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ABSTRACT

Artificial Intelligence Generated Content (AIGC), particularly video generation
with diffusion models, has been advanced rapidly. Invisible watermarking is a
key technology for protecting AI-generated videos and tracing harmful content,
and thus plays a crucial role in AI safety. Beyond post-processing watermarks
which inevitably degrade video quality, recent studies have proposed distortion-
free in-generation watermarking for video diffusion models. However, existing
in-generation approaches are non-blind: they require maintaining all the message-
key pairs and performing template-based matching during extraction, which in-
curs prohibitive computational costs at scale. Moreover, when applied to modern
video diffusion models with causal 3D Variational Autoencoders (VAEs), their
robustness against temporal disturbance becomes extremely weak. To overcome
these challenges, we propose SIGMark, a Scalable In-Generation watermarking
framework with blind extraction for video diffusion. To achieve blind-extraction,
we propose to generate watermarked initial noise using a Global set of Frame-
wise PseudoRandom Coding keys (GF-PRC), reducing the cost of storing large-
scale information while preserving noise distribution and diversity for distortion-
free watermarking. To enhance robustness, we further design a Segment Group-
Ordering module (SGO) tailored to causal 3D VAEs, ensuring robust watermark
inversion during extraction under temporal disturbance. Comprehensive experi-
ments on modern diffusion models show that SIGMark achieves very high bit-
accuracy during extraction under both temporal and spatial disturbances with min-
imal overhead, demonstrating its scalability and robustness.

1 INTRODUCTION

In the field of Artificial Intelligence Generated Content (AIGC), diffusion models have rapidly ad-
vanced image and video generation (Croitoru et al., 2023; Cao et al., 2024). Latent diffusion models
proposed by Rombach et al. (2022) generates images by denoising sampled noise in latent space.
Extending from this, video diffusion models generate temporally coherent frame sequences by en-
forcing both spatial and temporal consistency (Ho et al., 2022). With the rapid proliferation of
AI-generated videos, privacy and security concerns have become increasingly critical (Wang et al.,
2024). On the one hand, as a widely used creative tool, AI-generated high-quality videos con-
stitute valuable intellectual property (IP) and necessitate reliable copyright identification. On the
other hand, the ease of producing harmful or misleading content calls for strict control mechanisms,
requiring effective methods to trace their source of generation.

To meet the demands of privacy and security, watermarking technology (Cox et al., 2007) has been
widely applied in AIGC (Luo et al., 2025). Invisible watermarking embeds information in a way
imperceptible to the human eye, thereby preserving visual quality while remaining robust to various
distortions and even malicious attacks (Wang et al., 2023). For AI-generated videos, a straightfor-
ward approach is to treat them like conventional videos and apply invisible watermarking to each
frame after generation (Luo et al., 2023; Zhang et al., 2024), known as post-processing watermark-
ing (see Figure 1(a)). However, such methods inevitably introduce redundant information, thereby
degrading overall video quality. Recently, in-generation watermarking has been explored for both
image (Yang et al., 2024; Li et al., 2025) and video generation (Hu et al., 2025a;b). As illustrated
in Figure 1(b), these methods embed watermark messages during generation process, typically by
sampling a watermarked initial noise in which the message is encoded using a secret key. During ex-
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Figure 1: (a) Post-processing watermarks: embedding watermarks in pixel-space which inevitably
degrades video quality. (b) Existing in-generation methods: maintaining all the message-key pairs
for matching, incurring high extraction costs and poor robustness. (c) Our proposed SIGMark: a
blind watermarking framework with global frame-wise PRC keys which is inherently scalable.

traction, the watermarked video is inverted (commonly via DDIM inversion) back into latent noise,
and then decoded with the key to recover the watermark. These approaches have been theoretically
proven to be distortion-free for diffusion models.

Although in-generation video watermarking offers the advantage of being distortion-free, it still
faces two critical challenges: (1) High extraction cost at scale. When extracting watermark mes-
sages from videos subject to temporal disturbances (e.g., frame removal during compression), cur-
rent methods rely on template matching with the original latent noise. This requires maintaining
all message-key pairs during watermark embedding, and computing matching functions across the
entire database, as shown in Figure 1(b). Such approaches are non-blind, with the extraction cost
growing linearly with the scale of users or generation requests, severely limiting scalability. (2) Poor
temporal robustness. Modern video diffusion models (Yang et al., 2025; Kong et al., 2024) employ
causal 3D Variational Autoencoders (VAE), which decode a group of adjacent frames from one tem-
poral dimension of latent features. During extraction, video inversion requires the correct grouping
of frames to reconstruct the latent feature. Temporal disturbance which disrupts the grouping will
produce unrelated latent features, ultimately leading to very low extracted bit accuracy.

To address these issues and ensure usability at large-scale video generation platforms, we introduce
SIGMark: scalable in-generation watermarking with blind extraction for video diffusion models.

To reduce the high extraction cost at scale, we propose Global Frame-wise PseudoRandom Coding
(GF-PRC) scheme for watermark embedding, thereby enabling a blind watermarking framework.
Specifically, a global set of frame-wise PRC keys (pseudorandom error-correction code by Christ &
Gunn (2024)) is shared across all generation requests, with each key assigned to a group of temporal
frames. Watermark messages are encoded into random latent noise with these keys, which preserves
diversity and generative performance. During extraction, the global frame-wise PRC directly de-
codes the inverted noise without matching with the original messages. Throughout this process,
the system only needs to maintain the global frame-wise PRC keys, reducing extraction complexity
from linear in the number of generation requests to constant, and achieving strong scalability.

To enhance temporal robustness, we introduce a Segment Group-Ordering (SGO) module tailored to
causal 3D VAEs in modern video diffusion models. Specifically, for a video potentially affected by
temporal disturbances, we first partition it into motion-consistent segments using Farnebäck optical
flow; within each segment, a sliding-window grouping detector infers the original causal frame
groups. This procedure recovers the correct grouping and, in turn, yields accurate inverted latents
for watermark extraction under temporal disturbances.

We conduct comprehensive experiments on modern video diffusion models (HunyuanVideo by
Kong et al. (2024) and Wan-2.2 by Wan et al. (2025)), covering both text-to-video (T2V) and image-
to-video (I2V) pipelines. A subset of VBench-2.0(Zheng et al., 2025) under 18 evaluation dimen-
sions is sampled to generate 400 videos for evaluation. Results show that our method achieves very
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high bit accuracy with high watermark capacity with minimal extraction cost. Our method maintains
high accuracy under spatial and temporal disturbances, demonstrating strong robustness.

In conclusion, the main contributions of this paper are:

• We identify two critical issues in existing in-generation video watermarks: high extraction
cost and poor temporal robustness, which hinder their scalability to large platforms.

• We propose SIGMark, a scalable in-generation watermarking framework with blind extrac-
tion for video diffusion, effectively addressing the limitations of scalability and robustness.

• We conduct extensive experiments for SIGMark on modern video diffusion models and
comprehensive evaluation benchmarks, demonstrating its effectiveness and robustness.

2 RELATED WORKS

2.1 DIFFUSION MODELS

In the field of Artificial Intelligence Generated Content (AIGC), diffusion models have rapidly ad-
vanced image and video generation. Latent diffusion model (LDM)(Rombach et al., 2022) synthe-
sizes content by denoising sampled noise in latent space and decoding it through a Variational Au-
toencoder (VAE). Building on LDM, works such as SDXL (Podell et al., 2024), ControlNet (Zhang
et al., 2023) and DiT (Peebles & Xie, 2023) further improve image generation with stronger photore-
alism and higher resolution, fine-grained structural control, and greater scalability. Extending from
images, video diffusion models tackle the task of generating temporally coherent frame sequences
(Ho et al., 2022). Following the success of Sora (OpenAI, 2024), a wave of open-source video dif-
fusion models including KLING (Kuaishou Technology, 2024), HunyuanVideo (Kong et al., 2024),
and Wan (Wan et al., 2025) has emerged. They adopt causal 3D VAEs that compress videos along
spatial and temporal dimensions to form compact latent sequences for diffusion, enabling longer,
higher-quality videos with improved temporal consistency. Our research focuses on watermarking
for diffusion-generated videos and evaluates on HunyuanVideo and Wan-2.2.

2.2 VIDEO WATERMARKING

Video invisible watermarking embeds imperceptible, durable signals in video to enable rights man-
agement and piracy deterrence (Asikuzzaman & Pickering, 2017; Aberna & Agilandeeswari, 2024).
The straightforward image-based watermarking approaches operate frames individually (Hartung
& Girod, 1998b; Hernandez et al., 2000), while video-based works explicitly exploit temporal in-
formation via compressed domain (Biswas et al., 2005; Noorkami & Mersereau, 2007) and motion
vectors produced during compression (Mohaghegh & Fatemi, 2008). Recently, deep learning has
been applied to watermarking for images (Zhu et al., 2018) and videos (Ben Jabra & Ben Farah,
2024): Zhang et al. (2019) introduced RivaGAN, training an encoder-decoder framework for robust
watermarking. Subsequent work advances robustness and capacity through curriculum learning (Ke
et al., 2022), low-order recursive Zernike-moment embedding (He et al., 2023), multiscale distri-
bution modeling (Luo et al., 2023), complex wavelet transforms (Yasen et al., 2025; Huang et al.,
2025), adversarially optimization under frequency domain Huang et al. (2024a), and spatiotem-
poral attention (Li et al., 2024; Yan et al., 2025). However, embedding extra signals inevitably
degrades visual quality. We instead pursue in-generation watermarking for diffusion models, which
is training-free and provably distortion-free.

2.3 IN-GENERATION WATERMARKING FOR DIFFUSION MODELS

With the rapid progress of image and video diffusion models, watermarking for diffusion-generated
content has likewise gained traction. Recent work integrates watermark embedding into the genera-
tive process to reduce performance degradation. Fernandez et al. (2023) fine-tune the LDM decoder
using a pre-trained watermark extractor, enabling reliable extraction from images produced by the
fine-tuned model. Yang et al. (2024) introduce Gaussian Shading, the first approach to sample wa-
termarked initial noise for image generation, which is provably distortion-free. Subsequent studies
further enhance robustness during the embedding and inversion phases (Li et al., 2025; Fang et al.,
2025). In-generation watermarking has also been extended from images to videos: Liu et al. (2025)
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Figure 2: Overview of our proposed SIGMark. Embedding: We encode the watermark message into
the initial latent noise using a Global set of Frame-wise Pseudo-Random Coding (GF-PRC) keys.
The diffusion model then denoises this noise into video frames that carry the embedded messages.
Extraction: A (possibly disturbed) video is first processed by our proposed Segment Group-Ordering
(SGO) module to recover the correct causal frame grouping, then inverted to obtain the latent noise,
from which the message is decoded using the GF-PRC keys. The system stores only the GF-PRC
keys for both embedding and extraction, enabling blind watermarking.

propose a two-stage implanting scheme during the diffusion process. Other works encrypt the wa-
termark message into the initial latent noise via Gaussian sampling (Hu et al., 2025a) or dynamic
tree-ring (Zeng et al., 2025), preserving video generation quality. Hu et al. (2025b) adopt PRC for
watermark encryption and decryption, maintaining generative diversity across messages. Despite
being distortion-free, advanced in-generation methods by Hu et al. (2025a;b) still face high extrac-
tion costs at scale and poor temporal robustness. We are the first to identify and address these issues
in modern video diffusion models, achieving strong scalability and temporal robustness.

3 METHOD

3.1 PROBLEM FORMULATION

This paper focuses on in-generation watermarking for video diffusion models. We first formalize the
problem. Given a diffusion model M, our goal is to embed a watermark message m into generated
video frames VF(m) = Embed(M;m) without degrading the performance of the diffusion model.
The watermarked video frames may undergo temporal disturbances (e.g., frame drops) or spatial
disturbances (e.g., cropping), yet the tampered frames VF′ should still permit reliable watermark
extraction. We adopt the blind-watermark setting: during extraction, neither the original message m
nor the original generated video frames VF is available, and the message is recovered solely from
the tampered video frames and the model, i.e., m̂ = Extract(M; VF′). We emphasize robustness:
even under strong disturbances to VF′, the recovered message m̂ remains close to m.

During watermark embedding, we follow the in-generation scheme of Yang et al. (2024); Hu et al.
(2025a). The watermark message m is encrypted into the initial latent noise without altering its
distribution, i.e., z0(m) ∼ N (0, I). The model then denoises this noise with text prompts to gen-
erate videos, thereby preserving generative performance. However, existing methods require the
original message m for template matching during extraction, limiting scalability in real-world de-
ployments. Moreover, when applied to modern diffusion models with causal 3D VAEs, they exhibit
poor robustness under temporal disturbances.

3.2 FRAMEWORK OVERVIEW

An overview of our scalable in-generation watermarking framework, SIGMark, is shown in Fig-
ure 2. We follow the in-generation watermarking scheme which embeds the watermark message
into the initial latent noise to generate distortion-free watermarked video through diffusion (left part
of Figure 2), and then process the video through inversion to obtain inverted latent noise for water-
mark extraction (right part of Figure 2). To enable blind watermarking and reduce extraction cost at
scale, we introduce a Global Frame-wise Pseudo-Random Coding (GF-PRC) scheme for message
encryption and decryption. During embedding, the watermark message is encoded into the initial la-
tent noise using a global set of frame-wise PRC keys, each key assigned to one temporal dimension
of latent features. During extraction, given a possibly tampered video, a Segment Group-Ordering
(SGO) module restores the correct causal frame grouping by Farnebäck optical flow segmentation
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Figure 3: Watermark embedding with GF-PRC scheme. We set fl = 2, f = 8 with compression
ratio dt = f/fl = 4 as an example. Orange and purple denote message m[0] and m[1] respectively.

and sliding-window grouping detector. We then perform inversion to recover the watermarked la-
tent and decode the message with the GF-PRC keys. GF-PRC enables blind extraction where only
the global keys are stored in the system, while maintaining high-accuracy message recovery under
disturbances. We elaborate the details of our proposed modules in the following sections.

3.3 WATERMARK EMBEDDING

Following the in-generation watermarking scheme(Yang et al., 2024; Hu et al., 2025a), we map the
watermark message bits into the initial latent noise without affecting the Gaussian distribution of the
noise for watermark embedding. To achieve blind watermarking, we propose to utilize a Global set
of Frame-wise Pseudo-Random coding (GF-PRC) scheme for watermark embedding.

3.3.1 VIDEO GENERATION BY MODERN DIFFUSION MODELS

For a modern video diffusion model(Kong et al., 2024; Wan et al., 2025) M, which consists of a
text prompt encoder Etext, a denoising diffusion transformer T , and the encoder E3D and decoder
D3D of the causal 3D Variational Autoencoders (VAE), the denoising steps happen on latent-space
features z ∈ Rfl×cl×hl×wl , where fl, cl, hl, wl denote the frame, channel, height, and width di-
mensions in latent space. The diffusion transformer T denoises a randomly initialized latent noise
z0 ∼ N (o, I) guided by the text prompt: zτ = Denoise

(
T ; zo;Etext(prompt)

)
, where τ denotes

the number of denoising steps. The denoised latent feature zτ is then processed by the causal 3D
VAE decoder to generate video frames VF ∈ Rf×c×h×w, where f, c, h, w denote the frame, chan-
nel, height, and width of the generated video. The whole process can be formulated as:

VF = Diffusion(M; zo; prompt) (1)

= D3D

(
Denoise

(
T ; zo;Etext(prompt)

))
. (2)

The causal 3D VAE introduces information compression along both spatial and temporal dimen-
sions, where f = fl × dt, h = hl × ds, and w = wl × ds, with dt, ds denoting the temporal and
spatial compression ratios, respectively. As a result, a group of dt frames is decoded from one tem-
poral dimension of the latent features. Our proposed SIGMark embeds the watermark message into
the latent noise via the GF-PRC scheme, yielding a sequence of watermark bits carried by a causal
group of video frames, as detailed in the next paragraph.

3.3.2 GLOBAL FRAME-WISE PSEUDORANDOM CODING SCHEME

We propose embedding all watermark messages using a global set of frame-wise pseudorandom
coding keys, as shown in Figure 3. Specifically, for a watermark message m ∈ {0, 1}fl×M where
fl is the number of latent frames and M is the bit length carried by each causal frame group, we
encode m into a random template bit sequence TP ∈ {0, 1}fl×(cl×hl×wl) using the pseudorandom
error-correction code (simplified as pseudorandom code, PRC) proposed by Christ & Gunn (2024):

TP[i] = PRC.Encode
(
m[i];K[i]

)
, i ∈ {0, 1, 2, ..., fl − 1} (3)

Here, K denotes the pseudorandom error-correction coding keys; K[i] is the key for frame dimen-
sion i in latent space, with m[i] ∈ {0, 1}M and TP[i] ∈ {0, 1}(cl×hl×wl). We allocate one PRC key
per causal frame group in latent space, enhancing robustness and enabling causal frame grouping
and ordering information recovery (detailed in the next section). Given the randomized template
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Figure 4: Segment Group-Ordering (SGO) module. We set compression ratio dt = f/fl = 4 as an
example. When temporal disturbances (e.g., clipping or frame drops) occur, the causal grouping is
disrupted; without re-ordering, this leads to incorrectly encoded latent features. Our SGO module
restores the correct grouping and ordering, yielding robust latent features for video inversion.

TP, we map the watermark message into the initial latent noise by element-wise modulation:

z0(m) = (TP ∗ 2− 1) ∗ |z0| (4)

With the random absolute value from Gaussian sampling and the randomized template bits as
the modulation signal, the embedded initial noise remains Gaussian, z0(m) ∼ N (0, 1), and thus
does not degrade the diffusion model’s generative performance. Consequently, the generated video
frames are watermarked with m via:

VF(m) = Diffusion
(
M; z0(m); prompt

)
(5)

Note that in our GF-PRC scheme, the frame-wise PRC keys are global: every generation request
shares the same key set, and each latent frame dimension carries one watermark sequence encoded
by its corresponding PRC key. The total number of GF-PRC keys can be set to the maximum frame
capacity of the video generation system, enabling watermarking for videos of arbitrary length. PRC
by Christ & Gunn (2024) introduces a pseudo-random mapping that can encode even the same
message into different random template bits, thereby preserving randomness in the initial latent
noise under global keys, which traditional stream ciphers (e.g., ChaCha20(Bernstein et al., 2008))
used in prior in-generation non-blind methods(Yang et al., 2024; Hu et al., 2025a) cannot provide
with the fixed keying material. The detailed explanation can be seen in Appendix A.

3.4 WATERMARK EXTRACTION

As shown in Figure 2, given a test video, we first apply the Segment Group-Ordering module to
recover the grouping and ordering information of video frames, enhancing robustness against tem-
poral disturbances, then perform diffusion-based inversion to obtain the inverted latent noise, and
finally apply PRC decoding to recover the message.

3.4.1 SEGMENT GROUP-ORDERING MODULE

A watermarked video may encounter various disturbances, among which temporal disturbances are
particularly critical for modern diffusion models with causal 3D VAEs. As shown on the left of
Figure 4, the original frames VF(m) are generated in causal groups of 4 (frames sharing the same
color). After video clipping or frame drops, the disturbed video VF′ loses both grouping and order-
ing information. If such frames are fed directly into the causal 3D VAE encoder, the mis-grouping
(e.g., differently colored frames within a group) produces latent features that are inconsistent with
those of VF(m), thereby preventing reliable recovery of the message bits via inversion. To address
the issue of weak temporal robustness, we propose a Segment Group-Ordering (SGO) module as
shown in the right part of Figure 4 to recover the grouping and ordering information of the disturbed
video for correct encoding.

Optical flow segmentation: We propose a optical-flow method to partition a video into maximally
contiguous subsequences with consistent temporal dynamics. For each adjacent pair (VF[t],VF[t+
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1]), we compute bidirectional Farnebäck flow and derive three indicators of temporal consistency: (i)
median flow magnitude, (ii) forward-backward consistency, and (iii) motion-compensated residual.
These are normalized via median absolute deviation and combined with a weighted sum to form
a discontinuity score. The score is smoothed with a Gaussian filter, and temporal cut points are
detected using hysteresis thresholding. The procedure runs near real time and outputs contiguous
frame segments. Within each segment, we then perform sliding-window grouping detection. Further
details of the optical-flow segmentation algorithm are provided in Appendix C.

Sliding-window detection: Given a contiguous frame segment, we only need to identify the first
frame of a causal group, and the subsequent frames can then be grouped correctly. To this end, we
leverage the global frame-wise PRC keys. Specifically, we pad (dt − 1) frames at the beginning of
the segment and apply a sliding window over the padded sequence. At sliding index j, we invert
frames [j : j + 2 ∗ dt] to obtain two latent frame dimensions z′0[j] and z′0[j + 1]. Using the global
PRC keys, the frame index of each latent can be determined by:

ˆIdx[j] = argmax
(
PRC.Detect(z′0[j];K[0, 1, ..., fl])

)
, ˆIdx[j] ∈ {0, 1, ..., fl} (6)

We stop sliding when the detections are consecutive, i.e., ˆIdx[j] + 1 = ˆIdx[j + 1], indicating that
the current grouping yields the correct segment start for inversion. The results from all segments are
then merged to produce the re-grouped frames VF′

r, as shown in Figure 4. This procedure recovers
correct ordering and grouping information and is robust to frame insertion, swapping, dropping, and
clipping. Further details of the sliding-window detection algorithm are provided in Appendix C.

3.4.2 MESSAGE BITS EXTRACTION

Following the in-generation watermarking paradigm(Yang et al., 2024; Hu et al., 2025a), we
perform inversion on the re-grouped frames to extract the watermark bits. The latent features
z′τ ∈ Rfl×cl×hl×wl are first obtained via the causal 3D VAE encoder, and then inverted through the
diffusion transformer (the flow-matching Euler discrete inversion for HunyuanVideo(Kong et al.,
2024) and Wan(Wan et al., 2025)):

z′τ = E3D(VF′
r) (7)

z′0 = Inversion(M; z′τ ; prompt∅) (8)

where prompt∅ denotes an empty prompt, since no original generation information is available.
Given the inverted latent noise z′0 ∈ Rfl×cl×hl×wl , we decode the GF-PRC keys K by applying
PRC to the signs of z′0:

m̂[i] = PRC.Decode

(
Sgn

(
z′0[i]

)
+ 1

2
;K[i]

)
, i ∈ {0, 1, 2, ..., fl − 1} (9)

where Sgn(·) is the sign function. With the global PRC key set, no additional information needs to
be stored during generation, and no template matching (as in Hu et al. (2025a;b)) is required during
extraction. Therefore, our proposed SIGMark enables blind watermarking with minor computation
cost and strong scalability. Details of message extraction cost are provided in Appendix B.

4 EXPERIMENTS

In this section, we conduct experiments on modern video diffusion models. We detail the experimen-
tal setup in Section 4.1, report bit accuracy comparisons with existing methods in Section 4.2, assess
temporal and spatial robustness in Section 4.3, and present evidence of scalability in Section 4.4.

4.1 EXPERIMENTAL SETTINGS

4.1.1 DATASETS AND METRIC

To comprehensively assess modern video diffusion models, we conduct experiments on a subset
of prompts from VBench-2.0(Zheng et al., 2025), which offers more evaluation dimensions and
more complex prompts than VBench-1.0(Huang et al., 2024b) used by existing researches on earlier
diffusion models(Hu et al., 2025a;b). Among the 18 dimensions in VBench-2.0, we select 3 prompts
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Table 1: Video watermarking results: message recovery bit accuracy and video quality score.1

Diffusion model HunyuanVideo T2V HunyuanVideo I2V

Watermarking 512 bits 512×16 bits 512 bits 512×16 bits
Method Category Bit acc↑ V-score↑ Bit acc↑ V-score↑ Bit acc↑ V-score↑ Bit acc↑ V-score↑
No-mark – – 0.490 – 0.490 – 0.463 – 0.463

DCT Post 0.889 0.424 0.862 0.423 0.890 0.452 0.858 0.456
DT-CWT Post 0.619 0.416 0.650 0.436 0.627 0.458 0.611 0.463

VideoMark None-blind 0.873 0.507 0.758 0.502 0.846 0.483 0.707 0.482
VideoShield None-blind 1.000 0.497 0.991 0.506 1.000 0.482 0.999 0.482

SIGMark(Ours) Blind 0.958 0.506 0.885 0.499 0.981 0.472 0.905 0.488

for the “diversity” dimension and generate 20 videos per prompt; for the remaining 17 dimensions,
we select 5 prompts each and generate 4 videos per prompt, yielding a total of 400 videos. We
report bit accuracy between the embedded message m and the recovered message m̂. Video quality
is evaluated using the VBench-2.0 protocols to obtain an overall quality score. Detailed examples
of the constructed prompt set are provided in Appendix D.

4.1.2 IMPLEMENTATION DETAILS

We evaluate on two open-source video diffusion models: HunyuanVideo(Kong et al., 2024) and
Wan-2.2(Wan et al., 2025), both employing causal 3D VAEs with temporal and spatial compression
ratios dt = 4 and ds = 8. For each model, we consider both text-to-video (T2V) and image-to-video
(I2V) tasks. For T2V, we generate videos at resolution h = 512, w = 512, with 65 frames per video.
The first frame is processed independently by the diffusion model, so no watermark is embedded in
the first frame. The remaining f = 64 frames form fl = f/dt = 16 causal groups, for each group
we maintain one frame-wise PRC key globally. For I2V, we use the same text prompt set to generate
the initial image prompt by FLUX(Black Forest Labs et al., 2025) for evaluation.

4.2 WATERMARK EXTRACTION RESULTS

In this section, we compare our watermarking performance with existing approaches. As presented
in Table 1, we report message bit accuracy (“Bit Acc”) and the VBench-2.0 score (“V-score”) for
HunyuanVideo. Additional results for Wan-2.2 are provided in Appendix D. We consider two con-
figurations: (1) embedding an identical 512-bit watermark message in every causal frame group of a
video, and (2) embedding a distinct 512-bit watermark message per causal frame group, correspond-
ing to total capacities of 512 bits and 512×16=8192 bits per video, respectively.

We compare our method against four baselines: DCT(Hartung & Girod, 1998a), DT-CWT(Coria
et al., 2008), VideoShield(Hu et al., 2025a), and VideoMark(Hu et al., 2025b). DCT and DT-CWT
are widely used post-processing watermarking methods for general videos, whereas VideoShield
and VideoMark are recent in-generation methods for video diffusion models but are non-blind. For
post-processing methods, we first generate a set of standard videos with the diffusion model and
then apply watermarking of different settings. As shown in Table 1, post-processing watermarking
causes notable quality degradation relative to no-watermark videos, while in-generation methods
leave visual quality essentially unaffected. Our proposed SIGMark can be proved to be performance-
lossless. Detailed proof can be found in Appendix A. Our proposed SIGMark with blind extraction
attains very high bit accuracy under both lower and higher capacity settings, surpassing VideoMark
by large margins and remaining competitive with VideoShield which requires access to the original
watermark information, thereby demonstrating the effectiveness of our approach.

1We implement DCT and DT-CWT through the open-source code of video-invisible-watermark and blind-
video-watermark respectively, and we implement VideoMark and VideoShield by adapting their officially re-
leased code and hyper-parameter to new diffusion models and prompts.

2We apply spatial disturbance under 512 bits watermark and temporal disturbances under 512x16 bits.
“w/o” denotes without disturbance. “G.noise”, “cmprs” and “blur” denotes Gaussian noise, mpeg compression
and blurring, respectively. In temporal disturbances, we randomly drop, insert or clip out 30 frames. The
performance degradation compared with no disturbances is marked as subscript.
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Table 2: Watermark extraction bit accuracy under disturbances on HunyuanVideo I2V.2

Method Spatial disturbance Temporal disturbance
w/o G.noise cmprs blur w/o drop insert clip

VideoMark 0.85 0.64↓0.21 0.63↓0.22 0.64↓0.21 0.71 0.52↓0.19 0.51↓0.20 0.51↓0.20
VideoShield 1.00 1.00↓0.00 0.99↓0.01 1.00↓0.00 0.99 0.89↓0.10 0.84↓0.15 0.83↓0.16

SIGMark(Ours) 0.98 0.89↓0.09 0.84↓0.14 0.95↓0.03 0.91 0.81↓0.10 0.87↓0.04 0.85↓0.06

Figure 5: The decoding time cost during watermark extraction.

4.3 ROBUSTNESS

We assess the robustness of watermarking methods under both spatial and temporal perturbations in
Table 2. For spatial disturbances, our approach incurs only marginal performance degradation, par-
ticularly when compared to VideoMark. Under the challenging temporal disturbances, VideoMark
and VideoShield suffer substantial degradation on diffusion models with causal 3D VAEs, primar-
ily due to incorrect grouping of causal frame groups. Our method mitigates this issue, achieving
negligible performance loss and thereby improving temporal robustness. It is worth noting that our
method does not attain 100% bit accuracy. We attribute this to the relationship of error-tolerance
characteristics of PRC coding and the accuracy of diffusion inversion for different models. A de-
tailed analysis of PRC coding robustness is provided in Appendix E.

4.4 EVIDENCE OF SCALABILITY

Baseline methods such as VideoShield and VideoMark are non-blind watermarking schemes: they
require storing all watermark-related information (messages, encoding keys, etc.) during generation
and matching against all stored information during extraction. Therefore, extraction cost (in both
time and memory) grows with the total number of generated videos. Our method, SIGMark, is blind:
it maintains only a global set of frame-wise PRC keys and does not require any sample-specific
metadata during extraction. As a result, it supports large-scale video generation platforms with
constant extraction cost. We analyze extraction time cost under scenarios where the total number of
videos generated by the platform varies. For fairness, we run flow-matching inversion on GPU, and
all remaining extraction steps including decryption and message matching on CPU. As shown in
Figure 5, the results demonstrate that the time cost of VideoShield scales linearly with the number
of generated videos, which becomes impractical as the platform scales to millions of videos. In
contrast, SIGMark remains constant, demonstrating strong scalability.

5 CONCLUSION

Watermarking for video diffusion models is critical for ensuring safety and privacy control in AIGC.
In this work, we introduce SIGMark, the first blind in-generation video watermarking method for
modern diffusion models, offering strong scalability and practical applicability. To enable blind
extraction without storing large-scale watermarking references, we propose a Global Frame-wise
Pseudo-Random Code (GF-PRC) scheme, which encodes watermark messages into the initial latent
noise without compromising video quality or diversity. To further enhance temporal robustness, we
design a Segment Group-Ordering (SGO) module tailored for causal 3D VAEs, ensuring correct wa-
termark inversion. Extensive experiments demonstrate that our approach achieves high bit accuracy
with minimal overhead, validating its scalability and robustness.
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