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ABSTRACT

The Earth Mover’s Distance (EMD) is the measure of choice between point
clouds. However the computational cost to compute it makes it prohibitive as a
training loss, and the standard approach is to use a surrogate such as the Chamfer
distance. We propose an attention-based model to compute an accurate approxi-
mation of the EMD that can be used as a training loss for generative models. To
get the necessary accurate estimation of the gradients we train our model to ex-
plicitly compute the matching between point clouds instead of EMD itself. We
cast this new objective as the estimation of an attention matrix that approximates
the ground truth matching matrix. Experiments show that this model provides
an accurate estimate of the EMD and its gradient with a wall clock speed-up of
more than two orders of magnitude with respect to the exact Hungarian matching
algorithm and one order of magnitude with respect to the standard approximate
Sinkhorn algorithm, allowing in particular to train a point cloud VAE with the
EMD itself. Extensive evaluation show the remarkable behaviour of this model
when operating out-of-distribution, a key requirement for a distance surrogate.
Finally, the model generalizes very well to point clouds during inference several
times larger than during training.

1 INTRODUCTION

The earth mover’s distance (EMD), also known as Wasserstein distance is a distance between distri-
butions that is defined as the minimum total of mass-time-distance displacement needed to transform
one distribution to the other. In the case of uniform distributions over a finite number of points, it
turns into a distance between point clouds that corresponds to finding the one-to-one matching that
minimizes the sum of the distances between pairs of matched points. Since there is no inherent order-
ing in point cloud data, computing the EMD between two point clouds involves finding a matching
based on the euclidean distance between points. The matching is constrained to be bipartite so that
one point cloud is completely transformed to the other, without any fractional assignment, and the
transport cost is minimal.

The EMD is the most commonly used distance metric on point clouds, and is extremely useful
in many different contexts. In particular as we will see for both assessing the performance of,
and for training variational autoencoders, since the generated point cloud should get as close as
possible to the target in terms of displacement. It can also be interpreted as the distance between
two distributions computed with a finite number of samples and reflects the notion of nearness
properly, does not have quantization/binning and non-overlapping support problems of most other
metrics, e.g., f -divergences, total variation distance, etc.

The EMD between point clouds can be computed exactly, but it is extremely expensive computa-
tionally. The standard method is the Hungarian matching Kuhn (1955) algorithm whose complexity
is O(N3) where N is the number of points. Due to this computational cost, training deep generative
models for point clouds is not done with this metric, even though it is a metric of choice for perfor-
mance evaluation. The standard approach uses the Chamfer distance (CD) as surrogate. This metric
can be computed in O(N2) time complexity but relaxes the one-to-one matching, which may create
pathological situations.

We propose a deep architecture that takes as input two point clouds encoded as sets of geometric
coordinate tuples, and computes an accurate estimate of the EMD. We show that the most efficient

1



Under review as a conference paper at ICLR 2024

Trained with Chamfer distance

Trained with DeepEMD (ours)

Figure 1: Example point clouds (blue) and their
VAE reconstructions (orange) when trained with
different reconstruction losses. Training with
DeepEMD (bottom) consistently achieves lower
reconstruction error (EMD, shown on top of each
example) than with the standard Chamfer distance
(top).

Figure 2: Example pairs of point clouds. The
true earth mover’s distance (EMD, top) and
Chamfer distance (CD, bottom) are shown
above each example. Arrows indicate the
matching between the two point clouds un-
der their respective metrics.

approach, in particular if that estimate is used as a loss for a training process, is to estimate the
matching matrix itself. Since the EMD is the sum of the distance between matched points, this
approach provides a very accurate estimate of the gradient with respect to the point coordinates.
Training a deep variational autoencoder with our model instead of an exact computation is up to
⇥100 faster (see Fig. 8), and the resulting model performs far better than one trained with the usual
Chamfer surrogate (see § 4.4 and Fig. 7).

The key contributions of this paper can be summarized as:

• We propose DeepEMD which approximates the EMD between point clouds in O(N2) time
complexity vs O(N3) of the hungarian algorithm (§ 3).

• We propose to cast the prediction of a bipartite matching as an attention matrix from which
we get an accurate estimate of the EMD and its gradient (§ 3.2).

• We show that DeepEMD generalizes well to unseen data distributions (§ 4.3), and can be
used for evaluation of generative models. It provides accurate estimates of the gradients of
the distance and demonstrate that DeepEMD can be used as a surrogate reconstruction loss
for training deep generative models of point clouds (§ 4.4).

• We show that DeepEMD achieves about 40⇥ speed-up over Sinkhorn algorithm, achieving
equal or better performance for various metrics (§ 4.3).

2 RELATED WORK

The two commonly used distance metrics for point clouds in literature are Earth Mover’s Distance
(EMD) and Chamfer Distance (CD). Consider two point clouds X = {xi}Ni=1 and Y = {yj}Nj=1,
where xi, yj 2 Rd. The EMD between the two point clouds can be computed as,

EMD(X,Y ) = min
�2M(X,Y )

X

x2X

kx� �(x)k2, (1)
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where M(X,Y ) is the set of 1-to-1 (bipartite) mappings from X to Y . In addition to the distance,
the optimal matching �⇤ is also interesting for some applications. Since directly optimizing the
EMD is computationally expensive, most methods in the literature rely on CD as a proxy similarity
measure or reconstruction loss. The CD can be computed as,

CD(X,Y ) =
X

x2X

min
y2Y
kx� yk22 +

X

y2Y

min
x2X
kx� yk22, (2)

and in O(N2) time complexity. The CD solution leads to a non-bipartite one-to-many matching
between x ! y and vice versa. We can also use the L2 measure with d = kx � yk2 instead
d = kx � yk22 to make it comparable to EMD. of Note that the above EMD for point clouds is
related to the Wasserstein-2 metric (see appendix § A for details). The utility of EMD is limited
by the O(N3) computational cost of evaluating it. There have been several research efforts to
circumvent this issue in various application settings.

This is the case for application to point clouds where N is usually in the range of several thousands.
Kim et al. (2021) trains a variational auto-encoder with CD as the reconstruction loss. EMD is
still the metric of choice for evaluating point cloud generative models Huang et al. (2022); Luo
and Hu (2021); Kim et al. (2021); Yang et al. (2019); Shu et al. (2019); Achlioptas et al. (2018).
Another issue is disparity between performance measures (minimum matching distance, coverage,
etc.) computed with EMD and CD, the comparisons are contradictory and often inconsistent across
measures.

CD is usually insensitive to mismatched local density while EMD is dominated by global distribution
and overlooks the fidelity of detailed structures Wu et al. (2021). Wu et al. (2021) proposes a
new similarity metric called Density-aware Chamfer distance (DCD) to tackle these issues. DCD
is derived from CD and can also be computed in O(N2) time complexity. Urbach et al. (2020)
proposed Deep Point Cloud Distance (DPDist) which measures the distance between the points in
one cloud and the estimated continuous surface from which the other point cloud is sampled. The
surface is estimated locally by a network using the 3D modified Fisher vector representation.

Shirdhonkar and Jacobs (2008) proposed a linear time algorithm for approximating the EMD by
exploiting the Hölder continuity constraint in its dual form to convert it into a simple optimization
problem with an explicit solution in the wavelet domain and computed as the sum of absolute val-
ues of the weighted wavelet co-efficients of the difference histogram. However, their approach is
limited to low dimensional histograms. In the optimal transport literature, several efforts have been
taken towards improving the statistical and computational properties. Recently, Chuang et al. (2022)
proposed Information Maximizing Optimal Transport (InfoOT) which is an information-theoretic
extension of optimal transport based on kernel density estimation of the mutual information which
introduces global structure into OT maps. The resulting solution maximizes the mutual information
between domains while minimizing geometric distance and improves the capability for handling
data clusters and outliers.

Other approaches focus on regularizing the OT problem for making it smooth and strictly convex
Cuturi (2013); Flamary et al. (2016); Genevay et al. (2018); Blondel et al. (2018). Sinkhorn dis-

tances Cuturi (2013) smooth the classic OT problem with an entropic regularization term and can be
computed through Sinkhorn’s matrix scaling algorithm at a speed that is several orders of magnitude
faster than that of transport solvers. We provide more details in the appendix. Meta OT Amos et al.
(2022) proposes a meta model to predict the solution to the optimal transport problem which is then
used to initialize a standard Sinkhorn solver to further refine the predicted solution. The architecture
of the meta model depends on the data domain, and DeepEMD can be utilized when working with
point clouds. The choice of meta model architecture is contingent upon the specific data domain,
and DeepEMD demonstrates its exceptional utility in point cloud processing.

In this paper, our goal is to approximate the EMD using a deep network in a learning based paradigm
where each sample represents two distributions and the target for regression is either the true metric
i.e. EMD or the optimal matching �⇤, or both. Existing point cloud datasets can serve as an interest-
ing learning problem, where we can interpret each point cloud as a 2D or 3D distribution of points
on a shape (manifold). It is posed as a supervised learning problem where the task is to estimate the
true EMD, or the true bipartite matching, or both, between a pair of input point clouds.
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Figure 3: The MLP model (see § 3.1) predicts di-
rectly an estimate d̂ of the EMD.
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Figure 4: The transformer model we use for Deep-
EMD (see §3.2) predicts directly the bipartite
graph as an attention matrix.

We are interested in building a model which operates on a pair of point clouds (U, V ) as input,
where U, V 2 DN , U = {ui}Ni=1, V = {vj}Nj=1, ui, vj 2 RD, and N is the cardinality of the
point clouds. Note that the points are unordered and the indexing is arbitrary. We denote the earth
mover’s distance between them as d = EMD(U, V ) where d 2 R. The goal of the model is to predict
d and rd. Also, let M 2 {0, 1}N⇥N denote the ground truth bipartite matching from EMD, where
Mi,j = 1 indicates that ui is matched to vj and vice-versa. Bipartite-ness implies 8j,

P
i Mi,j = 1

and 8i,
P

j Mi,j = 1.

Since point clouds are unordered and invariant to elementwise permutation, we seek mappings f :
DN ⇥DN ! R which are permutation invariant for any permutations ⇡ and ⇡0, i.e.,

f(U, V ) = f(⇡(U),⇡0(V )), (3)

In the following sections, we first introduce a simple MLP based baseline, followed by our
transformer-based model, DeepEMD.

3.1 PREDICTING THE DISTANCE

We propose a simple MLP baseline composed of a point-wise MLP backbone, followed by a pre-
diction head which is also a MLP (see figure 3). The backbone MLP takes a point cloud and returns
an embedding e 2 Rd as,

eu =
nX

i=1

g(ui), ev =
nX

j=1

g(vi) (4)

The prediction head then produces the final prediction as,

d̂ = h (eu � ev) + h (ev � eu) , (5)
where � denotes vector concatenation. Both g and h are composed of sequential linear layers with
ReLU non-linearity between layers. The embeddings are permutation equivariant because of the
sum aggregation which does not depend on the ordering of points. Further, we concatenate the
embeddings both ways as in Eq. (5), which makes the mapping symmetric. We train the model
with mean-squared error loss, l = (d � d̂)2. Since the model does not predict the matching, we
can interpret it from the direction of the gradient of a point �vj =

h
@d̂
@V

i

j
, e.g., by taking cosine

similarity between �vj and ui � vj , where ui is the point matching to vj from EMD.

3.2 PREDICTING BIPARTITE MATCHING

The transformer Vaswani et al. (2017) intuitively seems to be a very good model for reasoning with
point clouds and matching. Moreover, by considering that the output is the last layer’s attention
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matrix, we can use it to directly predict the bipartite matching. Since the EMD–and consequently
its gradient with respect to the point positions–is a function of the point positions and the matching
array, predicting the latter leads to an accurate estimate of the former, that in particular is shielded
from the issue of a possible decoupling between matching a functional point-wise (e.g. for MSE)
and matching the gradients. While it is viable to directly predict the distance with a transformer-
like architecture, we chose to only predict the matching since it is straightforward to estimate the
distance using the predicted matching.

We propose DeepEMD composed of a sequence of multi-head full attention layers, followed by a
prediction head which is also a full attention layer, but with a single head. Given two point clouds U
and V , add a learned cloud-specific positional embedding to indicate if a point originates from U or
V , we concatenate the points sequence and feed the resulting I = U [ V as input to the model. The
group-id embedding helps the model in modulating attention locally within a point cloud as well as
globally across both point clouds. We tried other variants with self-attention layers, cross attention
layers, and an alternating mixture of both, but found full attention over both point clouds to be best
performing.

For our problem, we get the input X for the transformer by adding positional embeddings to I . Let
~0n and ~1n denote a vector of n zeros and ones, respectively. X is then obtained as,

P = ~0n [ ~1n, X = I +WP [P ] (indexing) (6)

The intermediate feature t(X) from the transformer encoder (see appendix for details) has the same
number of elements as X with each element now being a contextualized representation for the
corresponding point in the input. Further, these intermediate representation are fed into a single-
head attention layer which outputs the attention matrix as,

K = t(X)WK , Q = t(X)WQ, A =
QK>

dk
(7)

At = A:n,n: Ab = An:,:n (8)

Here, A is a 2N ⇥ 2N matrix and we slice the top-right block (first N rows and last N columns)
as At and bottom-left block (last N rows and first N columns) as Ab. At

i,j can be interpreted as the
relatedness of ui with vj . Similarly, Ab

i,j can be interpreted as the relatedness of vi with uj .

Given M , the ground truth bipartite matching from EMD, we define the loss as the average of the
cross-entropies as,

l(U, V ) =
1

N

NX

i=1

CE(At
i,.,Mi,.) +

1

N

NX

i=1

CE(Ab
i,.,M.,i) (9)

The EMD is then estimated with the predicted matching as,

�b(i) = argmax
j

Ab
i,j , �t(i) = argmax

j
At

i,j (10)

d̂ =
1

2

 
X

i

kui � v�t(i)k+
X

i

kvi � u�b(i)k
!

(11)

4 EXPERIMENTS

In this section, we present the overall experimental setup, performance results and comparisons of
DeepEMD across various tasks.

4.1 DATASETS

We consider different datasets for our experiments - Syn2D, ShapeNet Chang et al. (2015), Mod-
elNet40 Wu et al. (2015) and ScanObjectNN Uy et al. (2019). Syn2D consists of 2D point clouds
generated synthetically by sampling points on squares and circles (see Fig 2). ShapeNet and Model-
Net40 are datasets of 3D point clouds derived from 3D CAD models for different real world objects

5



Under review as a conference paper at ICLR 2024

(a) Chamfer (b) MLP (ours) (c) DeepEMD (ours) (d) Sinkhorn

Figure 5: Scatter plot for true vs. approximate EMD from different models/metrics on validation
splits for Syn2D and ShapeNet datasets. DeepEMD (ours) consistently performs better across dif-
ferent categories as it has less dispersion. Sinkhorn algorithm becomes more accurate with more
iterations. Also note that it encounters numerical errors for some examples.

(a) Syn2D (b) ShapeNet Airplane (c) ShapeNet Car (d) ShapeNet Chair

Figure 6: CDF of cosine similarity between true and estimated gradients for all points across all
point clouds collected together on validation splits for Syn2D and ShapeNet datasets. The ideal cdf
curve should have all the mass at cosine similarity 1. DeepEMD (ours) consistently outperforms all
the other methods across different datasets.

like chairs, cars, airplanes, etc. ScanObjectNN is a relatively new real-world point cloud object
dataset based on scanned indoor scene data. In order to improve and assess generalization, we aug-
ment the train and test splits with synthetic perturbations. We provide more details about the datasets
and these augmentations in the Appendix § B.

4.2 PERFORMANCE MEASURES

We consider various measures to assess EMD approximation methods for distance as well as match-
ing estimation. We compare accuracy and computation time to that of Sinkhorn and CD (see § 2).

Distance Estimation. We visualize the true vs. predicted distance through scatter plots (Fig. 5),
we expect the data points to be close to x = y line. We compare various correlation measures : linear
correlation (r), Spearman correlation (⇢) and Kendall-Tau correlation (⌧), to assess the quality of
distance estimation. The Spearman and Kendall-Tau are rank-statistic based correlation measures,
indicative of the correspondence between two rankings. Note that, correlation measures are useful
metrics as they indicate appropriateness of the predicted metric as a distance measure, irrespective
of their absolute values. Additionally we look at different quantiles (REn) of relative approximation
error, which penalizes the difference between absolute values of the predicted and true distance.

Matching Estimation. In order to assess quality of the matching, we consider the cosine similarity
between the true and predicted gradient. The true gradient of EMD is always along the matched
point. We visualize the cumulative distribution function (cdf) of cosine similarities (Fig. 6), where
we expect all the mass to be close to 1. We also look at different quantiles (CSn) of the cosine
similarity. We also consider accuracy which is computed as the average accuracy of matching source
points to target points and vice-versa, bipartiteness (B) which is fraction of points with bipartite
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(a) ShapeNet Airplane (b) ShapeNet Car (c) ShapeNet Chair

Figure 7: Comparison of EMD between input and reconstructed point clouds from SetVAE trained
with different reconstruction losses. The better model should have smaller reconstruction loss and
thus mass close to zero in the histograms. DeepEMD (ours) is consistently better as compared to
Chamfer loss and very similar to EMD loss.

matching, and also bipartiteness-correctness (Bcorr) which is fraction of points which are bipartite
as well as matched correctly.

4.3 RESULTS

EMD Prediction. Fig. 5 shows the scatter plot of the true EMD vs. approximate EMD predicted
from our trained models on the validation split for Syn2D and ShapeNet datasets. Note that the
validation split also contains the augmentations as discussed in Sec. 4.1. We also validate on specific
splits for which the results are shown in the appendix. The plots indicate that both DeepEMD (Fig.
5c) and MLP baseline (Fig. 5b) approximate the EMD faithfully. The MLP baseline seems to
struggle a bit on ShapeNet Chair dataset. The higher dispersion in Chamfer (Fig. 5a) and Sinkhorn
with 10 iterations (Fig. 5d, top) indicates poor EMD estimation. The approximation with Sinkhorn
algorithm becomes more accurate with higher number of iterations (Fig. 5d, bottom), as expected.

We summarize various metrics in Tables 5, 6 and 7 the appendix. DeepEMD and MLP baseline both
achieve linear correlation higher than 0.99 in each case. The models achieve Kendall-Tau correlation
close to 0.99 and 0.96, respectively, and Spearman correlation close to 0.99 in each case, indicating
that ordering of the samples based on approximate distances and true distances are very similar, and
monotonocity of samples are preserved. It can be observed that DeepEMD is best except for relative
error where it may do worse than our method with MLP. Also it is interesting to note that Sinkhorn
performs worse than DeepEMD on correlation- or relative error-based measures.

Matching/Gradient Prediction. Estimating the matching and gradient of the distance is particu-
larly important for training models with DeepEMD as a surrogate distance function. Note that the
gradient of a point from true EMD is always along the matched point in the other point cloud. Fig.
6a shows the cdf of cosine similarity between the true and estimated gradient for all the points across
all point clouds collected together for Syn2D, while Figs. 6b, 6c, and 6d for ShapeNet. The cdf has
most mass at cosine similarity close to 1 with a very short tail and is never negative indicating that
the estimated gradient is aligned with the true gradient for DeepEMD. This is particularly important
when the model is used as a surrogate reconstruction loss. Ideally, the model should provide good
estimate of the true gradient throughout training and more particularly in the very beginning when
the reconstructions are very noisy, and also towards the end when reconstructions likely become very
similar to the training distribution. We discuss more on this in the next sections and the appendix.
The MLP baseline usually did not perform well in this regard and also in generalizing to unseen ex-
amples and thus was not useful for training generative models. The same issue can be observed with
Chamfer distance as well. Table 5 (appendix) shows the cosine similarity quantiles (CSn), as well
as accuracy, bipartiteness (B) and bipartiteness-correctness (Bcorr). DeepEMD performs better than
other models and metrics in each of these measures and indicates better matching approximation.

Out-of-distribution generalization. The genralization of the prediction to a novel distribution is
particularly importatnt for a surrogate metric. We test the out-of-distribution behaviour of our mod-
els in two different settings : Table 1 shows the generalization performance of the model trained on
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a single category of ShapeNet and tested on validation split of multi-category ModelNet40 dataset,
while Tables 8, 9 and 10 in the appendix show the performance when tested on different ShapeNet
categories. The results indicate that DeepEMD generalizes well when test and train data differ with-
out any adaptation or fine-tuning. Further, the validation performance on a category of a model
trained on another category (see Appendix for details) is very similar to the performance of the
model trained on the same category. These quite remarkable behaviors point towards the network
“meta-learning” in some way the matching algorithm. This is further strengthened by the results on
scaling to different number of points during test time as shown in Table 2.

Table 1: Out-of-distribution (dataset) generalization for our models and comparison with other met-
rics (Chamfer and Sinkhorn), tested on full validation split for ModelNet40 (with 40 categories) and
ScanObjectNN (with 15 categories). The models are trained on a single ShapeNet category. The
reported numbers are averaged over these categories as well as four training seeds. The first six
rows show distance estimation metrics (see § 4.2), while the last six rows correspond to matching
estimation metrics. The arrows next to the metrics indicate whether higher (") values are better or
lower (#). Chamfer and Sinkhorn are deterministic, thus variances are not reported. Further, MLP
does not provide accuracy and bipartiteness metrics.

DATASET MODELNET40 SCANOBJECTNN
MODEL CHAMFER SINKHORN MLP DEEPEMD CHAMFER SINKHORN MLP DEEPEMD
r (") 0.951 0.971 0.959± 0.011 0.999± 0.0 0.971 0.929 0.965± 0.005 0.997± 0.001
⇢ (") 0.935 0.988 0.945± 0.017 0.999± 0.0 0.979 0.965 0.963± 0.007 0.999± 0.0
⌧ (") 0.792 0.983 0.819± 0.024 0.974± 0.002 0.882 0.968 0.855± 0.011 0.973± 0.002
RE0.1 (#) 0.03 0.057 0.009± 0.001 0.005± 0.002 0.025 0.038 0.013± 0.001 0.004± 0.001
RE0.5 (#) 0.129 0.102 0.062± 0.005 0.019± 0.004 0.094 0.078 0.076± 0.005 0.019± 0.004
RE0.9 (#) 0.321 0.2 0.257± 0.03 0.04± 0.004 0.282 0.244 0.299± 0.025 0.051± 0.005
CS0.1 (") �0.067 0.824 �0.293± 0.047 0.927± 0.003 0.138 0.879 �0.208± 0.042 0.946± 0.002
CS0.5 (") 0.834 0.986 0.684± 0.023 1.0± 0.0 0.917 0.992 0.719± 0.02 0.999± 0.0
CS0.9 (") 0.997 0.999 0.96± 0.003 1.0± 0.0 0.998 1.0 0.965± 0.003 1.0± 0.0
ACCURACY (") 12.651 31.91 - 56.38± 0.604 7.673 20.04 - 40.671± 0.62
B (") 17.045 33.458 - 70.401± 0.672 9.474 19.43 - 56.269± 0.71
Bcorr (") 6.544 19.615 - 47.084± 0.741 3.38 9.961 - 30.055± 0.678

Scaling number of points. Remarkably, the size of point clouds during testing can differ greatly
from those during training without degrading performance. Table 2 shows performance of the model
for test point cloud sizes ranging from 256 to 8196, while training was done with only 1024 points.
Prediction of the metric itself (top 6 rows) does not degrade for all practical purposes. Regarding
the matching estimation, directional measure of performance related to the cosine similarity (rows
CSn) do not degrade neither. We can notice degradation in accuracy based measures (last 3 rows)
which is natural since the problem becomes difficult with increasing number of points N because of
its combinatorial nature. For training when memory requirement is much higher due to backprop,
we can use smaller number of points, and scale it up during inference without any fine-tuning.

Table 2: Scaling number of points and out-of-distribution (scale) generalization for DeepEMD. The
models are trained on a single ShapeNet category with 1024 points and tested on validation split
of same category but with different number of points. Reported values are averaged over 4 training
seeds. DeepEMD generalizes well to unseen number of points at test time without fine-tuning.

 � Less # points than training �! Trained  �More # points than training �!
# points 256 512 768 1024 2048 4096 8192
r 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 0.999± 0.0 0.999± 0.001
⇢ 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 0.999± 0.0 0.998± 0.0
⌧ 0.985± 0.0 0.987± 0.0 0.988± 0.0 0.988± 0.001 0.986± 0.001 0.981± 0.002 0.974± 0.004
RE0.1 0.002± 0.001 0.002± 0.001 0.004± 0.002 0.007± 0.003 0.012± 0.005 0.013± 0.007 0.014± 0.008
RE0.5 0.01± 0.002 0.011± 0.002 0.014± 0.003 0.017± 0.005 0.027± 0.009 0.034± 0.013 0.04± 0.016
RE0.9 0.026± 0.003 0.026± 0.003 0.029± 0.004 0.032± 0.005 0.042± 0.009 0.054± 0.013 0.066± 0.018
CS0.1 0.94± 0.002 0.955± 0.002 0.961± 0.001 0.964± 0.001 0.967± 0.001 0.967± 0.001 -
CS0.5 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 -
CS0.9 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 -
Accuracy 72.348± 0.44 69.384± 0.383 66.901± 0.379 64.648± 0.404 57.588± 0.464 47.78± 0.51 35.274± 0.483
B 81.857± 0.755 80.101± 0.547 78.013± 0.507 75.896± 0.521 68.658± 0.584 58.109± 0.597 44.603± 0.734
Bcorr 64.838± 0.756 61.558± 0.587 58.545± 0.547 55.719± 0.568 46.831± 0.618 35.053± 0.6 21.606± 0.469

Computational Time and Complexity. Fig. 8 compares the evaluation time for different models
and metrics. DeepEMD achieves a significant speedup of about 100⇥ as compared to EMD and 40⇥

8



Under review as a conference paper at ICLR 2024

as compared to Sinkhorn with 100 iterations. This speedup becomes more pronounced on bigger
point clouds as hungarian algorithm takes O(N3) time vs. O(N2) for DeepEMD.

4.4 DEEPEMD USED AS A LOSS

Training a SetVAE, as for any auto-encoder, requires a reconstruction loss to assess the quality of the
learned representation. While the eventual goal would be to minimize the EMD, standard approach
uses Chamfer Distance due to the prohibitive computation cost of calculating the EMD. Instead of
Chamfer Distance we propose to use DeepEMD and demonstrate its utility as a reconstruction loss
as compared to Chamfer Distance.

DeepEMD was trained separately on each category of ShapeNet dataset and the trained model was
then used as a surrogate reconstruction loss for training a variational auto-encoder. We use SetVAE
Kim et al. (2021), a transformer based VAE adapted for point clouds and set-structured data. The
parameters of DeepEMD module are frozen during training of the SetVAE. We follow exactly the
same protocol as in SetVAE and train using ShapeNet categories of airplane, chair, and car and also
the same hyper-parameters for training. Fig. 1 and Fig. 9 (appendix) shows the reconstruction on
validation data achieved by SetVAE models trained with different reconstruction losses. DeepEMD
consistently achieves lower reconstruction EMD as compared to CD. This is further verified from
Fig. 7 which shows the distribution of true EMD between a point cloud and its reconstruction.

Figure 8: Comparison of empirical evaluation time and different performance measures : Accuracy
(left) and Kendall-Tau correlation ⌧ (right). We use Python Optimal Transport (POT) library for
computing Sinkhorn distances, and show metrics at different iterations (5, 10 and 100). DeepEMD
is ⇠ 100⇥ and ⇠ 40⇥ faster than Hungarian algorithm and Sinkhorn (100 iterations), respectively.

5 CONCLUSION AND FUTURE WORK

We propose DeepEMD, a method for fast approximation of EMD, improving time complexity from
O(N3) to O(N2). It is composed of a multi-head multi-layer transformer, followed by a single-head
full attention layer as the final output layer. It operates on two point clouds and outputs an attention
matrix which is interpreted as the matching matrix and optimized to match the ground turh matching
obtained from the hungarian algorithm. We demonstrated the effectiveness of DeepEMD in approx-
imating the true EMD for synthetic 2D point clouds as well as real world datasets like ShapeNet,
ModelNet40 and ScanObjectNN. It achieves a speed-up of ⇥100 with 1024 points. Further, we
show that it estimates the gradients well, generalizes well for unseen point clouds (or distributions),
and can be used for end-to-end training of point cloud autoencoders achieving faster convergence
than Chamfer distance surrogate.

It would be interesting to explore fast transformer variants to further improve from the quadratic
time complexity for future work. In terms of architecture various pooling/un-pooling strategies can
be explored which can help with both, better time complexity and improved feature learning. In this
work, we estimate the Wasserstein � 2 metric, and extension to other Wasserstein�p metrics and
other optimal transport problems could also be interesting for various applications. Lastly, extension
to general probability distributions with fractional assignments (i.e. mass splitting) can also be very
useful and valuable for some applications.
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