

000 SIGMARK: SCALABLE IN-GENERATION WATERMARK 001 002 WITH BLIND EXTRACTION FOR VIDEO DIFFUSION 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010 Artificial Intelligence Generated Content (AIGC), particularly video generation
011 with diffusion models, has been advanced rapidly. Invisible watermarking is a
012 key technology for protecting AI-generated videos and tracing harmful content,
013 and thus plays a crucial role in AI safety. Beyond post-processing watermarks
014 which inevitably degrade video quality, recent studies have proposed distortion-
015 free in-generation watermarking for video diffusion models. However, existing
016 in-generation approaches are non-blind: they require maintaining all the message-
017 key pairs and performing template-based matching during extraction, which in-
018 incurs prohibitive computational costs at scale. Moreover, when applied to modern
019 video diffusion models with causal 3D Variational Autoencoders (VAEs), their
020 robustness against temporal disturbance becomes extremely weak. To overcome
021 these challenges, we propose SIGMark, a Scalable In-Generation watermarking
022 framework with blind extraction for video diffusion. To achieve blind-extraction,
023 we propose to generate watermarked initial noise using a Global set of Frame-
024 wise PseudoRandom Coding keys (GF-PRC), reducing the cost of storing large-
025 scale information while preserving noise distribution and diversity for distortion-
026 free watermarking. To enhance robustness, we further design a Segment Group-
027 Ordering module (SGO) tailored to causal 3D VAEs, ensuring robust watermark
028 inversion during extraction under temporal disturbance. Comprehensive experi-
029 ments on modern diffusion models show that SIGMark achieves very high bit-
030 accuracy during extraction under both temporal and spatial disturbances with min-
031 imal overhead, demonstrating its scalability and robustness.

032 1 INTRODUCTION

033 In the field of Artificial Intelligence Generated Content (AIGC), diffusion models have rapidly ad-
034 vanced image and video generation (Croitoru et al., 2023; Cao et al., 2024). Latent diffusion models
035 proposed by Rombach et al. (2022) generates images by denoising sampled noise in latent space.
036 Extending from this, video diffusion models generate temporally coherent frame sequences by en-
037 forcing both spatial and temporal consistency (Ho et al., 2022). With the rapid proliferation of
038 AI-generated videos, privacy and security concerns have become increasingly critical (Wang et al.,
039 2024). On the one hand, as a widely used creative tool, AI-generated high-quality videos con-
040 stitute valuable intellectual property (IP) and necessitate reliable copyright identification. On the
041 other hand, the ease of producing harmful or misleading content calls for strict control mechanisms,
042 requiring effective methods to trace their source of generation.

043 To meet the demands of privacy and security, watermarking technology (Cox et al., 2007) has been
044 widely applied in AIGC (Luo et al., 2025). Invisible watermarking embeds information in a way
045 imperceptible to the human eye, thereby preserving visual quality while remaining robust to various
046 distortions and even malicious attacks (Wang et al., 2023). For AI-generated videos, a straightfor-
047 ward approach is to treat them like conventional videos and apply invisible watermarking to each
048 frame after generation (Luo et al., 2023; Zhang et al., 2024), known as post-processing watermark-
049 ing (see Figure 1(a)). However, such methods inevitably introduce redundant information, thereby
050 degrading overall video quality. Recently, in-generation watermarking has been explored for both
051 image (Yang et al., 2024; Li et al., 2025) and video generation (Hu et al., 2025a;b). As illustrated
052 in Figure 1(b), these methods embed watermark messages during generation process, typically by
053 sampling a watermarked initial noise in which the message is encoded using a secret key. During ex-

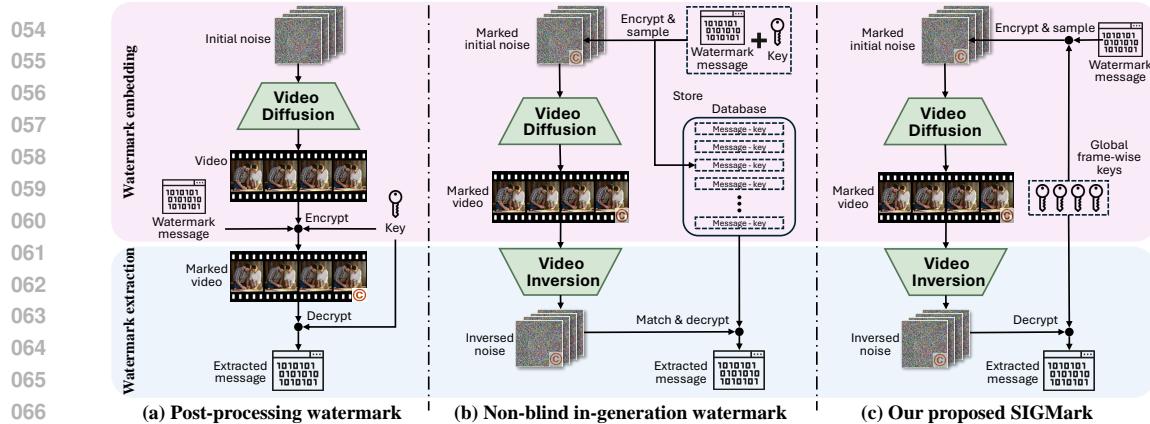


Figure 1: (a) Post-processing watermarks: embedding watermarks in pixel-space which inevitably degrades video quality. (b) Existing in-generation methods: maintaining all the message-key pairs for matching, incurring high extraction costs and poor robustness. (c) Our proposed SIGMark: a blind watermarking framework with global frame-wise PRC keys which is inherently scalable.

traction, the watermarked video is inverted (commonly via DDIM inversion) back into latent noise, and then decoded with the key to recover the watermark. These approaches have been theoretically proven to be distortion-free for diffusion models.

Although in-generation video watermarking offers the advantage of being distortion-free, it still faces two critical challenges: (1) *High extraction cost at scale*. When extracting watermark messages from videos subject to temporal disturbances (e.g., frame removal during compression), current methods rely on template matching with the original latent noise. This requires maintaining all message-key pairs during watermark embedding, and computing matching functions across the entire database, as shown in Figure 1(b). Such approaches are non-blind, with the extraction cost growing linearly with the scale of users or generation requests, severely limiting scalability. (2) *Poor temporal robustness*. Modern video diffusion models (Yang et al., 2025; Kong et al., 2024) employ causal 3D Variational Autoencoders (VAE), which decode a group of adjacent frames from one temporal dimension of latent features. During extraction, video inversion requires the correct grouping of frames to reconstruct the latent feature. Temporal disturbance which disrupts the grouping will produce unrelated latent features, ultimately leading to very low extracted bit accuracy.

To address these issues and ensure usability at large-scale video generation platforms, we introduce SIGMark: scalable in-generation watermarking with blind extraction for video diffusion models.

To reduce the *high extraction cost at scale*, we propose Global Frame-wise PseudoRandom Coding (GF-PRC) scheme for watermark embedding, thereby enabling a blind watermarking framework. Specifically, a global set of frame-wise PRC keys (pseudorandom error-correction code by Christ & Gunn (2024)) is shared across all generation requests, with each key assigned to a group of temporal frames. Watermark messages are encoded into random latent noise with these keys, which preserves diversity and generative performance. During extraction, the global frame-wise PRC directly decodes the inverted noise without matching with the original messages. Throughout this process, the system only needs to maintain the global frame-wise PRC keys, reducing extraction complexity from linear in the number of generation requests to constant, and achieving strong scalability.

To enhance *temporal robustness*, we introduce a Segment Group-Ordering (SGO) module tailored to causal 3D VAEs in modern video diffusion models. Specifically, for a video potentially affected by temporal disturbances, we first partition it into motion-consistent segments using Farnebäck optical flow; within each segment, a sliding-window grouping detector infers the original causal frame groups. This procedure recovers the correct grouping and, in turn, yields accurate inverted latents for watermark extraction under temporal disturbances.

We conduct comprehensive experiments on modern video diffusion models (HunyuanVideo by Kong et al. (2024) and Wan-2.2 by Wan et al. (2025)), covering both text-to-video (T2V) and image-to-video (I2V) pipelines. A subset of VBench-2.0 (Zheng et al., 2025) under 18 evaluation dimensions is sampled to generate 400 videos for evaluation. Results show that our method achieves very

108 high bit accuracy with high watermark capacity with minimal extraction cost. Our method maintains
 109 high accuracy under spatial and temporal disturbances, demonstrating strong robustness.
 110

111 In conclusion, the main contributions of this paper are:

112

- 113 We identify two critical issues in existing in-generation video watermarks: high extraction
 114 cost and poor temporal robustness, which hinder their scalability to large platforms.
- 115 We propose SIGMark, a scalable in-generation watermarking framework with blind extrac-
 116 tion for video diffusion, effectively addressing the limitations of scalability and robustness.
- 117 We conduct extensive experiments for SIGMark on modern video diffusion models and
 118 comprehensive evaluation benchmarks, demonstrating its effectiveness and robustness.

119

120 2 RELATED WORKS

121

122 2.1 DIFFUSION MODELS

123

124 In the field of Artificial Intelligence Generated Content (AIGC), diffusion models have rapidly ad-
 125 vanced image and video generation. Latent diffusion model (LDM)(Rombach et al., 2022) synthe-
 126 sizes content by denoising sampled noise in latent space and decoding it through a Variational Au-
 127 toencoder (VAE). Building on LDM, works such as SDXL (Podell et al., 2024), ControlNet (Zhang
 128 et al., 2023) and DiT (Peebles & Xie, 2023) further improve image generation with stronger photore-
 129 alism and higher resolution, fine-grained structural control, and greater scalability. Extending from
 130 images, video diffusion models tackle the task of generating temporally coherent frame sequences
 131 (Ho et al., 2022). Following the success of Sora (OpenAI, 2024), a wave of open-source video dif-
 132 fusion models including KLING (Kuaishou Technology, 2024), HunyuanVideo (Kong et al., 2024),
 133 and Wan (Wan et al., 2025) has emerged. They adopt causal 3D VAEs that compress videos along
 134 spatial and temporal dimensions to form compact latent sequences for diffusion, enabling longer,
 135 higher-quality videos with improved temporal consistency. Our research focuses on watermarking
 136 for diffusion-generated videos and evaluates on HunyuanVideo and Wan-2.2.

137 2.2 VIDEO WATERMARKING

138

139 Video invisible watermarking embeds imperceptible, durable signals in video to enable rights man-
 140 agement and piracy deterrence (Asikuzzaman & Pickering, 2017; Aberna & Agilandeeswari, 2024).
 141 The straightforward image-based watermarking approaches operate frames individually (Hartung
 142 & Girod, 1998b; Hernandez et al., 2000), while video-based works explicitly exploit temporal in-
 143 formation via compressed domain (Biswas et al., 2005; Noorkami & Mersereau, 2007) and motion
 144 vectors produced during compression (Mohaghegh & Fatemi, 2008). Recently, deep learning has
 145 been applied to watermarking for images (Zhu et al., 2018) and videos (Ben Jabra & Ben Farah,
 146 2024): Zhang et al. (2019) introduced RivaGAN, training an encoder-decoder framework for robust
 147 watermarking. Subsequent work advances robustness and capacity through curriculum learning (Ke
 148 et al., 2022), low-order recursive Zernike-moment embedding (He et al., 2023), multiscale distri-
 149 bution modeling (Luo et al., 2023), complex wavelet transforms (Yasen et al., 2025; Huang et al.,
 150 2025), adversarially optimization under frequency domain Huang et al. (2024a), and spatiotem-
 151 poral attention (Li et al., 2024; Yan et al., 2025). However, embedding extra signals inevitably
 152 degrades visual quality. We instead pursue in-generation watermarking for diffusion models, which
 153 is training-free and provably distortion-free.

154 2.3 IN-GENERATION WATERMARKING FOR DIFFUSION MODELS

155

156 With the rapid progress of image and video diffusion models, watermarking for diffusion-generated
 157 content has likewise gained traction. Recent work integrates watermark embedding into the genera-
 158 tive process to reduce performance degradation. Fernandez et al. (2023) fine-tune the LDM decoder
 159 using a pre-trained watermark extractor, enabling reliable extraction from images produced by the
 160 fine-tuned model. Yang et al. (2024) introduce Gaussian Shading, the first approach to sample wa-
 161 termarked initial noise for image generation, which is provably distortion-free. Subsequent studies
 162 further enhance robustness during the embedding and inversion phases (Li et al., 2025; Fang et al.,
 163 2025). In-generation watermarking has also been extended from images to videos: Liu et al. (2025)

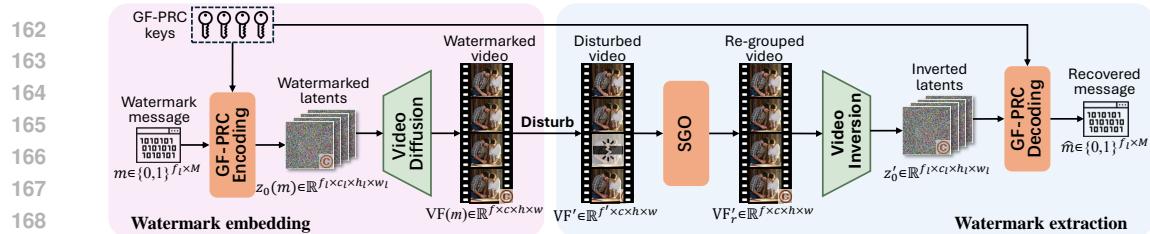


Figure 2: Overview of our proposed SIGMark. Embedding: We encode the watermark message into the initial latent noise using a Global set of Frame-wise Pseudo-Random Coding (GF-PRC) keys. The diffusion model then denoises this noise into video frames that carry the embedded messages. Extraction: A (possibly disturbed) video is first processed by our proposed Segment Group-Ordering (SGO) module to recover the correct causal frame grouping, then inverted to obtain the latent noise, from which the message is decoded using the GF-PRC keys. The system stores only the GF-PRC keys for both embedding and extraction, enabling blind watermarking.

propose a two-stage implanting scheme during the diffusion process. Other works encrypt the watermark message into the initial latent noise via Gaussian sampling (Hu et al., 2025a) or dynamic tree-ring (Zeng et al., 2025), preserving video generation quality. Hu et al. (2025b) adopt PRC for watermark encryption and decryption, maintaining generative diversity across messages. Despite being distortion-free, advanced in-generation methods by Hu et al. (2025a;b) still face high extraction costs at scale and poor temporal robustness. We are the first to identify and address these issues in modern video diffusion models, achieving strong scalability and temporal robustness.

3 METHOD

3.1 PROBLEM FORMULATION

This paper focuses on in-generation watermarking for video diffusion models. We first formalize the problem. Given a diffusion model \mathcal{M} , our goal is to embed a watermark message m into generated video frames $\text{VF}(m) = \text{Embed}(\mathcal{M}; m)$ without degrading the performance of the diffusion model. The watermarked video frames may undergo temporal disturbances (e.g., frame drops) or spatial disturbances (e.g., cropping), yet the tampered frames VF' should still permit reliable watermark extraction. We adopt the blind-watermark setting: during extraction, neither the original message m nor the original generated video frames VF is available, and the message is recovered solely from the tampered video frames and the model, i.e., $\hat{m} = \text{Extract}(\mathcal{M}; \text{VF}')$. We emphasize robustness: even under strong disturbances to VF' , the recovered message \hat{m} remains close to m .

During watermark embedding, we follow the in-generation scheme of Yang et al. (2024); Hu et al. (2025a). The watermark message m is encrypted into the initial latent noise without altering its distribution, i.e., $z_0(m) \sim \mathcal{N}(0, \mathbf{I})$. The model then denoises this noise with text prompts to generate videos, thereby preserving generative performance. However, existing methods require the original message m for template matching during extraction, limiting scalability in real-world deployments. Moreover, when applied to modern diffusion models with causal 3D VAEs, they exhibit poor robustness under temporal disturbances.

3.2 FRAMEWORK OVERVIEW

An overview of our scalable in-generation watermarking framework, SIGMark, is shown in Figure 2. We follow the in-generation watermarking scheme which embeds the watermark message into the initial latent noise to generate distortion-free watermarked video through diffusion (left part of Figure 2), and then process the video through inversion to obtain inverted latent noise for watermark extraction (right part of Figure 2). To enable blind watermarking and reduce extraction cost at scale, we introduce a Global Frame-wise Pseudo-Random Coding (GF-PRC) scheme for message encryption and decryption. During embedding, the watermark message is encoded into the initial latent noise using a global set of frame-wise PRC keys, each key assigned to one temporal dimension of latent features. During extraction, given a possibly tampered video, a Segment Group-Ordering (SGO) module restores the correct causal frame grouping by Farnebäck optical flow segmentation

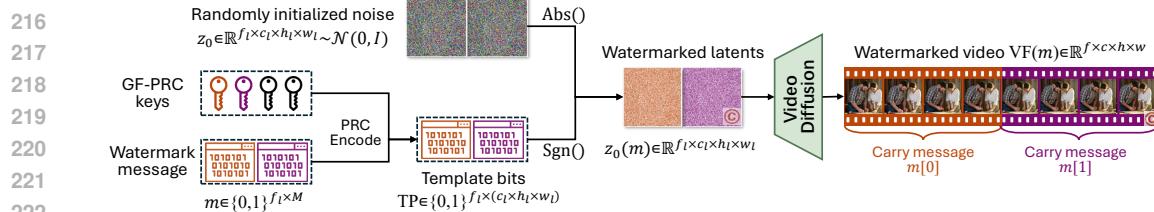


Figure 3: Watermark embedding with GF-PRC scheme. We set $f_l = 2, f = 8$ with compression ratio $d_t = f/f_l = 4$ as an example. Orange and purple denote message $m[0]$ and $m[1]$ respectively.

and sliding-window grouping detector. We then perform inversion to recover the watermarked latent and decode the message with the GF-PRC keys. GF-PRC enables blind extraction where only the global keys are stored in the system, while maintaining high-accuracy message recovery under disturbances. We elaborate the details of our proposed modules in the following sections.

3.3 WATERMARK EMBEDDING

Following the in-generation watermarking scheme(Yang et al., 2024; Hu et al., 2025a), we map the watermark message bits into the initial latent noise without affecting the Gaussian distribution of the noise for watermark embedding. To achieve blind watermarking, we propose to utilize a Global set of Frame-wise Pseudo-Random coding (GF-PRC) scheme for watermark embedding.

3.3.1 VIDEO GENERATION BY MODERN DIFFUSION MODELS

For a modern video diffusion model(Kong et al., 2024; Wan et al., 2025) \mathcal{M} , which consists of a text prompt encoder E_{text} , a denoising diffusion transformer T , and the encoder E_{3D} and decoder D_{3D} of the causal 3D Variational Autoencoders (VAE), the denoising steps happen on latent-space features $z \in \mathbb{R}^{f_l \times c_l \times h_l \times w_l}$, where f_l, c_l, h_l, w_l denote the frame, channel, height, and width dimensions in latent space. The diffusion transformer T denoises a randomly initialized latent noise $z_0 \sim \mathcal{N}(0, \mathbf{I})$ guided by the text prompt: $z_\tau = \text{Denoise}(T; z_0; E_{\text{text}}(\text{prompt}))$, where τ denotes the number of denoising steps. The denoised latent feature z_τ is then processed by the causal 3D VAE decoder to generate video frames $VF \in \mathbb{R}^{f \times c \times h \times w}$, where f, c, h, w denote the frame, channel, height, and width of the generated video. The whole process can be formulated as:

$$VF = \text{Diffusion}(\mathcal{M}; z_0; \text{prompt}) \quad (1)$$

$$= D_{3D}(\text{Denoise}(T; z_0; E_{\text{text}}(\text{prompt}))). \quad (2)$$

The causal 3D VAE introduces information compression along both spatial and temporal dimensions, where $f = f_l \times d_t$, $h = h_l \times d_s$, and $w = w_l \times d_s$, with d_t, d_s denoting the temporal and spatial compression ratios, respectively. As a result, a group of d_t frames is decoded from one temporal dimension of the latent features. Our proposed SIGMark embeds the watermark message into the latent noise via the GF-PRC scheme, yielding a sequence of watermark bits carried by a causal group of video frames, as detailed in the next paragraph.

3.3.2 GLOBAL FRAME-WISE PSEUDORANDOM CODING SCHEME

We propose embedding all watermark messages using a global set of frame-wise pseudorandom coding keys, as shown in Figure 3. Specifically, for a watermark message $m \in \{0,1\}^{f_l \times M}$ where f_l is the number of latent frames and M is the bit length carried by each causal frame group, we encode m into a random template bit sequence $TP \in \{0,1\}^{f_l \times (c_l \times h_l \times w_l)}$ using the pseudorandom error-correction code (simplified as pseudorandom code, PRC) proposed by Christ & Gunn (2024):

$$TP[i] = \text{PRC.Encode}(m[i]; K[i]), \quad i \in \{0, 1, 2, \dots, f_l - 1\} \quad (3)$$

Here, K denotes the pseudorandom error-correction coding keys; $K[i]$ is the key for frame dimension i in latent space, with $m[i] \in \{0,1\}^M$ and $TP[i] \in \{0,1\}^{(c_l \times h_l \times w_l)}$. We allocate one PRC key per causal frame group in latent space, enhancing robustness and enabling causal frame grouping and ordering information recovery (detailed in the next section). Given the randomized template

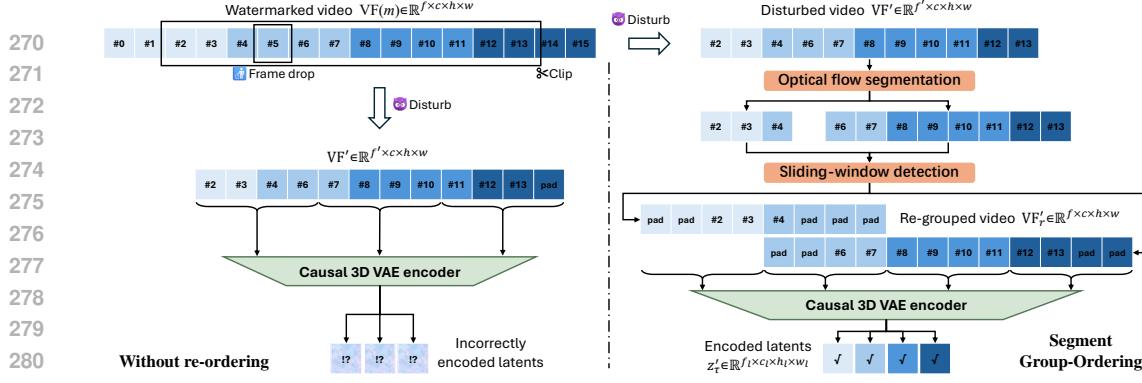


Figure 4: Segment Group-Ordering (SGO) module. We set compression ratio $d_t = f/f_l = 4$ as an example. When temporal disturbances (e.g., clipping or frame drops) occur, the causal grouping is disrupted; without re-ordering, this leads to incorrectly encoded latent features. Our SGO module restores the correct grouping and ordering, yielding robust latent features for video inversion.

TP, we map the watermark message into the initial latent noise by element-wise modulation:

$$z_0(m) = (\text{TP} * 2 - 1) * |z_0| \quad (4)$$

With the random absolute value from Gaussian sampling and the randomized template bits as the modulation signal, the embedded initial noise remains Gaussian, $z_0(m) \sim \mathcal{N}(0, 1)$, and thus does not degrade the diffusion model’s generative performance. Consequently, the generated video frames are watermarked with m via:

$$VF(m) = \text{Diffusion}(\mathcal{M}; z_0(m); \text{prompt}) \quad (5)$$

Note that in our GF-PRC scheme, the frame-wise PRC keys are global: every generation request shares the same key set, and each latent frame dimension carries one watermark sequence encoded by its corresponding PRC key. The total number of GF-PRC keys can be set to the maximum frame capacity of the video generation system, enabling watermarking for videos of arbitrary length. PRC by Christ & Gunn (2024) introduces a pseudo-random mapping that can encode even the same message into different random template bits, thereby preserving randomness in the initial latent noise under global keys, which traditional stream ciphers (e.g., ChaCha20(Bernstein et al., 2008)) used in prior in-generation non-blind methods(Yang et al., 2024; Hu et al., 2025a) cannot provide with the fixed keying material. The detailed explanation can be seen in Appendix A.

3.4 WATERMARK EXTRACTION

As shown in Figure 2, given a test video, we first apply the Segment Group-Ordering module to recover the grouping and ordering information of video frames, enhancing robustness against temporal disturbances, then perform diffusion-based inversion to obtain the inverted latent noise, and finally apply PRC decoding to recover the message.

3.4.1 SEGMENT GROUP-ORDERING MODULE

A watermarked video may encounter various disturbances, among which temporal disturbances are particularly critical for modern diffusion models with causal 3D VAEs. As shown on the left of Figure 4, the original frames $VF(m)$ are generated in causal groups of 4 (frames sharing the same color). After video clipping or frame drops, the disturbed video VF' loses both grouping and ordering information. If such frames are fed directly into the causal 3D VAE encoder, the mis-grouping (e.g., differently colored frames within a group) produces latent features that are inconsistent with those of $VF(m)$, thereby preventing reliable recovery of the message bits via inversion. To address the issue of weak temporal robustness, we propose a Segment Group-Ordering (SGO) module as shown in the right part of Figure 4 to recover the grouping and ordering information of the disturbed video for correct encoding.

Optical flow segmentation: We propose a optical-flow method to partition a video into maximally contiguous subsequences with consistent temporal dynamics. For each adjacent pair $(VF[t], VF[t +$

1]), we compute bidirectional Farnebäck flow and derive three indicators of temporal consistency: (i) median flow magnitude, (ii) forward-backward consistency, and (iii) motion-compensated residual. These are normalized via median absolute deviation and combined with a weighted sum to form a discontinuity score. The score is smoothed with a Gaussian filter, and temporal cut points are detected using hysteresis thresholding. The procedure runs near real time and outputs contiguous frame segments. Within each segment, we then perform sliding-window grouping detection. Further details of the optical-flow segmentation algorithm are provided in Appendix C.

Sliding-window detection: Given a contiguous frame segment, we only need to identify the first frame of a causal group, and the subsequent frames can then be grouped correctly. To this end, we leverage the global frame-wise PRC keys. Specifically, we pad $(d_t - 1)$ frames at the beginning of the segment and apply a sliding window over the padded sequence. At sliding index j , we invert frames $[j : j + 2 * d_t]$ to obtain two latent frame dimensions $z'_0[j]$ and $z'_0[j + 1]$. Using the global PRC keys, the frame index of each latent can be determined by:

$$\hat{\text{Idx}}[j] = \text{argmax}(\text{PRC.Detect}(z'_0[j]; K[0, 1, \dots, f_l])), \hat{\text{Idx}}[j] \in \{0, 1, \dots, f_l\} \quad (6)$$

We stop sliding when the detections are consecutive, i.e., $\hat{\text{Idx}}[j] + 1 = \hat{\text{Idx}}[j + 1]$, indicating that the current grouping yields the correct segment start for inversion. The results from all segments are then merged to produce the re-grouped frames VF'_r , as shown in Figure 4. This procedure recovers correct ordering and grouping information and is robust to frame insertion, swapping, dropping, and clipping. Further details of the sliding-window detection algorithm are provided in Appendix C.

3.4.2 MESSAGE BITS EXTRACTION

Following the in-generation watermarking paradigm(Yang et al., 2024; Hu et al., 2025a), we perform inversion on the re-grouped frames to extract the watermark bits. The latent features $z'_\tau \in \mathbb{R}^{f_l \times c_l \times h_l \times w_l}$ are first obtained via the causal 3D VAE encoder, and then inverted through the diffusion transformer (the flow-matching Euler discrete inversion for HunyuanVideo(Kong et al., 2024) and Wan(Wan et al., 2025)):

$$z'_\tau = E_{3D}(\text{VF}'_r) \quad (7)$$

$$z'_0 = \text{Inversion}(\mathcal{M}; z'_\tau; \text{prompt}_\emptyset) \quad (8)$$

where prompt_\emptyset denotes an empty prompt, since no original generation information is available. Given the inverted latent noise $z'_0 \in \mathbb{R}^{f_l \times c_l \times h_l \times w_l}$, we decode the GF-PRC keys K by applying PRC to the signs of z'_0 :

$$\hat{m}[i] = \text{PRC.Decode} \left(\frac{\text{Sgn}(z'_0[i]) + 1}{2}; K[i] \right), \quad i \in \{0, 1, 2, \dots, f_l - 1\} \quad (9)$$

where $\text{Sgn}(\cdot)$ is the sign function. With the global PRC key set, no additional information needs to be stored during generation, and no template matching (as in Hu et al. (2025a;b)) is required during extraction. Therefore, our proposed SIGMark enables blind watermarking with minor computation cost and strong scalability. Details of message extraction cost are provided in Appendix B.

4 EXPERIMENTS

In this section, we conduct experiments on modern video diffusion models. We detail the experimental setup in Section 4.1, report bit accuracy comparisons with existing methods in Section 4.2, assess temporal and spatial robustness in Section 4.3, and present evidence of scalability in Section 4.4.

4.1 EXPERIMENTAL SETTINGS

4.1.1 DATASETS AND METRIC

To comprehensively assess modern video diffusion models, we conduct experiments on a subset of prompts from VBench-2.0(Zheng et al., 2025), which offers more evaluation dimensions and more complex prompts than VBench-1.0(Huang et al., 2024b) used by existing researches on earlier diffusion models(Hu et al., 2025a;b). Among the 18 dimensions in VBench-2.0, we select 3 prompts

378 Table 1: Video watermarking results: message recovery bit accuracy and video quality score.¹
379

380 Diffusion model		381 HunyuanVideo T2V				382 HunyuanVideo I2V			
383 Watermarking	384 Method	385 512 bits		386 512×16 bits		387 512 bits		388 512×16 bits	
389 Category	390 Bit acc↑	391 V-score↑	392 Bit acc↑	393 V-score↑	394 Bit acc↑	395 V-score↑	396 Bit acc↑	397 V-score↑	
No-mark	–	–	0.490	–	0.490	–	0.463	–	0.463
DCT	Post	0.889	0.424	0.862	0.423	0.890	0.452	0.858	0.456
DT-CWT	Post	0.619	0.416	0.650	0.436	0.627	0.458	0.611	0.463
VideoMark	None-blind	0.873	0.507	0.758	0.502	0.846	0.483	0.707	0.482
VideoShield	None-blind	1.000	0.497	0.991	0.506	1.000	0.482	0.999	0.482
SIGMark(Ours)	Blind	0.958	0.506	0.885	0.499	0.981	0.472	0.905	0.488

390 for the “diversity” dimension and generate 20 videos per prompt; for the remaining 17 dimensions,
391 we select 5 prompts each and generate 4 videos per prompt, yielding a total of 400 videos. We
392 report bit accuracy between the embedded message m and the recovered message \hat{m} . Video quality
393 is evaluated using the VBench-2.0 protocols to obtain an overall quality score. Detailed examples
394 of the constructed prompt set are provided in Appendix D.

396 4.1.2 IMPLEMENTATION DETAILS

397 We evaluate on two open-source video diffusion models: HunyuanVideo(Kong et al., 2024) and
398 Wan-2.2(Wan et al., 2025), both employing causal 3D VAEs with temporal and spatial compression
399 ratios $d_t = 4$ and $d_s = 8$. For each model, we consider both text-to-video (T2V) and image-to-video
400 (I2V) tasks. For T2V, we generate videos at resolution $h = 512, w = 512$, with 65 frames per video.
401 The first frame is processed independently by the diffusion model, so no watermark is embedded in
402 the first frame. The remaining $f = 64$ frames form $f_l = f/d_t = 16$ causal groups, for each group
403 we maintain one frame-wise PRC key globally. For I2V, we use the same text prompt set to generate
404 the initial image prompt by FLUX(Black Forest Labs et al., 2025) for evaluation.

406 4.2 WATERMARK EXTRACTION RESULTS

408 In this section, we compare our watermarking performance with existing approaches. As presented
409 in Table 1, we report message bit accuracy (“Bit Acc”) and the VBench-2.0 score (“V-score”) for
410 HunyuanVideo. Additional results for Wan-2.2 are provided in Appendix D. We consider two con-
411 figurations: (1) embedding an identical 512-bit watermark message in every causal frame group of a
412 video, and (2) embedding a distinct 512-bit watermark message per causal frame group, correspond-
413 ing to total capacities of 512 bits and $512 \times 16 = 8192$ bits per video, respectively.

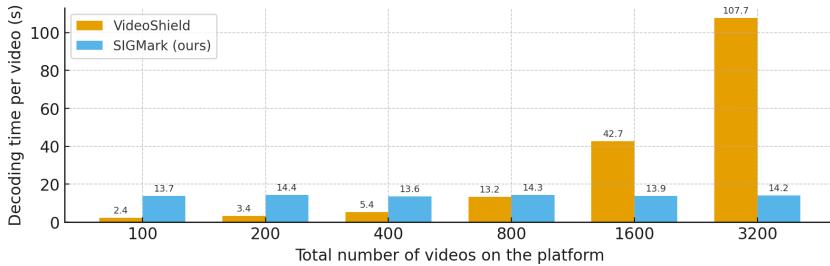
414 We compare our method against four baselines: DCT(Hartung & Girod, 1998a), DT-CWT(Coria
415 et al., 2008), VideoShield(Hu et al., 2025a), and VideoMark(Hu et al., 2025b). DCT and DT-CWT
416 are widely used post-processing watermarking methods for general videos, whereas VideoShield
417 and VideoMark are recent in-generation methods for video diffusion models but are non-blind. For
418 post-processing methods, we first generate a set of standard videos with the diffusion model and
419 then apply watermarking of different settings. As shown in Table 1, post-processing watermarking
420 causes notable quality degradation relative to no-watermark videos, while in-generation methods
421 leave visual quality essentially unaffected. Our proposed SIGMark can be proved to be performance-
422 lossless. Detailed proof can be found in Appendix A. Our proposed SIGMark with blind extraction
423 attains very high bit accuracy under both lower and higher capacity settings, surpassing VideoMark
424 by large margins and remaining competitive with VideoShield which requires access to the original
425 watermark information, thereby demonstrating the effectiveness of our approach.

426
427 ¹We implement DCT and DT-CWT through the open-source code of video-invisible-watermark and blind-
428 video-watermark respectively, and we implement VideoMark and VideoShield by adapting their officially re-
429 leased code and hyper-parameter to new diffusion models and prompts.

430 ²We apply spatial disturbance under 512 bits watermark and temporal disturbances under 512x16 bits.
431 “w/o” denotes without disturbance. “G.noise”, “cmprs” and “blur” denotes Gaussian noise, mpeg compression
432 and blurring, respectively. In temporal disturbances, we randomly drop, insert or clip out 30 frames. The
433 performance degradation compared with no disturbances is marked as subscript.

432 Table 2: Watermark extraction bit accuracy under disturbances on HunyuanVideo I2V.²

434 Method	435 Spatial disturbance				436 Temporal disturbance			
	437 w/o	438 G.noise	439 cmprs	440 blur	441 w/o	442 drop	443 insert	444 clip
445 VideoMark	446 0.85	447 $0.64_{\pm 0.21}$	448 $0.63_{\pm 0.22}$	449 $0.64_{\pm 0.21}$	450 0.71	451 $0.52_{\pm 0.19}$	452 $0.51_{\pm 0.20}$	453 $0.51_{\pm 0.20}$
454 VideoShield	455 1.00	456 $1.00_{\pm 0.00}$	457 $0.99_{\pm 0.01}$	458 $1.00_{\pm 0.00}$	459 0.99	460 $0.89_{\pm 0.10}$	461 $0.84_{\pm 0.15}$	462 $0.83_{\pm 0.16}$
463 SIGMark(Ours)	464 0.98	465 $0.89_{\pm 0.09}$	466 $0.84_{\pm 0.14}$	467 $0.95_{\pm 0.03}$	468 0.91	469 $0.81_{\pm 0.10}$	470 $0.87_{\pm 0.04}$	471 $0.85_{\pm 0.06}$



448 Figure 5: The decoding time cost during watermark extraction.

449 4.3 ROBUSTNESS

450 We assess the robustness of watermarking methods under both spatial and temporal perturbations in
 451 Table 2. For spatial disturbances, our approach incurs only marginal performance degradation, par-
 452 ticularly when compared to VideoMark. Under the challenging temporal disturbances, VideoMark
 453 and VideoShield suffer substantial degradation on diffusion models with causal 3D VAEs, primar-
 454 ily due to incorrect grouping of causal frame groups. Our method mitigates this issue, achieving
 455 negligible performance loss and thereby improving temporal robustness. It is worth noting that our
 456 method does not attain 100% bit accuracy. We attribute this to the relationship of error-tolerance
 457 characteristics of PRC coding and the accuracy of diffusion inversion for different models. A de-
 458 tailed analysis of PRC coding robustness is provided in Appendix E.

461 4.4 EVIDENCE OF SCALABILITY

462 Baseline methods such as VideoShield and VideoMark are non-blind watermarking schemes: they
 463 require storing all watermark-related information (messages, encoding keys, etc.) during generation
 464 and matching against all stored information during extraction. Therefore, extraction cost (in both
 465 time and memory) grows with the total number of generated videos. Our method, SIGMark, is blind:
 466 it maintains only a global set of frame-wise PRC keys and does not require any sample-specific
 467 metadata during extraction. As a result, it supports large-scale video generation platforms with
 468 constant extraction cost. We analyze extraction time cost under scenarios where the total number of
 469 videos generated by the platform varies. For fairness, we run flow-matching inversion on GPU, and
 470 all remaining extraction steps including decryption and message matching on CPU. As shown in
 471 Figure 5, the results demonstrate that the time cost of VideoShield scales linearly with the number
 472 of generated videos, which becomes impractical as the platform scales to millions of videos. In
 473 contrast, SIGMark remains constant, demonstrating strong scalability.

475 5 CONCLUSION

476 Watermarking for video diffusion models is critical for ensuring safety and privacy control in AIGC.
 477 In this work, we introduce SIGMark, the first blind in-generation video watermarking method for
 478 modern diffusion models, offering strong scalability and practical applicability. To enable blind
 479 extraction without storing large-scale watermarking references, we propose a Global Frame-wise
 480 Pseudo-Random Code (GF-PRC) scheme, which encodes watermark messages into the initial latent
 481 noise without compromising video quality or diversity. To further enhance temporal robustness, we
 482 design a Segment Group-Ordering (SGO) module tailored for causal 3D VAEs, ensuring correct wa-
 483 termark inversion. Extensive experiments demonstrate that our approach achieves high bit accuracy
 484 with minimal overhead, validating its scalability and robustness.

486 REFERENCES
487

488 P Aberna and Loganathan Agilandeswari. Digital image and video watermarking: methodologies,
489 attacks, applications, and future directions. *Multimedia Tools and Applications*, 83(2):5531–5591,
490 2024.

491 Md Asikuzzaman and Mark R Pickering. An overview of digital video watermarking. *IEEE Trans-
492 actions on Circuits and Systems for Video Technology*, 28(9):2131–2153, 2017.

493

494 Saoussen Ben Jabra and Mohamed Ben Farah. Deep learning-based watermarking techniques chal-
495 lenges: a review of current and future trends. *Circuits, Systems, and Signal Processing*, 43(7):
496 4339–4368, 2024.

497 Daniel J Bernstein et al. Chacha, a variant of salsa20. In *Workshop record of SASC*, volume 8, pp.
498 3–5. Lausanne, Switzerland, 2008.

499

500 Satyendra Biswas, Sunil R Das, and Emil M Petriu. An adaptive compressed mpeg-2 video wa-
501 termarking scheme. *IEEE transactions on Instrumentation and Measurement*, 54(5):1853–1861,
502 2005.

503 Black Forest Labs et al. Flux.1 kontext: Flow matching for in-context image generation and editing
504 in latent space, 2025. arXiv preprint arXiv:2506.15742.

505

506 Hanqun Cao, Cheng Tan, Zhangyang Gao, Yilun Xu, Guangyong Chen, Pheng-Ann Heng, and
507 Stan Z Li. A survey on generative diffusion models. *IEEE transactions on knowledge and data
508 engineering*, 36(7):2814–2830, 2024.

509

510 Miranda Christ and Sam Gunn. Pseudorandom error-correcting codes. In *Annual International
511 Cryptology Conference*, pp. 325–347. Springer, 2024.

512

513 Lino E. Coria, Mark R. Pickering, and Panos Nasiopoulos. A video watermarking scheme based
514 on the dual-tree complex wavelet transform. *IEEE Transactions on Information Forensics and
515 Security*, 3(3):466–474, 2008. doi: 10.1109/TIFS.2008.927421.

516

517 Ingemar J. Cox, Matthew L. Miller, Jeffrey A. Bloom, Jessica Fridrich, and Ton Kalker. *Digital
518 Watermarking and Steganography*. Morgan Kaufmann, 2007.

519

520 Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu, and Mubarak Shah. Diffusion models
521 in vision: A survey. *IEEE transactions on pattern analysis and machine intelligence*, 45(9):
522 10850–10869, 2023.

523

524 Han Fang, Kejiang Chen, Zijin Yang, Bosen Cui, Weiming Zhang, and Ee-Chien Chang. Cosda:
525 Enhancing the robustness of inversion-based generative image watermarking framework. In *Pro-
526 ceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 2888–2896, 2025.

527

528 Pierre Fernandez, Guillaume Couairon, Hervé Jégou, Matthijs Douze, and Teddy Furon. The sta-
529 ble signature: Rooting watermarks in latent diffusion models. In *Proceedings of the IEEE/CVF
530 International Conference on Computer Vision*, pp. 22466–22477, 2023.

531

532 Frank Hartung and Bernd Girod. Watermarking of uncompressed and compressed video. *Signal
533 Processing*, 66(3):283–301, 1998a. doi: 10.1016/S0165-1684(98)00011-5.

534

535 Frank Hartung and Bernd Girod. Watermarking of uncompressed and compressed video. *Signal
536 processing*, 66(3):283–301, 1998b.

537

538 Mingze He, Hongxia Wang, Fei Zhang, Sani M. Abdullahi, and Ling Yang. Robust blind
539 video watermarking against geometric deformations and online video sharing platform process-
540 ing. *IEEE Transactions on Dependable and Secure Computing*, 20(6):4702–4718, 2023. doi:
541 10.1109/TDSC.2022.3232484.

542

543 Juan R Hernandez, Martin Amado, and Fernando Perez-Gonzalez. Dct-domain watermarking tech-
544 niques for still images: Detector performance analysis and a new structure. *IEEE transactions on
545 image processing*, 9(1):55–68, 2000.

540 Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
 541 Fleet. Video diffusion models. *Advances in neural information processing systems*, 35:8633–
 542 8646, 2022.

543 Runyi Hu, Jie Zhang, Yiming Li, Jiwei Li, Qing Guo, Han Qiu, and Tianwei Zhang. Videoshield:
 544 Regulating diffusion-based video generation models via watermarking. In *Proceedings of the*
 545 *Thirteenth International Conference on Learning Representations*, 2025a. URL <https://openreview.net/forum?id=uzz3qAYy0D>.

546 Xuming Hu, Hanqian Li, Jungang Li, and Aiwei Liu. Videomark: A distortion-free robust water-
 547 marking framework for video diffusion models, 2025b.

548 Huayang Huang, Yu Wu, and Qian Wang. Robin: Robust and invisible watermarks for diffusion
 549 models with adversarial optimization. *Advances in Neural Information Processing Systems*, 37:
 550 3937–3963, 2024a.

551 I.-Chun Huang, Ji-Yan Wu, and Wei Tsang Ooi. Rbmark: Robust and blind video watermark
 552 in dt cwt domain. *Journal of Visual Communication and Image Representation*, 109:104438,
 553 2025. ISSN 1047-3203. doi: <https://doi.org/10.1016/j.jvcir.2025.104438>. URL <https://www.sciencedirect.com/science/article/pii/S1047320325000525>.

554 Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianx-
 555 ingle Wu, Qingyang Jin, Nattapol Chanpaisit, Yaohui Wang, Xinyuan Chen, Limin Wang, Dahua
 556 Lin, Yu Qiao, and Ziwei Liu. VBench: Comprehensive benchmark suite for video generative
 557 models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
 558 tion*, 2024b.

559 Zehui Ke, Hailiang Huang, Yingwei Liang, Yi Ding, Xin Cheng, and Qingyao Wu. Robust video
 560 watermarking based on deep neural network and curriculum learning. In *2022 IEEE International
 561 Conference on e-Business Engineering (ICEBE)*, pp. 80–85, 2022. doi: 10.1109/ICEBE55470.
 562 2022.00023.

563 Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li,
 564 Bo Wu, Jianwei Zhang, et al. Hunyuandvideo: A systematic framework for large video generative
 565 models, 2024.

566 Kuaishou Technology. Kuaishou unveils proprietary video generation model ‘kling’, 2024. URL
 567 <https://ir.kuaishou.com/node/9646/pdf>. Press release.

568 Jian Li, Tao Zuo, Bin Ma, Chunpeng Wang, Peng Zhang, Huanhuan Zhao, and Zhengzhong Zhao.
 569 Robust video watermarking network based on channel spatial attention. In *2024 International
 570 Joint Conference on Neural Networks (IJCNN)*, pp. 1–8, 2024. doi: 10.1109/IJCNN60899.2024.
 571 10650701.

572 Kecen Li, Zhicong Huang, Xinwen Hou, and Cheng Hong. Gaussmarker: Robust dual-domain wa-
 573 termark for diffusion models. In *The Forty-Second International Conference on Machine Learn-
 574 ing*, 2025. URL <https://openreview.net/forum?id=m7Mx14cxv8>.

575 Xiaohang Liu, Heng Chang, Jinfu Wei, Lei Zhu, Li Liu, Likun Li, Shiji Zhou, Chengyuan Li, Di Xu,
 576 and Wei Gao. Implanting robust watermarks in latent diffusion models for video generation. In
 577 *ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing
 578 (ICASSP)*, pp. 1–5, 2025. doi: 10.1109/ICASSP49660.2025.10888991.

579 Huixin Luo, Li Li, and Juncheng Li. Digital watermarking technology for ai-generated images: A
 580 survey. *Mathematics*, 13(4):651, 2025. doi: 10.3390/math13040651.

581 Xiyang Luo, Yinxiao Li, Huiwen Chang, Ce Liu, Peyman Milanfar, and Feng Yang. Dvmark: A
 582 deep multiscale framework for video watermarking. *IEEE Transactions on Image Processing*, 32:
 583 4371–4385, 2023. doi: 10.1109/TIP.2023.3251737.

584 Najla Mohaghegh and Omid Fatemi. H. 264 copyright protection with motion vector watermarking.
 585 In *2008 International Conference on Audio, Language and Image Processing*, pp. 1384–1389.
 586 IEEE, 2008.

594 Maneli Noorkami and Russell M Mersereau. A framework for robust watermarking of h. 264-
 595 encoded video with controllable detection performance. *IEEE Transactions on information foren-*
 596 *sics and security*, 2(1):14–23, 2007.

597

598 OpenAI. Video generation models as world simulators, 2024. URL <https://openai.com/index/video-generation-models-as-world-simulators/>. Official model an-
 599 nouncement and technical overview.

600

601 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*
 602 *the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.

603

604 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 605 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 606 synthesis. In *Proceedings of the International Conference on Learning Representations (ICLR)*.
 607 OpenReview.net, 2024. URL <https://openreview.net/forum?id=di52zR8xgf>.
 608 Spotlight.

609

610 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 611 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Con-*
 612 *ference on Computer Vision and Pattern Recognition*, pp. 10684–10695, 2022.

613

614 Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu,
 615 Haiming Zhao, Jianxiao Yang, et al. Wan: Open and advanced large-scale video generative
 616 models, 2025.

617

618 Tao Wang, Yushu Zhang, Shuren Qi, Ruoyu Zhao, Zhihua Xia, and Jian Weng. Security and privacy
 619 on generative data in aigc: A survey. *ACM Computing Surveys*, 57(4), 2024. doi: 10.1145/
 3703626.

620

621 Zihan Wang, Olivia Byrnes, Hu Wang, Ruoxi Sun, Congbo Ma, Huaming Chen, Qi Wu, and Minhui
 622 Xue. Data hiding with deep learning: A survey unifying digital watermarking and steganography.
 623 *IEEE Transactions on Computational Social Systems*, 10(6):2985–2999, 2023. doi: 10.1109/
 624 TCSS.2023.3268950.

625

626 Quan Yan, Yuanjing Luo, Zhangdong Wang, Junhua Xi, Geming Xia, and Zhiping Cai. Spatiotem-
 627 poral attention-based real-time video watermarking. *Data Mining and Knowledge Discovery*, 39
 628 (5):62, 2025.

629

630 Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
 631 Wenyi Hong, Xiaohan Zhang, Guanyu Feng, Da Yin, Yuxuan Zhang, Weihan Wang, Yean Cheng,
 632 Bin Xu, Xiaotao Gu, Yuxiao Dong, and Jie Tang. Cogvideox: Text-to-video diffusion models with
 633 an expert transformer. In *Proceedings of the Thirteenth International Conference on Learning
 634 Representations*, 2025. URL <https://arxiv.org/abs/2408.06072>.

635

636 Zijin Yang, Kai Zeng, Kejiang Chen, Han Fang, Weiming Zhang, and Nenghai Yu. Gaussian shad-
 637 ing: Provable performance-lossless image watermarking for diffusion models. In *Proceedings*
 638 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 12162–
 639 12171, June 2024.

640

641 Kamil Yasen, Guiquan Wan, Li Zhan, Ke Qin, and Ye Li. Dt cwt-based video watermarking robust
 642 to recompression attack. In Guangqiang Yin, Xiaodong Liu, Jian Su, and Yangzhao Yang (eds.),
 643 *Proceedings of the 14th International Conference on Computer Engineering and Networks*, pp.
 644 177–188, Singapore, 2025. Springer Nature Singapore. ISBN 978-981-96-4229-8.

645

646 Shunyang Zeng, Linlin Yang, Jin Yang, Yezhen Wang, and Tianyu Gao. Dtr: Dynamic tree-ring
 647 watermarking framework for diffusion-based video generation. In *ICASSP 2025 - 2025 IEEE
 648 International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 1–5, 2025.
 649 doi: 10.1109/ICASSP49660.2025.10888152.

650

651 Kevin Alex Zhang, Lei Xu, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Robust invisible
 652 video watermarking with attention. *arXiv preprint arXiv:1909.01285*, 2019.

648 Lvmi Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
649 diffusion models. In *Proceedings of the IEEE/CVF international conference on computer vision*,
650 pp. 3836–3847, 2023.

651

652 Zhiwei Zhang, Han Wang, Guisong Wang, and Xinxiao Wu. Hide and track: Towards blind video
653 watermarking network in frequency domain. *Neurocomputing*, 579:Article 127435, 2024. doi:
654 10.1016/j.neucom.2024.127435.

655 Dian Zheng, Ziqi Huang, Hongbo Liu, Kai Zou, Yinan He, Fan Zhang, Lulu Gu, Yuanhan Zhang,
656 Jingwen He, Wei-Shi Zheng, Yu Qiao, and Ziwei Liu. Vbench-2.0: Advancing video generation
657 benchmark suite for intrinsic faithfulness, 2025.

658

659 Jiren Zhu, Russell Kaplan, Justin Johnson, and Li Fei-Fei. Hidden: Hiding data with deep networks.
660 In *Proceedings of the European conference on computer vision (ECCV)*, pp. 657–672, 2018.

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701