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It has been observed that Convolutional Neural Networks (CNNs) suffer from redundancy
in feature maps, leading to inefficient capacity utilization. Efforts to address this issue
have largely focused on kernel orthogonality method. In this work, we theoretically and
empirically demonstrate that kernel orthogonality does not necessarily lead to a reduction
in feature map redundancy. Based on this analysis, we propose the Convolutional Simi-
larity method to reduce feature map similarity, independently of the CNN’s input. The
Convolutional Similarity can be minimized as either a regularization term or an iterative
initialization method. Experimental results show that minimizing Convolutional Similarity
not only improves classification accuracy but also accelerates convergence. Furthermore, our
method enables the use of significantly smaller models to achieve the same level of perfor-
mance, promoting a more efficient use of model capacity. Future work will focus on coupling
the iterative initialization method with the optimization momentum term and examining
the method’s impact on generative frameworks.

1 Introduction

Convolutional Neural Networks (CNNs) are widely regarded as a powerful class of models in Deep Learning.
Over the years, numerous advanced convolutional architectures have been developed, achieving remarkable
performance in tasks such as classification (He et al., [2015; [Simonyan and Zisserman, 2015; Krizhevsky



et al), [2012)), segmentation (Ronneberger et all,[2015), and data generation (Sauer et all, 2023} [Karras et al),
@D. Despite their success, the capacity and performance of CNNs are often hindered by the presence of
information redundancy in trained models (Wang et al., |2020; Rodriguez et al., 2017, |Cogswell et al.l 2016
Jaderberg et all 2014), evidenced in both feature maps (Cogswell et al. 2016) and kernels (Denil et al.
2013; Wang et al., 2020).

Redundancy in CNNs has been explored in various studies, primarily through kernel orthogonality
[apitiya and Rodrigol 2021} |Liang et al., 2020; |Cogswell et al.l [2016; Denil et al., 2013)). However, no existing
literature focuses on the impact of feature kernel, feature map and their relationship on the redundancy,
including how kernel orthogonality affects feature map orthogonality. Furthermore, minimizing redundancy
to enhance the efficient utilization of CNN capacity remains an underexplored area (Rodriguez et all [2017;
[Cogswell et all [2016). Without a redundancy-minimizing mechanism, CNNs are unable to intentionally
learn non-redundant features.

A common approach to reducing similarity between two feature maps, Fy and Fy, is to orthogonalize them
by defining an objective function based on vector inner product. However, this method may introduce
significant computational overhead, particularly when dealing with large datasets. A more efficient solution
is to reduce the inner product of F and F5 by leveraging the characteristics of feature kernels, which requires a
theoretical analysis of the relationship between feature map similarity and kernel properties. This study aims
to theoretically and experimentally analyze the relationship between feature map orthogonality and feature
kernels in CNNs. Based on the derived theory, we propose a novel Convolutional Similarity loss function that
minimizes feature map similarity either prior to or during model training. This minimization relies solely on
feature kernels, making its computational complexity independent of input size, unlike traditional feature
map decorrelation methods (Cogswell et al., |2016]). Subsequent experiments demonstrate that minimizing
Convolutional Similarity improves the prediction accuracy of CNNs, accelerates convergence, and reduces
computational complexity.

The paper is organized as follows: Section [2] provides an overview of existing work in this area; Section [3]
develops the theory for reducing feature map similarity in CNNs, beginning with an empirical identification
of the limitations of kernel orthogonality in minimizing feature map similarity in Section followed by
the derivation of the Convolutional Similarity loss in Section [3.2] The theory is numerically validated, and
then evaluated in Section [} Finally, Section [5] concludes the work.

2 Related Work

Convolutional layers in CNNs often learn redundant features with correlated weights, leading to model
inefficiency (Hssayni et al.||2023; |Ding et al., 2021} Kahatapitiya and Rodrigol |2021; [Wang et al., 2021} Liang
. Various methods are available to reduce feature redundancy, including efficient architecture
design, redundant weight pruning, and regularization to minimize redundancy in weights and activations.
[Wang et al.| (2021)) proposed a structural redundancy approach that prunes filters in selected layers with
the most redundancy, resulting in more compact and efficient network architectures. Ding et al.| (2021)
introduced a novel Centripetal SGD (C-SGD) method that forces certain filters to become identical, enabling
the pruning of these filters with minimal performance loss. Alternatively, [Hssayni et al. (2023)) developed
an Ll-sparsity optimization model for detecting and reducing unnecessary kernels. [Cogswell et al.| (2016)
introduced a regularization method called DeCov to minimize activation covariance. While DeCov reduces
redundancy and improves test accuracy, it operates solely on the outputs of the last fully connected layer
rather than directly on convolutional feature maps. Its effectiveness is therefore dataset-dependent and does
not guarantee the reduction of similarity in convolutional feature maps.

Several methods have been proposed to reduce redundant features through kernel orthogonality.
ftiya and Rodrigo| (2021)) observed that convolutional layers often learn redundant features due to correlated
filters and introduced the LinearConv layer. This approach learns a set of orthogonal filters and coefficients
to linearly combine them, reducing redundancy and the number of parameters without compromising per-
formance. [Rodriguez et al. (2017) proposed a regularization method called OrthoReg to reduce positive
correlation between convolutional kernels based on cosine similarity. However, this method primarily targets
model parameter redundancy and overfitting rather than directly addressing feature redundancy.




(2020) proposed Orthogonal CNNs (OCNNSs), further explored by |Achour et al.| (2022)), to impose kernel or-
thogonality through linear transformation and regularization. This approach shows consistent performance
improvement with various network architectures on various tasks. These approaches operate on kernels
for redundancy reduction under the assumption that kernel orthogonality leads to feature map redundancy
reduction, which we will show to be false. Subsequently, we propose a novel Convolutional Similarity loss
function that minimizes feature map similarity based on the orthogonality operation on convolutional feature
kernels.

3 Convolutional Similarity and Feature Map Orthogonality

A Convolutional Neural Network (CNN) often performs cross-correlation than convolution in its standard
implementation such as PyTorch and Tensorflow for forward propagation, with three typical variants of
padding:

1. Full convolution/cross-correlation: An N —1 padding is added to both sides of the input vector.
For an input vector X € RM and a kernel K € RY, the full convolution and cross-correlation are
calculated as follows:

(X * K)| X[i —n] (la)

(X ® K)[i X[i+n—N+1],i€0,M+ N —2]. (1b)

1- 3 s
NZ

where * and ® denote the convolution and the cross-correlation operators respectively.

2. Valid convolution/cross-correlation: No padding is added to the input. The size of the output
F, given an input vector X € RM and a kernel K € RV, is F € RM~N+1_ The calculations are
same, with i € [N — 1, M —1].

3. Same convolution/cross-correlation: A padding of size % is added to both sides of the
input, resulting in feature maps with the same size as the input. The calculations are same, with
;- [N—1 N—1
S [ ) ,M -1 =+ T]

This work assumes that the convolutional layers perform cross-correlation. The results are equally valid for
convolution operations.

3.1 Problem ldentification

Let us assess the impact of kernel similarity minimization on feature map similarity. Given the feature maps
F|,F, € RM+N-1 resulting from full cross-correlation, with input X € RM, kernels K, Ko € RN, and
i €[0,M + N — 2], one has

N—-1
Rli] = (Ky® X)[i] = Y Ki[m]- X[n1+i—N+1] (2a)

i) = (K. ® X)[i] = iKz[n2]~X[n2+i—N+1]. (2b)

The problem is to study the effect of minimizing kernel similarity, i.e., ming, g, (K1, K2)?> — 0, on feature
map similarity, i.e., (F1, Fb).

Each optimization experiment is run over a number of iterations for each input and kernel pair, with Adam
and Stochastic Gradient Descent (SGD) optimizers (see Table [7] for the full configuration). Due to its



stochastic nature, each optimization is repeated 1000 episodes and the mean value is computed. The the
learning rates and the number of iterations vary depending on the problem parameters, e.g., the kernel size.
The kernel vectors K7, K5 and input vectors X are sampled from uniform distributions, where K, Ko ~
U(-1,1) and X ~ U(0,1), with a varied he kernel size N and a fixed input size M = 64. The correlation
between kernel similarity and feature map similarity, the frequency of feature map similarity reduction (i.e.,
the ratio of number of decreases to total episodes), and the percentage change in feature map similarity
when it increases or decreases are measured. The results are presented in Table

Correlation Decrease (%) Increase (%)
N | Optimiser | mean | std | Reduction Frequency (%) | mean | std mean std
3 Adam 0.67 | 0.28 91.8 92.95 | 15.24 | 14.12 x 103 | 71.12 x 10°
SGD 0.35 | 0.85 67.5 78.75 | 24.71 | 13.82 x 10 | 10.60 x 10°
9 Adam 0.54 | 0.33 82 86.12 | 21.14 | 17.52 x 10% | 20.85 x 10°
SGD 0.25 | 0.87 60.7 67.82 | 29.42 | 55.76 x 10* | 87.15 x 10°
16 | Adam 0.47 | 0.36 77.6 81.88 | 23.48 | 17.10 x 107 | 20.50 x 10°
SGD 0.54 | 0.33 71.6 69.84 | 28.19 | 97.62 x 107 | 74.75 x 10°

Table 1: The effect of minimizing kernel similarity on feature map similarity.

The table shows no significant linear dependency between kernel similarity and feature map similarity, as
indicated by the low mean and high standard deviation of correlations. The results reveal that kernel
orthogonality can lead to either a significant decrease or increase in feature map similarity, depending on
the setting. For example, while the reduction frequency and the decrease percentage are high with N = 3
and Adam optimizer, the order of magnitude of the increase percentage is large. In the next section, we
theoretically validate this observation and propose a method for reducing feature map similarity.

3.2 Derivation of the Convolutional Similarity

Given I and F5 in Equations[2] the problem is formulated as finding a solution to achieve the orthogonality,
(Fy, F») = 0, with regard to the kernels K; and K. Here we will prove that the inner product of feature
maps can be expressed as the inner product of the auto-correlation of the input X, clipped to the range
[1 —N,N — 1], and the full cross-correlation of K7 and K, as shown in Equation |3} deriving a sufficient
condition on kernels for for achieving feature map orthogonality.

(F1,F2) = (K1 ® K2), (X ® X)p—n,n-1])- (3)

From Equations [2] it follows that:

M+4N-2 N-1 N—1 M+4N-2
(Fi, Py = > Flil-Rli]=> Y Kim] Kns Y X[i+nyg—N+1]-X[i+n —N+1].
1=0 ny =0 na =0 1=0
(4)
For simplicity, let ¢ =i +mny; — N + 1. Then:
N-1 N-1 M—1+4n,
(Fi,Fo) =Y > Kilm]-Kafno] > X[i+ny —m]- X[il. (5)
n1=0n,=0 i=1—N+n,
Given the zero-padding, the equation can be simplified to:
N—-1 N-1 M—1
(Fi,Fo) = > ) Kim] - Ka[no] X[i +mny —ni] - XTi]
n1=0no=0 1=0



Let no = ny — nq, then:

N—1 N—-1-n; M-1
F17F2 Z Z Kl n1 Kg[nl —‘r’ﬂg] ZX[Z+712]X[Z]
=0

n1=0 no=—n1

N—-1 N*l*’nl

=Y Y EKifm]- Kl +no] - (X ® X)[no). (6)

n1=0 no=—n1
With
N-1 N-1
A= Y Kim]-Kan +ng]- (X ® X)[ny] =0,
n1=0ns=N—ny
N— —ni—1
Z Kl }-Kg[nl +n2]-(X®X)[n2]=O7

where K5 values are out of range and set to zeros, we obtain Equation [3}

N—-1 N-1
(FLF) = (FL, )+ A+B= Y > Ki[m]- Kafni +ns] - (X ® X)[ns
112:171\[77,1:0

N-1
= Y (K1 ® K)[na] - (X ® X)[na] = (K1 ® K3), (X & X)j1-n,nv—1)-
no=1—N

Then, a trivial sufficient condition on the kernels for the orthogonality of F} and F5 can be derived in the
case of the full cross-correlation:

S={nell-N,N-1]|(K; ® K»)[n] = 0}. (7)

We note that the same result can be derived using Parseval’s and the Convolution theorems.

In an optimization scenario, the condition can be achieved by minimizing the Convolutional Similarity:

N-1

Z (K1 ® K»)?[n]. (8)

n=1—-N

In its general form, for feature maps S > 2 and input channels C > 1 , the Convolutional Similarity Lcog is
written as:

—iiZZ Z ilea] ® K [ea]) [, )

where K;[c1] denotes the ¢1-th channel of the i-th kernel.

One may see that the components of Equation [§ are symmetric with recurring terms. Therefore, Log can
be simplified to:

Les = Z Z (Ki[e1] ® Kjlea])[n]. (10)

Similarly, feature map orthogonality in the case of the full convolution operation can also be achieved.



Given Equation [3] we have:

N-1
(Fy, Fy) = Z (X ® X)[n] - (K1 ® K3)[n]
n=1-N

N—-1
= (X ®X)[0] (K1 ® K2)[0]+ Y (X ® X)[n] - (K1 ® K»)[n]

n=1-N
n#0
N—1
= XI5 (K1, K2y + Y (X @ X)[n] - (K1 ® Ka)[n).
n=1-N
n#0
Allowing (K7, K2) = 0, we have:
N—1
(F1, Fp) = (X ® X)[n] - (K1 ® K3)[n]. (11)
n=1-N
n#0

This shows that kernel orthogonality does not lead to feature map orthogonality, consistent with the results
from Section Moreover, the Convolutional Similarity approach differs from Orthogonal Convolutional
Neural Networks (OCNN) (Wang et all [2020) in two ways. First, OCNN applies kernel orthogonality to
reduce feature map redundancy, whereas we prove that no correlation exists between the two. Second,
Convolutional Similarity performs the full cross-correlation across kernel channels, while OCNN performs
cross-correlation within channels. The mathematical deduction establishes a sufficient condition on kernels
for feature map orthogonality with full cross-correlation. The extension to valid and same convolution/cross-
correlation based an approximate approach is given in Appendix

4 Experiments and Results

4.1 Numerical Validation

Here we minimize the Convolutional Similarity, i.e., ming, r, [|[(K1 ® K3)||3, to Validate its effect on feature
map orthogonality by performing the same experlments conducted in Sectlon The results are presented
in Table [2| (See the optimization hyper-parameters for each N in Table

Correlation

N | Optimiser

mean | std

3 Adam 0.80 | 0.27
SGD 0.90 | 0.21

9 Adam 0.78 | 0.27
SGD 0.85 | 0.25

16 Adam 0.71 | 0.30
SGD 0.86 | 0.25

Table 2: The effect of minimizing Convolutional Similarity on feature map similarity.

The table shows that Convolutional Similarity has a high and stable correlation with feature map similarity,
in contrast to the results in Table Table [3| further shows that, in all cases, minimizing Convolutional
Similarity consistently decreases feature map similarity, achieving near 100% orthogonality.



o : Decrease (%) | Increase (%)

N | Optimiser | Reduction Frequency (%) —oon | std T moan T std
3 Adam 100 100 0.0 0 0
SGD 100 99.91 | 1.28 0 0
9 Adam 100 99.98 | 0.23 0 0
SGD 100 99.68 | 3.21 0 0
16 Adam 100 99.95 | 1.26 0 0
SGD 100 99.78 | 3.04 0 0

Table 3: The effect of totally minimising Convolutional Similarity, on feature map similarity.

4.2 Convolutional Similarity Minimization Algorithms and Experiments on Shallow CNNs

Convolutional Similarity Minimization can be performed either before training as an iterative initialization
scheme as shown in Algorithm [1} or during training as a regularisation method as shown in Algorithm

Algorithm 1 Convolutional Similarity minimization as an iterative initialization scheme. 6 are the param-
eters of the model and K () are the kernels of the j-th convolutional layer. L;,sr and Log are the training
task loss function and the Convolutional Similarity loss function, respectively. Before the model is trained,
Leg is minimized for a number of iterations I.

for I iterations do
One optimization step of the Convolutional Similarity minimization:

M-1 4
Vo Z LCS(K(J))
Jj=0
end for
for training epochs do
One training epoch of the model:
VOLtask'

end for

Algorithm 2 Convolutional Similarity minimization as a regularization term. 6 are the parameters of the
model and K9) are the kernels of the j-th convolutional layer. L;q, and Leog are the training task loss
function and the Convolutional Similarity loss function, respectively. L¢og is minimized during the training
of the model and is used as a regularisation term with a weighting factor g.

for training epochs do
Convolutional Similarity is minimized with every epoch

M-—1

V@ Ltask + 6 . Z LCS(K(J))
7=0

end for

Experiments are conducted with two shallow CNNs on CIFAR-10 (Krizhevsky and Hinton) 2009), a dataset
containing 50,000 training images and 10,000 test images for classification. Both of the aforementioned meth-
ods for Convolutional Similarity minimization are applied. Further experiments using the deep ResNet18
model He et al.| (2015) on the same dataset with an arbitrary number of padding are presented in the
following section.



CNN1 CNN2
Conv2d(3, 64, 3, 2) Conv2d(3, 128, 3, 2)
BatchNorm2d(64) BatchNorm2d(128)

LeakyReLU(0.2) LeakyReLU(0.2)
MaxPool2d(2, 2) MaxPool2d(2, 2)
Convad (64, 64, 3, 2) Conv2d(128, 128, 3, 2)
BatchNorm2d(64) BatchNorm2d(128)
LeakyReLU(0.2) LeakyReLU(0.2)
MaxPool2d(2, 2) MaxPool2d(2, 2)
Convad(64, 64, 3, 2) Conv2d(128, 128, 3, 2)
BatchNorm2d(64) BatchNorm2d(128)
LeakyReLU(0.2) LeakyReLU(0.2)
MaxPool2d(2, 2) MaxPool2d(2, 2)
Convad (64, 64, 3, 2) Conv2d(128, 128, 3, 2)
BatchNorm2d(64) BatchNorm2d(128)
LeakyReLU(0.2) LeakyReLU(0.2)
MaxPool2d(2, 2) MaxPool2d(2, 2)
Linear(576, 10) Linear(1152, 10)

Table 4: The configurations of CNN1 and CNN2.

The two shallow CNNs share the same architecture but CNN2 has twice as many feature maps per layer and
3.86 times more trainable parameters overall (118,858 vs 458,890), as detailed in Table 4| In regularization
method, the SGD optimiser with a learning rate of 0.01 is used for Convolutional Similarity minimization,
while in iterative initialization method, the Adam optimiser with a learning rate of 0.001 is used to minimize
the Convolutional Similarity loss prior to training and the SGD optimiser with a learning rate of 0.01 is used
to minimize the Cross Entropy loss during training. The models are trained with a batch size of 512 for 100
epochs. Table [ presents the top test accuracies for the baseline models, the models trained with I = 500
iterations prior to training, and the models trained with the regularization term and weight § = 0.001. Both
methods based on Convolutional Similarity improve prediction accuracy compared to the baseline models,
with the pre-training approach achieving the best performance.

Model Test Accuracy (%)
CNNT1 (baseline) 74.66
CNN1 (I =500) 79.16

CNN1 (8 = 0.001) 77.16
CNN2 (baseline) 76.87
CNN2 (I = 500) 82.33

CNN2 (p = 0.001) 80.00

Table 5: Top test accuracies for CNN1 and CNN2.

In addition, despite having 3.86 times fewer trainable parameters, CNN1 trained with Convolutional Simi-
larity outperforms the CNN2 baseline. Further testing reveals that the CNN2 baseline requires 512 filters
per layer (seven times more) with 7,143,946 trainable parameters (60.10 times more) to achieve an accuracy
of 79.78%, matching the performance of CNN1 with I = 500.

Experiments also show that the iterative initialization approach introduces less computational overhead
compared to the regularization method. While the latter incurs 9,800 additional optimization iterations (98
per epoch), the iterative initialization method only adds I = 500 iterations more. Furthermore, the model
can be reused for different tasks after a one-off pre-training. However, in iterative initialization a large
learning rate can lead to catastrophic forgetting [Kirkpatrick et al.[(2017)), where the model loses the weights



learned. Given the Convolutional Similarity function being convex, a properly tuned learning rate ensures
that the Convolutional Similarity loss remains low at training phase, as shown in Figure

1400 —— baseline
1=500

1200 —— B=0.001

1000

800

600

400

Convolutional Similarity Loss

200

0 20 40 60 80 100
Epochs

Figure 1: Convolutional Similarity loss curves for (a) the baseline, (b) I = 500, and (c) S = 0.001.

Figures [2| and [3| show the evolution of the loss and the accuracy during training for both models, indicating
that the iterative initialization method accelerates convergence. In Figure [2| the classification loss decreases
fastest for the models with I = 500, while more slowly for the models trained with 5 = 0.001, potentially due
to the Convolutional Similarity loss as a regularisation term distorting the classification loss. This becomes
more apparent when the classification loss is low, therefore, the gradients of the Convolutional Similarity
are more likely to cause oscillations. Models trained with either I = 500 or 5 = 0.001 achieve higher train
accuracy and reach near 100% earlier than the baseline models, as shown in Figure [3l The oscillations in
Figure [2] are similarly reflected in the train accuracy in Figure [3]

Classification Loss

—— baseline —— baseline
=500 1=500
—— B=0.001 —— B=0.001
0
10 10° 4
@
S
=
k=]
= 10713
=
10717 7
o
[w]
10724
1072 1
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(a) Classification loss of CNN1 (b) Classification loss of CNN2

Figure 2: The classification loss evolution for CNN1 and CNN2 on a logarithmic scale.
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Figure 3: The train accuracies of CNN1 and CNN2.

4.3 Convolutional Similarity Minimization Experiments on a Deep CNN

Convolutional Similarity Minimization is further evaluated on a deep model, ResNetl8, using the same
dataset. The model is pre-trained using the iterative initialization method with I = 200 and then trained for
50 epochs using SGD with various learning rates and batch sizes. The testing results, presented in Figure
show that the models employing Convolutional Similarity Minimization outperform the baseline models, with
significant accuracy improvements in certain cases (e.g., Ir = 0.001, batchsize = 128 — A Accuracy = 20%).
These findings confirm the robustness of the Convolutional Similarity method.

100
85.3186.13 86.2 86.69 = Ir=0.01, batch size=128
80 76.62 80.69 mem |r=0.001, batch size=128
‘ mm r=0.01, batch size=64
=5 513 7.15 s Ir=0.001, batch size=64
e .
> 60
o
z
=
[¥]
<
o 40
1]
e
20
0

=200 baseline

Figure 4: Accuracies of the ResNet18 model with different configurations, trained with and without Convo-
lutional Similarity Minimization.

To determine the number of iterations I for best model performance, the ResNet18 model is subsequently
trained for 50 epochs using a step-wise search with I € {0, 10, 20,40, 60, 80, 100, 120, 140, 160, 180, 200}, a
learning rate of 0.01 and a batch size of 64. The results, shown in Figure [5| indicate that most accuracy
improvements occur within I < 60, and a model with I as low as 10 yet produces a good performance. This
finding is valuable for deeper model with costly Convolutional Similarity gradient computation.
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Figure 5: Test accuracy variation of ResNet18 model according to iterations I.

A limitation of the iterative initialization method is its reduced effectiveness when the task loss is minimized
using optimizers with momentum or a large learning rate. It is observed that optimizers with momentum
cause an increase of Convolutional Similarity loss previously minimized, a phenomenon similar to that re-
ported in (Heo et al |2021)). Moreover, the large learning rates push the weights outside of the region where
Convolutional Similarity is minimal. While optimizers with momentum work better with Convolutional Sim-
ilarity minimization as a regularisation method, this approach introduces additional computational overhead
and causes oscillations near the end of training due to small gradient values. A potential improvement is to
reduce  in proportion to the magnitude of the task loss.

5 Conclusion and Future Work

This study introduces Convolutional Similarity, a novel loss term for Convolutional Neural Networks (CNNs),
derived from a theoretical analysis of feature map orthogonality to reduce information redundancy retained
in CNNs. The Convolutional Similarity can be minimized as either a regularization term or an iterative
initialization scheme. Base on the experiments, the minimization of Convolutional Similarity not only reduces
the feature map similarity independent of the CNN input, but also leads to an improved prediction accuracy
and accelerate convergence of CNN models. Additionally, the method enables significantly smaller models to
achieve performance comparable to larger models that do not use it. This research also demonstrates, both
theoretically and empirically, that kernel orthogonality does not necessarily reduce feature map similarity,
contrary to claims in some literature. A limitation of the iterative initialization method is its reduced
effectiveness due to optimization momentum and large learning rates. A potential solution is to either
search for an optimal learning rate or use Convolutional Similarity as a regularization term, and then
determine the optimal weight. Future work will focus on coupling the iterative initialization method with
the optimization momentum term and examining the method’s impact on generative frameworks such as
Generative Adversarial Networks.
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6 Appendix

6.1 Extension to Valid and Same Convolution/Cross-correlation

We have established a sufficient condition on kernels for feature map orthogonality, with full cross-
correlations. In this section, an approximative approach is adopted to extend the use of Convolutional
Similarity minimization to same and valid cross-correlation/convolution scenarios (e.g., used in Residual
Neural Networks He et al| (2015). Given the general definition of the cross-correlation with the padding
Pel0,N—-1landi € [N —-1—P,M —1+ P], one has:

N-1
Rl = (X ®K)li] = Y Ki[m]- X[i+n1 — N +1] (12)
Tll:()
N—1
Boli] = (X ® K)[i] = Y Ka[no] - X[i + ny — N +1] (13)
n2:O
M—1+P
(F1, Fy) = Fy[i] - Fyld] (14)
i=N—1-P
where the valid, full and same cross-correlation correspond to P=0, P= N —1and P = % respectively.
With the substitution of i = n; +¢ — N + 1, one has:
N—-1 N—1 M—N+P+n,
(F1, F2) = Z Z Ki[ni] - Ka[no] Z Xli+ng —na] - X[d] (15)
n1=0n2=0 i=n1—P
N-1 N—1 M—1+n4
=—A—-—B+ Z Z Kl[nl]-Kg[ng] Z X[i—l—nz—’nﬂ-X[i], (16)
n1=0ns=0 i=1—N+n,
with
N—1 N—1 n1—P—1
A= Ki[n]- Kano] > X[i+ny —na] - X[i], (17)
n1=0n9=0 i=n1+1—-N
N-1 N—1 M—1+4n,
B = K1[n1] 'Kg[ﬂg} Z X[Z+ﬂ2 —nl] X[Z] (18)
n1=0n2=0 i=M—N+P+ni1+1
Using the same procedure as for Equation [3] one has:
(F1, F2) = (K1 ® K2), (X ® X)i—nn-1)) — A= B. (19)

Where A and B have N - N - (N — P — 1) terms while ((K; ® K3),( X ® X)p_nn-1]) N-N-(M+N —1)
terms. Given N << M (The kernel dimension size is often significantly smaller than the input dimension)
and P < N — 1, there is a high probability that

(', o) = (K1 ® K2), (X ® X)n-nn-1))- (20)

As P approaches to N — 1, the two sides of Equation [20] become increasingly close. When P = N — 1, one
has

(F1,F2) = (K1 ® K2), (X ® X)n—n,n-1])- (21)

The approximation is verified numerically by performing the same numerical tests for the valid cross-
correlation as in Section as shown in Table [f] Similar to Table [T} the results show that minimising
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Convolutional Similarity is effective for arbitrary P values. The correlations between feature map similarity
and Convolutional Similarity are significantly higher than those between feature map similarity and kernel
similarity as presented in Table[l] In all cases, feature map similarity is guaranteed to decrease and approach
orthogonality. This result is further confirmed in Section where Convolutional Similarity is minimized
for a deep CNN that does not use the full cross-correlation. However, in some rare cases, minimizing Con-
volutional Similarity can have an unpredictable effect on feature map similarity, as shown in the Increase
column, similar to the effect of minimizing kernel similarity in Table Nonetheless, this phenomenon is
significantly less pronounced, with a probability of 0.014 in the worst case, as observed in the table.

Correlation Decrease (%) Increase (%)

N | Optimiser | mean | std | Reduction Frequency (%) | mean | std mean std

3 Adam 0.798 | 0.272 100 99.99 | 0.02 0 0
SGD 0.90 0.19 99.6 99.86 | 1.34 216.04 154.33

9 Adam 0.751 | 0.296 100 99.96 | 0.385 0 0
SGD 0.86 0.23 99.5 99.57 | 3.77 3336.06 5322.40

16 Adam 0.77 0.28 99.9 99.80 | 2.49 688.54 0
SGD 0.851 | 0.23 98.6 98.68 | 8.20 | 10.90 x 10T | 40.35 x 10%

Table 6: The effect of minimising Convolutional Similarity on feature map similarity. See Table @] for
optimization hyper-parameters for each N.

6.2 Numerical Validation Experiments Configurations

N | Optimizer | Learning Rate | Number of Iterations
3 Adam 0.1 250
SGD 0.1 250
9 Adam 0.1 250
SGD 0.1 250
16 Adam 0.1 250
SGD 0.1 300

Table 7: Optimization hyperparameters for kernel cosine similarity minimization experiments.

N | Optimizer | Learning Rate | Number of Iterations
3 Adam 0.1 300
SGD 0.2 350
9 Adam 0.1 400
SGD 0.07 550
16 Adam 0.2 450
SGD 0.035 1500

Table 8: Optimization hyperparameters for Convolutional Similarity optimization experiments.

N | Optimizer | Learning Rate | Number of Iterations
3 Adam 0.1 300
SGD 0.1 300
9 Adam 0.1 300
SGD 0.05 400
16 Adam 0.05 500
SGD 0.01 700

Table 9: Optimization hyperparameters for kernel cosine similarity minimization experiments.
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