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ABSTRACT

Predicting transcriptional responses to novel drugs provides a unique opportunity
to accelerate biomedical research and advance drug discovery efforts. However,
the inherent complexity and high dimensionality of cellular responses, combined
with the extremely limited available experimental data, makes the task challenging.
In this study, we leverage single-cell foundation models (FMs) pre-trained on tens
of millions of single cells, encompassing multiple cell types, states, and disease
annotations, to address molecular perturbation prediction. We introduce a drug-
conditional adapter that allows efficient fine-tuning by training less than 1% of the
original foundation model, thus enabling molecular conditioning while preserving
the rich biological representation learned during pre-training. The proposed strategy
allows not only the prediction of cellular responses to novel drugs, but also the zero-
shot generalization to unseen cell lines. We establish a robust evaluation framework
to assess model performance across different generalization tasks, demonstrating
state-of-the-art results across all settings, with significant improvements in the few-
shot and zero-shot generalization to new cell lines compared to existing baselines.

1 INTRODUCTION

Recent advancements in high-throughput single-cell RNA sequencing (scRNA-seq) have significantly
deepened our understanding of cellular heterogeneity, enabling detailed insights into gene expression
profiles and the dynamic responses of individual cells within complex tissues and microenvironments
(Tanay & Regev, 2017; Han et al., 2020). Notably, the ability to study the biological impact of
different perturbations, such as molecular treatments, provides a unique opportunity to unravel cell
function and significantly accelerate biomedical research (Srivatsan et al., 2020). As a consequence,
computational methods to predict cellular responses to perturbations hold promise as transformative
tools for accelerating drug discovery and personalized medicine (Roohani et al., 2024; Rood et al.,
2024; Bunne et al., 2024). Critical applications such as virtual screening, mechanism of action (MOA)
identification, and target identification, all rely on the ability to characterize the complex, multifaceted
effects of different drugs in the cellular environment.

Machine learning approaches for modeling outcomes of molecular perturbations have recently
emerged in the literature, addressing the challenging task of predicting cellular responses x̃ (i.e., gene
expression) given the initial cellular state x (i.e., gene expression of control population, representing
the underlying biological model system/cell line) and treatment T (i.e., molecule). However, existing
methods face several key limitations. First, several approaches are not able to generalize to novel
perturbations (Lotfollahi et al., 2023), an essential capability for applications such as virtual screening.
Ultimately, methods that can generalize to new molecules are hindered by extremely limited datasets,
spanning hundreds of molecules across a few cell lines (Hetzel et al., 2022; Piran et al., 2024; Bereket
& Karaletsos, 2024).

Indeed, predicting cellular responses to novel chemicals at single-cell resolution poses a few-shot
challenge, as sample multiplexing techniques are both expensive and time-consuming, restricting the
size and diversity of treatments and biological model systems (Srivatsan et al., 2020; McGinnis et al.,
2019). Several methods have recently tackled this challenge. Proposed approaches include leveraging
transfer learning from more available bulk RNA-seq data (Hetzel et al., 2022) or incorporating prior
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knowledge of gene-gene associations into the model (Roohani et al., 2024). However, these methods
are limited by the information explicitly encoded in the prior or available in the pre-training datasets.
More importantly, these methods have focused on predicting responses to novel drugs or novel
drug-cell-line pairs, instead of the more challenging task of predicting the outcome of perturbations
for unseen cell lines.

To address these challenges, focusing on the few-shot prediction of molecular responses, including for
unseen model systems (i.e., cell lines), we leverage emerging foundation models (FMs) (Bommasani
et al., 2022). FMs have displayed notable success across several fields, including natural language,
vision, and, more recently, biomedicine (Moor et al., 2023). In particular, single-cell FMs (Yang
et al., 2022; Heimberg et al., 2024; Cui et al., 2024; Theodoris et al., 2023; Hao et al., 2024) are
trained on tens of millions of single cells, encompassing multiple cell types, states, and disease
annotations. Such pre-trained architectures have recently shown the potential to learn universal
biological representations that can be adapted to specific tasks (Ma et al., 2024). By building on
the zero-shot and few-shot capabilities of FMs (Wei et al., 2022), we aim to leverage the implicit
knowledge of gene-gene relationships and cell states within single-cell FMs to characterize cellular
responses to molecular perturbations.

Previous work explored the application of single-cell FMs for predicting outcomes of genetic
perturbations (i.e., gene editing techniques) (Cui et al., 2024; Theodoris et al., 2023; Hao et al.,
2024). However, such problem formulation is simplified by the fact that the treatment space (different
genes) is the same as the response space, allowing direct fine-tuning of the pre-trained architecture.
In contrast, modeling responses to chemical perturbations involves bridging cell representations
with a distinct modality (i.e., molecular structures), making the task more complex. To address
this challenge, we introduce a drug-conditional adapter layer which allows injecting molecular
information into the trainable parameters, while leaving the original weights of the single-cell FM
frozen.

In summary, single-cell Drug-Conditional Adapter (scDCA) efficiently fine-tunes a single-cell FM,
linking it to a different modality (small molecules) to enable molecular property prediction. Our
parameter-efficient approach allows fine-tuning on small chemical perturbation datasets, avoiding
overfitting while preserving important background biological knowledge encoded in the pre-trained
weights.

Through this strategy, the proposed method allows not only the prediction of cellular responses to
novel drugs, but also the zero-shot generalization to unseen contexts (e.g., cell lines or cell types).
Our contributions include:

• We investigate the fine-tuning of single-cell FM for molecular perturbation prediction,
introducing scDCA, which utilizes efficient drug-conditional adapters.

• We extend the evaluation of this model beyond novel drug and drug-cell-line prediction
(focus of prior work) to the more challenging task of unseen cell line prediction, which
requires generalization to new biological contexts.

• We demonstrate state-of-the-art performance of scDCA, both in the prediction of unseen
drugs and especially for unseen cell lines. By leveraging the rich biological representations
learned from single-cell FMs and incorporating drug-conditional adapters, our approach
enables robust predictions even in zero-shot settings, making it a powerful tool for drug
discovery and cellular modeling.

2 RELATED WORK

Prediction of perturbation experiments. In this work, we address the biological challenge of
predicting the transcriptional cellular responses to novel molecular perturbations. There have been a
few studies that tackle this problem directly or indirectly.

Several methods focus on predicting the effects of genetic perturbations, where perturbagens corre-
spond to genes and their combinations e.g., (Roohani et al., 2024). These approaches are not always
directly applicable to the prediction of chemical perturbations, which include the vast chemical space
(estimated to encompass up to 1060 drug-like compounds (Bohacek et al., 1996).
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Figure 1: scDCA architecture. On the upper left, we show the input embedding to scGPT, which
consists of gene tokens and unperturbed gene expressions. Input is passed through scGPT, which
consists of stacked transformer blocks, where each layer incorporates a drug-conditional adapter
module. Primary goal of this adapter is to introduce parameter-efficient fine-tuning by leveraging
molecule embeddings to dynamically adjust biases of the down-projection and up-projection layers.
Weights of the original transformer layers are frozen to reduce the number of trainable parameters.

ChemCPA (Hetzel et al., 2022) leverages an encoder-decoder architecture with separate embeddings
for the perturbation (molecule) and the cell line, combined with an adversarial classifier that is
used to generate invariant basal states and produce disentangled representations. Biolord (Piran
et al., 2024) is a deep generative framework designed for learning disentangled representations in
single-cell data. It partitions the latent space into subspaces and optimizes them to represent cell
lines and perturbations, recombining them during inference. GEARS (Roohani et al., 2024) leverages
prior knowledge of gene-gene interactions to predict outcomes of genetic perturbations. The Sparse
Additive Mechanism Shift Variational Autoencoder (SAMS-VAE) (Bereket & Karaletsos, 2024)
extends prior work (Lachapelle et al., 2022; Lopez et al., 2023) and employs an additive conditioning
approach.

While SAMS-VAE focuses on genetic perturbation, it can also be extended to predict molecular
perturbations.

Single-cell foundation models. Recently, there has been significant and active research on single-cell
FMs (Yang et al., 2022; Heimberg et al., 2024; Cui et al., 2024; Theodoris et al., 2023; Hao et al.,
2024). These models often employ the self-attention transformer architecture (Vaswani et al., 2017)
to efficiently learn single-cell representations across extensive datasets, which can then be fine-tuned
for numerous downstream tasks. scBERT (Yang et al., 2022) is a recent example within this category,
closely mirrors BERT’s (Devlin et al., 2019) pre-training strategy. Specifically, scBERT is pre-trained
through an imputation task on 1.12 million human cells, where masked gene expression values
are predicted based on the embeddings of all other genes within a cell. scGPT (Cui et al., 2024)
leverages a generative transformer architecture pre-trained on a vast and diverse repository of over 33
million cells. This model effectively extracts critical biological insights relevant to genes and cells,
as demonstrated by its downstream performance on multiple tasks, including cell type annotation,
multi-omic integration, and gene regulatory network inference. scGPT has also been used to predict
outcomes of genetic perturbations, where the perturbagens are different (combinations of) genes.
However, given that the model has been retained solely on single-cell omics data, it is not directly
applicable to drug discovery questions. Indeed, predicting outputs of chemical perturbations (such as
drug-induced cellular responses, tissue-specific effects, and pharmacodynamics) requires modeling
the effects of a different modality (i.e., chemical structures) not seen during training.
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Efficient fine-tuning of foundation models. The ability of FMs to quickly adapt to new tasks (Bom-
masani et al., 2022) has sparked considerable interest in developing efficient fine-tuning tech-
niques (Han et al., 2023). For example, prefix tuning (Li & Liang, 2021) refers to the technique of
prepending a trainable tensor to each transformer block, allowing adapting to a new task without
modifying the original model parameters. Li & Liang (2021) showed that prefix tuning achieves
comparable results compared to fine-tuning all layers while using only 0.1% of the parameters of the
original model. Adapters-based approaches (He et al., 2022; Lei et al., 2023) involve the insertion
of small adapter layers within transformer blocks. Only the parameters of the adapters are trainable
during fine-tuning. Adapters usually include down- and up-projections, which reduce the number
of trainable parameters. In particular, our work is related to (Karimi Mahabadi et al., 2021), which
introduces a multi-task adapter for NLP applications, where the parameters of the adapter depend
on the task embedding. In our work, the adapter’s parameters are instead conditioned on a different
modality (chemical structures), unseen during pre-training. The concepts of prefix tuning and adapters
have been further extended to recent large language models, such as LLaMA-Adapter (Zhang et al.,
2024), a parameter-efficient fine-tuning method specifically designed for LLaMA. Other efficient
fine-tuning techniques include pruning (Lawton et al., 2023) and reparametrization techniques (Hu
et al., 2022). Efficient fine-tuning of foundation models is a rapidly evolving field encompassing
diverse approaches. For a more detailed overview, we refer readers to recent surveys Han et al. (2023);
Xin et al. (2024).

3 FINE-TUNING SINGLE-CELL FM WITH DRUG-CONDITIONAL ADAPTER

The proposed strategy aims to simultaneously address two challenges in fine-tuning single-cell
FMs for molecular perturbation prediction: 1) the extremely limited amount of paired data linking
molecules to cellular responses, and 2) the existence of a different modality (i.e., molecular structures)
unseen during pre-training. While recent work has focused on the efficient fine-tuning of foundation
models reducing the number of trainable parameters (Hu et al., 2022; Zhang et al., 2024), the fine-
tuning of single-cell FMs has been limited to scenarios where inputs and/or outputs are cell states,
without considering different modalities.

Although scDCA is generally applicable to transformer-based single-cell FMs (Yang et al., 2022; Cui
et al., 2024; Theodoris et al., 2023; Hao et al., 2024), which constitute the vast majority of models in
this category, in the following, we focus on scGPT (Cui et al., 2024) to describe the methodology
and the experiments. To this end, in this section we also provide a concise overview of the scGPT
framework.

3.1 PRELIMINARIES

Problem definition. We consider a dataset comprised of single-cell gene expression data following
molecular perturbation, D = {(Xi, di, ci)}Ni=1, where i denotes the ith cell out of a total of N ,
Xi ∈ Rn describes its n-dimensional gene expression, di ∈ {drugs in D} describes the drug
treatment it received, and ci ∈ C describes its cell type or cell line, with C being the set of all cell
lines. In practice, we mean-aggregate the profiles of cells with the same drug-cell-line combination,
in effect treating them as “pseudobulk” measurements or “metacells” X(d)(c) for every drug-cell-line
combination (c, d). In particular, as input for for all models considered here, we featurize the cell lines
through the control gene expression vector X(0)(ci) ∈ Rn, calculated as the mean gene expression
over all cells of cell line ci receiving the negative control perturbation in the dataset (usually dimethyl
sulfoxide (DMSO)). In the following, we omit the superscript and denote a generic input profile by
(X, d, c).

In this work, to assess the generalization ability of different models, we explore various tasks
where we hold out parts of all available drug-cell-line combinations and predict the perturbed gene
expression using the available data (Figure 2). In the unseen drug task, all cell lines are seen during
training, but a subset of drugs is reserved for testing (Figure 2a). This formulation corresponds to
a traditional virtual screening problem. In the unseen drug-cell-line task, the training set excludes
random combinations of cell lines and drugs during training, such that both individual molecules
and cell lines can appear in different combinations in the training set (Figure 2b). This formulation
corresponds to a matrix completion problem. In the unseen cell line (few-shot) task, cell lines are
split into a training Ctr and test Cte set, and only a small fraction of drugs from the latter is observed
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(a) Unseen drug (b) Unseen drug-covariate

(d) Unseen cell type (zero-shot)
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Figure 2: Problem formulation. Rows represents different cell lines and columns different drugs.
Green box shows the training sample and white box shows test. Previous works only focused on
tasks (a), and (b).

during training (Figure 2c). Finally, in the unseen cell line (zero-shot) task, we split cell lines as in the
unseen cell-line (few-shot) task, but no observations from Cte are available during training, and the
model needs to be able to generalize to unseen cell lines based solely on the control gene expression
(Figure 2d).

Transformer-based single-cell FM architecture. scGPT (Cui et al., 2024) relies on a transformer
architecture, where the expression level of each input gene is treated as a token and a stack of
self-attention transformers operates on all tokens corresponding to a single cell. Thus, in the scGPT
framework, each gene is treated as the fundamental unit of information, similar to how a word
functions in natural language generation.

More precisely, let us denote an individual cell profile by (X, cond) with expression level Xg and
gene-specific condition identifier condg for every gene g. Here, the condition identifier condg
can incorporate a wide range of meta-information related to each gene. For example, for the task
of genetic perturbation, the condition tokens would be the perturbed genes. In scGPT, first, the
expression levels are discretized to integers xg by binning. Next, the identifiers for gene identity tg,
discretized gene expression xg , and (discrete) conditions condg , are transformed into vectors in RD

by embedding layers embg, embx, embcond, respectively. The embeddings are then sum-pooled and
concatenated into an initial cell tensor

h0 = embg(tg) + embx(x) + embcond(cond) ∈ RM×D. (1)

Finally, a stack of L self-attention transformers operates on h0, to obtain the final cell-specific gene
embedding tensor hL,

hl = transformerl(hl−1) for l = 1, . . . , L. (2)

The model is pre-trained using single-cell RNA sequencing (scRNA-seq) data derived from public
cell atlases. Similar to other single-cell omics FMs, scGPT uses a masked-attention transformer for
generative training. Genes are randomly masked in the input sentence (akin to masking words in
natural language) and reconstructed as output. The model is trained to minimize the mean squared
error (MSE) loss,

Lpre-train =
1

|Uunk|
∑

g∈Uunk

(
MLP

(
h
(g)
L

)
− xg

)2

, (3)

where Uunk denotes the set of masked genes, h(g)
L is the final scGPT gene token for gene g, MLP is a

trainable multi-layer perceptron (MLP) layer, and the xg is the gene expression to be predicted.
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Molecular FM. There have been several studies on building molecular FMs. In this work, we use
ChemBERTa (Chithrananda et al., 2020), a molecular FM based on (Ro)BERT(a), pre-trained on
77 million compounds from PubChem (Kim et al., 2023). The input to this model is the SMILES
structure of the molecule, and the output is an embedding vector. However, the proposed scDCA is
compatible with virtually all molecular embedding models.

3.2 FINE-TUNING SCGPT

Compared to training a model from scratch for a new task, adapting and fine-tuning a FM for a new
task using data from the target domain often leads to superior results (Wei et al., 2022; Wang et al.,
2022; Shen et al., 2022; Wang et al., 2022). Various methods can be employed for this adaptation. In
the following, we discuss several options, before introducing scDCA.

One commonly used technique is the feature-based approach, which leverages the embeddings
of a model as features for training a separate downstream model. However, as demonstrated in
Section A.4, this approach is suboptimal in our setting, primarily because the original single-cell FM
was pre-trained exclusively on single-cell omics data across a wide range of conditions and cell types,
while the target task involves molecular perturbations, resulting in subtle but critical shifts in gene
expression that were likely not seen by the model at pre-training time.

Another approach involves fine-tuning the FM itself on the target dataset—in this case, readouts of
molecular perturbations. To pursue this approach, we modify scGPT as follows. Following scGPTs
approach to genetic perturbation prediction, we replace the discretization of input expression values
with log1p-normalized expression values that are tokenized with a feed-forward network embX . In
the inital embedding layer of scGPT, instead of the condition token, we incorporate a molecular
embedding, broadcast across all genes as part of the input. Moreover, we provide the gene expression
vector of the control perturbation on cell line c as the gene expression input. Combined, denoting the
molecular embedding by embm(d) for a drug d, we change the initial embedding (1) to:

h0 = embg(tg) + embX(X(0)(c)) + embm(d). (4)

For the molecular embedding function embm, we employ ChemBERTa (Chithrananda et al., 2020),
described in Section 3.1. The transformer stack of scGPT is then applied to h0 as in (2) and processes
it to output the perturbation outcome, employing a loss function similar to (3), but operating on the
log1p-normalized expression values X .

Although recent studies (Howard & Ruder, 2018) indicate that fine-tuning the entire model often
yields superior performance, we find that this naive approach exhibits limited performance across
various tasks (Section 4). We attribute this limitation to two key factors: 1) the extremely limited
number of samples compared to the parameters of the pre-trained model, which can easily result
in overfitting, and 2) the large domain shift resulting from adding molecule embeddings embm(d)
to the model’s input, given that the pre-trained model has been solely trained to understand gene
expression profiles.

To solve these challenges, we update the fine-tuning strategy by introducing our more parameter-
efficient fine-tuning approach leveraging drug-conditional adapters, scDCA.

Drug-Conditional Adapter. Compared to the standard fine-tuning approach described above, in
scDCA, the weights of the original network θ are frozen, and only the parameters of small adapter
layers θ′ are trained during fine-tuning. The goal of the adapter layers is twofold: minimize the
number of trainable parameters, while giving the flexibility to generalize to different tasks particularly
in a zero-shot setting.

Figure 1 summarizes our architecture. In the top left, we show the input to scGPT, which consists
solely of the gene expression vector of the control perturbation in cell line c. Contrary to before,
we do not pass the molecule embedding directly as input to scGPT to avoid overfitting. Instead, we
directly pass the molecular embedding to adapter modules that we add to every transformer layer.
This ensures that the input to the model during fine-tuning remains similar to the input used during
pre-training.

The drug-conditional adapter modules (Figure 1 bottom right) consist of four main components: a
molecular projection layer, a down-projection layer, a residual block, and an up-projection layer.
Critically, we introduce a molecular projection layer that generates biases for the down-projection
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and up-projection layers based on the molecule embeddings. Formally, let hl be the hidden state
output from the lth transformer layer. To incorporate the influence of the molecular structure on the
gene expression, we generate a bias vector bl = fm

l (embm(d)) through a module fm
l applied to the

molecule embeddings. In our implementation, fm
l is modeled as a two-layer neural network. The

adapter module processes hl as follows:

hdown
l = W down

l hl +Πdownbl, hres_net
l = res_netl(hdown

l ), hl+1 = hup
l = W up

l hres_net
l + bl, (5)

where W down
l ∈ Rdbottleneck×dinput and W up

l ∈ Rdinput×dbottleneck are the down-projection and up-projection
weight matrices, respectively, with dbottleneck being the hidden state dimensionality and dinput the input
dimensionality, and Πdown denotes projection to the first dbottleneck dimensions. During fine-tuning,
trainable parameters are learned through a similar loss function as 3.

This design has critical advantages. First, it allows the model to dynamically adjust its parameters
using molecule embeddings in a lower-dimensional space, significantly reducing the number of
trainable parameters. Additionally, it avoids substantial input distribution shifts, as the model’s input
remains solely gene expression profiles (as seen during pre-training). Finally, it enables molecular
conditioning, which is required for the task.

Generalization to unseen drugs and cell lines. By using a frozen molecular structure encoder, we
leverage pre-trained embeddings with prior information about structural similarity. Self-supervised
molecular representations have been previously shown to boost few-shot molecular property predic-
tion tasks (Ju et al., 2023; Wang et al., 2024) and allow our framework to generalize to previously
unseen drugs by projecting molecular embeddings into FM’s internal state.

By featurizing cell lines based on their initial gene expression, our framework can generalize to
unseen cell lines in both zero-shot and few-shot settings. In particular, by using pre-trained weights
in the original transformer layers, the model can leverage gene-gene interactions learned through
large-scale pre-training (Cui et al., 2024) without the need to explicitly encode them into the model,
as done in previous works (Roohani et al., 2024). Importantly, the ability to generalize to new cell
lines arises from leveraging knowledge available in the pre-trained model and scDCA preserving and
integrating it with molecular representations during finetuning.

4 EXPERIMENTS

We show that scDCA achieves superior results for all tasks described in Section 3, while having less
than 1% of the number of parameters in the original single cell FM.

4.1 EXPERIMENTAL SETTINGS

We evaluate our framework scDCA on 4 tasks: (1) unseen drugs, (2) unseen drug-cell-line, (3)
unseen cell line (few-shot), and (4) unseen cell line (zero-shot). We compare the proposed approach
with several recently introduce methods for perturbation prediction: chemCPA (Hetzel et al., 2022),
BioLORD (Piran et al., 2024), and Sams_VAE (Bereket & Karaletsos, 2024).

Dataset. The dataset utilized in this study is sciplex3 (Srivatsan et al., 2020), which includes
649,340 cells across 7,561 drug-sensitive genes on 3 human cancer cell lines (A549, MCF7, and
K562) perturbed with 188 drugs. Similar to previous work (Hetzel et al., 2022), we focus on the
transcriptional response captured through 2,000 drug-sensitive genes.

Data Splitting. As previously described in Section 3 and Figure 2, we evaluate scDCA across
different generalization tasks. In practice, each task results from a different data splitting strategy,
detailed in Appendix A.1.

In this study, as we focus on single-cell data, we observe that the gene expression of only a subset
of genes undergoes significant alterations under various perturbations. To ensure a meaningful
evaluation, our analysis specifically targets those genes that exhibit noticeable changes in their
expression levels compared to their initial (control) expression profiles. These genes are categorized
as differentially expressed genes (DEGs). The number of DEGs identified can vary; however, it is
generally observed (Roohani et al., 2024) that analyzing a smaller, more defined set of DEGs presents
a more robust and relevant challenge, as it requires precise detection of nuanced expression changes.
In our experiments, we consider the top 20 DEGs.
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Evaluation Metrics. Similar to previous works (Hetzel et al., 2022), the main performance metric
used for perturbation prediction is the R-squared (or coefficient of determination) metric R2. This
metric quantifies the proportion of the variance in the dependent variable that is predictable from the
independent variables in a regression model. We conducted all experiments over 5 runs (different
random splits), reporting both the standard error and the average coefficient of determination. By
focusing the evaluation on the top DEGs, we make sure that the metric is not inflated by genes that
do not change significantly after the perturbation compared to control.

4.2 RESULTS

We compared different fine-tuning strategies (including scDCA) and recently introduced baselines
across all tasks. In the following, we summarize the main findings.

scDCA outperforms other finetuning approaches. We first compare the performance of scDCA
with the naive finetuning method described in Section 3.2. The results are summarized in Table 1.
scDCA consistently outperforms the naive finetuning approach across all tasks. Notably, as the
tasks become more challenging (few-shot and zero-shot settings), the performance gap widens.
This indicates that while fine-tuning scGPT performs adequately for unseen drug (or drug-cell-
line) prediction, leveraging scDCA yields a significant boost in the generalization to novel cell
lines. Additionally, scDCA utilizes less than 1% of the parameters required by the naive fine-tuning
approach, resulting in a faster and more memory-efficient procedure. In particular, we notice how, for
the task of zero-shot cell line prediction, standard fine-tuning leads to significantly lower results, likely
due to overfitting to training cell lines, without the ability to preserve original representations for test
ones. While we observe scDCA results to be robust across the different tasks, direct comparison of
the performance across tasks is challenging, given differences in splitting strategies and the unique
features of each task.

Task scDCA Fine-tuning ∆

Unseen drug 0.81 ± 0.022 0.81 ± 0.021 0.00
Unseen drug-cell-line combo 0.83 ± 0.015 0.78 ± 0.009 0.05
Unseen cell line (few-shot) 0.88 ± 0.004 0.81 ± 0.005 0.07
Unseen cell line (zero-shot) 0.82 ± 0.032 0.51 ± 0.021 0.31

Table 1: Comparison of scDCA and scGPT Finetuning (Mean ± SE)

scDCA outperforms all baselines across tasks. As summarized in Figure 3, scDCA consistently
outperforms the baseline models for all tasks, with the most notable improvement observed in the
unseen cell line (zero-shot and few-shot) tasks. scDCA leverages extensive domain knowledge, such
as gene co-occurrence, to effectively generalize to new scenarios. This is particularly beneficial
in few-shot and zero-shot settings, where minimal data is available. The superior performance of
scDCA is further confirmed by its lower variance across data splits, especially for the generalization
to new drugs and the few-shot prediction in unseen cell lines. Finally, we observe how ChemCPA is
unable to perform the unseen cell line (zero-shot) task due to its architecture, which relies on trained
cell line embeddings as a core component, limiting its ability to handle unseen cell lines.

scDCA predictions are within single-cell measurement uncertainty. After quantitatively evaluating
the performance of different models, we inspected the prediction of individual genes after perturbation
compared to control (initial gene expression). Ideally, a model should be able to characterize fine-
grained differences in gene expression. However, the noise inherent in the measurement procedure
imposes a ceiling on model performance. Figure 4 presents examples of predicted gene expression
across 20 DEGs following perturbation for different chemical structures and two tasks. As shown,
scDCA successfully captures log-fold changes up to the standard deviation of the underlying single-
cell distribution. Results for the other tasks are shown in Appendix (Figure 6), highlighting the same
trend.

scDCA predictions are robust across different targets. After assessing the model’s accuracy, we
evaluated its robustness for different perturbagens. In particular, we asked whether the performance
of the model is consistent across molecular targets. We utilized the ChEMBL database (Gaulton et al.,
2012) to identify known targets for the molecules present in our dataset. This analysis revealed known
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Figure 3: Comparison with different baselines. scDCA is our proposed method. X-axis represents
R2 (Mean ± SE).

Figure 4: Examples of predicted gene expression across 20 most differentially expressed genes for
the molecules Quisinostat and Dacinostat.

targets for 77 molecules. We grouped R2 for each target-cluster, aggregating the performance on the
relative subset of molecules. Figure 5 summarizes this experiment. As shown, scDCA’s predictive
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Figure 5: Clustering drugs based on their targets. X-axis represents targets.

accuracy is consistent across targets, with no significant drops in performance for any subgroup.
More details of this experiment are available in Section A.6.

5 CONCLUSION AND LIMITATIONS

In this paper, we address the underexplored area of predicting transcriptional cellular responses to
novel molecular perturbations. A key challenge in this area is data scarcity, a problem that foundation
models trained on much larger ancillary datasets are poised to address. While naive applications of
FMs fall short of this expectation, we demonstrate that a careful fine-tuning strategy combining a
single-cell FM with a pre-trained molecular FM indeed realizes this potential. Our strategy, single-cell
drug-conditional adapter (scDCA), leads to state-of-the-art performance on a variety of challenging
problem formulations, including the few-shot and zero-shot generalization to unseen cell lines.

One limitation is that our approach is currently only applicable to transformer-based foundation
models. This restriction means that (scDCA) cannot be directly applied to other types of models
without significant adaptation. Additionally, our method requires the presence of control gene
expression data. If the dataset does not include control gene expressions, our approach cannot be
utilized. Finally, we believe that the evaluation of perturbation models, especially in the single-cell
domain and for the generalization to new cell lines and conditions, is challenged by the limited size
of publicly available data. Despite these limitations, we believe our approach offers valuable insights
and advancements in the field of chemical perturbation prediction. Future work will aim to tackle
these challenges.
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A APPENDIX

A.1 EXPERIMENTAL SETTING AND DATA SPLITTING

In this paper, we evaluate the performance of our model and baselines under the following conditions:
the number of epochs is set to 20, the batch size is 16, and the number of runs is 5. We use similar
hyperparameters as the original implementation of all the baselines introduced in their papers.

For the task of unseen drugs, we partitioned the molecules into two distinct sets for training and
testing with a ratio of 70% training data and 30% testing data. For the task of unseen drug-cell-line
combination, we partition the data into training and testing sets with a ratio of 50% training data,
50% testing data sampled uniformly at random, so that the training set may include data where the
compound has been observed in different cell lines. For the task of unseen cell lines (zero-shot), we
reserved one cell line entirely for testing (except the negative control measurement) and trained the
model on the remaining cell lines. Finally, for the task of unseen cell lines (few-shot), similar to
the zero-shot task, we trained on two cell lines but split the data on the remaining cell line into 10%
training, 90% testing data.

A.2 DETAILS OF THE SCDCA MODEL AND TRAINING PROCEDURE

Preprocessing. For each combination of cell line c and drug d, we calculate the average expression
vector X(d)(c) and denote the control expression vector as X(0)(d). This average control gene
expression vector, along with gene tokens, is used as input to our model.

Data splits. We first split our data into training and test sets based on four different tasks. The
different tasks/splits are illustrated in Figure 2.

Inputs.

• Control cells expression vector X(0)(c) for cell line c,

• Molecular structure d.

Prediction target. Expression vector X(d)(c) for drug d in cell line c.

Frozen parameters/networks.

• Initial gene tokens embg(tg),

• Gene expression embedding embX ,

• Molecule embedding embm (ChemBERTa),

• For every layer l = 1, . . . , L, scGPT transformer layer scGPTl.

Trainable parameters/networks. For every layer l = 1, . . . , L, we have the following trainable
parameters of our adapter layer:

• Molecular embedding projections fm
l ,

• Projection matrices W down
l ,W up

l ,

• residual network parameters res_netl.

Model architecture. First, the initial gene-level embedding tokens are calculated as:

h0 = {h(g)
0 }g = {embg(tg) + embX(X(0)(c))}g, (6)

where here and in the following, all operations on hl are to be understood to operate over the whole
set of genes g for notational convenience.
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Next, h0 gets passed through the scGPT transformer layers with the additional molecular adapters
(Figure 1). That is, for l = 1, . . . , L,

hl = scGPTl(hl−1) , (scGPT embedding) (7)
bl = fm

l (embm(d)) , (Molecular embedding projection ) (8)

hdown
l = W down

l hl +Πdownbl , (Feed-forward down-project) (9)

hres_net
l = res_netl(hdown

l ) , (Residual network) (10)

hl+1 = hup
l = W up

l hres_net
l + bl . (Feed-forward up-project) (11)

In our model, we use L = 12 layers.

Loss function. Finally, the loss function is calculated as the mean squared error loss over genes,

L =
1

G

G∑
g=1

(
MLP(h

(g)
L )−X(d)(c)

)2

. (12)

Model training.

• Optimizer: The model is trained using the Adam optimizer.
• Learning rate: We use a learning rate of 1e-4.
• Batch Size: The batch size used during training is 16.
• Epochs: The model is trained for 20 epochs.
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A.3 ABLATION STUDIES

We compare scDCA with two alternative models. In the first model, we replace the res_net layer with
a non-linearity module (similar to the original adapter paper Houlsby et al. (2019)). For the second
model, we concatenate the molecule embedding with the output of scGPT to predict the effect on
gene expression. These results are summarized in Table 2.

Table 2: Ablation study. We compare scDCA with two other models: (1) instead of res_net, we use a
nonlinearity in the original adapter paperr Houlsby et al. (2019). (2) We concatenate the molecule
embedding with the output of scGPT to predict the effect on gene expression.

Task scDCA scDCA w/o res_net scGPT+mol_emb

Unseen Drug-Cell-Line Combinations 0.83 0.81 0.80
Unseen Drugs 0.82 0.81 0.78
Unseen Cell Line (Few Shot) 0.88 0.87 0.72
Unseen Cell Line (Zero Shot) 0.82 0.80 0.31

A.4 FEATURE-BASED FINE-TUNING VS SCDCA

In Section 3.2 we mention that a common way to fine-tune foundation models is through feature-
based fine-tuning. In Table 3, we demonstrate that this approach yields poor results when compared
to our proposed method.

Task scDCA Feature-based ∆

Unseen Drug 0.81 ± 0.022 0.03 ± 0.011 0.78
Unseen Drug-Cell-Line Combination 0.83 ± 0.015 0.01 ± 0.019 0.82
Unseen Cell Line (Few Shot) 0.88 ± 0.004 0.01 ± 0.025 0.87
Unseen Cell Line (Zero Shot) 0.82 ± 0.032 -1.51 ± 0.011 0.82

Table 3: Comparison of scDCA and feature based approach (Mean ± SE)

A.5 ADDITIONAL EXAMPLES OF SCDCA PREDICTIONS

We show examples of predicted gene expression across 20 DEGs following perturbation for different
chemical structures (similar to Figure 4) for the tasks of unseen drug and unseen drug-cell-line
combination prediction in Figure 6.

A.6 ADDITIONAL DISCUSSION ON THE ROBUSTNESS OF SCDCA

The design of the experiment for Figure 5 in the main text is as follows. First, we obtain compound
target annotations from ChEMBL. We then conduct a compound hold-out (unseen drug) experiment,
ensuring that all annotated compounds are reserved for the test set. For evaluation, we subset the test
set compounds to one target cluster at a time. We then report the R2 values for each target cluster.

A.6.1 COMPARISON OF THE ROBUSTNESS OF SCDCA AND CHEMCPA ACROSS DIFFERENT
CLUSTER-TARGETS

We compare the robustness of scDCA across different targets (shown in Figure 5) with ChemCPA in
Figure 7.
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Figure 6: Examples of predicted gene expression across 20 most differentially expressed genes for
the molecules Quisinostat and Dacinostat.

(a) scDCA (b) ChemCPA

Figure 7: Clustering drugs based on their targets. X-axis represents targets.

A.7 PERFORMANCE OF SCDCA ON VARIOUS SIZES OF DIFFERENTIALLY EXPRESSED GENES
(DEGS)

We further evaluate the performance of scDCA across varying sizes of differentially expressed genes
(DEGs). In the main paper, we show our results for the top 20 differentially expressed genes. Here we
show how the performance changes as we change the size of our DEGs. We expect the performance
of the model to improve with a larger set of genes, as many genes are not significantly affected by the
perturbation. However, focusing on a small set of DEGs represents a more challenging and relevant
task, as it shows the ability of a model to identify the most significant changes. Figure 8 summarizes
these results.
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Figure 8: R2 values for different tasks on different numbers of DEGs .

A.8 PAIRED T-TESTS RESULTS OF SCDCA VERSUS THE OTHER MODELS

We performed paired t-tests to compare the performance of scDCA against ChemCPA, BioLORD,
and SAMS_VAE across multiple tasks. The results are summarized in Tables 4, 5, 6, and 7.

For all tasks, the scDCA demonstrated a statistically significant improvement over all baselines.

Comparison T-statistic P-value Significant (p < 0.05)
scDCA vs ChemCPA 4.5 0.01 Yes
scDCA vs BioLORD 3.3 0.03 Yes

scDCA vs SAMS_VAE 4.3 0.01 Yes

Table 4: Summary of paired t-test results for the task of unseen drug.

Comparison T-statistic P-value Significant (p < 0.05)
scDCA vs ChemCPA 9.0 0.003 Yes
scDCA vs BioLORD 7.3 0.005 Yes

scDCA vs SAMS_VAE 10.7 0.002 Yes

Table 5: Summary of paired t-test results for the task of unseen drug-cell-line combination.

A.9 GENERALIZATION TO NEW CELL LINES AND SIMILARITY BETWEEN CELL LINES

Since there are only three cell lines present in our dataset, we trained our model and baselines in a
leave-one-out manner for cell line generalization tasks. In general, we would expect the difficulty of
the unseen cell line task to vary according to the degree of biological similarity of the cell lines in
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Comparison T-statistic P-value Significant (p < 0.05)
scDCA vs ChemCPA 31.5 0.000 Yes
scDCA vs BioLORD 3.08 0.027 Yes

scDCA vs SAMS_VAE 6.33 0.003 Yes

Table 6: Summary of paired t-test results for the task of unseen cell line (few shot)

Comparison T-statistic P-value Significant (p < 0.05)
scDCA vs BioLORD 3.7 0.01 Yes

scDCA vs SAMS_VAE 3.9 0.01 Yes

Table 7: Summary of paired t-test results for the task of unseen cell line (zero shot)

training and test. Table 8 summarizes the results for each split (i.e., for each test cell line) for the task
of unseen cell line (zero shot).

Two of the considered cell lines are adenocarcinoma cell lines, albeit in different tissues, while the
third one is a leukemia cell line. Because of this, one might expect the leukemia cell line (K562) hold
out to be the hardest split, which is indeed the case for scDCA. However, this trend is not present in
BioLORD and SAMS_VAE, the other two methods under consideration.

Held out cell line scDCA BioLORD SAMS_VAE
A549 (lung adenocarcinoma) 0.81 0.71 0.73

K562 (myelogenous leukemia) 0.77 0.74 0.75
MCF7 (breast adenocarcinoma) 0.88 0.84 0.84

Table 8: Summary of zero-shot prediction for unseen cell lines.

A.10 SIMILARITY OF DRUGS IN TRAINING AND TEST SETS GENERALIZING TO UNSEEN DRUGS

We analyzed the similarity between training and test molecules, focusing on the generalization to
new molecules (drugs). For each test molecule, we computed its maximum similarity to any training
molecule. We used standard functions, leveraging Tanimoto similarity on Morgan fingerprints
(radius=2, num_bits=2048) as implemented in RDKit library. Figure 9 summarizes these results.
As shown, the vast majority of molecules have low similarity to training structures, with 88% of
them having a similarity 0.4 to any training molecule (0.4 is often considered the threshold to define
structural novelty) (Dalke, 2019).

A.11 TRAINING TIME AND MEMORY COMPARISON

Our model was trained on a single NVIDIA L40S GPU. Table 9 reports the training time (per epoch)
and the memory requirement for scDCA, also compared to full model fine-tuning.

Model Training time (s) Memory (GB)
scDCA 1.07 45

Fine-tuning 1.20 53

Table 9: Comparing scDCA running time and memory usage with fine-tuning the full model.
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Figure 9: Similarity of unseen drugs. Histogram of maximum Tanimoto similarity to the training set
for one train/test split in the unseen drug task.
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