforcement learning paradigms. Additionally, providing specialized environments for rein-
forcement learning facilitates the development of algorithms capable of handling the intricacies of
such problems.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.2 THE STEINER TREE PROBLEM

An instance of the Steiner Tree Problem (STP) can be defined within this framework. The STP
instance is given as an undirected graph s = (V,E), where V is the set of vertices and E is the set of
edges, along with a subset of vertices T ⊆ V called terminals. Each edge e ∈ E has an associated
non-negative cost cs(e).

The goal is to find a tree f = (V ′, E′) ∈ Fs that spans all the terminals in T , where V ′ ⊆ V and
E′ ⊆ E, such that the sum of the edge costs is minimized:

f⋆
s = argmin

f∈Fs

∑
e∈E′

cs(e). (2)

We remark that the STP is NP-hard, making it infeasible to find exact solutions for large instances.
Therefore, heuristic and approximation algorithms are usually employed to solve the STP, as in other
combinatorial optimization problems.

As illustrated in Figure 1, we compare the STP with the Traveling Salesman Problem (TSP), a
well-known combinatorial optimization problem, using a toy instance. While relocating a node in
the TSP leads to minor changes in the optimal tour, adjusting the position of a terminal in the STP
significantly impacts the selected edges and can even alter the total number of edges in the optimal
Steiner tree. This demonstrates that dependencies in the STP may extend over relatively distant
regions, and small perturbations can lead to substantial variations in the solution space.

edit

TSP

edit

STP

Figure 1: Comparing (a) TSP and (b) STP: A toy example illustrating the change in solution
distribution due to a small perturbation (Yellow nodes: terminals; Bold edges: unchanged solution
edges; Red edges: changed solution edges).

Effectively applying learning-based solvers to the STP requires addressing its unique challenges, such
as the significant impact of small perturbations on the solution space and the complex dependencies
across the graph.

4 STEBEN: A STEINER TREE PROBLEM BENCHMARK FOR NCO

4.1 DATASET

To address the challenges in complex combinatorial optimization problems, it is crucial to have access
to high-quality datasets that capture the diverse and intricate nature of the STP. SteBen provides a
standardized, large-scale dataset with exact solutions, enabling the training and evaluation of advanced
neural models under both supervised and reinforcement learning paradigms. Our dataset includes 1.28
million optimally solved samples from various graph models i.e., Erdős-Rényi (ER), Watts-Strogatz
(WS), Random Regular (RR), and Grid. Node sizes for training include 10, 20, 30, 50, and 100, while
the test datasets cover not only these sizes but also larger instances of 200, 500, and 1000 nodes to test
the generalization capabilities of models. Additionally, SteBen offers a specialized environment for
reinforcement learning, facilitating the development of algorithms capable of handling the intricacies
of the STP across diverse problem scales and structures.

In generating the STP instances, we followed the procedures outlined in previous works (Yan et al.,
2021; Ko et al., 2023). Graphs were sampled from ER, WS, RR, and grid models. For grid-based
instances, nodes have 2-dimensional location features, making them analogous to Euclidean-space
combinatorial optimization problems like TSP and VRPs. In each graph, terminals were randomly

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

selected with a 0.2 probability, and edge costs were assigned as random integers from a truncated
Gaussian distribution over [1, 216]. We ensured that all graphs were connected by repeating the
generation process if isolated nodes were present. The complete dataset generation process is detailed
in Algorithm 1 and Appendix C.

Algorithm 1 Dataset Generation for STP Instances

Require: Number of instances N , number of nodes n, terminal probability pt = 0.2, graph type
G ∈ {ER,RR,WS,Grid}

1: Initialize an empty dataset D
2: for i = 1 to N do
3: while G is disconnected do
4: Generate graph G(V,E) based on graph type G and parameters
5: end while
6: Assign each vertex v ∈ V to be a terminal with probability pt
7: Assign edge costs c(e) from a truncated Gaussian distribution N (µ, σ2), truncated to [1, 216]
8: Add the generated graph G to dataset D
9: end for

10: return dataset D

4.2 BENCHMARKING BASELINES

SteBen offers a carefully curated set of diverse construction heuristic methods to evaluate their
performance on STP. The baselines are classified into four combinations based on two characteristics:
SL against RL, and Autoregressive versus Non-autoregressive. All models were trained on our
benchmark and evaluated under the same computational budget, using identical feature embedding
techniques and decoding strategy which is proposed by (Yan et al., 2021) to ensure feasible STP
solutions (see Appendix K.2). We ensured a fair comparison by excluding transductive learning
techniques i.e. active search and Monte Carlo Tree Search (MCTS).

This chapter provides a brief summary of the baselines and outlines any required modifications to
implement in STP when the baseline was not initially intended for STP.

Autogressive model and supervised learning. Autoregressive and supervised learning approaches,
such as LEHD (Luo et al., 2024) and BQ-NCO (Drakulic et al., 2024), have recently concentrated on
exploiting the symmetries present in COPs. These methods reconstruct the problem by excluding
selected nodes and recursively considering the remaining nodes, relying on the tail-recursive property
of routing problems to enhance generalization. However, STP lacks this tail-recursive property, as
the selection of remaining edges and Steiner vertices depends heavily on partial solutions, making it
difficult to apply these methods.

To address the challenges posed by the STP and leverage the benefits of autoregressive and supervised
learning, we propose adapting PtrNet, an autoregressive, supervised learning model. To adapt PtrNet
for SteBen, we made several key modifications: (1) representing the tree solution sequentially using
level-order tree traversal, (2) prioritizing nodes based on their minimum distance to terminals rather
than lexicographic order, and (3) incorporating GNN embeddings into node features to account for
missing edge cost information and better capture graph topology. Further details and ablation studies
on these modifications are provided in Appendix G.

Autoregressive Model and Reinforcement Learning. Cherrypick (Yan et al., 2021) solves the STP
using an autoregressive RL model that leverages graph embedding and deep Q-learning, optimizing a
reward function to minimize tree length and favor terminal selection. Similarly, the Attention Model
(AM) (Kool et al., 2018) is a neural construction heuristic for routing problems that employs an
autoregressive model within a reinforcement learning framework. It uses a sequence-to-sequence
architecture with an attention mechanism to construct solutions by focusing on context vectors derived
from previously selected nodes and their positional embeddings. To adapt the AM for the STP, the
context embedding needs to be modified to reflect the specific requirements of the STP, with details
provided in Appendix H. Although recent methods like POMO (Kwon et al., 2020) and Sym-NCO
(Kim et al., 2022) leverage the symmetricity of COPs based on AM, applying them to the STP is not
trivial because they do not account for the symmetricity in tree-structured solutions.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Non-autogressive model and supervised learning. DIFUSCO (Sun and Yang, 2023) is a novel
graph-based diffusion framework for solving combinatorial optimization problems. They formulate
NP-complete problem as {0, 1}-vector optimization problem and leverage graph-based denoising
diffusion model to generate high-quality solutions.

To incorporate additional details regarding edge cost and terminal information, we modify the
initialization of edge features in the Anisotropic Graph Neural Networks of DIFUSCO’s Graph-based
denoising network as follows:

e0ij = W0[fθ(xt),W
cxcost,W

ixind] (3)

where fθ is the embedding function in DIFUSCO and W0,Wc,Wi are the learnable parameters.
Furthermore, decoding strategy for STP is required to get high-quality feasible solution from generated
heatmap. To maintain consistency with other baselines, we incorporate the Cherrypick decoding
method used by other baselines.

Non-autogressive model and reinforcement learning. The Differentiable Meta Solver (DIMES)
algorithm (Qiu et al., 2022) is a novel approach for tackling the scalability issues in extensive COPs.
In contrast to conventional DRL techniques, which suffer from by costly autoregressive decoding
and repetitive refinements, DIMES use a compact continuous space to represent the underlying
distribution of potential solutions. Massively parallel sampling enables stable training and fine-tuning
using the REINFORCE method, resulting in a substantial reduction in gradient variance. DIMES
utilizes a meta-learning framework to initialize model parameters effectively during the fine-tuning
stage. This allows it to outperform current DRL-based methods on benchmark datasets for the TSP
and MIS. For adaptation into the STP domain, DIMES employs a embedding technique and decoding
strategy utilized across all learning-based baselines.

5 BENCHMARKING EVALUATION

5.1 EXPERIMENTAL SETUP

The baselines are trained and evaluated on the Intel Xeon Gold 6240 CPU and 8 NVidia 3090 GPUs.
The accuracy of the model is measured by validating its performance on 10,000 test samples for
the in-distribution results and 500 for the out-distribution results. The networks are tested once per
instance during the greedy decoding process, and the best result is selected among 32 samples in each
instance for the sampling metric. The training samples are split into a 1 million training set and a
280,000 validation set for supervised learning methods. 1

In addition to the NCO approaches, we evaluate the performance of the classical solvers. Specifically,
we include the MILP-based solver SCIP-Jack(Gamrath et al., 2017) and the classical heuristic 2-
approximation algorithm(Kou et al., 1981) as baselines for comparison. The evaluation metrics
include the average Gap of the predicted solutions and the computation Time. The inference time
is calculated as the duration spent to process all the test samples for each algorithm. Additional
hyperparameters and experimental details specific to each approach are presented in the Appendix.

5.2 RESULTS

RQ1: Which of the four NCO methods shows the most promise for solving the STP in in-
distribution evaluations?

To address RQ1, we performed an in-distribution evaluation of four representative NCO methods: su-
pervised autoregressive (PtrNet), supervised non-autoregressive (DIFUSCO), reinforcement learning
autoregressive (AM and CherryPick), and reinforcement learning non-autoregressive (DIMES). Our
goal was to determine which of these approaches shows the most promise for solving the STP, rather
than focusing solely on achieving state-of-the-art performance.

As shown in Table 1, DIFUSCO (non-AR, SL) consistently outperformed the others, particularly
on larger graphs, suggesting that non-autoregressive, supervised models handle complex graph

1For the STP100, the PtrNet utilized 100,000 samples; it is robust even with the smaller number of samples

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

structures more effectively. However, DIFUSCO’s large model size resulted in longer inference
times, highlighting a trade-off between accuracy and efficiency. PtrNet (AR, SL) also performed
well, especially on smaller graphs, offering faster training and inference times than DIFUSCO. This
indicates that autoregressive models are efficient for smaller instances. In contrast, reinforcement
learning-based methods (AM, CherryPick, DIMES) generally underperformed, likely due to their
reliance on exploration, which may be less suitable for the structured nature of the STP. In conclusion,
supervised models, particularly DIFUSCO and PtrNet, show the most promise for solving the STP
in in-distribution settings, with DIFUSCO excelling in solution quality and PtrNet offering a faster
alternative for smaller graphs.

Table 1: In-Distribution Performance on STP in Erdős-Rényi Graph. Both training and testing
are performed on datasets generated from the same graph model and problem size. Results report the
gap (%) relative to SCIP-Jack’s optimal solution, and the total runtime required to solve 10,000 test
samples.

Algorithm Type STP10 STP20 STP30 STP50 STP100

Gap (%) Time Gap (%) Time Gap (%) Time Gap (%) Time Gap (%) Time

SCIP-Jack Exact 0.00 ± 0.00 3m 0.00 ± 0.00 3m 0.00 ± 0.00 3m 0.00 ± 0.00 5m 0.00 ± 0.00 1h
2-Approx Heuristics 0.41 ± 2.24 6s 1.84 ± 4.13 8s 2.98 ± 4.50 11s 3.84 ± 3.93 23s 17.29 ± 60.48 82s

PtrNet AR, SL, greedy 0.75 ± 5.04 6s 3.75 ± 8.23 12s 7.61 ± 10.12 13s 14.73 ± 11.63 27s 25.72 ± 13.28 2m
AM AR, RL, greedy 2.54 ± 9.06 7s 9.13 ± 18.69 11s 13.93 ± 21.25 14s 17.23 ± 14.57 28s 22.22 ± 9.56 1m
CherryPick AR, RL, greedy 8.42 ± 23.53 13m 21.19 ± 20.34 40m 20.50 ± 19.74 52m 29.22 ± 17.69 1.5h 62.17 ± 25.39 3h
DIMES nAR, RL, greedy 3.99 ± 11.41 2s 6.86 ± 14.10 4s 5.66 ± 8.39 8s 11.17 ± 10.11 21s 11.13 ± 7.00 2m
DIFUSCO nAR, SL, greedy 0.43 ± 4.91 1.2h 0.64 ± 4.47 1.4h 1.11 ± 6.42 1.6h 0.74 ± 2.70 1.8h 0.25 ± 0.96 2.4h

PtrNet AR, SL, sampling 0.03 ± 0.51 43s 0.36 ± 1.53 1m 1.15 ± 2.50 2m 5.17 ± 5.15 3m 17.29 ± 8.71 13m
AM AR, RL, sampling 3.11 ± 10.67 2m 12.12 ± 22.32 3m 14.41 ± 17.80 9m 18.36 ± 15.83 17m 22.73 ± 10.17 40m
CherryPick AR, RL, sampling 1.12 ± 0.05 30m 6.73 ± 13.30 1h 8.18 ± 9.78 1.3h 15.05 ± 12.03 3h 58.13 ± 23.75 7h
DIMES nAR, RL, sampling 0.71 ± 3.49 1m 1.09 ± 2.86 2m 2.33 ± 3.77 4m 8.05 ± 6.62 11m 11.77 ± 6.30 64m
DIFUSCO nAR, SL, sampling 0.22 ± 3.15 7.6h 0.31 ± 3.28 8h 0.58 ± 3.45 9.6h 0.31 ± 1.65 11h 0.21 ± 0.19 14.2h

RQ2: How well do these NCO methods solve problems of unseen sizes, and which are the most
robust?

In exploring RQ2, we evaluated the generalization capabilities of the models by testing them on STP
instances of varying sizes that differ from those seen during training. This evaluation is crucial for
learning-based solvers, as their practical utility depends on their ability to solve problems at test time
that are at different scales than those encountered during training.

As shown in Table 2, we observed that DIFUSCO, despite its strong in-distribution performance,
experienced a significant drop in performance when tested on out-of-distribution data with different
problem sizes. In contrast, the reinforcement learning autoregressive models, specifically AM and
CherryPick, demonstrated more robust performance across different scales, maintaining a relatively
stable performance relative to their in-distribution results. DIMES (reinforcement learning, non-
autoregressive) also showed consistent performance across different scales, although it did not fully
align with the trend observed for the other models.

These findings suggest that while supervised learning methods like DIFUSCO are effective within
the distribution they were trained on, reinforcement learning approaches, particularly autoregressive
models, may offer greater robustness and generalization to problem sizes not seen during training.
This highlights the importance of considering the scalability and generalization capabilities of NCO
methods when applying them to practical problems.

RQ3: Can models trained on our synthetic STP data effectively solve real-world cases and
prove more practical than classical heuristics?

To address RQ3, we evaluated the models on real-world instances from the SteinLib benchmark (Koch
et al., 2001), which are derived from practical scenarios such as network design and VLSI design.
This experiment aimed to determine whether models trained on our synthetic data can effectively
solve real-world problems without any fine-tuning, thereby validating their practical utility.

The results, presented in Table 3, show that the models trained on STP50 significantly outperform the
baseline heuristic (2-approximation algorithm). Notably, non-autoregressive methods like DIFUSCO
(supervised learning) and DIMES (reinforcement learning) achieved superior performance compared
to other baselines. This indicates that models trained on synthetic data can generalize to real-world

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Out-of-distribution Generalization Performance Measured in Relative Gap. This table
reports the relative performance degradation of trained solvers when tested on graphs with node sizes
different from the training distribution, where in-distribution performance is normalized to 1. Darker
shades represent greater relative performance degradation.

Algo.
Train
Nodes

Test Nodes

STP10 STP20 STP30 STP50 STP100 STP200

PtrNet
10 1 (0.75) 61.85 (46.39) 93.05 (69.79) 128.41 (96.31) 131.33 (98.5) 147.45 (110.59)
30 0.48 (3.71) 1.04 (8.12) 1 (7.80) 8.40 (65.52) 11.95 (93.18) 15.98 (124.67)
50 0.19 (2.80) 0.67 (9.91) 1.85 (27.29) 1 (14.74) 4.22 (63.3) 8.44 (124.31)

AM
10 1 (2.15) 2.88 (66.20) 4.31 (9.26) 6.55 (14.08) 9.90 (21.29) 14.27 (60.69)
30 0.55 (6.45) 0.94 (10.95) 1 (11.71) 1.28 (14.98) 1.80 (21.10) 2.65 (31.06)
50 0.42 (6.85) 0.60 (9.84) 0.78 (12.72) 1 (16.38) 1.29 (21.12) 1.95 (31.963)

CherryPick
10 1 (8.42) 2.46 (20.75) 4.88 (41.12) 5.45 (45.89) 6.15 (51.80) 6.88 (57.91)
30 0.23 (4.78) 0.87 (17.79) 1.00 (20.50) 1.27 (26.00) 2.10 (42.95) 2.45 (50.13)
50 0.20 (5.75) 0.59 (17.15) 0.76 (22.21) 1.00 (29.22) 1.31 (38.21) 1.52 (44.42)

DIFUSCO
10 1 (0.59) 19.81 (11.69) 31.34 (18.49) 27.80 (16.40) 23.71 (13.99) 43.00 (25.37)
30 11.26 (8.78) 3.01 (2.35) 1 (0.78) 1.81 (1.41) 20.53 (16.01) 21.00 (16.38)
50 10.31 (8.66) 4.51 (3.79) 1.74 (1.46) 1 (0.84) 2.90 (2.44) 7.24 (6.08)

DIMES
10 1 (3.99) 2.87 (11.45) 4.20 (16.75) 5.36 (21.39) 6.39 (25.50) 8.46 (33.75)
30 1.01 (5.70) 0.98 (5.56) 1 (5.66) 1.36 (7.70) 2.18 (12.33) 3.61 (20.43)
50 0.58 (6.51) 0.74 (8.27) 0.86 (9.59) 1 (11.17) 1.45 (16.21) 2.13 (23.80)

instances, and non-autoregressive approaches, in particular, demonstrate strong practical applicability.

Table 3: Real-world Generalization Performance of Learning-based Solvers This table shows
the performance of models trained on synthetic Erdős–Rényi graphs with 50 nodes when tested on
real-world instances from the SteinLib benchmark, grouped by test node sizes. Neural solvers trained
on synthetic data show competitive results, highlighting their potential for real-world applications.

Algorithm Type
Test Nodes

0 - 100 100 - 200 200 - 500 500 - 1000

2-approx. Heuristic 17.79 ± 18.38 22.87 ± 21.19 43.22 ± 27.22 48.06 ± 23.00

Pointer Network AR, SL 53.78 ± 27.01 19.10 ± 13.01 33.42 ± 25.01 35.87 ± 11.65

DIFUSCO nAR, SL 5.59 ± 8.81 18.5 ± 28.4 5.02 ± 8.84 56.53 ± 100.48

Cherrypick AR, RL 13.72 ± 30.42 49.98 ± 98.75 8.70 ± 11.20 43.34 ± 56.24

AM AR, RL 17.51 ± 15.21 19.67 ± 15.78 30.09 ± 13.47 27.55 ± 13.39

DIMES nAR, RL 12.56 ± 14.39 17.45 ± 15.53 19.31 ± 27.33 15.92 ± 19.51

6 DISCUSSION

Discussion about nAR settings and AR settings. As shown in Table 1, non-autoregressive
models outperform autoregressive models in solving the STP. This can be attributed to the fact
that STP heavily relies on the information of the currently selected partial solution, whereas AR
models may suffer from a smoothing problem when aggregating partial solution information during
the sequential node selection process. Especially, the smoothing of the embedding becomes more
prominent when the number of terminals is large or the solution sequence is long, leading to a
decrease in representation power. This explains the more significant performance degradation of AR
models on larger-scale instances. Therefore, one potential direction for improving the performance of
AR models is to enhance their representation power for partial solutions.

Training sample efficiency in supervised setting. In NCO, SL benefits from its ability to learn
quickly and reliably from high-quality labeled solutions. However, obtaining a sufficient training
dataset with high-quality solutions is typically very expensive in large-scale combinatorial optimiza-
tion domains due to their NP-hardness. If the dataset quantity is insufficient which means the model
is trained on a limited number of instances, leading to reduced generalization for unseen instances.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

1M 50K 10K 1K 100
Number of Training Samples

1000

500

0

R
el

. G
ap

 D
ro

p
(%

)
PtrNet
DIFUSCO

Algorithm Number of Training samples

1M 50K 10K 1K 100

PtrNet 14.73 17.74 18.81 23.42 25.47
DIFUSCO 0.84 1.28 6.94 10.85 12.28

Figure 2: Degradation of SL with respect to number of training sample in STP50

To show the impact of training samples size on the performance gap of SL methods, we train the
SL method with varying numbers of training samples. Figure 2 (a) shows the relative performance
degradation of each method when using reduced training samples, compared to their respective
performance with the full training set (1 million samples). As expected, the performance of both
methods deteriorates as the training sample size reduces. Concretely, DIFUSCO demonstrates higher
robustness and effectiveness in low-sample regimes, maintaining a smaller performance gap than
the Pointer Network. However, it is noteworthy that the rate of performance decline in DIFUSCO is
steeper than Pointer Network when compared to their respective peak performance with 1 million
samples. This figure highlights the importance of considering sample efficiency and the trade-offs
between different supervised learning methods when dealing with limited training data.

Limitations. State-of-the-art NCO methods require large datasets, making computational efficiency
crucial for reasonable training times. Unlike Euclidean-space routing problems like TSP, efficiently
supplying training data for STP on graphs poses significant engineering challenges in terms of
providing data in the training loop, making it difficult to train on very large-scale problems. In
addition, our STP instances do not cover the full distribution of all possible STP problems, potentially
affecting performance on different distributions. Additionally, while real-world STP problems often
have practical constraints, our study focuses on the unconstrained version, leaving constrained
versions for future work.

7 CONCLUSION

In this paper, we introduced SteBen, a comprehensive benchmark for evaluating neural combina-
torial optimization (NCO) methods on the Steiner Tree Problem (STP). Our benchmark provides
extensive datasets and environments for training state-of-the-art NCO methods with exact solutions.
Additionally, we have implemented various NCO algorithms and a classical heuristic, providing code
that allows practical experimentation across diverse scenarios. We reported the results of applying a
wide range of NCO construction heuristic methods for the STP, offering detailed comparisons and
analyses of their characteristics. Our comprehensive evaluation not only highlighted the strengths and
limitations of existing methods but also provided valuable insights for future research. We believe that
SteBen will serve as a stepping stone for researchers, facilitating the development of more effective
NCO methods and driving further advancements in solving complex combinatorial optimization
problems.

REFERENCES

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

Édouard Bonnet and Florian Sikora. The pace 2018 parameterized algorithms and compu-
tational experiments challenge: The third iteration. In IPEC 2018, 2018. URL https:
//paperswithcode.com/dataset/pace-2018-steiner-tree.

9

https://paperswithcode.com/dataset/pace-2018-steiner-tree
https://paperswithcode.com/dataset/pace-2018-steiner-tree

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Marcus Brazil, Michael Hendriksen, Jae Lee, Michael S Payne, Charl Ras, and Doreen Thomas. An
exact algorithm for the euclidean k-steiner tree problem. Computational Geometry, 121:102099,
2024.

Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial optimization.
Advances in neural information processing systems, 32, 2019.

Ruoyu Cheng, Xianglong Lyu, Yang Li, Junjie Ye, Jianye Hao, and Junchi Yan. The policy-gradient
placement and generative routing neural networks for chip design. Advances in Neural Information
Processing Systems, 35:26350–26362, 2022.

Paulo R d O Costa, Jason Rhuggenaath, Yingqian Zhang, and Alp Akcay. Learning 2-opt heuristics
for the traveling salesman problem via deep reinforcement learning. In Asian conference on
machine learning, pages 465–480. PMLR, 2020.

Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. Bq-nco: Bisimu-
lation quotienting for efficient neural combinatorial optimization. Advances in Neural Information
Processing Systems, 36, 2024.

Henrik Esbensen. Computing near-optimal solutions to the steiner problem in a graph using a genetic
algorithm. Networks, 26(4):173–185, 1995.

Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily
large tsp instances. In Proceedings of the AAAI conference on artificial intelligence, volume 35,
pages 7474–7482, 2021.

Gerald Gamrath, Thorsten Koch, Stephen J Maher, Daniel Rehfeldt, and Yuji Shinano. Scip-jack—a
solver for stp and variants with parallelization extensions. Mathematical Programming Computa-
tion, 9:231–296, 2017.

Simon Geisler, Johanna Sommer, Jan Schuchardt, Aleksandar Bojchevski, and Stephan Günnemann.
Generalization of neural combinatorial solvers through the lens of adversarial robustness. arXiv
preprint arXiv:2110.10942, 2021.

Luis Gouveia and Thomas L Magnanti. Network flow models for designing diameter-constrained
minimum-spanning and steiner trees. Networks: An International Journal, 41(3):159–173, 2003.

André Hottung, Bhanu Bhandari, and Kevin Tierney. Learning a latent search space for routing
problems using variational autoencoders. In International Conference on Learning Representations,
2020.

Qingchun Hou, Jingwei Yang, Yiqiang Su, Xiaoqing Wang, and Yuming Deng. Generalize learned
heuristics to solve large-scale vehicle routing problems in real-time. In The Eleventh International
Conference on Learning Representations, 2022.

Sheryl Hsu, Fidel I Schaposnik Massolo, and Laura P Schaposnik. A physarum-inspired approach to
the euclidean steiner tree problem. Scientific Reports, 12(1):14536, 2022.

Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network
technique for the travelling salesman problem. arXiv preprint arXiv:1906.01227, 2019.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. Advances in neural information processing systems, 30,
2017.

Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-nco: Leveraging symmetricity for neural
combinatorial optimization. Advances in Neural Information Processing Systems, 35:1936–1949,
2022.

Hanbum Ko, Minu Kim, Han-Seul Jeong, Sunghoon Hong, Deunsol Yoon, Youngjoon Park,
Woohyung Lim, Honglak Lee, Moontae Lee, Kanghoon Lee, et al. Hierarchical decomposition
framework for feasibility-hard combinatorial optimization. In ICML 2023 Workshop: Sampling
and Optimization in Discrete Space, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Thorsten Koch, Alexander Martin, and Stefan Voß. SteinLib: An updated library on Steiner tree
problems in graphs. Springer, 2001. URL http://elib.zib.de/steinlib.

Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems! arXiv
preprint arXiv:1803.08475, 2018.

Lawrence Kou, George Markowsky, and Leonard Berman. A fast algorithm for steiner trees. Acta
informatica, 15:141–145, 1981.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
Pomo: Policy optimization with multiple optima for reinforcement learning. Advances in Neural
Information Processing Systems, 33:21188–21198, 2020.

Kanghoon Lee, Youngjoon Park, Han-Seul Jeong, Sunghoon Hong, Deunsol Yoon, Sungryull Sohn,
Minu Kim, Hanbum Ko, Moontae Lee, Honglak Lee, et al. Respack: A large-scale rectilinear
steiner tree packing data generator and benchmark. In NeurIPS 2022 Workshop on Synthetic Data
for Empowering ML Research, 2022.

Sirui Li, Zhongxia Yan, and Cathy Wu. Learning to delegate for large-scale vehicle routing. Advances
in Neural Information Processing Systems, 34:26198–26211, 2021.

Yang Li, Yichuan Mo, Liangliang Shi, and Junchi Yan. Improving generative adversarial networks
via adversarial learning in latent space. Advances in neural information processing systems, 35:
8868–8881, 2022.

Yang Li, Jinpei Guo, Runzhong Wang, and Junchi Yan. From distribution learning in training
to gradient search in testing for combinatorial optimization. Advances in Neural Information
Processing Systems, 36, 2024.

Zhuwen Li, Qifeng Chen, and Vladlen Koltun. Combinatorial optimization with graph convolutional
networks and guided tree search. Advances in neural information processing systems, 31, 2018.

Ivana Ljubić. A hybrid vns for connected facility location. In International Workshop on Hybrid
Metaheuristics, pages 157–169. Springer, 2007.

Chin Lung Lu, Chuan Yi Tang, and Richard Chia-Tung Lee. The full steiner tree problem. Theoretical
Computer Science, 306(1-3):55–67, 2003.

Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization with
heavy decoder: Toward large scale generalization. Advances in Neural Information Processing
Systems, 36, 2024.

J MacGregor Smith and JUDITH S LIEBMAN. Steiner trees, steiner circuits and the interference
problem in building design. Engineering Optimization, 4(1):15–36, 1979.

Fortunato Meire, Jaitly Navdeep, C Cortes, ND Lawrence, DD Lee, M Sugiyama, and R Garnett.
Pointer networks. Advances in neural information processing systems, 28:2692–2700, 2015.

Alex Nowak, David Folqué, and Joan Bruna. Divide and conquer networks. In International
Conference on Learning Representations, 2018.

Jaap Pedersen, Jann Michael Weinand, Chloi Syranidou, and Daniel Rehfeldt. Quota steiner tree
problem for large-scale wind turbine siting including cable routing, 2024. URL https://
zenodo.org/records/10600575.

Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. Dimes: A differentiable meta solver for combinatorial
optimization problems. Advances in Neural Information Processing Systems, 35:25531–25546,
2022.

Charl Ras, Konrad Swanepoel, and Doreen Anne Thomas. Approximate euclidean steiner trees.
Journal of Optimization Theory and Applications, 172:845–873, 2017.

Olga Russakovsky and Andrew Y Ng. A steiner tree approach to efficient object detection. In
2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages
1070–1077. IEEE, 2010.

11

http://elib.zib.de/steinlib
https://zenodo.org/records/10600575
https://zenodo.org/records/10600575

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Zhiqing Sun and Yiming Yang. Difusco: Graph-based diffusion solvers for combinatorial optimization.
Advances in Neural Information Processing Systems, 36:3706–3731, 2023.

Siqi Wang, Yifan Wang, and Guangmo Tong. Deep-steiner: Learning to solve the euclidean steiner
tree problem. In International Wireless Internet Conference, pages 228–242. Springer, 2022.

Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning improvement heuristics
for solving routing problems. IEEE transactions on neural networks and learning systems, 33(9):
5057–5069, 2021.

Zong Yan, Haizhou Du, Jiahao Zhang, and Guoqing Li. Cherrypick: Solving the steiner tree problem
in graphs using deep reinforcement learning. In 2021 IEEE 16th Conference on Industrial
Electronics and Applications (ICIEA), pages 35–40. IEEE, 2021.

Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron Courville, Yoshua Bengio, and Ling Pan. Let
the flows tell: Solving graph combinatorial optimization problems with gflownets. arXiv preprint
arXiv:2305.17010, 2023.

Jiwei Zhang and Deepak Ajwani. Learning to prune instances of steiner tree problem in graphs.
arXiv preprint arXiv:2208.11985, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A DATASETS & SOURCE FOR BENCHMARK EXPERIMENTS

We provide the following link to download the training and test data 2. The datasets are stored as
pickle files based on networkx3 graph format, and for larger node sizes, the data is divided into
multiple pickle files. The source code for all the baseline methods we experimented with can be
found in the following GitHub repository 4. These are distributed under an MIT license.

B BACKGROUND ON LEARNING-BASED SOLVERS

B.1 SUPERVISED LEARNING AND REINFORCEMENT LEARNING IN NCO

In supervised learning, a model is trained on a dataset {(s, f⋆
s)}s∈D where each instance s is paired

with a label f⋆
s representing the known optimal or high-quality solution. The model aims to imitate

the optimal solution by minimizing the difference ∥f̂θ(s)− f⋆
s ∥ under an appropriate metric ∥ · ∥.

The training objective is to minimize the loss function:

L(θ) =
∑
s∈D

∥f⋆
s − f̂θ(s)∥. (4)

In reinforcement learning, the solver learns autonomously using feedback from the cost function
cs(·), without relying on labeled data. The solver f̂θ(·) is considered a policy where the instance s is
regarded as the state and the output f̂θ(s) as the action. After selecting an action, the solver receives
a reward −cs(f̂θ(s)). The training objective is to minimize the expected cost over the distribution
P(S) of instances:

R(θ) = Es∼P(S)[cs(f̂θ(s))]. (5)

B.2 AUTOREGRESSIVE AND NON-AUTOREGRESSIVE SOLVERS

Autoregressive solvers generate a sequence of partial solutions incrementally, conditioned on
previous solutions, until a feasible solution is reached. This step-by-step approach simplifies the
learning process by breaking it down into manageable stages. In the context of reinforcement learning,
the advantage of reducing the action space has made autoregressive methods the predominant choice.

Non-autoregressive solvers generate the complete solution f̂θ(s) for a given problem instance s in a
single step. With recent progress in deep learning, particularly in models such as diffusion models
that excel in high-dimensional spaces, these solvers have become increasingly popular for tackling
large-scale combinatorial optimization problems. They avoid the error accumulation issue inherent in
sequential generation.

C STP DATASET GENERATION

C.1 INSTANCE GENERATION

To cover a diverse range of problem instances for the Steiner Tree Problem (STP), we generated graphs
using four common models: Erdős-Rényi (ER), Random-Regular (RR), Watts-Strogatz (WS), and
grid graphs. Each model introduces unique graph structures, allowing us to evaluate the performance
of neural combinatorial optimization methods across various topologies. Additionally, we applied
specific generation techniques to ensure that all graphs are connected, feasible, and suitable for
training NCO models. Below, we describe the generation process for each graph type.

2https://drive.google.com/drive/folders/1j_vuK-Mhv0mGoAXgF8FNVn1onONX-34T?
usp=drive_link

3https://networkx.org
4https://anonymous.4open.science/r/steben-1471

13

https://drive.google.com/drive/folders/1j_vuK-Mhv0mGoAXgF8FNVn1onONX-34T?usp=drive_link
https://drive.google.com/drive/folders/1j_vuK-Mhv0mGoAXgF8FNVn1onONX-34T?usp=drive_link
https://networkx.org
https://anonymous.4open.science/r/steben-1471

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

ER To generate ER graphs, we sampled the probability for edge creation from a uniform distribution
and used this value as the parameter for the ER model.

RR To generate RR graphs, we ensured that each node had the same number of neighbors by sampling
the degree of the graph from a Uniform({3, 4, 5}) and using this degree value as the parameter for
the RR model.

WS To generate WS graphs, we sampled the mean node degree k ∼ Uniform({3, 4, 5, 6}) and the
rewiring probability β ∼ Uniform(0, 1) for generating random graphs.

Grid When generating grid graphs, given the number of nodes n, we determine the grid’s dimensions
by sampling combinations of width and height such that their product equals n. For example, if n is
20, we randomly sample between combinations like 4x5 or 5x4. Additionally, we ensure that at least
one dimension is greater than 4. In contrast to the other graph types, for grid-based instances, we
fixed all edge costs to 1. This design choice was made to ensure that the instances exhibit properties
more akin to those found in Euclidean space.

C.2 SOLVER FOR OPTIMAL SOLUTION

To facilitate supervised training, we provide both training and test sets with optimal solutions and
costs to measure performance gaps against these optimal benchmarks. For this purpose, we employed
the MILP-based SCIP-Jack5 solver to compute optimal solutions for the STP instances we cover.
This solver is used under the ZIB license, which allows usage by members of non-commercial and
academic institutions.

C.3 STATISTICS

The following tables describe the statistics of the training and test datasets from ER graphs. We
generated 10,000 test samples for instances with fewer than 200 nodes and 1,000 samples for instances
with 200 nodes or more, due to the exponentially increasing time required to find the optimal cost
using MILP-based solvers as the problem scale grows. While the training data includes solutions for
supervised learning, the test data only contains the optimal costs, not the solutions.

Table 4: Data statistics of training data

Type STP10 STP20 STP30 STP50 STP100

of terminals 2.48 ± 0.81 4.13 ± 1.70 6.02 ± 2.15 9.99 ± 2.81 19.97 ± 4.00
of optimal edges 2.04 ± 1.10 4.12 ± 2.05 6.60 ± 2.62 11.94 ± 3.49 26.27 ± 5.23
of total edges 30.06 ± 8.89 115.98 ± 43.35 253.28 ± 104.82 686.01 ± 312.42 2663.71 ± 1323.96
Optimal value 53240.31 ± 28970.65 88300.01 ± 44448.35 125144.12 ± 53819.80 188669.69 ± 67699.81 310943.73 ± 109333.33
Avg. edge cost 32779.54 ± 2088.35 32750.46 ± 1111.49 32765.40 ± 762.07 32766.97 ± 484.33 32769.43 ± 264.28

Table 5: Data statistics of test data (from STP10 to STP50)

Type STP10 STP20 STP30 STP50

of terminals 2.50 ± 0.84 4.07 ± 1.67 6.00 ± 2.17 10.07 ± 2.85

of optimal edges N/A N/A N/A N/A
of total edges 27.96 ± 9.98 109.24 ± 46.57 241.80 ± 111.13 660.25 ± 328.60

Optimal value 56502.76 ± 32505.02 92096.61 ± 48963.88 130576.33 ± 60079.15 196755.18 ± 76570.06

Avg. edge cost 32756.82 ± 2236.76 32793.21 ± 1171.90 32774.25 ± 823.30 32760.07 ± 520.62

D PERFORMANCE VS RUNTIME ANALYSIS

Figure 3 illustrates the tradeoff between runtime and performance (Gap %) for various algorithms,
including SCIP-Jack and learning-based approaches, across different STP sizes. SCIP-Jack achieves
near-optimal solutions for smaller graphs within reasonable runtime but struggles to scale efficiently

5https://scipjack.zib.de

14

https://scipjack.zib.de

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 6: Data statistics of test data (from STP100 to STP1000)

Type STP100 STP200 STP500 STP1000

of terminals 20.00 ± 3.95 39.94 ± 5.70 99.70 ± 8.98 198.80 ± 12.51

of optimal edges N/A N/A N/A N/A
of total edges 2560.04 ± 1366.75 9954.42 ± 5610.50 63167.71 ± 34243.41 264444.55 ± 136561.18

Optimal value 322868.13 ± 122637.03 503077.40 ± 227663.14 736329.24 ± 464148.09 796172.63 ± 785896.22

Avg. edge cost 32767.29 ± 278.63 32762.68 ± 147.72 32769.35 ± 61.90 32771.98 ± 39.88

as graph sizes increase, with its runtime growing exponentially. In contrast, learning-based approaches
such as DIFUSCO and PtrNet demonstrate better scalability to larger graphs. DIFUSCO achieves the
smallest gaps consistently, albeit with higher computational cost, while PtrNet offers a balance of
runtime efficiency and solution quality for smaller STPs. Reinforcement learning methods, including
AM and DIMES, show moderate performance with varying tradeoffs across sizes. This analysis
highlights the complementary strengths of classical and neural solvers, suggesting that the choice of
algorithm depends on the runtime constraints and the scale of problems.

Figure 3: Gap vs. Runtime Across STP Sizes for Different Solvers DIFUSCO consistently achieves
the smallest gaps, while PtrNet balances efficiency and quality. SCIP-Jack performs well for small
graphs but struggles with scalability, and reinforcement learning methods like DIMES maintain
steady performance across scales.

E EVALUATION ON OTHER GRAPH MODELS

Table 7 presents the evaluation results of various algorithms on different types of graphs, specifically
Random-Regular (RR), Watts-Strogatz (WS), and grid graphs. The table shows the performance
of each algorithm in terms of the gap (%) between the algorithm’s cost and the optimal cost for
different test node sizes. For grid graphs, experiments with node size 10 were excluded due to
the lack of diversity in grid shapes. These experiments were conducted by training the models on
instances with 50 nodes and then evaluating their performance on instances of varying scales. In
the same manner as the out-of-distribution generalization evalutions in the main paper, each test
instance set contained 500 samples. The results highlight interesting patterns, with NCO baselines
generally exhibiting smaller gaps compared to ER graph problems. Notably, DIFUSCO consistently
outperforms the heuristic solver, demonstrating superior overall performance. However, consistent
with the characteristics of non-autoregressive models, both DIFUSCO and DIMES show significant
performance degradation on STP10 compared to STP50, indicating weaker generalization capabilities.
CherryPick displays substantial performance variation depending on the graph type, while Pointer

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Network’s performance sharply declines as the problem scale increases. In contrast, AM maintains
a more consistent performance degradation across increasing problem scales, suggesting a more
stable solution quality as the problem size grows. These results provide valuable insights into the
generalization capabilities and robustness of the algorithms when applied to diverse graph structures.

Table 7: Performance Evaluation of Baseline Methods on Diverse Graph Types and Node Scales

Algorithm Graph Type
Test Nodes

STP10 STP20 STP30 STP50 STP100 STP200

2-Approx
RR 0.43 ± 1.78 4.06 ± 2.14 3.14 ± 4.44 3.98 ± 3.78 5.25 ± 3.07 5.42 ± 2.14
WS 0.36 ± 2.14 1.47 ± 3.49 2.77 ± 4.33 3.60 ± 4.45 3.82 ± 3.70 4.19 ± 3.59
Grid - 2.05 ± 4.91 3.24 ± 5.27 3.39 ± 3.83 3.58 ± 2.55 4.04 ± 1.90

PtrNet
RR 3.51 ± 10.58 3.84 ± 7.80 4.06 ± 5.68 5.74 ± 5.17 96.58 ± 25.03 83.88 ± 22.39
WS 2.55 ± 9.09 4.37 ± 8.92 5.55 ± 8.69 5.74 ± 9.88 26.23 ± 24.36 49.90 ± 37.08
Grid - 7.87 ± 13.00 6.37 ± 8.62 8.07 ± 7.16 76.28 ± 19.65 79.84 ± 16.20

AM
RR 6.06 ± 15.00 6.44 ± 10.80 7.75 ± 11.03 8.05 ± 6.41 8.33 ± 4.93 8.55 ± 3.63
WS 1.44 ± 6.58 2.34 ± 5.67 3.36 ± 5.81 3.98 ± 4.61 3.96 ± 3.74 4.27 ± 3.59
Grid - 2.12 ± 5.33 2.65 ± 4.79 3.74 ± 4.39 5.20 ± 3.92 6.95 ± 3.27

CherryPick
RR 10.80 ± 24.35 13.80 ± 21.20 15.48 ± 16.75 16.08 ± 12.47 17.65 ± 10.28 16.63 ± 7.64
WS 27.09 ± 48.50 39.79 ± 56.46 40.01 ± 42.65 41.94 ± 32.79 39.56 ± 31.00 39.27 ± 30.45
Grid - 6.02 ± 11.79 6.74 ± 8.64 8.51 ± 6.81 7.78 ± 4.71 8.34 ± 3.27

DIFUSCO
RR 4.38 ± 14.38 1.80 ± 5.74 0.42 ± 1.49 0.17 ± 0.74 0.71 ± 3.09 2.23 ± 4.34
WS 4.43 ± 15.55 2.53 ± 10.28 2.21 ± 9.04 1.63 ± 7.13 1.41 ± 3.65 3.15 ± 4.85
Grid - 0.06 ± 1.48 0.00 ± 0.00 0.00 ± 0.00 2.10 ± 3.93 2.93 ± 2.98

DIMES
RR 5.60 ± 16.51 3.38 ± 7.884 3.50 ± 13.39 2.96 ± 3.34 3.96 ± 2.78 4.60 ± 2.11
WS 10.21 ± 30.00 4.18 ± 17.44 2.91 ± 9.45 2.56 ± 3.75 2.85 ± 3.18 3.86 ± 3.36
Grid - 4.05 ± 15.39 2.83 ± 8.44 3.78 ± 2.79 3.02 ± 3.74 4.96 ± 2.19

F CHERRYPICK

F.1 EXPERIMENTAL DETAILS

We reimplemented the CherryPick algorithm following the original paper’s description. We contacted
the authors and received a portion of the code, but fully reproducing the experiments was impossible
due to missing parts for the STP environment. Nevertheless, this enabled us to incorporate minor
details not explicitly mentioned in the paper into our implementation. However, reproducing the
bonus term for terminal selection in the reward function exactly as described in the paper and the
received code was not possible. During each state transition, CherryPick updates its features, which
involves calculating the shortest paths from every node to all terminal nodes that need to be connected.
This process makes it challenging to efficiently train on large-scale problems due to the computational
overhead.

For training CherryPick, we increased the number of STP instances used compared to the original
paper, utilizing up to 100,000 instances. Due to the computational demands, only 6,000 instances
were used for training on STP100. Among the hyperparameters, we used a discount factor of 0.99
instead of the 0.2 specified in the original paper, as it shows better performance.

F.2 COMPARISON TO ORIGINAL PAPER

To validate the implementation of CherryPick, we compared our results on STP50 (fixed weight)
instances with ER graphs against those reported in the original paper (show Table 8). In this setting,
evaluated using the same methodology as the original paper, the gap was calculated based on the
2-approximation algorithm. Our implemented version achieved slightly lower performance compared
to the original. This discrepancy can be attributed to the aforementioned challenges in perfectly
replicating the reward function, as well as potential differences in the parameters that define the graph
characteristics during the generation process.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 8: Comparison Gap with Original Paper on ER Graph

Problem Implemented (ours) Original (Yan et. al., 2021)

STP50 (Fixed Weight) −0.29± 3.38 −2.5

F.3 REWARD FUNCTIONS OF STP ENVIRONMENT

Table 9 demonstrates the impact of including a terminal selection bonus in the reward function for
CherryPick. The results indicate that incorporating a bias towards selecting terminal nodes, in addition
to minimizing tree length, significantly improves performance. Specifically, the reward function with
the terminal bonus consistently outperforms the one without it across all test node sizes.

Table 9: Comparison Reward Functions for Cherrypick

Problem Test Nodes

w/ terminal bonus (original) w/o terminal bonus

STP10 8.42 ± 23.53 20.70 ± 38.41
STP20 21.19 ± 20.34 29.65 ± 36.45
STP30 20.50 ± 19.74 64.78 ± 49.23
STP50 29.22 ± 17.69 64.00 ± 35.71

G POINTER NETWORKS

G.1 EXPERIMENTAL DETAILS

We reused to the most of experimental settings as described in the original publications, including
a single-layer LSTM with 512 embedding, weight initialization ranging from -0.08 to 0.08, and
gradient clipping. The model was trained 300 epochs using Adam optimizer, and the best model was
selected based on 1K validation set. We used 1M training instances with a learning rate of 1e-4 and
and the maximum batch size allowed by the graph size. Additionally, we utilized teacher forcing, a
classic technique for stable training during the early stage.

G.2 LABEL GENERATION

To serialize nodes of the STP solution tree, we compared tree traversal methods. A general tree, where
the number of children is not limited to two can be reordered using level-order, pre-order, and post-
order traversal. Level-order traversal, also known as breadth-first search (BFS), prioritizes visiting
all the children of a node before proceeding to the nodes at the next level. Pre-order Traversal, or
depth-first search, is a method where the traversal goes deeper recursively and then visits the siblings’
subtrees. Pre-order traversal prioritizes visiting the root before its children. In contrast to other two
methods, Post-order Traversal visits all the children nodes before their respective parent node. We
constructed the tree based on node indices, designating the root as the last-ordered terminal point and
sorting the children in descending order. This allows us to fix the position of terminals as the latest
embedding and assign consistent labels to aid in learning.

G.3 EDGE EMBEDDINGS

To compensate for missing edge cost information, we added a GNN embedding to node embedding.
The embedding of node i is embedded as follows:

hi = hi +
1

|Ni|
∑
j∈Ni

ĉjhj (6)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

where hi is a node embedding of node i, Ni is a neighbor of node i, and ĉj is a normalized edge cost
(1− cj

maxi∈E ci
).

G.4 ABLATION STUDIES

Table 10: PtrNet ablation experiment.

Type Gap (%)

PtrNet w/ Level (default.) 0.75 ± 5.04
PtrNet w/ Pre 0.80 ± 5.54
PtrNet w/ Post 4.72 ± 12.74
PtrNet w/ Random 1.35 ± 5.98
PtrNet w/ Inv. sort 0.83 ± 6.06
PtrNet w/o Edge Emb. 1.13 ± 8.28

In Table 10, we represent the Gap in Erdős-Rényi graph ablation study to show the importance of
each elements.

First, we explored various tree traversal methods, including Level, Pre, Post, and Random. The
performance of node traversal strategies exhibits significant variance depending on the traversal
method employed. The level traversal method demonstrated superior performance, while the post
traversal method exhibited a notable decrease in performance compared to random ordering. In
our experimental setup, where slight changes in node coordinates could lead to minor variations in
indices, the post traversal method proved particularly sensitive due to its exhaustive exploration of
leaf nodes, rendering the capture of such variations challenging.

Secondly, we examined the influence of node encoding order. Interestingly, encoding nodes in prox-
imity to terminals towards the end of the sequence yielded improved performance. This observation
suggests that providing crucial information about terminal-adjacent nodes just prior to the decoding
phase contributes slightly to enhanced model performance.

Lastly, regarding edge embedding, despite the small node size of 10 used in this experiment, we
observed a performance drop without it. These results imply that edge embedding contributes to
finding the optimal solution for the STP. Therefore, advanced node embedding approaches could
potentially lead to substantial performance improvements.

H AM

H.1 EXPERIMENTAL DETAILS

We implemented AM for the STP based on the RL4CO6 library, because the original author’s
repository notes limited maintenance and suggests more recent implementations. We trained our
model on 1.28 million instances per epoch, as in the original study. Unlike the routing problems in
the original paper, generating the STP dataset was time-consuming, resulting in a drop in training
efficiency. To calculate the advantage, we initially used the rollout baseline from the original paper,
but it led to policy collapse. Therefore, we employed the mean baseline, which provided more robust
training. Additionally, similar to the CherryPick paper, we used the distances to the top-K nearest
terminals as node features. To reflect the problem’s edge costs, we modified the AM by incorporating
a process where the node embedding vectors are calculated by taking the weighted sum of the
embeddings of neighboring nodes, using the edge costs as weights.

H.2 CONTEXT EMBEDDING FOR STP

In the AM for STP, the problem state is represented using context embedding vectors from previously
selected nodes and their positional encodings, guiding the next node selection based on attention

6https://github.com/ai4co/rl4co

18

https://github.com/ai4co/rl4co

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

scores. Specifically, at time t, the input for TSP consists of the embedding of the graph, the previous
(last) node πt−1, and the first node π1. For STP, we modify this as follows:

h
(N)
(c) =

{[
h(N), hπt−1 , hπ1

]
t > 1[

h(N),vl,vf
]

t = 1
(7)

where Pt is the sequence of previously selected nodes up to time t. The embedding hπt−1
is the

average of the embedding vectors of these nodes, providing a summary of the partial solution:

hπt−1
=

1

|Pt|
∑
i∈Pt

h
(N)
i

Similarly, Tt represents the set of remaining terminals. The embedding hπ1
is the average of the

embedding vectors of these terminals, summarizing the remaining objectives:

hπ1
=

1

|Tt|
∑
j∈Tt

h
(N)
j

By adjusting the context embedding in this way, the AM can effectively handle the STP, ensuring that
the embeddings reflect the current partial solution and the remaining terminals to be connected. This
modification allows the model to focus on the key aspects of the STP during the construction process,
leveraging similar principles to those used in solving the TSP.

I DIFUSCO

I.1 EXPERIMENTAL DETAILS

In DIFUSCO, we primarily followed the experimental settings described in the official code, including
a 12 GNN layers with 256 hidden dimension, 1000/50 for diffusion steps, 0.0002 for learning rate
and 0.0001 for weight decay. We utilize the node embeddings as the distance to the terminal from
each nodes, which is the method from CherryPick. The main differences are that we changed the
default decoding scheme from the original Greedy decoding + 2-opt scheme to the decoding scheme
used in CherryPick. Since discrete diffusion consistently outperformed continuous diffusion on the
TSP and MIS datasets (Sun and Yang, 2023), we used the discrete diffusion approach in Table 1.
Additionally, we employed the 10 diffusion steps for sampling.

I.2 EDGE EMBEDDING FOR STP

As mentioned in 4.2, we propose a modification to the edge embedding initialization process in the
Graph-based denoising network to address the limitations of the DIFUSCO approach in solving STP,
where edge costs and terminal node information are crucial.

e0ij = W0[fθ(xt),W
cxcost,W

ixind] (8)

where xcost is edge cost matrix and xind is indicator matrix consisting of 1’s for existing edges
and 0’s for non-existing edges. By directly incorporating edge cost information and terminal node
indicators into the edge embedding vectors, we enable DIFUSCO to effectively capture the unique
characteristics of the STP and generate more accurate and cost-effective solutions.

I.3 ABLATION STUDIES

In this section, we conduct experiments with varying the settings of DIFUSCO. We investigate
the impact of edge embeddings, diffusion model variants, and the number of GNN layers on the
performance of DIFUSCO. The basic experiment setup is same as Table 2.

First, we examine the importance of edge embeddings by training a model that excludes them and
only uses the node features. As expected, the results demonstrate that incorporating the actual edge

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 11: Ablation study for DIFUSCO

Setting
Test Nodes

STP10 STP20 STP30 STP50 STP100 STP200

DIFUSCO w/o edge embedding 39.1 ± 62.74 63.11 ± 52.16 86.29 ± 57.29 102.34 ± 49.82 133.78 ± 50.02 190.22 ± 76.75

DIFUSCO w/ Continuous Diffusion 5.68 ± 15.87 3.01 ± 8.65 1.06 ± 4.97 2.50 ± 15.72 11.86 ± 25.60 28.97 ± 30.83

DIFUSCO w/ GNN 3-layers 2.76 ± 7.12 2.74 ± 6.15 2.39 ± 5.14 2.28 ± 3.57 2.89 ± 2.33 8.71 ± 7.48

DIFUSCO w/ GNN 6-layers 2.59 ± 7.72 2.13 ± 6.00 1.35 ± 4.78 0.92 ± 3.09 1.56 ± 5.61 6.99 ± 7.27

DIFUSCO w/ GNN 9-layers 4.33 ± 10.95 1.83 ± 5.24 0.68 ± 2.67 0.43 ± 3.49 1.01 ± 3.54 7.97 ± 12.02

DIFUSCO 8.66 ± 18.5 3.79 ± 11.31 1.46 ± 5.24 0.84 ± 2.75 2.44 ± 4.48 6.08 ± 5.69

costs and indicator matrix is crucial for the model’s preformance. This also suggests that the features
from CherryPick alone may not provide significant benefits to DIFUSCO.

Next, we compare the performance of discrete and continuous diffusion models. The experimental
results align with the finding mentioned in the (Sun and Yang, 2023), indicating that discrete diffusion
models generally outperform their continuous counterparts in STP, similar to TSP and MIS. The
performance gap becomes more pronounced as the size of the STP instances increases.

Lastly, we investigate the impact of varying the number of GNN layers. While our model achieves
good results using 12 GNN layers, consistent with (Sun and Yang, 2023), we observe an interesting
phenomenon. In certain cases, models with fewer layers exhibit better performance. Specifically,
reducing the number of layers leads to a decrease in overall performance but an increase in general-
ization power. However, as the problem size grows, models with more layers tend to perform better.
This highlights the importance of selecting an appropriate number of layers based on the size or
complexity of the problem.

J DIMES

J.1 EXPERIMENTAL DETAILS

In DIMES, we reduced the size of the network to 6 GNN layers with 16 hidden dimensions, with an
outer learning rate of 0.0005 and an inner learning rate of 0.005 to ensure the stability of the training
process. The remaining hyperparameters are unchanged, including the outside steps of 120, an inner
sample size of 100, and the inner steps of 15. These values remain constant regardless of the number
of nodes.

The main differences are in the node embedding and decoding algorithm. The initial node embedding
in the TSP consists of (x, y) vectors representing all of the points. Nevertheless, we utilize the node
embedding from the CherryPick approach, which utilizes the distance to the terminals. Similar to in
DIFUSCO, we utilize the decoding scheme from CherryPick.

J.2 ABLATION STUDIES

As the dimes only utilized a total of 360 instances, the initial concern is whether this quantity is
enough to solve the problem. We conduct a more extended training involving 1920 iterations, with
5760 data instances, in 20 and 50 nodes. Table 12 shows the result of the extended training. The
extended training leads to superior in-distribution results in both 20 and 50 nodes. The out-distribution
results show contrasting patterns in the two settings, with superior performance shown in smaller
nodes for STP20 and in bigger nodes for STP50.

K DECODING STRATEGIES IN THE STEINER TREE PROBLEM

K.1 FEASIBLE SOLUTIONS IN THE STP

In neural network models for combinatorial optimization (CO) problems, a technique is needed to
decode the neural network’s raw output Gθ(s) into a feasible solution f̂θ(s) ∈ Fs that meets the

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 12: In- and Out-distribution Result on STP20 and STP50 for Extended Training

Train
Nodes

Train
Instances

Test Nodes

STP10 STP20 STP30 STP50 STP100 STP200

STP20 360 5.16 ± 14.06 6.86 ± 14.10 6.60 ± 10.27 7.49 ± 8.26 9.28 ± 5.06 12.46 ± 5.00
5760 2.96 ± 8.96 4.90 ± 16.10 7.08 ± 9.32 11.70 ± 9.51 20.06 ± 11.52 40.66 ± 25.44

STP50 360 6.51 ± 17.09 8.27 ± 16.81 9.59 ± 13.63 11.17 ± 10.11 16.21 ± 8.01 23.80 ± 11.01
5760 15.36 ± 30.81 16.52 ± 33.21 12.43 ± 21.50 5.45 ± 8.09 10.75 ± 8.42 9.46 ± 4.05

specified constraints of CO problems. Unlike general large language models (LLMs), the constraints
in CO problems are explicit and strict, defining feasible solutions for a given CO task. For example,
in the Traveling Salesman Problem (TSP), a cycle that visits all nodes exactly once is considered
feasible. In the Maximum Independent Set (MIS) problem, a solution must ensure no two selected
nodes are adjacent. In the Steiner Tree Problem (STP), the solver must meet the following constraints:

1. All terminal nodes must be connected.
2. The selected edge set must not form any cycles to maintain a tree structure.
3. Redundant edges to connect the terminals must be excluded.

K.2 GREEDY DECODING ALGORITHM IN THE STP

Various decoding strategies can satisfy the specified constraints, each influencing the performance of
neural combinatorial optimization (NCO). To ensure a fair evaluation of the baselines in this study,
we adapted a greedy decoding algorithm, similar to CherryPick (Yan et al., 2021), for the Steiner
Tree Problem (STP) that adheres to the three constraints mentioned above. This algorithm is applied
consistently across all baselines. The detailed pseudo-code for this algorithm is provided in Algorithm
2.

Our adapted greedy decoding approach for solving the STP is analogous to greedy decoding in
LLMs, where edges are iteratively selected based on previously chosen edges. Initially, we select an
arbitrary terminal and define a partial solution as a graph containing only this terminal. Subsequently,
we define a candidate edge set as the edges adjacent to the current partial solution. Among these
candidates, edges are selected based on scores derived from the raw output of the neural network,
denoted as Gθ(s).

The decoding strategies slightly differ between autoregressive (AR) approaches, such as PtrNet (Meire
et al., 2015), CherryPick (Yan et al., 2021), and AM (Kool et al., 2018), and non-autoregressive
(nAR) approaches, such as DIFUSCO (Sun and Yang, 2023) and Dimes (Qiu et al., 2022). In nAR
approaches, the values of Gθ(s) for the initial state s are precomputed and are not be changed during
the decoding process, and the edge scores are calculated from these values. Alternatively, in AR
approaches, at each step of edge selection, the neural network receives the current partial solution as
input, performs a forward pass to recalculate the node scores instead of directly computing the edge
weights, and then selects the minimum weight edge that connects the partial solution graph to the
remaining graph. To remove the redundant edges, we adapt the algorithm in (Kou et al., 1981).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Algorithm 2 Decoding Algorithm for the STP

1: Initialize partial tree solution Gp = {Vp, Ep} with the node set Vp = {vt} where vt ∈ T is a
randomly selected terminal and the candidate edge set Ep = {(v, v′) | (v, v′) ∈ E, v ∈ Vp, v

′ ∈
V − Vp}

2: while T ̸⊂ Vp do
3: if non-autoregressive approaches then
4: Choose the highest scored edge (v⋆, v

′
⋆) := argmaxe∈E Gθ(s, e) for e ∈ Ep

5: end if
6: if autoregressive approaches then
7: Choose the highest scored node v′⋆ := argmaxv′∈V−Vp Gθ(s, Vp, v)
8: Select the minimum weighted edge (v⋆, v

′
⋆) = argmine∈Ep cs(e)

9: end if
10: Update the partial graph set Gp with the selected node v′⋆ in Vp, i.e., Vp = Vp ∪ {v′⋆}
11: Update the selected edge (v⋆, v

′
⋆) in the edge set Ep, i.e., Ep = Ep ∪ {(v⋆, v′⋆)}

12: end while
13: Identify and remove redundant edges to enhance the efficiency of the network

22

	Introduction
	Related Work
	Classification of Constructive Solvers
	Autoregressive Solvers
	Non-autoregressive Solvers

	Steiner Tree Problem Solvers
	Steiner Tree Problem Datasets

	Preliminaries
	Learning-Based Combinatorial Optimization Solvers
	The Steiner Tree Problem

	SteBen: A Steiner Tree Problem benchmark for NCO
	Dataset
	Benchmarking Baselines

	Benchmarking Evaluation
	Experimental Setup
	Results

	Discussion
	Conclusion
	Datasets & Source for Benchmark Experiments
	Background on Learning-Based Solvers
	Supervised Learning and Reinforcement Learning in NCO
	Autoregressive and Non-Autoregressive Solvers

	STP Dataset Generation
	Instance Generation
	Solver for Optimal Solution
	Statistics

	Performance vs Runtime Analysis
	Evaluation on Other Graph Models
	Cherrypick
	Experimental Details
	Comparison to Original Paper
	Reward functions of STP Environment

	Pointer Networks
	Experimental Details
	Label Generation
	Edge Embeddings
	Ablation Studies

	AM
	Experimental Details
	Context Embedding for STP

	DIFUSCO
	Experimental Details
	Edge Embedding for STP
	Ablation Studies

	DIMES
	Experimental Details
	Ablation Studies

	Decoding Strategies in the Steiner Tree Problem
	Feasible Solutions in the STP
	Greedy Decoding Algorithm in the STP

