
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ACTIVE EVALUATION ACQUISITION FOR EFFICIENT
LLM BENCHMARKING

Anonymous authors
Paper under double-blind review

ABSTRACT

As large language models (LLMs) become increasingly versatile, numerous large
scale benchmarks have been developed to thoroughly assess their capabilities.
These benchmarks typically consist of diverse datasets and prompts to evaluate
different aspects of LLM performance. However, comprehensive evaluations on
hundreds or thousands of prompts incur tremendous costs in terms of computation,
money, and time. In this work, we investigate strategies to improve evaluation ef-
ficiency by selecting a subset of examples from each benchmark using a learned
policy. Our approach models the dependencies across test examples, allowing ac-
curate prediction of the evaluation outcomes for the remaining examples based
on the outcomes of the selected ones. Consequently, we only need to acquire the
actual evaluation outcomes for the selected subset. We rigorously explore vari-
ous subset selection policies and introduce a novel RL-based policy that leverages
the captured dependencies. Empirical results demonstrate that our approach sig-
nificantly reduces the number of evaluation prompts required while maintaining
accurate performance estimates compared to previous methods.

1 INTRODUCTION

By scaling up parameters and pretraining data, large language models (LLMs) have demonstrated
remarkable abilities to solve various tasks. To reliably evaluate these capabilities and compare dif-
ferent models, modern LLM benchmarks typically employ a comprehensive set of examples that
focus on different aspects of performance. For instance, HELM (Liang et al., 2022), a widely used
LLM benchmark covering diverse task families, includes 42 scenarios and approximately 600,000
queries. However, the comprehensiveness of these benchmarks inevitably incurs significant eval-
uation costs. For example, evaluating on the HELM benchmark requires 4,200 GPU hours for a
176B BLOOM model and $9,337 for text-davinci-002 API calls (Liang et al., 2022). Furthermore,
these substantial costs hamper development at both the modeling and inference stages, preventing
frequent evaluation during the former and extensive hyperparameter tuning – such as decoding and
prompting strategies – during the latter.

In this work, we aim to improve evaluation efficiency by reducing the number of evaluation prompts.
We first observe that evaluation prompts are highly correlated, meaning that a model’s (in)correct
prediction on a certain prompt is likely to correspond with (in)correct predictions on related prompts.
To leverage this, we build a model to formally capture the dependencies across prompts. This
model can predict evaluation scores based on observed scores from a subset of prompts. Given
these dependencies, our goal becomes identifying the minimal subset of prompts that can accurately
recover the evaluation scores for the remaining prompts.

Instead of using a fixed subset of prompts across all models, we propose selecting a unique subset of
prompts for each model to evaluate its performance more efficiently. The goal of our active evalua-
tion acquisition (AEA) approach is to find the most informative subset of prompts for each model,
allowing us to predict performance on the remaining prompts. The key insight is that models may
have varying strengths; for example, one model may excel in arithmetic reasoning while another
shows stronger commonsense reasoning. Tailoring the subset of prompts for each model ensures a
more accurate and targeted evaluation of its capabilities. Furthermore, our dynamic acquisition pro-
cess allows us to adapt in real time as evaluation scores are gathered. As the model’s performance on
initial prompts is observed, the system adjusts subsequent prompt selections to better explore areas

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

of uncertainty or confirm early findings. This iterative approach not only enhances the accuracy of
performance estimation but also reduces redundancy by avoiding prompts that are likely to yield
predictable results, thereby saving computational resources and time. Importantly, the final evalua-
tion score is derived from both the acquired scores on selected prompts and predicted scores on the
remaining prompts, ensuring comparability across models is maintained.

Our contributions are as follows: 1) We tackle LLM evaluation efficiency through dependency mod-
eling and subset selection, connecting LLM evaluation with the extensive literature on subset selec-
tion. 2) We design a generative model that captures dependencies across evaluation prompts and
handles mixed-type evaluation scores, including both discrete and real-valued scores. 3) We thor-
oughly test existing subset selection algorithms on several popular LLM evaluation benchmarks,
including MMLU (Hendrycks et al., 2020), HELM (Liang et al., 2022), HuggingFace Open LLM
Leaderboard (Beeching et al., 2023), AlpaceEval (Li et al., 2023), and Chatbot Arena (Zheng et al.,
2024). 4) We develop several new subset selection policies based on the dependency model and
demonstrate their superiority over existing methods, with our RL-based acquisition policy achiev-
ing the best performance using the lowest acquisition budget. 5) We propose and investigate the
cold-start problem, where new prompts are added to a benchmark without prior evaluation scores
for any model, and extend our RL-based policy to deal with the situation effectively.

2 METHOD

2.1 PROBLEM FORMULATION

Consider a benchmark X with N prompts, X = {xn}Nn=1. Note that a benchmark may contain
multiple datasets. Evaluating a model m on this benchmark generates evaluation scores Ym =
{ymn}Nn=1. A leaderboard for this benchmark contains evaluation scores for M models, denoted as
{Ym}Mm=1. For a new model m′ to be evaluated, our AEA framework will acquire a subset of the
evaluation scores Y

(o)
m′ = {ym′o : o ⊆ {1, . . . , N}}, and the evaluation scores for the remaining

prompts Y (u)
m′ = {ym′u;u = {1, . . . , N} \ o} will be predicted. The key of our AEA framework is

to capture the dependencies over prompts so that the predicted evaluation scores are accurate. We
explicitly model the dependencies by learning the conditional distribution p(Y

(u)
m | Y (o)

m , X). Since
the set of prompts to acquire their scores is not predefined, we must estimate p(Y

(u)
m | Y (o)

m , X) for
all possible subsets u and o.

Given the generative model between subsets of evaluation scores and a fixed budget K, our goal for
AEA is to find an optimal subset o∗ ⊆ {1, . . . , N}, where |o∗| = K, such that the predicted scores
on the remaining prompts are accurate, i.e.,

o∗ = argmaxo∈P([N],K) p(Y
(u)
m′ | Y (o)

m′ , X), (1)

where P([N],K) represents all subsets of {1, . . . , N} with cardinality K. Note that the optimal
subset o∗ could be different for each model; however, for notation simplicity, we omit the subscript
m′. It is worth noting that the objective in equation 1 cannot be directly optimized since the values
Y

(u)
m′ for a test model m′ are unknown before we actually acquire the evaluation scores on those

prompts. Additionally, equation 1 bares similarity to the objective of active learning (Ren et al.,
2021), but our goal differs in that we aim to achieve more accurate evaluations rather than training a
better model. We will later assess several acquisition policies inspired by active learning algorithms.

2.2 MODELING DEPENDENCIES VIA NEURAL PROCESSES

In this section, we aim to capture the dependencies across evaluation prompts by modeling the
conditional distribution p(Y

(u)
m | Y (o)

m , X). We represent the relationship between the prompts and
their evaluation scores as a stochastic process F : X → Y , where X and Y denote the spaces of
prompts and their corresponding evaluation scores, respectively. Evaluating on the benchmark X
can be interpreted as observing finite-dimensional marginal distributions of this stochastic process.
Specifically, the evaluation scores Ym represent the function values {fm(xn)}Nn=1 for a particular
function instantiation, fm, sampled from the distribution of functions.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Neural Processes (NPs) (Garnelo et al., 2018b;a; Kim et al., 2019) provide a flexible and scalable
approach to modeling such stochastic processes. They combine the strengths of neural networks
and Gaussian Processes to predict outputs for new inputs by conditioning on a set of context points.
Specifically, the function fm is implicitly parameterized by a latent vector zm, and the generative
model then follows

p(Y (u)
m | Y (o)

m , X) =

∫
p(zm | Y (o)

m , X)p(Y (u)
m | zm, Y (o)

m , X)dzm. (2)

Since the integration is over a high dimensional latent space, we instead optimize the evidence lower
bound (ELBO) following variational autoencoder (VAE) (Kingma & Welling, 2013)

log p(Y (u)
m | Y (o)

m , X) ≥ E
q(zm|Y (u)

m ,Y
(o)
m ,X)

[
log

p(Y
(u)
m | zm, Y

(o)
m , X)p(zm | Y (o)

m , X)

q(zm | Y (u)
m , Y

(o)
m , X)

]
, (3)

where q(zm | Y (u)
m , Y

(o)
m , X) and p(zm | Y (o)

m , X) represent the posterior and prior distributions
over the latent variable, respectively.

To ensure that our model represents a valid stochastic process, we adhere to the conditions stated
by the Kolmogorov Extension Theorem (Oksendal, 2013): (finite) exchangeability and consistency.
The exchangeability condition requires that the joint distribution p(Ym) remain unchanged under
permutations of its elements. In practice, we can satisfy this condition by using permutation invariant
networks to parameterize both the prior and posterior distributions. The consistency demands that if
we marginalize out part of Ym, the resulting marginal distribution is the same as that defined on the
original prompt xn. This condition is met when the approximate posterior equals the true posterior.
In practice, we achieve this by training the model with a sufficient amount of data from diverse
model evaluations so that the lower bound approaches the actual likelihood.

Implementation In order to handle textual prompts, we utilize a pretrained embedding model to
represent each prompt as a Rd vector. During training, since the entire set Ym might be too large
to fit into memory, we randomly sample two non-overlapping subsets from each model as Y (o)

m and
Y

(u)
m , respectively. The prior and posterior distributions share the same network, but take differ-

ent inputs. The prior takes in a set of x-y pairs from Y
(o)
m , i.e., {(xo, ymo) : o ⊆ {1, . . . , N}},

while the posterior takes in a set of x-y pairs from both Y
(o)
m and Y

(u)
m . Following the Attentive

Neural Process (Kim et al., 2019), we implement the prior/posterior network using self-attention
blocks to better capture the dependencies across set elements. To reduce memory usage, we use
Set Transformer architecture (Lee et al., 2018), where each set element attends to a small set of
learnable induced points instead of attending to all other elements directly. The decoder network
p(Y

(u)
m | zm, Y

(o)
m , X) employs cross-attention, allowing each unobserved prompt to attend to the

relevant observed prompts. According to De Finetti’s Theorem (De Finetti, 1929), the likelihood
over set elements Y

(u)
m can be conditionally independent conditioned on the latent variable zm.

However, we still use a Set Transformer (Lee et al., 2018) to better capture the dependencies. Please
refer to Appendix A for details of the model architecture.

2.3 EVALUATION ACQUISITION POLICY

Given the generative model across subsets of evaluation prompts, we now develop acquisition poli-
cies to select an optimal subset of prompts for acquiring their true evaluation scores, while the
remaining scores will be predicted by the conditional p(Y (u)

m | Y (o)
m , X).

2.3.1 RANDOM POLICY

A random acquisition policy selects a subset of size K at random to acquire the evaluation scores. In
this work, we consider two variants: Uniform Sampling and Stratified Random Sampling (Perlitz
et al., 2023). Uniform Sampling selects K prompts uniformly from X , while Stratified Random
Sampling considers the size of different datasets and ensures each dataset is equally represented.
The stratified sampling has been verified effective on HELM benchmark (Perlitz et al., 2023).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Algorithm 1 Active Evaluation Acquisition
Require: Acquisition budget K, a model m to be evaluated, Neural Process p

1: o = ∅, Y (o)
m = ∅, u = {1, . . . , N}

2: while |o| < K do
3: Select prompt i according to equation 5, equation 6, or equation 7
4: Run evaluation for model m on prompt i to get the evaluation score Y

(i)
m

5: o = o ∪ {i}, Y (o)
m = Y

(o)
m ∪ {Y (i)

m }, u = u \ {i}
6: end while
7: Predict the evaluation scores for the remaining prompts Y (u)

m ∼ p(Y
(u)
m | Y (o)

m , X)

2.3.2 STATIC POLICY

A static acquisition policy determines the set of prompts to be evaluated beforehand, and each model
to be evaluated acquires the evaluation scores on the same set of prompts. We assess the following
two types of static policies.

Clustering Given the embedding for each prompt, we group them into K cluster, then we select
one prompt in each cluster that is closest to the cluster centroid. We denote this approach as
Clustering-Embed. Instead of using the pretrained sentence embedding, we can use the learned
embedding from an Item Response Theory (IRT) model (Hambleton & Swaminathan, 2013; Em-
bretson & Reise, 2013), which represents the difficulty and discriminability of each prompt. The
Clustering-IRT method, proposed in (Polo et al., 2024), has been successfully applied on several
public LLM benchmarks. Inspired by (Vivek et al., 2023), which selects representative examples by
clustering based on prediction confidence, the Clustering-Score method groups the prompts based
on their evaluation scores on the training set. That is, each prompt xn is represented by a vector of
evaluation scores, with the size of the vector corresponding to the number of evaluated models in
the training set. The Clustering-Score method has been used as a baseline in (Polo et al., 2024).

Combinatorial Optimization Given the model p(Y (u)
m | Y (o)

m , X), a static acquisition policy can be
derived by searching over the training set to find the optimal subset of prompts that gives the most
accurate prediction of the remaining prompts. This is a typical combinatorial optimization problem,
which is NP-Hard. Here, we employ a sequential approach that selects one prompt at a time until K
prompts are selected. Starting from an empty set o = ∅, the next prompt i ∈ u := {1, . . . , N} \ o is
chosen to minimize the prediction error over the training set, i.e.,

i = argmin
i′∈u

EYm∼pDEŶ
(u′)
m ∼p(Y

(u′)
m |Y (o′)

m ,X)
∥Ŷ (u′)

m − Y (u′)
m ∥2, (4)

where o′ = o ∪ {i′} and u′ = u \ {i′}. We estimate the expectation by Monte Carlo sampling. For
notation simplicity, the above equation computes the mean squared error on prompts u′; however,
in practice, different datasets may use different metrics. Additionally, these differences may be
weighted depending on the dataset size. Please refer to Algorithm 2 in Appendix for pseudo-code
of the selection process. Note that this approach has a complexity of O(KMN), which could be
prohibitive when the benchmark is large.

2.3.3 DYNAMIC POLICY

Instead of acquiring the same set of evaluation scores for each model, we propose dynamically
acquiring adaptive subsets for different models, a method we term Active Evaluation Acquisition
(AEA). This approach tailors the selection of prompts to each model’s specific strengths and weak-
nesses, providing a more accurate and efficient evaluation. Dynamic acquisition sequentially ac-
quires evaluation scores and simultaneously refines the uncertainty of predictions, enabling real-
time adaptation based on observed performance. AEA reduces redundancy by avoiding predictable
evaluations and focusing resources on the most informative prompts. Please refer to Algorithm 1 for
pseudo-code of the active acquisition process.

Uncertainty Sampling Inspired by uncertainty sampling method widely used in active learning lit-
erature(Ren et al., 2021; Yang et al., 2015; Raj & Bach, 2022), where the most uncertainty data point
under the current predictor is chosen to query its label, we select the next prompt to be evaluated

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

based on the uncertainty of p(Y (i)
m | Y (o)

m , X). Here, o contains the evaluated prompts so far, and
i ∈ u is one of the candidate prompts to be selected. We choose the prompt with the highest entropy:

i = argmaxi∈u H(Y
(i)
m | Y (o)

m , X). (5)
In practice, we estimate the entropy by sampling multiple times and computing the sample variance.

Information Gain Given the latent variable based neural process model (equation 2), where the
latent variable essentially parameterizes the stochastic process, a straight-forward acquisition policy
is to select the prompt that provides the most information about the latent variable zm. We use the
conditional mutual information to measure the amount of information:

i = argmax
i∈u

I(Y (i)
m ; zm | Y (o)

m , X)

= argmax
i∈u

[
H(zm | Y (o)

m , X)− E
Ŷ

(i)
m ∼p(Y

(i)
m |Y (o)

m ,X)
H(zm | Ŷ (i)

m , Y (o)
m , X)

]
= argmin

i∈u
E
Ŷ

(i)
m ∼p(Y

(i)
m |Y (o)

m ,X)
H(zm | Ŷ (i)

m , Y (o)
m , X).

(6)

The third equation follows because the observed set o is the same for any candidate i ∈ u. The
expectation is again estimated by Monte Carlo sampling. Note that the entropy is estimated based on
predicted Y

(i)
m rather than the true evaluation score as the true score is unknown before acquisition.

At each acquisition step, the entropy must be estimated for each candidate prompt i ∈ u. Therefore,
the total complexity is O(KN), which could be prohibitive for large benchmarks.

Reinforcement Learning The active acquisition process can be formulated as a Markov decision
process (MDP), where the state consists of the currently evaluated prompts and their scores, and
the action space contains the remaining prompts to be evaluated. To solve the MDP, a reinforce-
ment learning agent sequentially acquires new evaluation scores based on the current state. Af-
ter acquiring evaluation score for prompt i, the current state transitions to a new state as follows:
o

i−→ o∪ {i}, Y (o)
m

i−→ Y
(o)
m ∪ {Y (i)

m }. When the agent acquires evaluation scores for K prompts, the
acquisition process terminates, and the agent receives a reward based on the prediction accuracy for
the remaining prompts. Note that the reward is only required during training when we have access
to all the evaluation scores, allowing us to compute the actual prediction accuracy. During testing,
the next prompt to be evaluated will be directly selected by the policy:

i = argmaxi∈u P (i | Y (o)
m , X). (7)

Since the policy network has constant computational cost, the total complexity of the acquisition
process remains O(K) regardless of the benchmark size.

In the above MDP definition, the reward is received only at the end of the acquisition process by
predicting the unobserved evaluation scores. This setup poses a typical temporal credit assignment
problem, which complicates the learning of an effective agent, especially when the trajectory is long
(Minsky, 1961; Sutton, 1988). To address this issue, we propose providing intermediate rewards
for each acquisition action i. Specifically, after acquiring the evaluation score for prompt i, the
improvement in prediction accuracy per unobserved prompt is used as the intermediate reward, i.e.,

r(o, i) =
E
Ŷ

(u)
m ∼p(Y

(u)
m |Y (o)

m ,X)
∥Ŷ (u)

m − Y
(u)
m ∥2

|u|
−

E
Ŷ

(u′)
m ∼p(Y

(u′)
m |Y (o′)

m ,X)
∥Ŷ (u′)

m − Y
(u′)
m ∥2

|u′|
, (8)

where o′ = o ∪ {i} and u′ = u \ {i}. The intermediate reward provides immediate feedback for
each acquisition action during the acquisition process, facilitating more effective learning. Note that
the intermediate reward follows the potential function structure (Ng et al., 1999), therefore, it will
not change the optimal policy.

In addition to providing intermediate rewards, we propose using the neural process to assist the
agent with auxiliary information. Specifically, the neural process can predict the evaluation scores
for unobserved prompts based on the observed scores in the current state. By sampling multiple
times, the neural process can inform the agent about the uncertainties of these unobserved scores.
The predicted scores and their uncertainties on the unobserved prompts allow the agent to anticipate
future states and guide its exploration. For instance, if the neural process is very confident about the
score of a currently unobserved prompt, then acquiring its real score would be redundant. The aux-
iliary information helps the agent make more informed decisions about which prompts to evaluate
next, improving the efficiency and accuracy of the active acquisition process.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

2.4 COLD START PROBLEM

So far, we have considered scenarios where the set of prompts is fixed for each benchmark. However,
as language models advance, new capabilities may emerge that need to be assessed. Therefore, it is
crucial to address the cold start problem, where the benchmark must be expanded with new prompts
for which no evaluation scores are initially available for any model.

Expanding the benchmark with new prompts introduces several challenges. Firstly, predicting eval-
uation scores on these new prompts is difficult for a neural process trained on previously observed
scores. Secondly, determining which new prompts to select for the expanded benchmark is challeng-
ing, as these new prompts may introduce capabilities or areas not well-represented in the original
set, making it hard to gauge their relevance and difficulty relative to the existing prompts.

To help the neural process model generalize to new prompts, we introduce a semi-supervised train-
ing procedure where the new prompts are treated as unlabeled data. We found that simple pseudo-
labeling approaches (Lee et al., 2013; Xie et al., 2020; Du et al., 2020) work well. Specifically,
we add the new prompts and their predicted evaluation scores into the training process if the un-
certainties of the predicted evaluation scores are below a predefined threshold. In our prelimi-
nary experiments, we also tested several regularization approaches, such as entropy minimization
(Grandvalet & Bengio, 2004) and consistency regularization (Tarvainen & Valpola, 2017), which
are commonly used for semi-supervised learning, but they consistently underperformed compared
to pseudo-labeling. A systematic exploration of semi-supervised techniques for neural process train-
ing is beyond the scope of this paper and will be left for future work.

Static acquisition policies are suboptimal for the cold start problem because they rely on the available
evaluation scores to determine the set of prompts to be evaluated, meaning the evaluation scores
on new prompts will never be acquired. One exception is Clustering-Embed method, where the
clustering is based solely on the embedding of the new prompts rather than their evaluation scores.
In contrast, dynamic acquisition policies are better suited to handle the cold start problem due to
their adaptive nature. However, since the RL-based acquisition policy is trained to acquire evaluation
scores on the existing prompts, it requires the acquisition policy to generalize to new prompts.

To enable the policy network to generalize to new actions, we design it to incorporate the action rep-
resentations into its inputs. Specifically, at each acquisition step, in addition to the acquired scores
Y

(o)
m , the policy network h also takes in the representations of the available actions, where the rep-

resentations are shared with the neural process model. The output of the policy network is a vector
with the same dimensionality as the action representations. The probability of selecting a particular
prompt i is proportional to the inner product of the output vector and action representations, i.e,

P (i | Y (o)
m , X) =

eai·h(Y (o)
m ,X(o),{ai}i∈u)∑

i∈u e
ai·h(Y (o)

m ,X(o),{ai}i∈u)
, (9)

where {ai}i∈u denote the representations for the set of candidate prompts. A similar policy archi-
tecture design has been proposed before for sequential decision-making (Jain et al., 2020). Please
refer to Appendix D for further details.

3 RELATED WORKS

Active Learning Active learning (Fu et al., 2013; Konyushkova et al., 2017; Yoo & Kweon, 2019)
addresses the problem of having a learner select specific examples to query an oracle for their labels,
with the goal of learning a better model using as few labeled examples as possible. In contrast, our
proposed AEA framework focuses on evaluating a model with fewer examples to accurately predict
the evaluation scores for the remaining examples.

Active Testing Active testing (Kossen et al., 2021) reduces the labeling cost by selectively choosing
test points to label, ensuring sample-efficient model evaluation. While this aligns with the goal of
efficient evaluation, our work specifically targets reducing the cost of running evaluations on a large
number of prompts, rather than minimizing labeling costs.

Efficient LLM Benchmarking As LLMs continue to develop and scale, ongoing efforts aim to
create benchmarks that comprehensively assess their capabilities. A notable trend in these bench-
marks is their evolution from single-task assessments (Bowman et al., 2015; Rajpurkar et al., 2016)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(a) AlpacaEval (b) HELM-Lite

(c) Open LLM Leaderboard (d) MMLU (e) Chatbot Arena

Figure 1: Experiment results on five popular LLM evaluation benchmarks, with shaded areas indi-
cating the standard deviation over three runs.

to multi-task benchmarks (Wang et al., 2018; 2019), and ultimately to massively multi-task eval-
uations (Srivastava et al., 2022; Liang et al., 2022; Hendrycks et al., 2020). The ever-increasing
evaluation cost has encouraged researchers to develop efficient evaluation approaches. BIG-bench
Lite (Srivastava et al., 2022) and BIG-bench Hard (Suzgun et al., 2022) evaluate on a subset of BIG-
bench tasks, and Ye et al. (2023) propose clustering BIG-bench tasks and selecting the examples
that are closest to cluster centers. Perlitz et al. (2023) found that the model rankings on HELM can
be accurately obtained by evaluating only a fraction of the examples. Vivek et al. (2023) propose
clustering the evaluation examples based on the uncertainty of model predictions, while Polo et al.
(2024) suggest clustering examples based on learned features from an IRT model. In this work, we
comprehensively assess these methods and further propose actively selecting evaluation examples.

4 EXPERIMENTS

In this section, we assess various evaluation acquisition policies on several popular LLM bench-
marks. We divide the available leaderboard scores into training and test splits. The training split is
used to fit the neural processes model, capturing the dependencies across prompts. The acquisition
policies are executed for each model in the test split to acquire the evaluation scores for a subset of
prompts. The evaluation scores on the remaining prompts are predicted based on the corresponding
neural process model. The final score for each benchmark is computed as a weighted average across
datasets, and we report the absolute differences between the predicted scores and the actual scores.
Please see Appendix E for details.

We conduct experiments on five popular LLM benchmarks: HuggingFace Open LLM Leaderboard
(Beeching et al., 2023), MMLU (Hendrycks et al., 2020), HELM-Lite (Liang et al., 2022), Al-
pacaEval 2.0 (Li et al., 2023), and Chatbot Arena (Zheng et al., 2024). Detailed descriptions of
these benchmarks can be found in Appendix E.

Results Figure 1 presents the main experimental results on 5 LLM benchmarks. We conduct ex-
periments with 3 random seeds for each benchmark and plot the average performance and standard
deviation throughout the acquisition process. Prompt embeddings are obtained using the SFR em-
bedding model (Rui Meng, 2024). For the static clustering based policies, since the selected prompts
do not have an inherent order, the acquisition process shuffles the selected prompts at random. For
the AlpacaEval and Chatbot Arena benchmarks, stratified random sampling is equivalent to uniform
sampling since there are only one dataset in each benchmark. Combinatorial optimization is too ex-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) AlpacaEval (b) HELM-Lite

Figure 2: Evaluate the situation with model bias, where test
models are from different model families compared to the train-
ing models.

Figure 3: Evaluate the cold start
problem on MMLU benchmark,
where 15 subsets are left out as
cold start prompts.

pensive to run for HELM-Lite, HuggingFace Open LLM Leaderboard, and MMLU due to the large
number of prompts. We found that uncertainty and information gain based policies consistently fail
to explore the action space, leading to worse overall performance. To avoid cluttering the plots,
results for uncertainty sampling and information gain based policies are moved to the appendix.
Please refer to Appendix E for more analysis.

For all benchmarks, our proposed RL-based acquisition policy achieves the best performance with
the lowest acquisition budget, demonstrating its superior ability to select informative prompts and
accurately estimate benchmark performance. The stratified random sampling policy performs sim-
ilarly to uniform sampling. Interestingly, the Clustering-Embed policy does not outperform the
random selection, indicating that the similarity in prompt embedding does not always translate to
the similarity in evaluation scores. Among the three clustering-based policies, none consistently
outperforms the others. On AlpacaEval, HELM-Lite, and MMLU, the policies that utilize the eval-
uation scores (i.e., Claustering-Score and Clustering-IRT) perform better, while on the Open LLM
Leaderboard and Chatbot Arena, Clustering-Embed perform better. The combinatorial optimization
based policy does not perform well, even on the two small benchmarks where it is computation-
ally feasible. We attribute this to a potential distribution shift between the models used for training
and those used for testing, suggesting that the static policy optimized on training models does not
generalize well to new models during testing.

Table 1: Comparison of our RL-based acquisition
policy with TinyBenchmarks (TB) (Polo et al.,
2024), using selected prompts to predict evalua-
tion scores with either the IRT model from TB or
our NP model. The metric is the absolute error in
benchmark score estimation.

IRT NP

AlpacaEval TB 0.027 ± 0.002 0.003 ± 0.001
(K=100) RL 0.014 ± 0.005 0.001 ± 0.000

MMLU TB 0.022 ± 0.000 0.016 ± 0.000
(K=100) RL 0.028 ± 0.002 0.013 ± 0.000

Open LLM TB 0.023 ± 0.002 0.022 ± 0.004
(K=200) RL 0.019 ± 0.001 0.018 ± 0.001

Additionally, we compare our methods with
tinybenchmarks (Polo et al., 2024). Given the
selected subsets from tinybenchmarks, we pre-
dict the final benchmark performance using
both the IRT models provided by tinybench-
mark 1 and our neural process models. Con-
versely, we also evaluate our prompt selections
using both IRT and NP models. Table 1 com-
pares the prompt selections from our proposed
RL policy with those from tinybenchmark. The
original tinybenchmark select 600 prompts for
Huggingface Open LLM Leaderboard, but in
our comparison, we select 200 prompts to en-
sure a fair comparison with our RL policy. The
results show that for both prompt selections, us-
ing NP produces better benchmark performance estimates, indicating that our neural process model
better captures the dependencies and predicts the missing evaluation scores. Given a fixed predic-
tion model (either IRT or NP), our RL-based acquisition policy achieves lower error compared to the
prompt selections from tinybenchmark, demonstrating that our RL-based policy is more effective at
selecting the informative prompts.

Model Bias An important aspect of efficient benchmarking strategies is robustness to model bias. To
accurately evaluate future models, which may differ significantly from previously seen models, the

1https://github.com/felipemaiapolo/tinyBenchmarks/tree/main

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Comparson of the final benchmark performance estimation methods. w/ pred indicate the
proposed method where the neural process is used to predict the missing evaluation scores. w/o pred
indicates the baseline where final performance is an aggregation of the acquired evaluation scores.

AlpacaEval HELM-Lite Open LLM MMLU Chatbot Arena
(K=100) (K=200) (K=200) (K=100) (K=40)

Uniform w/ pred 0.005 ± 0.000 0.038 ± 0.005 0.022 ± 0.002 0.018 ± 0.001 0.052 ± 0.010
w/o pred 0.012 ± 0.001 0.079 ± 0.008 0.043 ± 0.003 0.042 ± 0.003 0.036 ± 0.009

S-Rand w/ pred - 0.035 ± 0.012 0.030 ± 0.003 0.017 ± 0.002 -
w/o pred - 0.072 ± 0.012 0.023 ± 0.001 0.038 ± 0.001 -

C-Embed w/ pred 0.006 ± 0.001 0.051 ± 0.010 0.024 ± 0.002 0.020 ± 0.004 0.052 ± 0.014
w/o pred 0.023 ± 0.008 0.116 ± 0.003 0.029 ± 0.000 0.029 ± 0.000 0.032 ± 0.003

C-Score w/ pred 0.004 ± 0.001 0.054 ± 0.010 0.031 ± 0.003 0.014 ± 0.002 0.054 ± 0.004
w/o pred 0.141 ± 0.011 0.051 ± 0.017 0.086 ± 0.002 0.048 ± 0.002 0.037 ± 0.011

C-IRT w/ pred 0.003 ± 0.001 0.044 ± 0.013 0.026 ± 0.001 0.015 ± 0.001 0.057 ± 0.002
w/o pred 0.069 ± 0.003 0.060 ± 0.014 0.037 ± 0.003 0.041 ± 0.006 0.042 ± 0.003

RL w/ pred 0.001 ± 0.000 0.030 ± 0.005 0.018 ± 0.001 0.013 ± 0.000 0.034 ± 0.006
w/o pred 0.064 ± 0.006 0.081 ± 0.019 0.063 ± 0.018 0.050 ± 0.006 0.045 ± 0.007

strategy must accurately measure model capabilities based on the selected prompts. Our train-test
splits based on date for MMLU and Open LLM Leaderboard potentially evaluate this situation since
model performance tends to improve over time. To further evaluate the performance in the presence
of model bias, we divide the models on the AlpacaEval and HELM-Lite leaderboards based on their
organizations. For HELM-Lite, we use proprietary models, such as GPT-4 (Achiam et al., 2023) and
Claude (Anthropic, 2024), for training and test on open-source models, such as LLaMA (Touvron
et al., 2023) and Mistral (Jiang et al., 2023). For AlpacaEval, we do the opposite, using open-source
models for training and proprietary models for testing.

Figure 2 presents the evaluation results on these two benchmarks with model bias. Firstly, static
policies, especially Clustering-Score and Clustering-IRT that depend on evaluation scores from the
training models, do not perform well. Secondly, although random policies do not suffer from model
bias, they cannot leverage dependencies across prompts, leading to lower overall performance. In
contrast, our RL-based dynamic acquisition policy can effectively exploit the dependencies across
prompts even for models that is significantly different from the models it has seen before. However,
we do notice that the existence of model bias makes the problem harder to solve. Compared to
Fig. 1 on the same benchmark, even for our RL-based policy, it takes more acquisitions to achieve
the same level of errors as in situations where no model bias exists. In practice, a continual learning
framework, where the neural process model and the acquisition policies are jointly adapted to the
newly added models, might be necessary. We leave this for future works.

Cold Start Problem To evaluate the cold start scenario, we create a synthetic benchmark using
MMLU by designating 15 subsets as cold start prompts. During the training of the neural pro-
cess model and the acquisition policies, the evaluation scores on these 15 subsets are not available.
Although the evaluation scores are missing, we assume the prompts themselves are given, allow-
ing random policies and Clustering-Embed static policy to be evaluated without any modifications.
However, the Clustering-Score and Clustering-IRT policies will never acquire evaluation scores for
these 15 subsets since these policies require access to the evaluation scores to determine whether a
prompt will be acquired or not. On the other hand, dynamic acquisition policies can easily adapt to
the cold start setting, as they acquire evaluation scores sequentially and actively.

Figure 3 presents the results on the synthetic cold start MMLU benchmark. The performance is
evaluated over all 57 subsets during testing. As expected, the Clustering-Score and Clustering-IRT
policies do not perform well in the cold start setting because the evaluation scores on the 15 left-out
subsets are never acquired. The Clustering-Embed policy performs better than the other clustering
based policies as it can select the cold start prompts by clustering based on their embeddings. The
RL-based acquisition policy again achieves the best performance estimation. However, it is worth
noting that the final estimated benchmark performance is not as accurate as in the fully observed
setting (Fig. 1), indicating potential areas for future improvement to narrow the gap.

4.1 ABLATION STUDIES

Prediction Model In the main experimental results, we run the acquisition policy to select a subset
of prompts for acquiring their actual evaluation scores and then use a neural process model to predict

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: Comparison of different prompt embeddings.
Uniform C-Embed C-Score C-IRT RL

AlpacaEval

SFR (4096) 0.005 ± 0.000 0.006 ± 0.001 0.004 ± 0.001 0.003 ± 0.001 0.001 ± 0.000
E5 (4096) 0.005 ± 0.000 0.006 ± 0.001 0.007 ± 0.005 0.004 ± 0.001 0.001 ± 0.000

BGE-large (1024) 0.006 ± 0.001 0.006 ± 0.002 0.009 ± 0.002 0.007 ± 0.001 0.002 ± 0.000
BGE-small (384) 0.009 ± 0.002 0.009 ± 0.002 0.038 ± 0.031 0.015 ± 0.010 0.005 ± 0.002

MMLU

SFR (4096) 0.018 ± 0.001 0.020 ± 0.004 0.014 ± 0.002 0.015 ± 0.001 0.013 ± 0.000
E5 (4096) 0.018 ± 0.002 0.018 ± 0.002 0.014 ± 0.003 0.016 ± 0.002 0.014 ± 0.003

BGE-large (1024) 0.029 ± 0.003 0.028 ± 0.005 0.027 ± 0.005 0.023 ± 0.006 0.023 ± 0.003
BGE-small (384) 0.028 ± 0.003 0.023 ± 0.006 0.022 ± 0.005 0.022 ± 0.005 0.022 ± 0.002

Table 4: Contributions of auxiliary information and intermediate reward for our RL-based policy.
AlpacaEval MMLU Open LLM

PPO 0.004± 0.002 0.017± 0.004 0.033± 0.010
+auxiliary info 0.003± 0.001 0.016± 0.003 0.029± 0.005
+interm reward 0.001± 0.000 0.013± 0.000 0.018± 0.001

the scores for the remaining prompts. However, an alternative method to estimate benchmark per-
formance is to directly aggregate the acquired evaluation scores without relying on another model
for prediction. The aggregation computes performance per dataset first and then averages across
datasets. Table 2 compares these two estimation methods. The results show that the prediction
model generally provides better benchmark performance estimation.

Prompt Embedding Our approach utilizes a sentence embedding model to extract representa-
tions for the prompts. These representations are used both to train the neural process model
and to build the acquisition policies. For the main results, we use the SFR embedding model
(Salesforce/SFR-Embedding-Mistral) (Rui Meng, 2024) to extract prompt representa-
tions. In Table 3, we present results using several other embedding models: E5, BGE-large, and
BGE-small, corresponding to intfloat/e5-mistral-7b-instruct (Wang et al., 2023),
BAAI/bge-large-en-v1.5 (Xiao et al., 2023), and BAAI/bge-small-en-v1.5 (Xiao
et al., 2023), respectively. The results indicate that performance generally improves with more
powerful embedding models that better distinguish text inputs 2 Thus, utilizing more powerful em-
bedding models is an important future direction.

Auxiliary Information Our RL-based acquisition policy builds on PPO (Schulman et al., 2017)
and leverages the neural process model to provide auxiliary information and intermediate rewards.
Table 4 illustrates the contributions of these components. The results clearly show that each com-
ponent — both auxiliary information and the intermediate rewards — significantly enhances the
acquisition policy, leading to better selection of informative prompts and more accurate benchmark
performance estimation.

5 CONCLUSION

In this work, we present a novel approach for efficient LLM evaluation by leveraging dependency
modeling and subset selection. Our key contributions include developing a generative model that
captures dependencies across evaluation prompts and handles mixed-type evaluation scores, as well
as proposing new subset selection policies based on these dependencies. Extensive experiments
on multiple LLM evaluation benchmarks demonstrate the superiority of our RL-based acquisition
policy in providing accurate benchmark performance estimation with a minimal acquisition budget.
Our results also emphasize the importance of robustness to model bias and the effectiveness of
our approach in cold start scenarios. Future research could explore integrating continual learning
frameworks to enhance performance in the presence of model bias and cold starts. Additionally,
expanding our methods to other benchmarks and refining the neural process model with improved
uncertainty estimation are promising areas for further investigation.

2At the time of writing this paper, the average scores from the MTEB English leaderboard.
(https://huggingface.co/spaces/mteb/leaderboard) for these four models are: SFR (67.56), E5 (66.63), BGE-
large (64.23), and BGE-small (62.17).

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

AI Anthropic. The claude 3 model family: Opus, sonnet, haiku. Claude-3 Model Card, 1, 2024.

Edward Beeching, Clémentine Fourrier, Nathan Habib, Sheon Han, Nathan Lambert, Nazneen Ra-
jani, Omar Sanseviero, Lewis Tunstall, and Thomas Wolf. Open llm leaderboard. https:
//huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard, 2023.

Samuel R Bowman, Gabor Angeli, Christopher Potts, and Christopher D Manning. A large anno-
tated corpus for learning natural language inference. arXiv preprint arXiv:1508.05326, 2015.

Bruno De Finetti. Funzione caratteristica di un fenomeno aleatorio. In Atti del Congresso Inter-
nazionale dei Matematici: Bologna del 3 al 10 de settembre di 1928, pp. 179–190, 1929.

Jingfei Du, Edouard Grave, Beliz Gunel, Vishrav Chaudhary, Onur Celebi, Michael Auli, Ves Stoy-
anov, and Alexis Conneau. Self-training improves pre-training for natural language understand-
ing. arXiv preprint arXiv:2010.02194, 2020.

Susan E Embretson and Steven P Reise. Item response theory. Psychology Press, 2013.

Yifan Fu, Xingquan Zhu, and Bin Li. A survey on instance selection for active learning. Knowledge
and information systems, 35:249–283, 2013.

Marta Garnelo, Dan Rosenbaum, Christopher Maddison, Tiago Ramalho, David Saxton, Murray
Shanahan, Yee Whye Teh, Danilo Rezende, and SM Ali Eslami. Conditional neural processes. In
International conference on machine learning, pp. 1704–1713. PMLR, 2018a.

Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J Rezende, SM Eslami,
and Yee Whye Teh. Neural processes. arXiv preprint arXiv:1807.01622, 2018b.

Jakob Gawlikowski, Cedrique Rovile Njieutcheu Tassi, Mohsin Ali, Jongseok Lee, Matthias Humt,
Jianxiang Feng, Anna Kruspe, Rudolph Triebel, Peter Jung, Ribana Roscher, et al. A survey
of uncertainty in deep neural networks. Artificial Intelligence Review, 56(Suppl 1):1513–1589,
2023.

Yves Grandvalet and Yoshua Bengio. Semi-supervised learning by entropy minimization. Advances
in neural information processing systems, 17, 2004.

Ronald K Hambleton and Hariharan Swaminathan. Item response theory: Principles and applica-
tions. Springer Science & Business Media, 2013.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Eyke Hüllermeier and Willem Waegeman. Aleatoric and epistemic uncertainty in machine learning:
An introduction to concepts and methods. Machine learning, 110(3):457–506, 2021.

Ayush Jain, Andrew Szot, and Joseph J Lim. Generalization to new actions in reinforcement learn-
ing. arXiv preprint arXiv:2011.01928, 2020.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, Ali Eslami, Dan Rosenbaum, Oriol
Vinyals, and Yee Whye Teh. Attentive neural processes. arXiv preprint arXiv:1901.05761, 2019.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

11

https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ksenia Konyushkova, Raphael Sznitman, and Pascal Fua. Learning active learning from data. Ad-
vances in neural information processing systems, 30, 2017.

Jannik Kossen, Sebastian Farquhar, Yarin Gal, and Tom Rainforth. Active testing: Sample-efficient
model evaluation. In International Conference on Machine Learning, pp. 5753–5763. PMLR,
2021.

Dong-Hyun Lee et al. Pseudo-label: The simple and efficient semi-supervised learning method for
deep neural networks. In Workshop on challenges in representation learning, ICML, volume 3,
pp. 896. Atlanta, 2013.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam R Kosiorek, Seungjin Choi, and Yee Whye Teh. Set
transformer. 2018.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-following
models. https://github.com/tatsu-lab/alpaca_eval, 2023.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, et al. Holistic evaluation of language
models. arXiv preprint arXiv:2211.09110, 2022.

Marvin Minsky. Steps toward artificial intelligence. Proceedings of the IRE, 49(1):8–30, 1961.

Andrew Y. Ng, Daishi Harada, and Stuart J. Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In Proceedings of the Sixteenth International Confer-
ence on Machine Learning, ICML ’99, pp. 278–287, San Francisco, CA, USA, 1999. Morgan
Kaufmann Publishers Inc. ISBN 1558606122.

Bernt Oksendal. Stochastic differential equations: an introduction with applications. Springer
Science & Business Media, 2013.

Yotam Perlitz, Elron Bandel, Ariel Gera, Ofir Arviv, Liat Ein-Dor, Eyal Shnarch, Noam Slonim,
Michal Shmueli-Scheuer, and Leshem Choshen. Efficient benchmarking (of language models).
arXiv preprint arXiv:2308.11696, 2023.

Felipe Maia Polo, Lucas Weber, Leshem Choshen, Yuekai Sun, Gongjun Xu, and Mikhail
Yurochkin. tinybenchmarks: evaluating llms with fewer examples. arXiv preprint
arXiv:2402.14992, 2024.

Anant Raj and Francis Bach. Convergence of uncertainty sampling for active learning. In Interna-
tional Conference on Machine Learning, pp. 18310–18331. PMLR, 2022.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Brij B Gupta, Xiaojiang Chen,
and Xin Wang. A survey of deep active learning. ACM computing surveys (CSUR), 54(9):1–40,
2021.

Shafiq Rayhan Joty Caiming Xiong Yingbo Zhou Semih Yavuz Rui Meng, Ye Liu. Sfr-embedding-
mistral:enhance text retrieval with transfer learning. Salesforce AI Research Blog, 2024. URL
https://blog.salesforceairesearch.com/sfr-embedded-mistral/.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. arXiv preprint
arXiv:2206.04615, 2022.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning,
3:9–44, 1988.

12

https://github.com/tatsu-lab/alpaca_eval
https://blog.salesforceairesearch.com/sfr-embedded-mistral/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261, 2022.

Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged con-
sistency targets improve semi-supervised deep learning results. Advances in neural information
processing systems, 30, 2017.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Rajan Vivek, Kawin Ethayarajh, Diyi Yang, and Douwe Kiela. Anchor points: Benchmarking
models with much fewer examples. arXiv preprint arXiv:2309.08638, 2023.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. Superglue: A stickier benchmark for general-purpose language
understanding systems. Advances in neural information processing systems, 32, 2019.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. Improv-
ing text embeddings with large language models. arXiv preprint arXiv:2401.00368, 2023.

Lisa Wimmer, Yusuf Sale, Paul Hofman, Bernd Bischl, and Eyke Hüllermeier. Quantifying aleatoric
and epistemic uncertainty in machine learning: Are conditional entropy and mutual information
appropriate measures? In Uncertainty in Artificial Intelligence, pp. 2282–2292. PMLR, 2023.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas Muennighoff. C-pack: Packaged resources to
advance general chinese embedding, 2023.

Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V Le. Self-training with noisy student
improves imagenet classification. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 10687–10698, 2020.

Yi Yang, Zhigang Ma, Feiping Nie, Xiaojun Chang, and Alexander G Hauptmann. Multi-class
active learning by uncertainty sampling with diversity maximization. International Journal of
Computer Vision, 113:113–127, 2015.

Qinyuan Ye, Harvey Yiyun Fu, Xiang Ren, and Robin Jia. How predictable are large language
model capabilities? a case study on big-bench. arXiv preprint arXiv:2305.14947, 2023.

Donggeun Yoo and In So Kweon. Learning loss for active learning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 93–102, 2019.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A NEURAL PROCESS

For a benchmark X with N prompts, X = {xn}Nn=1, we first use a pretrained embedding model
to extract the representations for each prompt. During training, given a model m with evaluation
scores Ym, we randomly select a subset of scores Y (o)

m as observed and maximize the log-likelihood
for the remaining scores Y (u)

m based on the equation equation 3. When Y
(u)
m is too large to fit into

memory, we further sample a smaller subset from Y
(u)
m . Due to the inherent permutation invariance

of the neural process model, random sampling will not affect the learning of dependencies across
prompts.

A.1 ARCHITECTURE

The neural process model consists of a prior network p(zm | Y (o)
m , X), a posterior network q(zm |

Y
(u)
m , Y

(o)
m , X), and a decoder p(Y

(u)
m | zm, Y

(o)
m , X). We generally follow the architecture of

Attentive Neural Process (Kim et al., 2019), but replace the self-attention layer with a more memory-
efficient Set Transformer layer (Lee et al., 2018). We also share the same network for both the
prior and posterior. Before feeding the prompt embeddings into the prior/posterior network, we use
an additional linear layer to reduce the dimensionality of the extracted representations. Similarly,
the evaluation scores are passed through a linear layer to increase their dimensionality. We then
concatenate the prompt representation with the score representation along the feature dimension and
pass the concatenated set of vectors through a series of permutation equivariant Set Transformer
layers. The outputs are then aggregated across the set elements to obtain a feature representation for
the entire set. Following Set Transformer approach, we use learned pooling by multihead attention.
The set representation is then passed through a linear linear to obtain the parameters for the latent
distribution, which we assume to be Gaussian here. Please see Fig. 1(a) for an illustration of the
prior/posterior network.

The decoder network p(Y
(u)
m | zm, Y

(o)
m , X) uses a cross-attention layer to produce a permutation

equivariant representation for each prompt. In this layer, the query is the representation for X , the
key is the representation for X(o), and the value is the permutation equivariant representation cor-
responding to Y

(o)
m from the prior network. The permutation equivariant representation for each

prompt is then concatenated with the prompt representation and the latent vector. These concate-
nated inputs are processed through a series of Set Transformer layers. The final outputs are then
passed through a linear layer to predict the evaluation scores. Please see Fig. 1(b) for an illustration
of the decoder network.

Mixed-type Evaluation Scores The above architecture uses a linear layer to obtain the represen-
tation for the evaluation scores. However, the linear layer is not suitable for discrete scores. Instead,
we use an Embedding layer to represent the categorical evaluation scores. When a benchmark
contains mixed-type scores, meaning some datasets report real-valued metrics while others report
discrete scores, we additionally include an embedding vector to indicate the metric types.

A.2 HYPERPARAMETERS

Table A.1 summarizes the hyperparameters used for the neural process model for each dataset. For
the HELM-Lite and Chatbot Arena benchmarks, due to their relatively small number of models with
evaluation scores, a neural process model with set transformer layers can easily overfit the data.
Therefore, we use linear layers instead of the set transformer layers. Note that we did not con-
duct a thorough hyperparameter search. It is possible to further improve the results with optimized
hyperparameters.

B COMBINATORIAL OPTIMIZATION BASED ACQUISITION POLICY

Given the model p(Y (u)
m | Y (o)

m , X), a static acquisition policy can be derived by searching over
the training set to find the optimal subset of prompts that gives the most accurate prediction of the
remaining prompts. This is a typical combinatorial optimization problem, which is NP-Hard. Here,

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

(a) Prior/Posterior (b) Decoder

Figure A.1: The architecture of the neural process model.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table A.1: Hyperparameters for the nueral process model.
AlpacaEval MMLU Open LLM HELM-Lite Chatbot Arena

representation dimension for x 16 16 16 16 16
representation dimension for y 16 16 16 16 16

feature dimension for permutation equivariant layer 32 32 32 32 16
number of permutation equivariant layers for encoder 1 2 2 1 1
number of permutation equivariant layers for decoder 1 2 2 1 1

number of attention heads 8 8 8 N/A N/A
number of induced points 16 16 8 N/A N/A

latent dimension 16 32 32 16 8

we employ a sequential approach that selects one prompt at a time until K prompts are selected.
Starting from an empty set o = ∅, the next prompt i ∈ u := {1, . . . , N} \ o is chosen to minimize
the prediction error over the training set, i.e.,

i = argmin
i′∈u

EYm∼pDEŶ
(u′)
m ∼p(Y

(u′)
m |Y (o′)

m ,X)
∥Ŷ (u′)

m − Y (u′)
m ∥2, (B.1)

where o′ = o ∪ {i′} and u′ = u \ {i′}. We estimate the expectation by Monte Carlo sampling. For
notation simplicity, the above equation computes the mean squared error on prompts u′; however,
in practice, different datasets may use different metrics. Additionally, these differences may be
weighted depending on the dataset size. Please refer to Algorithm 2 for pseudo-code of the selection
process. Note that this approach has a complexity of O(KMN), which could be prohibitive when
the benchmark is large.

Algorithm 2 Static Evaluation Acquisition via Combinatorial Optimization
Require: Acquisition budget K, Training set Dtrain, Number of samples S, Neural Process p

1: o = ∅, u = {1, . . . , N}
2: while |o| < K do
3: L = {}
4: for i′ ∈ u do
5: o′ = o ∪ {i′}, u′ = u \ {i′}
6: Sample S predictions {Ŷ (u′)

m,s }Ss=1 from p(Y
(u′)
m | Y (o′)

m , X) for each model m
7: L[i′] = 1

|Dtrain|×S

∑|Dtrain|
m=1

∑S
s=1 ∥Ŷ

(u′)
m,s − Y

(u′)
m ∥2

8: end for
9: i = argmini′∈u L[i

′]
10: o = o ∪ {i}, u = u \ {i}
11: end while

C REINFORCEMENT LEARNING BASED ACQUISITION POLICY

The acquisition policy determines the next prompt to acquire its evaluation score based on the cur-
rent state, which includes the prompts X(o) and their scores Y (o)

m that have already been acquired.
We further incorporate the candidate prompts X(u) into the policy inputs, i.e., P (i | Y (o)

m , X), so
the policy has access to the action space. Including the candidate prompts in the inputs is crucial
in the cold start setting since the action space differs between training and testing. Similar to the
neural process model, the policy network employs two linear layers to obtain representations for
both the prompts and the evaluation scores, which are then concatenated along the feature dimen-
sion. For the candidate prompts without available evaluation scores, we use a special embedding
vector. Then, a permutation-invariant network processes the set of concatenated representations and
outputs a aggregated representation for the entire set. We utilize the Set Transformer architecture
for the permutation invariant network. Two branches of linear layers are added on top of the set
representation for actor and critic, respectively. The actor branch outputs a vector with the same
dimensionality as the prompt representations. The probability of selecting a prompt is proportional
to the inner product of the output vector and the prompt representations. To prevent the policy from
selecting duplicate prompts, the probability of the already selected prompts is manually set to zero.
The critic branch outputs a scalar indicating the value estimation for the current state. Table C.1
summarizes the hyperparameters used for the policy network and PPO training process. We did

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table C.1: Hyperparameters for RL-based acquisition policy.

Policy Network

representation dimension for x 16
representation dimension for y 16

feature dimension for permutation equivariant layer 32
number of permutation equivariant layers 1

number of linear layers for actor 1
number of linear layers for critic 1

PPO

advantage λ 0.95
discount factor γ 0.99
PPO clip range [0.8, 1.2]

entropy coefficient 0.0

not conduct hyperparameter optimization and used the same set of hyperparameters for all datasets.
Further improvements are likely possible with hyperparameter optimization tailored to each dataset.

D COLD START PROBLEM

In the cold start setting, the benchmark is expanded with new prompts for which no evaluation scores
are initially available for any model. That is, the original benchmark X = {xn}Nn=1 have evaluation
scores Ym = {ymn}Nn=1 for M models, while a set of new prompts X ′ = {xn}N

′

n=N+1 do not have
any evaluation scores.

To enable the neural process model generalize to the newly added prompts, we propose a semi-
supervised training procedure, where the new prompts are treated as unlabeled data. During training,
we optimize the log-likelihood equation 3 for X and Ym. Simultaneously, we predict the evaluation
scores for the new prompts X ′ based on the current trained model. When the prediction is suffi-
ciently accurate, meaning the uncertainty is lower than a predefined threshold, we add the predicted
scores as synthetic training data to optimize the ELBO equation 3.

The RL policy in the cold start setting follows a similar architecture to Sec. C. To help the policy
generalize to unseen prompts, we use the learned prompt representations from the neural process
model and keep them fixed throughout the training process. Additionally, we found that entropy
regularization over the actor distribution aids generalization, which is set to 0.001 in our experi-
ments.

E EXPERIMENTS

E.1 LLM LEADERBOARD

We conduct experiments on 5 popular LLM benchmarks:

• HuggingFace Open LLM Leaderboard (Beeching et al., 2023) consists of 6 datasets with a total
of 28,659 prompts. Evaluation scores include both binary accuracy and real-valued probabilities.
We collect evaluation scores for 2,084 models and select 1,000 models for training based on their
evaluation date. The most recently evaluated models are used for testing, simulating the real-world
scenario.

• MMLU (Hendrycks et al., 2020) contains 57 datasets with a total of 14,042 multiple choice QA
problems on different subjects. Evaluation scores are all binary accuracy. We collect evaluation
scores for the same models from the Open LLM Leaderboard.

• HELM-Lite (Liang et al., 2022) include 10 datasets (each possibly containing several sub-
datasets) with a total of 13,021 prompts. Evaluation scores include both binary exact match scores
and real-values metrics such as F1 and BLEU. We collect evaluation scores for 33 models and
randomly select 23 models for training since the evaluation does not have dates.

• AlpacaEval 2.0 (Li et al., 2023) contains 805 prompts. For each model, the generations are
compared to those of GPT-4 to compute the win rate. Although this benchmark is relatively small,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table E.1: Benchmark performance estimation error on each LLM benchmark. Lower is better.
AlpacaEval HELM-Lite Open LLM MMLU Chatbot Arena

(K=100) (K=200) (K=200) (K=100) (K=40)

Uniform 0.005 ± 0.000 0.038 ± 0.005 0.022 ± 0.002 0.018 ± 0.001 0.052 ± 0.010
S-Rand - 0.035 ± 0.012 0.030 ± 0.003 0.017 ± 0.002 -

C-Embed 0.006 ± 0.001 0.051 ± 0.010 0.024 ± 0.002 0.020 ± 0.004 0.052 ± 0.014
C-Score 0.004 ± 0.001 0.054 ± 0.010 0.031 ± 0.003 0.014 ± 0.002 0.054 ± 0.004
C-IRT 0.003 ± 0.001 0.044 ± 0.013 0.026 ± 0.001 0.015 ± 0.001 0.057 ± 0.002

Comb-Optim 0.006 ± 0.003 - - - 0.065 ± 0.012
Uncertainty 0.011 ± 0.001 0.055 ± 0.013 0.063 ± 0.015 0.050 ± 0.003 0.035 ± 0.003

LatentInfoGain 0.010 ± 0.003 - - - 0.066 ± 0.025
RL 0.001 ± 0.000 0.030 ± 0.005 0.018 ± 0.001 0.013 ± 0.000 0.034 ± 0.006

it requires an expensive GPT-4 based judge, so reducing the number of API calls can significantly
reduce the total evaluation cost. We collect evaluation scores for 130 models and randomly select
70% for training.

• Chatbot Arena (Zheng et al., 2024) is a popular human-annotated benchmark, where annotators
interact with two anonymous models using the same prompts and declare a winner. We use the
pairwise comparisons evaluated on the 80 MTBench prompts (Zheng et al., 2024). Although this
benchmark is relatively small, human evaluation is expensive, so further reducing the evaluation
prompts could lower costs. The annotations include comparisons over multiple turns, but we only
use the annotations for the first turn here. Unlike other benchmarks where each model directly
receives an evaluation score, this benchmark evaluates each pair from a set of 6 models. To
create the train-test splits, we randomly select one of the six models, and all pairs that involve
the selected model are included in the test split. Note that not all 80 prompts are annotated for
each model pair. While our neural process model can handle missing data, the acquisition process
must acquire the true score for any prompt the policy selects. To address the missing data during
acquisition process, we use the trained neural process to predict the missing evaluation scores. We
report win rate for this benchmark.

E.2 EVALUATION PROCEDURE

For a model m′ to be evaluated, the acquisition policy determines a subset of prompts X(o) to ac-
quire the true evaluation scores. The neural process model p(Y (u)

m′ | Y (o)
m′ , X) predicts the evaluation

scores for the remaining prompts. The benchmark performance is then estimated based on these pre-
dicted scores. For benchmarks with only one dataset, the benchmark performance is the average over
all examples. For benchmarks with multiple datasets, the benchmark performance is averaged over
the performance of each dataset. For example, the HuggingFace Open LLM Leaderboard consists
of 6 datasets, so the benchmark performance is the average of the performance on these 6 datasets.
The MMLU dataset further contains 57 subsets, so its performance is the average over these 57
subsets. For Chatbot Arena, we report win rate as the benchmark performance. For final evaluation
results, we compute the absolute difference between the predicted benchmark performance and the
real benchmark performance for each model in the test split and report the average absolute error
over all models in the test split.

E.3 ADDITIONAL RESULTS

Table E.1 presents the benchmark performance estimation errors for various acquisition policies
across different LLM benchmarks. We conduct experiments with 3 random seeds for each bench-
mark and report the average estimation error and standard deviation under the specified acquisition
budget. Prompt embeddings are obtained using the SFR embedding model. For the AlpacaEval
and Chatbot Arena benchmarks, stratified random sampling is equivalent to uniform sampling since
they only contain one dataset. Combinatorial optimization and information gain based policies are
too expensive to run for HELM-Lite, HuggingFace Open LLM Leaderboard, and MMLU due to the
large number of prompts in each benchmark.

The RL-based acquisition policy consistently achieves the lowest error across all benchmarks, in-
dicating its superior ability to select informative prompts and accurately estimate benchmark per-
formance. The stratified random sampling performs similarly to the uniform sampling, and these

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

random acquisition policies generally are competitive, particularly because they are efficient and do
not rely on any other models to determine the prompt selection.

The Cluster-Embed policy does not perform any better than the random selection, suggesting that
the similarity in prompt embedding does not always correlate with the similarity in the evaluation
scores. Utilizing evaluation scores for clustering shows mixed results. The Clustering-Score policy
outperforms Clustering-Embed on AlpacaEval and MMLU but underperforms on HELM-Lite, Open
LLM and Chatbot Arena benchmarks. Clustering based on IRT features generally provides better
performance estimation since these features are learned to reflect the evaluation scores.

The combinatorial optimization based policy does not perform well, even on the two small bench-
marks where it is computationally feasible. We attribute this to a potential distribution shift between
the models used for training and those used for testing, suggesting that the static policy optimized
on training models does not generalize well to new models during testing.

The uncertainty sampling based acquisition policy does not perform well across all benchmarks.
Theoretically, the uncertainty sampling method requires a good estimation of the aleatoric uncer-
tainty to perform well. However, in practice, the uncertainty from the neural process model com-
bines the aleatoric and epistemic uncertainties. Quantifying and decomposing the aleatoric and
epistemic uncertainties is an active research ares in machine learning (Gawlikowski et al., 2023;
Wimmer et al., 2023; Hüllermeier & Waegeman, 2021), which we leave for future work to explore
for our AEA application. Similarly, the information gain based acquisition policy also requires accu-
rate uncertainty estimation, which is challenging, especially with scarce training data on AlpacaEval
and Chatbot Arena benchmarks.

19

	Introduction
	Method
	Problem Formulation
	Modeling Dependencies via Neural Processes
	Evaluation Acquisition Policy
	Random Policy
	Static Policy
	Dynamic Policy

	Cold Start Problem

	Related Works
	Experiments
	Ablation Studies

	Conclusion
	Neural Process
	Architecture
	Hyperparameters

	Combinatorial Optimization based Acquisition Policy
	Reinforcement Learning based Acquisition Policy
	Cold Start Problem
	Experiments
	LLM Leaderboard
	Evaluation Procedure
	Additional Results

