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Abstract

Radiology reports are critical for clinical001
decision-making but often lack a standard-002
ized format, limiting both human interpretabil-003
ity and machine learning (ML) applications.004
While large language models (LLMs) like GPT-005
4 can effectively reformat these reports, their006
proprietary nature, computational demands,007
and data privacy concerns limit clinical deploy-008
ment. To address this challenge, we employed009
lightweight encoder-decoder models (<300M010
parameters), specifically T5 and BERT2BERT,011
to structure radiology reports from the MIMIC-012
CXR and CheXpert databases. We bench-013
marked our lightweight models against five014
open-source LLMs (3-8B parameters), which015
we adapted using in-context learning (ICL)016
and low-rank adaptation (LoRA) finetuning.017
We found that our best-performing lightweight018
model outperforms all ICL-adapted LLMs on019
a human-annotated test set across all metrics020
(BLEU: 212%, ROUGE-L: 63%, BERTScore:021
59%, F1-RadGraph: 47%, GREEN: 27%, F1-022
SRRG-Bert: 43%). While the overall best-023
performing LLM (Mistral-7B with LoRA)024
achieved a marginal 0.3% improvement in025
GREEN Score over the lightweight model, this026
required 10× more training and inference time,027
resulting in a significant increase in computa-028
tional costs and carbon emissions. Our results029
highlight the advantages of lightweight mod-030
els for sustainable and efficient deployment in031
resource-constrained clinical settings.032

1 Introduction033

Radiology reports play a critical role in clinical034

workflows by summarizing imaging findings that035

guide medical decisions (Kahn Jr et al., 2009).036

However, variations in reporting style due to in-037

dividual and institutional practices as well as re-038

gional guidelines create inconsistencies that hinder039

interpretability for physicians and patients (Har-040

tung et al., 2020). Moreover, the lack of structured041

formats limits their usefulness as training data for042

machine learning (ML) applications (dos Santos 043

et al., 2023; Steinkamp et al., 2019). 044

Large language models (LLMs) offer a promis- 045

ing solution for generating structured reports from 046

free-form text (Adams et al., 2023; Busch et al., 047

2024; Hasani et al., 2024). However, deploying 048

these models locally remains infeasible for most 049

institutions due to the significant computational 050

resources required (Zhang et al., 2025). Cloud- 051

based solutions provide an alternative but introduce 052

concerns related to data security, confidentiality, 053

and regulatory compliance (Arshad et al., 2023; 054

Thirunavukarasu et al., 2023). While proprietary 055

LLMs can also be accessed via Application Pro- 056

gramming Interface (API), this approach entails 057

drawbacks such as dependency on a third-party 058

vendor, potential cost increases and unpredictable 059

changes in usage terms. (Tian et al., 2024). These 060

limitations highlight the need for smaller, open- 061

source models that can be deployed on-device with 062

minimal hardware requirements. 063

To address these challenges, we propose 064

lightweight (<300M parameters), task-specific 065

models for structuring free-text chest X-ray radiol- 066

ogy reports (see Figure 1) efficiently. These mod- 067

els substantially reduce computational demands 068

(Chen et al., 2024a), eliminating the need for cloud- 069

based hosting, and enhancing data security by en- 070

abling offline deployment. We train these models 071

on the MIMIC-CXR (Johnson et al., 2019) and 072

CheXpert Plus (Chambon et al., 2024) datasets 073

and structure the originally free-form reports with 074

GPT-4 (Achiam et al., 2023) as a weak annota- 075

tor, enabling large-scale supervision. We evaluate 076

model performance on an independent test set, an- 077

notated by five radiologists (Anonymous, 2025). 078

Our contributions include: 079

• Lightweight Model Development and Eval- 080

uation: We train and systematically eval- 081

uate lightweight (<300M parameters), task- 082
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Figure 1: Overview of our study and qualitative comparison. An unstructured radiology report is structured using
lightweight task-specific models and adapted large language models (LLMs) compared to human expert annotations.

specific T5 and BERT2BERT models for the083

task of structuring radiology reports.084

• Analysis of LLMs: We assess the perfor-085

mance of five LLMs (3-8B parameters) under086

different adaptation strategies (prefix prompt-087

ing, in-context learning (ICL), low-rank adap-088

tation (LoRA)).089

• Benchmarking and Cost Analysis: We090

benchmark lightweight models against LLMs,091

considering model performance on the BLEU,092

ROUGE-L, BERTScore, F1-RadGraph,093

GREEN, and F1-SRRG-Bert metrics, as well094

as training time, FLOPs per forward pass,095

inference speed and costs, and environmental096

impact.097

2 Related Work098

Beyond LLMs: Lightweight Models for Medical099

Text Processing100

Recent studies have explored the use of LLMs,101

namely GPT-3.5 (OpenAI, 2022) and GPT-4, to102

transform free-form radiology reports into struc-103

tured formats (Adams et al., 2023; Bergomi et al.,104

2024; Hasani et al., 2024). A recent review by105

Busch et al. highlights that these approaches106

achieve low error rates and minimal accuracy107

loss compared to human experts (Busch et al.,108

2024). However, their reliance on proprietary109

architectures, lack of transparency, and restric-110

tions on patient data privacy pose significant chal-111

lenges for clinical deployment (Khullar et al., 2024;112

Rezaeikhonakdar, 2023). To address these limita-113

tions, similar tasks in medical NLP have adopted114

lightweight, task-specific models that maintain 115

high accuracy while considerably reducing compu- 116

tational costs (Chen et al., 2024a; Griewing et al., 117

2024; Pecher et al., 2024). Existing task-specific 118

models for radiology NLP fall into two categories: 119

hybrid models and lightweight transformer mod- 120

els. Hybrid models combine rule-based methods 121

with deep learning, enforcing domain-specific con- 122

straints but lacking flexibility (Gabud et al., 2023). 123

In contrast, lightweight transformer models have 124

been successfully applied to relation extraction, re- 125

port coding, and summarization (Jain et al., 2021; 126

Yan et al., 2022; Van Veen et al., 2023). While they 127

require careful tuning to avoid hallucinations and 128

overfitting, recent studies suggest that well-tuned 129

lightweight models can match larger LLMs in accu- 130

racy while being far more computationally efficient 131

(Pecher et al., 2024). Our work builds on this foun- 132

dation by introducing a lightweight, task-specific 133

model explicitly optimized for structured radiology 134

report generation. 135

Model Adaptation and Finetuning 136

Prior work has explored a range of adaptation strate- 137

gies for LLMs, from prompt-based methods to 138

parameter-efficient finetuning (PEFT) and full fine- 139

tuning, each balancing performance, data require- 140

ments, and computational cost. Prompting tech- 141

niques such as prefix prompting and ICL (Brown 142

et al., 2020; Lampinen et al., 2022) adapt models 143

without modifying their weights. Prefix prompt- 144

ing typically provides instructions to guide model 145

responses, while ICL enhances adaptation by incor- 146

porating task-specific examples within the prompt. 147

However, these methods suffer from context length 148
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Figure 2: Left: Dataset generation from free-form radiology reports to structured radiology reports using GPT-4
(AI-based) and human experts (manual annotation). Right: Overview about our experiments including selection of
lightweight models and LLMs, training/adaptation methods, and evaluation strategy and metrics.

constraints and sensitivity to prompt phrasing (Li149

et al., 2023). PEFT techniques like LoRA (Hu150

et al., 2021), prefix-tuning (Li and Liang, 2021),151

and adapter layers (Houlsby et al., 2019) enable effi-152

cient adaptation with minimal computational over-153

head, making them well-suited for clinical NLP.154

While effective in low-data settings, PEFT often155

struggles with complex reasoning and generaliza-156

tion across domains (Lialin et al., 2023). In con-157

trast, full finetuning updates all model parameters,158

often achieving stronger adaptation when sufficient159

labeled data and computational resources are avail-160

able. Building on this, our approach applies full161

finetuning to lightweight models while leveraging162

GPT-4-generated structured labels to address data163

scarcity, enabling large-scale supervised training164

while preserving domain-specific accuracy.165

AI-Based Dataset Generation166

A major challenge in developing models for struc-167

turing radiology reports is the limited availability of168

high-quality annotated datasets, i.e., datasets that169

contain both free-form and corresponding struc-170

tured reports. Recent work in similar fields has171

explored leveraging LLMs such as GPT-4 as weak172

annotators to generate labels, providing a scalable173

alternative to manual annotation (Liyanage et al.,174

2024; Savelka et al., 2023). Despite their suc-175

cesses, studies suggest that models trained on GPT-176

generated data should still be rigorously evaluated177

against human-annotated ground truth to ensure178

reliability and validity (Pangakis et al., 2023).179

3 Methods180

In this study, we transform free-text chest X-ray181

radiology reports into a standardized format using182

deep learning. The structured reports follow a pre-183

defined template based on ’RPT144’ of RSNA’s184

RadReport Template Library (Radiological Society 185

of North America (RSNA), 2011). This template 186

comprises the sections: Exam Type, History, Tech- 187

nique, Comparison, Findings, and Impression. The 188

Findings section is further organized into organ 189

systems: ’Lungs and Airways’, ’Pleura’, ’Cardio- 190

vascular’, ’Tubes, Catheters, and Support Devices’, 191

’Musculoskeletal and Chest Wall’, ’Abdominal’, 192

and ’Other’. The Impression section is structured 193

as a numbered list, prioritizing the most clinically 194

relevant findings. As shown in Figure 2, this tem- 195

plate is incorporated into the prompt during data 196

annotation, and deviations from it in a structured re- 197

port are penalized during evaluation. Unlike previ- 198

ous approaches that rely on large, general-purpose 199

models like GPT-4, we explore the effectiveness of 200

lightweight, task-specific models for this task. 201

3.1 Data 202

We use unstructured radiology reports from the 203

publicly available MIMIC-CXR (Johnson et al., 204

2019) and CheXpert Plus (Chambon et al., 2024) 205

datasets, preserving their original training and vali- 206

dation splits. To train our models in a supervised 207

manner, we employed GPT-4 as a weak annota- 208

tor, using the prompt provided in Appendix A.1 209

to generate structured reports that conform to our 210

template. We obtained a total of 182,962 reports, 211

125,447 samples from MIMIC and 57,515 from 212

CheXpert Plus. For evaluation and benchmarking, 213

we conducted a human expert review of 223 re- 214

ports, comprising 161 from the MIMIC-CXR test 215

set and 72 from the CheXpert Plus validation set. 216

Five board-certified radiologists from our institu- 217

tion reviewed the structured reports alongside their 218

original free-form counterparts, assessing them for 219

errors and adherence to our predefined template 220

(detailed in (Anonymous, 2025)). 221
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3.2 Evaluation Strategies222

Even though all models generate full reports, we223

focus our quantitative analysis on the Findings and224

Impression sections due to their clinical signifi-225

cance. Before applying our metrics, we parse these226

sections to assess adherence to the predefined tem-227

plate. In the Findings section, we identify pre-228

defined organ system headers (e.g., ’Lungs and229

Airways’, ’Cardiovascular’) and extract their cor-230

responding observations. Metrics are computed231

separately for each organ system and then averaged232

across all identified systems. In the Impression sec-233

tion, we enforce a sequentially numbered format234

and flag any inconsistencies in ordering. To assess235

both linguistic quality and clinical accuracy, we236

use a combination of lexical and radiology-specific237

metrics.238

Lexical Metrics To ensure comprehensive evalua-239

tion of text quality, we apply the following metrics:240

BLEU (Papineni et al., 2002) measures n-gram241

overlap, serving as a proxy for fluency and syntac-242

tic similarity. ROUGE-L (Lin, 2004) evaluates the243

longest common subsequence, capturing sentence-244

level similarity. BERTScore (Zhang et al., 2019)245

computes semantic similarity by comparing con-246

textual embeddings from a pretrained transformer247

model.248

Radiology-Specific Metrics To capture clinical249

accuracy, we apply the following metrics: F1-250

RadGraph (Yu et al., 2023; Delbrouck et al., 2022)251

evaluates the precision and recall of key clinical252

terms and relationships extracted from generated re-253

ports. GREEN (Ostmeier et al., 2024) assesses the254

factual correctness of generated radiology reports255

using a finetuned LLM. F1-SRGG-Bert (Anony-256

mous, 2025) uses a fine-tuned BERT model to clas-257

sify extracted findings into 55 disease labels, as-258

signing each as Present, Absent, or Uncertain. It259

then computes the F1-score by comparing predic-260

tions from the generated report to the ground truth.261

Throughout this paper, our visualizations primar-262

ily focus on GREEN and BERTScore, as GREEN263

correlates most strongly with expert evaluations264

of clinical accuracy (Ostmeier et al., 2024), while265

BERTScore captures semantic similarity, making266

their combination effective for assessing structured267

radiology reports.268

3.3 Lightweight Models269

We introduce lightweight models, which are specif-270

ically trained to structure radiology reports accord-271

ing to a predefined template. Our lightweight 272

models are based on encoder-decoder architectures 273

given their recent success in similar tasks such as 274

radiology report generation (Aksoy et al., 2023; 275

Chen et al., 2024b) and radiology report summa- 276

rization (de Padua and Qureshi, 2024; Van Veen 277

et al., 2023; Zhang et al., 2018). Specifically, 278

we focused on two architectures, T5-Base (Raf- 279

fel et al., 2020), which has 223M parameters, and 280

BERT2BERT (Rothe et al., 2020), where two iden- 281

tical BERT models are used as the encoder and 282

decoder, resulting in a total of 278M parameters. 283

To investigate the influence of pretraining domains, 284

we initialize our models with the parameters from 285

five open-source T5 variants (Table 2) - T5-Base 286

(Raffel et al., 2020)(general text), Flan-T5-Base 287

(Chung et al., 2024)(instruction-tuning), SciFive 288

(Phan et al., 2021)(biomedical text), Clin-T5-Sci 289

(Lehman and Johnson, 2023)(biomedical text and 290

radiology reports), and Clin-T5-Base (Lehman and 291

Johnson, 2023)(radiology reports) - and four BERT 292

variants (Table 3) - RoBERTa-base (Liu, 2019)(gen- 293

eral text), BioMed-RoBERTa (Gururangan et al., 294

2020)(biomedical text), RoBERTa-base-PM-M3- 295

Voc-distill-align (Lewis et al., 2020)(for simplicity 296

named RoBERTa-PM-M3 here, biomedical text 297

and radiology reports), and RadBERT-RoBERTa 298

(Yan et al., 2022)(radiology reports). We train our 299

lightweight models end-to-end, updating all param- 300

eters, for a maximum of ten epochs using a cosine 301

learning rate scheduler with initial learining rate of 302

1e−4, an effective batch size of 128, and the Adam 303

optimizer. A detailed description of hyperparam- 304

eters can be found in Appendix A.3. To account 305

for variability, each configuration is trained three 306

times with different random seeds. Following prior 307

work (Van Veen et al., 2023), we rank pretraining 308

datasets by relevance, assuming radiology reports 309

to be the most relevant, followed by biomedical 310

text (e.g., PubMed abstracts) and general-domain 311

text (e.g., Wikipedia). However, we acknowledge 312

that this ranking is inherently subjective and may 313

vary depending on the specific task. 314

3.4 Comparison LLMs 315

To benchmark our lightweight models (<300M pa- 316

rameters), we conduct a comprehensive compar- 317

ison with instruction-tuned LLMs ranging from 318

3 to 8 billion parameters: Llama-3.1-8B-Instruct 319

(Grattafiori et al., 2024); its derivatives Vicuna- 320

7B-v1.5 (Chiang et al., 2023), optimized for con- 321

versational tasks, and Med-Alpaca-7B (Han et al., 322
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Figure 3: Performance comparison of lightweight models, initialized from pretrained models of increasing domain
relevance. The plot shows the finetuned BERT2BERT and T5 models evaluated using GREEN (left) and BERTScore
(right), initialized from various pretrained models, with pretraining datasets ranging from general text (least domain-
specific) to radiology (most domain-specific). Error bars denote 95% confidence intervals over the three training
runs.

2023), finetuned for medical question-answering;323

as well as Phi-3.5-Mini-Instruct (Abdin et al., 2024)324

and Mistral-7B (Jiang et al., 2023). We assess325

three adaptation techniques: 1. Prefix Prompt-326

ing. The model is prompted using the same in-327

structions employed during training data generation328

(Appendix A.1). 2. ICL. The model is given ei-329

ther one (1-shot) or two (2-shot) free-form reports330

along with their structured counterparts. These331

examples are manually selected from the train-332

ing set to optimally represent the data distribution.333

3. LoRA Finetuning. The LLMs are finetuned334

for five epochs on the complete training set using335

LoRA with a rank of eight, modifying approxi-336

mately 0.1% of the model’s parameters. We use a337

cosine learning rate scheduler with an initial learn-338

ing rate of 1e−4, an effective batch size of 256 and339

the Adam optimizer. Detailed finetuning configura-340

tions are provided in Appendix A.4 and the impact341

of different LoRA ranks is analyzed in Section 4.3.342

343

3.5 Benchmarking Lightweight Models344

Against LLMs345

We benchmark our best lightweight model against346

the top-performing LLM from previous experi-347

ments (Mistral-7B with LoRA), adding GPT-4 as348

a reference. Given the lightweight model’s sig-349

nificantly smaller size, we quantify the finetuning350

required for the LLM to match its performance351

by varying LoRA rank (r) and tracking the num-352

ber of training epochs. Our evaluation focuses353

on two key aspects: We systematically finetune 354

the selected LLM and measure the point at which 355

its performance matches or surpasses that of the 356

lightweight model. We then compare the compu- 357

tational costs associated with training and deploy- 358

ing the lightweight model, Mistral-7B, and GPT- 359

4. This comparison includes the average GREEN 360

score, training time per epoch, floating-point op- 361

erations (FLOPs) for a single forward-pass, infer- 362

ence time per sample, inference costs per sample, 363

and CO2 emissions per sample. All models are 364

trained and evaluated on a single Nvidia A100 365

(80GB) GPU. Inference costs are estimated using 366

the Google Cloud pricing calculator1, and CO2 367

emissions are calculated with CodeCarbon (La- 368

coste et al., 2019). These comparisons provide in- 369

sights into the trade-offs between large-scale LLMs 370

and compact lightweight models in terms of both 371

performance and resource efficiency. 372

4 Results 373

The models are evaluated using all metrics intro- 374

duced in Section 3.2. We primarily report results 375

using GREEN and BERTScore, as they provide 376

complementary assessments of clinical accuracy 377

and semantic similarity. However, unless stated 378

otherwise, the observed trends hold across all met- 379

rics. A detailed comparison across all metrics is 380

provided in Appendix A.5. 381

1https://cloud.google.com/products/calculator (Assessed
January 2025)
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Figure 4: Comparison of LLM Adaptation Methods and the best performing lightweight model (BERT2BERT
initialized from RoBERTa-PM-M3). (Left)/(Right)The figure depicts the GREEN Score/BERTScore for five
different LLMs across various adaptation methods, including prefix prompting, in-context learning (ICL) with
1-shot and 2-shot settings, and LoRA finetuning for five epochs.

4.1 Comparison of Lightweight Models and382

Domain Adaptation383

As introduced in Section 3.3, we initialized our384

lightweight models with the weights from differ-385

ent pretrained models. Specifically, we evaluate386

four different pretrained models as initializations387

for the BERT2BERT model and five for the T5388

model (Tables 2 and 3). Each pretraining con-389

figuration was trained three times with different390

random seeds. Figure 3 presents the model per-391

formance for the GREEN and BERTScore metrics,392

while a more comprehensive overview can be found393

in Table 4. For the BERT2BERT model, domain394

adaptation shows a clear but non-linear impact on395

performance. Pretraining on biomedical text im-396

proves GREEN by 0.4% over the general-text base-397

line, while adding radiology reports yields a more398

substantial 4.5% improvement. However, pretrain-399

ing exclusively on radiology reports (RadBERT)400

provides only a marginal 0.3% increase. For the401

T5 model, instruction-tuning alone leads to 0.3%402

improvement over the general-text baseline. Pre-403

training on biomedical text and radiology reports404

achieves a 2.5% gain, while using exclusively radi-405

ology reports leads to 4.4% increase. However, the406

biomedical text initialization (SciFive) underper-407

forms the general baseline by 2.4%. Table 4 con-408

firms that these trends persist across both datasets409

and sections, with scores for the Impression sec-410

tion being on average by ≈ 20% higher. Overall,411

BERT2BERT models outperform T5 variants, with412

the best BERT2BERT model (RoBERTa-PM-M3)413

beating the best T5 (Clin-T5-Base) by 2.6% on 414

GREEN and 2.9% on BERTScore. 415

4.2 Adaptation of LLMs 416

We present the results of adapting LLMs to the 417

structuring task as outlined in Section 3.4. Fig- 418

ure 4 visualizes the average test set performance 419

on the GREEN and BERTScore metrics across 420

the proposed adaptation methods: prefix prompt- 421

ing, 1-shot and 2-shot in-context learning (ICL), 422

and LoRA finetuning. LoRA finetuning consis- 423

tently achieves the highest performance across all 424

models. The detailed breakdown of results across 425

the structured Findings and Impression sections 426

is provided in Tables 5 and 6 of the Appendix. 427

Averaged across all five LLMs, 1-shot ICL im- 428

proves performance compared to prefix prompting 429

by 26.1%/41.4% in GREEN/BERTScore on Find- 430

ings and 6.5%/− 6.8% on Impression. Similarly, 431

2-shot ICL shows a 22.2%/33.0% improvement on 432

Findings and 9.6%/− 9.6% on Impression. LoRA 433

finetuning achieves the highest scores overall, out- 434

performing prefix prompting by 263%/277% on 435

Findings and 8.7%/2.2% on Impression. Among 436

the evaluated metrics, BLEU exhibits the largest 437

improvements (up to 562% for LoRA on Findings), 438

whereas F1-SRRG-Bert and GREEN show the 439

smallest gains. Across LLMs, Llama-3 and Vicuna 440

perform best in ICL, while Mistral-7B achieves 441

the highest performance in both prefix prompting 442

and LoRA finetuning. The overall best-performing 443

configuration is Mistral-7B with LoRA finetuning. 444
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Figure 5: Performance of Mistral-7B finetuned with
LoRA across varying ranks and an increasing number of
fine-tuning epochs in comparison to the best lightweight
model’s performance.

4.3 Benchmarking445

Building on these results, we benchmark our best446

lightweight model against Mistral-7B (the best-447

performing LLM) and GPT-4. Figure 5 illustrates448

the performance of Mistral-7B over training epochs449

when finetuned using LoRA with different ranks r.450

After five epochs, r = 8 marginally surpasses the451

lightweight model’s GREEN score by 0.3%, while452

other configurations show no significant improve-453

ment over time. Table 1 details the trade-offs in454

training and inference, comparing training time per455

epoch, FLOPs per forward pass, inference latency,456

cost per sample, and CO2 emissions. Training457

the lightweight model requires only 10% of the458

time needed for Mistral-7B (with LoRA, r = 8,459

for 5 epochs). A single forward pass during in-460

ference consumes just 1.4% of the floating-point461

operations, leading to 7% of the inference time462

and 12.5% of the costs on our infrastructure. This463

translates to 14% of the CO2 footprint. GPT-4,464

estimated to be over 100× larger than Mistral-7B,465

outperforms both models, exceeding their GREEN466

scores by more than 27%, but at a substantially467

higher computational cost and C02 footprint.468

4.4 Qualitative Analysis469

To complement the quantitative analysis, Figure 1470

presents a qualitative comparison of BERT2BERT,471

Mistral-7B, and expert-reviewed reports. Both472

models successfully adhere to our predefined tem-473

plate (see Figure 2 for reference), particularly in474

the Findings section, where content is well-aligned475

with organ system categories. A full test set anal-476

ysis shows that the lightweight model correctly477

applies the Findings and Impression section head-478

ers in all cases, while the LLM deviates in 5% of 479

instances, occasionally using all capital letters or 480

omitting section names in less than 1% of reports. 481

Both models, as well as expert annotations, gener- 482

ally include only relevant organ systems, but occa- 483

sionally report less relevant negative findings (e.g., 484

"Pleura: - No specific findings reported"). Com- 485

plete omission of relevant findings occurs in less 486

than 1% of cases, indicating high completeness in 487

capturing clinical details. Differences in prioritiza- 488

tion in the Impression section are observed in fewer 489

than 5% of reports for both models, demonstrating 490

occasional variation but overall consistency with 491

expert-reviewed reports. 492

5 Discussion 493

In this paper, we propose the use of lightweight, 494

task-specific models for structuring radiology re- 495

ports into a predefined template. Despite being 496

10–30 times smaller than finetuned LLMs, our mod- 497

els achieve comparable performance while offer- 498

ing significant advantages in speed, cost-efficiency, 499

and sustainability. To enable large-scale supervised 500

training, we leveraged GPT-4 as a weak annota- 501

tor to generate a training dataset, aligning chest 502

radiology reports from MIMIC-CXR and CheX- 503

pert Plus with their corresponding structured ver- 504

sions as ground truth. Since GPT-generated data 505

can introduce inconsistencies and biases, we eval- 506

uated all models on a human-annotated test set. 507

Our study focused on two types of lightweight 508

models, BERT2BERT and T5. Overall, our 509

BERT2BERT model performed best when initial- 510

ized from RoBERTa-PM-M3, surpassing the best 511

Table 1: Trade-off between model performance and
computational costs for training and inference using
total training time [h], GREEN Score [%], floating
point operations required for a single forward pass
[TFLOPs/sample], inference time [s/sample], inference
cost [$/sample], and CO2 emissions [mg/sample] across
the best-performing BERT2BERT, Mistral-7B, and GPT-
4 using a single Nvidia A100 -80GB GPU.

Model BERT2BERT Mistral-7B GPT-4
# Parameters 0.28B 7.25B >1T

Training time 2.1 21.2 -

In
fe

re
nc

e GREEN 72.1 72.3 92.2
TFLOPs 0.0480 3.51 >1,000

Time 0.16 2.30 -
Cost 2e-4∗† 0.0032∗† 0.03◦

CO2 eq. 10.2 75.0 500
† Google Cloud Pricing Calculator.
◦ Accessed via OpenAI’s API.
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T5 variant, Clin-T5-Base, by 2.6% on GREEN.512

Our results further indicate that pretraining on513

biomedical texts - particularly radiology reports514

- generally improved model performance. However,515

despite being pretrained exclusively on radiology516

reports, the RadBERT model did not outperform517

general-text variants. This suggests that pretraining518

factors beyond the training corpus, such as archi-519

tectural choices and optimization techniques, may520

also influence model performance. For example,521

RoBERTa-PM-M3 benefited from a distillation pro-522

cess, in which it was derived from RoBERTa-large-523

PM-M3-Voc, a larger model.524

To balance performance with computational fea-525

sibility, we restricted our comparison to LLMs526

within the 3-8B parameter tier, evaluating differ-527

ent adaptation techniques within this range. We528

showed that finetuning with LoRA consistently529

yields higher performance compared to prefix530

prompting and ICL methods. As shown in Table 6,531

this trend is primarily driven by performance dif-532

ferences on the Findings section. Since our evalua-533

tion strategy assesses each organ system separately534

and missing or inconsistently phrased headers (e.g.,535

’Lungs and Airways’ vs. ’Lungs’) receive a score of536

zero, these results suggest that LoRA fine-tuning537

more effectively adapts LLMs to follow our prede-538

fined template. We believe that although organ sys-539

tem names are provided in both the prefix prompt540

(see Appendix A.1) and the ICL examples, the ab-541

sence of iterative feedback mechanisms in these542

methods makes it challenging for models to inter-543

nalize and consistently enforce correct structured544

formatting. In contrast, LoRA allows for parameter545

updates, enabling the model to refine its represen-546

tations over multiple training iterations. This rein-547

forcement strengthens structural consistency and548

improves adherence to the predefined template.549

Among the five evaluated LLMs and four adap-550

tation techniques, Mistral-7B with LoRA finetun-551

ing achieved the best results. We selected it for552

benchmarking against our lightweight model in553

Section 4.3. When using prefix prompting, 1-shot,554

and 2-shot adaptation, Mistral-7B did not outper-555

form our lightweight model. Comparable perfor-556

mance was only achieved after fine-tuning the LLM557

with LoRA (r = 8) for five epochs. While the LLM558

ultimately structured radiology reports according to559

our template and even surpassed the performance560

of our lightweight model by 0.3%, this came at561

the cost of significantly longer training times and562

higher inference costs. With less than 5% the size563

of the LLM, our lightweight model operated at 564

12.4% of its inference costs while running 14× 565

faster, resulting in a significantly smaller carbon 566

footprint. We then added GPT-4 to the compari- 567

son, which significantly outperformed the smaller 568

models when adapted to this task. However, this 569

superior performance may be partly attributed to 570

GPT-4’s prior involvement in data annotation and 571

its use as a reference for radiologist annotations, 572

potentially biasing evaluation in its favor. Despite 573

GPT-4’s strong performance, its proprietary nature, 574

and regulatory constraints on patient data may limit 575

its practicality in clinical settings. 576

Our qualitative analysis in Section 4.4 showed 577

that both models (the lighweight model and Mistral- 578

7B LLM finetuned with LoRA) followed the pre- 579

defined template when tested on expert-annotated 580

reports, omitting relevant findings in less than 1% 581

of cases. This suggests that lightweight models 582

(<300M parameters) can effectively learn struc- 583

tured formatting while maintaining clinical accu- 584

racy. Furthermore, the results indicate that our 585

GPT-generated annotations provided a sufficient 586

training signal, though expert review remains cru- 587

cial for ensuring data reliability. 588

6 Conclusion 589

We demonstrate that lightweight, task-specific mod- 590

els with less than 300M parameters can effec- 591

tively structure radiology reports according to a 592

predefined template, providing a practical and scal- 593

able alternative to LLMs, while addressing con- 594

cerns around computational efficiency, data privacy, 595

and deployment feasibility. Our best-performing 596

lightweight model, a BERT2BERT architecture 597

initialized from two pretrained RoBERTa-PM-M3 598

models, achieves competitive performance while 599

maintaining a significantly lower computational 600

footprint. While Mistral-7B (LoRA, r = 8) 601

achieves slightly better performance after five 602

epochs of finetuning (0.3% on the GREEN Score), 603

the lightweight model operates at less than 14% 604

of its inference cost and CO2 emissions, making 605

it a far more resource-efficient solution. GPT-4 606

surpasses both by over 27%, but its reliance on 607

cloud-based APIs and privacy concerns make it 608

impractical for direct clinical deployment. These 609

findings reinforce the lightweight model’s viabil- 610

ity for real-world clinical applications, where in- 611

frastructure limitations, privacy regulations, and 612

sustainability concerns play a critical role. 613
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Limitations614

First, as discussed in Section 3.1, the labels used615

for training our specialized models and adapting616

the LLMs were generated from MIMIC-CXR and617

CheXpert reports using GPT-4 as a weak annotator.618

While our prompt builds on previous work, we re-619

fined it to better align with our task’s requirements620

(e.g., explicitly specifying organ systems for the621

Findings section). However, GPT-4 may introduce622

biases, and to mitigate this, we evaluate model per-623

formance on an independent test set annotated by624

five radiologists.625

Second, both MIMIC-CXR and CheXpert origi-626

nate from hospitals in the United States - Beth627

Israel Deaconess Medical Center (Boston, MA)628

and Stanford Hospital (Stanford, CA) - and con-629

tain only chest X-rays from adult patients. As a630

result, these datasets may lack demographic diver-631

sity, potentially limiting generalizability to other632

populations.633

Third, as described in Section 3, all models take full634

free-form reports as input and generate structured635

reports comprising the following sections: Exam636

Type, History, Technique, Comparison, Findings,637

and Impression. However, for quantitative evalua-638

tion, we focus exclusively on Findings and Impres-639

sion, as these sections are clinically critical and640

exhibit the highest variability. Other sections, such641

as Exam Type and History, often remain unchanged642

and can be directly copied from the original report,643

making them less relevant for assessing model per-644

formance.645

Fourth, 1-shot and 2-shot ICL examples were man-646

ually selected from the training set to best represent647

the data distribution. While we initially applied al-648

gorithmic methods to optimize alignment, manual649

selection proved to further improve performance.650

This introduces a potential selection bias, which651

may affect the generalizability of our ICL results.652

Fifth, due to computational and time constraints,653

we did not perform full-parameter fine-tuning on654

LLMs in the 3–8B parameter range. Instead, adap-655

tation methods such as LoRA were used to effi-656

ciently finetune models within our resource limits.657

Sixth, since GPT-4’s exact architecture and param-658

eter count remain undisclosed, Table 1 provides659

estimated values for its parameter size, floating660

point operations per forward pass, and CO2 emis-661

sions. These estimates introduce uncertainty in662

direct comparisons with open-source models.663

Seventh, as discussed in Section 3.5 and shown in664

Tables 5 and 7, GPT-4 was evaluated using prefix 665

prompting and ICL. However, since it was also 666

used for data annotation and provided as a refer- 667

ence for radiologist, its results may be biased in its 668

favor. To account for this, we excluded GPT-4 from 669

large parts of the discussion to avoid misleading 670

comparisons. 671
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A Appendix 991

A.1 GPT-4 prompt template for structuring of radiology reports 992

The following prompt was executed with GPT-4 "Turbo 1106 preview" via Azure services to structure 993

free-text radiology reports according to our template. The account was explicitly opted out of human 994

review. 995

"Your task is to improve the formatting of a radiology report to a clear and concise 996

radiology report with section headings. 997

Guidelines: 998

1. Section Headers: Each section should start with the section header followed by 999

a colon. Provide the relevant information as specified for each section. 1000

2. Identifiers: Remove sentences where identifiers have been replaced with 1001

consecutive underscores ('\_\_\_'). 1002

3. Findings and Impression Sections: Focus solely on the current examination 1003

results. Do not reference previous studies or historical data. 1004

4. Content Restrictions: Strictly include only the content that is relevant to 1005

the structured sections provided. Do not add or extrapolate information beyond 1006

what is found in the original report. If the original report doesn't contain 1007

the information necessary to generate a section, write the section header and 1008

then leave the section empty. Do not make up any findings.! 1009

Sections to include (if applicable): 1010

1. Exam Type: Provide the specific type of examination conducted. 1011

2. History: Provide a brief clinical history and state the clinical question or 1012

suspicion that prompted the imaging. 1013

3. Technique: Describe the examination technique and any specific protocols 1014

used. 1015

4. Comparison: Note any prior imaging studies reviewed for comparison with the 1016

current exam. 1017

5. Findings: 1018

Describe all positive observations and any relevant negative observations for 1019

each organ or organ system under distinct headers. 1020

Start with the organ system name followed by a colon, then list observations. 1021

Here is the corresponding template: 1022

Organ 1: 1023

- Observation 1 1024

Organ 2: 1025

- Observation 1 1026

- Observation 2 1027

Use only the following headers for organ systems: 1028

- Lungs and Airways 1029

- Pleura 1030

- Cardiovascular 1031

- Hila and Mediastinum 1032

- Tubes, Catheters, and Support Devices 1033

- Musculoskeletal and Chest Wall 1034

- Abdominal 1035

- Other 1036

6. Impression: Summarize the key findings with a numbered list from the most to the 1037

least clinically relevant. Ensure all findings are numbered. 1038

The radiology report to improve is the following: \{report\}" 1039

1040
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A.2 Overview of model checkpoints and pre-training data1041

Model Description
T5-BASE (Raffel et al., 2020) Original model, pre-trained on C4.
FLAN-T5-BASE (Chung et al., 2024) Additional instruction-prompt tuning.
SCIFIVE (Phan et al., 2021) Fine-tuned on PubMed Abstract (NCBI, 1996),

and PubMed Central (NCBI, 2000).
CLIN-T5-SCI Fine-tuned on PubMed, MIMIC-III (Johnson et al., 2016),
(Lehman and Johnson, 2023) and MIMIC-IV (Johnson et al., 2020).
CLIN-T5-BASE (Lehman and Johnson,
2023)

Fine-tuned on MIMIC-III and MIMIC-IV.

Table 2: Pretrained T5 models used for initialization along with details of their pretraining corpus.

Model Description
RoBERTa-base (Liu, 2019) Baseline version, pretrained on Books and Wikipedia.
BioMed-RoBERTa (Gururangan et al.,
2020)

Pretrained on PubMed abstracts and PubMed Central.

RoBERTa-base-PM-M3-Voc-distill- Pretrained on PubMed abstracts, PubMed Central
align (Lewis et al., 2020) full-text articles, and MIMIC-III.
RadBERT-RoBERTa (Yan et al., 2022) Fine-tuned on radiology reports from the Veterans

Affairs health care system.

Table 3: Pretrained RoBERTa models used for initialization of the BERT2BERT model along with details of their
pretraining corpus.
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A.3 Considerations and hyperparameters for1042

end-to-end training1043

We train all expert models (BERT2BERT and T51044

instances) with the following set of hyperparame-1045

ters:1046

• Cosine learning rate scheduler, starting at1047

1e−4, with 5% warm-up ratio before decay.1048

• Maximum of 10 epochs, with early stopping1049

enabled by loading the best model at the end1050

based on validation performance.1051

• Batch size of 32 per device for training and 161052

for evaluation, with four gradient accumula-1053

tion steps, resulting in an effective batch size1054

of 128 for training.1055

• Adam optimizer with β2 = 0.95 and weight1056

decay of 0.1.1057

• Sequence lengths: Model processes a maxi-1058

mum input length of 370 tokens, with gener-1059

ated outputs constrained between 120 and 2861060

tokens.1061

We experimented with different learning rate sched-1062

ulers and initial learning rates but found the here1063

presented set to give better performance in the vali-1064

dation loss.1065

A.4 Considerations and hyperparameters for1066

parameter-efficient fine-tuning1067

As discussed in Section 3.4, we initially finetune1068

all LLMs using the same hyperparameters. We1069

apply LoRA and adjust the target modules to align1070

with each LLM’s architecture. We find that, due to1071

their comparable size, using the same LoRA rank1072

and scaling factor leads to a similar proportion of1073

updated parameters across all models (∼ 0.1%).1074

We use the following set of hyperparameters:1075

• Cosine learning rate scheduler, starting at1076

1e−4, with 5% warm-up ratio before decay.1077

• Maximum of 5 epochs, with early stopping1078

enabled by loading the best model at the end1079

based on validation performance.1080

• LoRA adaptation with rank r = 8 and scaling1081

factor α = 8 to enable parameter-efficient1082

fine-tuning.1083

• Batch size of 16 per device for training and 11084

for evaluation, with 16 gradient accumulation1085

steps, resulting in an effective training batch 1086

size of 256. 1087

• Adam optimizer with β2 = 0.95 and weight 1088

decay of 0.1. 1089

We use similar settings as in expert model fine- 1090

tuning but reduce the maximum number of epochs 1091

due to computational constraints. The results in 1092

Section 4.3 later confirm our initial estimate for the 1093

optimal LoRA rank. 1094
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A.5 Detailed Evaluations of Model Performance1095

Table 4: Detailed comparison of expert models. This table presents test set evaluations of our fine-tuned expert
models initialized from different pretrained checkpoints. Each model was trained three times with different random
seeds and evaluated on the Findings sections of the MIMIC (FM ) and CheXpert (FC) test sets, as well as their
corresponding Impression sections (IM and IC).

Model Section BLEU ROUGE-L BERTScore RadGraph GREEN F1-Score

BERT2BERT

roberta-base FM 31.3 62.2 67.4 54.8 66.1 73.0
FC 30.6 59.0 64.7 50.1 63.0 69.4
IM 41.1 65.4 79.7 57.5 65.6 81.8
IC 51.1 74.9 86.3 66.1 82.0 94.5

roberta-biomed FM 31.6 60.4 65.4 53.1 62.8 70.4
FC 29.4 57.8 63.8 48.2 62.1 70.0
IM 34.0 65.5 79.9 58.0 69.1 81.8
IC 48.3 74.1 86.1 65.3 82.0 91.3

roberta-PM FM 33.3 62.6 67.4 54.3 67.0 71.9
FC 32.8 62.5 67.3 53.8 64.2 72.8
IM 42.0 66.1 79.8 56.5 71.8 81.4
IC 53.4 77.6 87.5 67.7 86.4 90.1

roberta-rad FM 32.6 62.1 66.8 54.9 64.8 71.8
FC 29.4 59.2 64.2 50.7 61.0 69.1
IM 42.3 67.5 80.6 58.9 69.7 81.7
IC 52.4 76.6 87.2 65.7 86.7 94.3

T5

T5-Base FM 26.4 52.8 58.8 64.9 58.6 63.6
FC 26.0 57.2 61.9 49.1 59.7 66.5
IM 35.8 61.7 77.7 56.2 69.8 80.1
IC 48.5 73.2 85.8 67.9 81.2 87.1

Flan-T5-Base FM 27.9 55.9 61.0 48.0 59.3 65.4
FC 30.3 59.2 63.5 51.1 62.2 66.2
IM 37.3 62.0 77.6 55.5 66.2 77.8
IC 51.6 76.1 87.1 68.6 82.3 91.7

SciFive FM 24.1 49.3 55.6 43.4 56.4 62.0
FC 24.6 54.1 60.5 47.2 56.7 65.7
IM 38.6 63.2 78.8 59.5 71.8 82.9
IC 46.8 71.4 85.1 68.1 77.8 89.4

Clin-T5-Sci FM 28.7 59.0 64.4 50.7 62.4 68.9
FC 23.4 52.5 57.1 44.0 56.1 62.0
IM 33.6 59.4 76.2 51.4 63.8 76.3
IC 46.7 71.8 84.6 62.8 84.0 93.0

Clin-T5-Base FM 29.8 58.3 64.0 50.9 62.7 68.6
FC 27.1 57.3 62.0 49.0 60.9 68.1
IM 37.6 63.3 78.9 55.7 68.7 80.2
IC 48.4 74.8 85.5 67.9 88.8 94.6
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Table 5: Comparison of LLM performance across different adaptation and fine-tuning methods. Results are averaged
over all samples in the expert-reviewed MIMIC and CheXpert test sets and reported separately for the Findings and
Impression sections. The highest score for each model across adaptation techniques is highlighted.

Model Method BLEU ROUGE-L BERTScore Radgraph GREEN F1-Score

Findings Section

Medalpaca-7B Prefix 0.0 0.0 0.0 0.0 0.0 0.0
1-shot 0.0 0.2 1.4 0.1 0.1 0.9
2-shot 0.0 0.0 0.0 0.0 0.0 0.0
LoRA 19.7 45.4 50.5 41.3 51.0 57.1

Phi-3.5-mini Prefix 11.0 34.6 38.9 26.7 38.1 46.5
1-shot 8.6 21.5 24.8 20.1 25.6 26.4
2-shot 6.8 20.1 24.1 18.5 23.2 25.8
LoRA 17.8 43.8 49.5 39.0 46.7 52.9

Vicuna-7B Prefix 0.0 0.0 0.0 0.0 0.0 0.0
1-shot 5.9 21.5 29.2 17.5 22.8 32.4
2-shot 7.1 19.8 24.6 17.0 22.6 28.2
LoRA 32.7 62.1 66.8 54.2 66.1 70.6

Llama-3-8B Prefix 2.4 10.9 12.8 8.6 13.1 12.7
1-shot 13.1 35.6 42.1 30.6 40.1 46.4
2-shot 13.7 36.4 42.1 31.1 38.0 46.4
LoRA 35.0 62.9 68.4 54.4 67.4 74.0

Mistral-7B Prefix 8.2 26.8 30.3 6.9 32.5 35.8
1-shot 6.5 15.2 18.4 14.7 16.9 19.4
2-shot 5.9 14.9 18.1 12.5 18.5 18.4
LoRA 37.5 69.3 73.6 61.2 72.4 77.7

GPT-4 Prefix 79.9 94.3 94.8 91.5 86.9 95.4
1-shot 17.1 64.2 77.2 54.7 92.1 92.5
2-shot 23.1 70.9 81.2 59.9 93.4 93.9

Impression Section

Medalpaca-7B Prefix 23.6 55.1 63.9 52.0 75.6 80.8
1-shot 23.3 54.0 60.7 50.3 66.8 74.1
2-shot 25.8 56.5 66.7 57.4 77.2 76.5
LoRA 17.4 53.5 63.4 38.4 68.9 86.2

Phi-3.5-mini Prefix 19.2 45.7 63.7 43.7 51.5 76.0
1-shot 24.4 48.6 66.8 47.7 65.3 77.8
2-shot 32.6 48.5 66.8 51.9 71.8 79.2
LoRA 39.3 64.4 77.3 56.2 67.5 78.1

Vicuna-7B Prefix 34.0 64.8 73.7 57.8 71.9 79.6
1-shot 38.8 64.7 77.5 61.5 71.9 84.3
2-shot 36.8 62.9 76.8 59.5 71.8 82.3
LoRA 38.0 63.7 70.9 54.3 72.4 81.5

Llama-8B Prefix 25.5 55.4 70.7 51.3 61.9 77.5
1-shot 9.7 27.5 45.6 33.1 73.5 63.9
2-shot 10.6 30.1 49.3 32.6 74.0 68.2
LoRA 35.3 65.3 72.0 54.7 74.2 87.0

Mistral-7B Prefix 33.6 63.4 78.4 56.0 69.5 78.0
1-shot 38.3 65.6 76.2 62.9 67.4 82.0
2-shot 39.2 66.0 77.2 62.9 67.4 82.0
LoRA 42.3 67.6 74.8 57.0 76.1 84.8

GPT-4 Prefix 84.1 91.2 94.6 89.0 97.5 92.8
1-shot 26.2 60.0 77.9 54.6 76.7 88.0
2-shot 36.1 67.4 80.9 64.9 81.6 88.5
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Table 6: Detailed comparison of LLM adaptation methods for the Findings and Impression sections. The table
shows average values across all five LLMs, along with percentage changes relative to performance under prefix
prompting.

Method BLEU ROUGE-L BERTScore Radgraph GREEN F1-Score

Findings Section

Prefix 4.31 14.4 16.4 8.43 16.7 19.7

1-shot 6.79 18.8 23.2 16.6 21.1 25.1
+57.5% +30.2% +41.4% +96.8% + 26.1% + 27.3%

2-shot 6.67 18.2 21.8 15.8 20.4 23.8
+54.8% + 26.3% + 33.0% +87.4% +22.2% +20.6%

LoRA 28.5 56.7 61.7 50.0 60.7 66.5
+562% +293% +277% +493% +263% + 237%

Impression Section

Prefix 27.2 56.9 70.1 52.1 66.1 78.4

1-shot 26.9 52.0 65.3 50.7 70.4 77.0
-1.1% -8.5% - 6.8% - 2.7% +6.65% -11.8%

2-shot 26.8 52.8 67.3 52.8 72.4 77.6
-1.5% -7.2% -3.9% +1.3% +9.6% -1.0%

LoRA 34.4 62.9 71.6 52.1 71.8 83.5
+26.8% +10.6% +2.2% +0.0% +8.7% +6.5%
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Table 7: Detailed comparison of expert models and LLMs across various NLP metrics. The table presents the
best-performing BERT2BERT and T5 models, along with several LLMs fine-tuned for five epochs using LoRA.
GPT-4’s performance is obtained via prefix prompting, using the same prompt as in dataset generation, with a
temperature of 0.3. Note that GPT-4 is excluded when identifying the best scores.

Model Section BLEU ROUGE-L BERTScore Radgraph GREEN F1-Score

BERT2BERT FM 33.0 62.6 67.4 54.3 66.7 71.9
FC 32.8 62.5 67.3 53.8 66.1 72.8
IM 42.0 66.1 79.8 56.5 69.3 81.4
IC 53.4 77.6 87.5 67.7 86.3 90.1

T5 FM 29.8 58.3 64.0 50.9 62.7 68.6
FC 27.1 57.3 62.0 49.0 60.9 68.1
IM 37.6 63.3 78.9 55.7 68.7 80.2
IC 48.4 74.9 85.5 67.9 88.8 94.6

Medalpaca-7B FM 27.8 51.6 56.7 45.7 55.7 60.0
FC 11.6 39.1 44.3 36.8 46.3 54.2
IM 19.6 57.5 61.8 52.7 73.2 77.4
IC 15.2 49.4 64.9 24.1 64.6 95.0

Phi-3.5-mini FM 18.3 48.0 54.6 39.9 50.4 57.9
FC 17.3 39.6 44.4 38.1 43.0 47.9
IM 39.3 67.4 79.9 59.8 67.5 81.5
IC 39.1 61.3 74.6 52.5 67.5 74.7

Vicuna-7B FM 32.2 58.8 64.3 51.2 62.6 68.5
FC 33.2 65.3 69.2 57.2 69.5 72.7
IM 32.2 57.3 65.3 48.0 63.4 76.0
IC 43.8 70.0 76.4 60.6 81.4 87.0

Llama-8B FM 32.3 61.2 67.0 53.4 65.7 72.2
FC 37.7 64.6 69.8 55.4 69.0 75.8
IM 33.4 59.7 67.7 51.8 71.2 77.3
IC 37.2 70.8 76.2 57.5 77.1 96.7

Mistral-7B FM 33.3 63.0 68.1 56.2 66.1 73.7
FC 41.7 75.6 79.0 66.2 78.6 81.6
IM 38.4 64.7 71.7 56.6 69.3 79.8
IC 46.1 70.4 77.8 57.4 82.9 89.8

GPT-4 FM 79.0 93.2 93.7 91.1 92.4 94.8
FC 80.7 95.3 95.8 91.8 81.3 95.9
IM 70.5 83.3 89.5 79.7 95.0 85.5
IC 97.7 99.1 99.7 98.3 100.0 100.0
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