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Abstract

Generative models unfairly penalize data belonging to minority classes, suf-
fer from model autophagy disorder (MADness), and learn biased estimates
of the underlying distribution parameters. Our theoretical and empirical
results show that training generative models with intentionally designed
hypernetworks leads to models that 1) are more fair when generating data-
points belonging to minority classes 2) are more stable in a self-consumed
(i.e., MAD) setting, and 3) learn parameters that are less statistically biased.
To further mitigate unfairness, MADness, and bias, we introduce a regu-
larization term that penalizes discrepancies between a generative model’s
estimated weights when trained on real data versus its own synthetic data.
To facilitate training existing deep generative models within our framework,
we offer a scalable implementation of hypernetworks that automatically
generates a hypernetwork architecture for any given generative model.

1 Introduction

Hypernetworks are neural networks that generate the weights of other neural networks (Ha
et al., 2017). Recent work has shown hypernetworks are useful for uncertainty quantification
(Rusu et al., 2019), few-shot learning (Sendera et al., 2022), continual learning (von Oswald
et al., 2022), among other tasks (Chauhan et al., 2023). To our knowledge, however, no work
has evaluated whether generative models trained with hypernetworks produce models that
are more fair in representing and generating data belonging to minority classes and more
robust to MAD collapse when their output is used as training data.

1.1 Motivation: Issues with Maximum Likelihood Estimation

The inspiration for applying hypernetworks to improving fairness and mitigating MADness
comes from a realization of the sub-optimiality of Maximum Likelihood Estimation (MLE),
one of the most popular techniques for parameter estimation (Johnson, 2013). MLE is used
to train most generative model architectures, including variational autoencoders (VAEs) (Pu
et al., 2016), normalizing flows (NFs) (Rezende and Mohamed, 2015), diffusion models (Ho
et al., 2020), and generative adversarial networks (GANs) (Goodfellow et al., 2014)1. Despite
MLE’s ubiquity, it often produces biased estimators of the underlying true parameters. The
most famous example was pointed out by Neyman and Scott (1948), showing that MLE can
produce inconsistent results when the number of parameters is large relative to the amount
of data (DasGupta, 2008a). In the Neyman-Scott problem, there is not enough data relative
to the number of parameters to mitigate the bias, leading to what Neyman called “false
estimations of the parameters”, or statistics where the stochastic limits are unequal to the
values of the parameters to be estimated (Stigler, 2007). This overparameterized regime is
precisely where most modern deep learning models are trained (Zhang et al., 2017; Belkin
et al., 2019), leading to two problems resulting from this bias: unfairness (resulting from
MLE overly prioritizing the generation of datapoints belonging to majority classes), and

1These observations apply to models trained on a lower bound of the likelihood function, such as
the popular ELBO (Kingma and Welling, 2022). Any deep learning model that uses the negative
log likelihood as a loss function is performing maximum likelihood estimation (Vapnik, 1999; 1991).
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MADness (where models trained on their own output generate poor data (Alemohammad
et al., 2023). For an illustration of how bias in MLE penalizes minority datapoints, see
Section 5.1, and for an illustration of how the bias in MLE significantly causes MADness,
see Section 5.3.

We propose an alternative to MLE that ensures the statistics of parameters estimated from
generated data match those estimated from observed data (See Equation 4). Our method,
called Penalized Autophogy Estimation (PLE), differs from MLE in that it forces the learned
parameters to be recursively stable. Theoretical and emperical results show PLE constrains
MLE in a way that removes bias, mitigating the above problems and learning estimators that
are fairer and less susceptible to MADness. This recursive debiasing is easily translatable
to hypernetworks, where a forward pass maps real or synthetic data to the weights of a
downstream network. The difference in statistics between the weights estimated from real
versus synthetic data is effectively the bias, which can be penalized in an optimization routine
such as stochastic gradient descent. For more details on how this is implemented in a deep
learning context, see Section 3.2.

1.2 Fairness

The term bias in parameter estimation is distinct from its colloquial usage2, so to avoid
ambiguity, we exclusively use the term “bias” to refer to the statistical bias of an estimator:
b(θ̂) = EX|θ[θ̂]− θ. Recent work has shown that generative models carry and often amplify
unbalances present in training data (Zhao et al., 2018). When MLE produces biased estimates
of the parameters (as it often does), the parameterized distribution becomes even more
concentrated around existing high-probability events3. Since probability distributions must
integrate to 1, increasing the frequency of some events comes at the expense of decreasing the
frequency of others. The other events in this case are those that are less frequent, or belong
to minority classes. As one can see in the first row in Figure H.3, biased maximum likelihood
estimates eventually collapse towards the mode(s) of the data and thus will underrepresent
data away from the mode. As a result, biased estimators will learn distributions where
majority-class data is overrpresented and minority-class data is underrepresented, while
unbiased estimators will learn distributions that more accurately represent the frequency of
minority events.

While recent work has looked at improving fairness in generative models, our work differs
conceptually in its focus on removing statistical bias. By removing statistical bias, we avoid
over-representing data belonging to majority classes without needing to specify any protected
attributes or classes. Other approaches are either restricted to a single model type or require
data labeled with protected attributes. For instance, FairGAN (Xu et al., 2018) proposes a
variant of GANs that requires labeled data with protected attributes, and can only be used
for training GANs. Choi et al. (2020) proposes a method that uses two datasets in situations
when a smaller dataset may better represent the population ratios, but does not address
bias in the learning process itself.

The gradient clipping approach suggested by Kenfack et al. (2022) seeks to improve fairness
by biasing the dataset towards uniformity. They write that their goal is “to improve the
ability of GAN models to uniformly generate samples from different groups, even when these
groups are not equally represented in the training data.” This differs from our model in
that 1) it actively biases the model to favor more uniform generation of points with different
classes to achieve fairness, and 2) requires data labeled with protected attributes, which
may not be feasible to expect. Finally, Rajabi and Garibay (2022) suggests a method for
generating tabular data whose statistics match a reference dataset. This approach also relies
on explicit labels of the protected attribute in the training dataset and is restricted to GANs.
Our method can be used for any generative model and requires no labels or information
about the protected attribute.

2The word bias may invoke a normative undertone we wish to be agnostic towards. In fact, some
argue a more “fair” model is one where bias is purposely introduced to account for unbalanced
classes (Tyler, 1996).

3Here we are using the term “event” instead of “data” to be consistent with Kolmogorov’s
axiomatic treatment of probability spaces; see Section B for more details.
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To evaluate the fairness of generative models, we look at the quality of generated samples
from models trained on unbalanced datasets containing a majority and minority class (CMaj
and CMin, respectively), where |CMaj| ≫ |CMin|. We define the imbalance ratio as the ratio
of datapoints belonging to the majority versus the minority class, RI = |CMaj|/|CMin|, and
is described by He and Garcia (2009) as the between-class imbalance4.

We compare this imbalance ratio to the ratio of representation quality from data generated
from each class5. Let S be a score function which evaluates the representation quality of
samples generated from a generative model M (in our experiments in Section 5.1, S is
the inverse of the Frechet Inception Distance). S(M) denotes the overall representation
quality, which can be broken up into two distinct components: S(M)Maj and S(M)Min,
corresponding to the representation quality of samples from the majority class and minority
class, respectively. We introduce a quantity called the fairness ratio over a metric S, which
is defined as

RFair = S(M)Maj/S(M)Min. (1)

Values of RFair closer to 1 correspond to models that do equally well representing majority
and minority datapoints, while values much larger than 1 refer to models that have better
performance representing datapoints from the majority class than the minority class. Virtually
all variants of empirical risk minimization (including MLE) weight each datapoint equally,
and we can thus expect that for a linear S(M),

S(M) =
|CMin|

|CMin|+ |CMax|
S(M)Min +

|CMax|
|CMin|+ |CMax|

S(M)Max. (2)

This implies that M will more accurately model the density around the majority class than
the minority class, and thus S(M)Max > S(M)Min. In other words, even if the training dataset
accurately represents the population frequencies of each classes, this relative imbalance often
harms performance when looking only at data from the minority class. This is empirically
observed with facial classifiers on unbalanced data (Buolamwini and Gebru, 2018) and is
seen for vanilla generative image models in Table 1.

In principle, weighing each datapoint equally corresponds to a process considered to be
procedurally fair (Tyler, 1996), despite the fact that the representation quality for samples
in the minority class may be far worse than those in the majority class. As a result, one can
argue that RFair = RI = |CMaj|/|CMin|, represents results from a procedurally fair training
process, where each datapoint is treated equally6. However RFair ≫ RI is clearly unfair,
as it penalizes the generation of minority data far more than would be expected by its
underrepresentation in the training set. Comparing RI to RFair in practice shows standard
generative model training is far worse at representing data from minority classes than RI

would suggest. We observe that removing statistical bias when estimating parameters leads
to increased performance representing data from minority classes. As a result, hypernetwork
training and its bias-removal properties leads to more fair outcomes, as we show in Section
5.1.

1.3 Model Autophagy Disorder (MADness)

Recent work has shown that models trained on their own output, a process called a self-
consuming loop, progressively decrease in quality (precision) and diversity (recall) (Alemo-
hammad et al., 2023). Researchers call this phenomenon “going mad” or simply “mad cow,”
after bovine spongiform encephalopathy (BSE), the medical term for mad cow disease7. This
phenomenon has become a growing concern for the machine learning community due to
the availability and ubiquity of synthetic data (Nikolenko, 2021). It often occurs with large

4Note that an unbalanced dataset is not necessarily biased ; the class imbalance in an unbalanced
dataset may accurately represent the true ratio of majority to minority datapoints in the population.

5This task is not necessarily conditional; none of our experiments use conditional generation.
Rather this refers to the generation quality of samples that are classified as belonging to either class.

6Unconditional generative models have no “knowledge” of protected attributes.
7Bovine spongiform encephalopathy (BSE) is a neurological disorder believed to be transmitted

by cattle eating the remains of other (infected) cattle (Prusiner, 2001).
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language models (LLMs) such as ChatGPT: LLMs trained on their own output suffer in
diversity, eventually collapsing to a single point (Briesch et al., 2023).

Given the popularity and availability of these models, it is almost inevitable that future
LLMs will be trained on a corpus containing at least some (if not much) synthetic data,
implying that future versions of ChatGPT and similar LLMs may be subject to diversity
collapse. We show that the presence of estimator bias worsens this phenomenon, and we
propose a method of removing this bias for deep generative models in Section 4, effectively
slowing down this collapse. Biased maximum likelihood estimates of distribution parameters
also exhibit MADness, which is shown for several popular distributions in Figure 4.

2 Background

2.1 Unbiased Estimation

Bias correction literature is relevant to generative model training since MLE often produces
biased results (for a brief overview of generative models, see Section C). There are many
specific methods for reducing or eliminating bias in parameter estimation problems (Singh and
Singh, 1993), and bias correction methods have been proposed for generalized linear models
(Cordeiro and McCullagh, 1991), autoregressive-moving average (ARMA) models (Cordeiro
and Klein, 1994), convex regularized estimators (Bellec and Zhang, 2021), diffusion processes
(Tang and Chen, 2009) and specific distributions of interest (Singh et al., 2015; Cribari-Neto
and Vasconcellos, 2002). While bias correction is often done via bootstrapping (Efron,
1979; Jiao and Han, 2020) or jackknifing (Quenouille, 1956; 1949), our work is most closely
related to using parametric bootstrapping for bias correction (Kosmidis, 2014). Parametric
bootstrapping uses synthetic or generated samples to estimate and remove empirical bias
(Hall, 1992), and has been described by Efron (2012) as linking Bayesian and frequentist
perspectives. We explain how our estimation procedure also links Bayesian and frequentist
perspectives in Section A.

Unlike much existing work, our method described in Equation 4 does not require assuming the
bias is additive or multiplicative (Ferrari and Cribari-Neto, 1998). Furthermore, recent work
has shown the penalizing the square of estimated bias produces asymptotic minimum-variance
unbiased estimators (MVUEs) and asymptotically hits the Cramer-Rao bound (Diskin et al.,
2023). This is related to our relaxation of Equation 4 in Section 4.

2.2 Parameter Estimation and Model Autophagy

Given data X drawn from a parameterized distribution P (X; θ), we form an estimator θ̂
of the generative model’s parameters θ. As shown in Figure 1, the model’s parameters θ

are estimated by some function of the observed data θ̂ = H(X). MADness (the collapse of
generated quality) arises when the estimated parameters are used in the generative model to
produce a new dataset X̂ and this dataset is again used to estimate the model’s parameters.

θ X ∼ P (X; θ) θ̂ = H(X) X̂ ∼ P (X; θ̂) θ̂ = H(X̂)

Figure 1: The self-consuming parameter estimation loop.

3 Autophagy Penalized Likelihood Estimation (PLE)

3.1 Theoretical Formulation

PLE involves adding a constraint to the maximum likelihood estimator to force it to take
into account other possible models that could have generated the data. To illustrate the
process, the conceptual model consists of several steps:
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1. Choose a parametrization P (X; θ) for our data-generation model where X =
[x1, . . . ,xn], with each xi ∼ P (x; θ), i = 1, . . . , n are I.I.D. samples from the
generative model parameterized by θ.

2. Choose a function H(·) that deterministically produces an estimate of θ from X:
θ̂ = H(X).

3. Generate the candidate set of estimators C =
{
θ̂ s.t. EX,Y[H(Y)−H(X)] = 0

}
,

over all possible data Y generated by P (Y;H(X)).

4. Choose the estimator from C that maximizes the likelihood function: θ̂PLE =
argmaxθ̂∈C P (X; θ̂).

This process can be summarized as a constrained maximum likelihood estimation problem:

θ̂PLE = H∗(X), H∗ = argmax
H

P (X; θ̂) s.t. EX,Y[H(Y)− θ̂] = 0. (3)

Since θ = H(X), we can also write this constraint fully in terms of H:

θ̂PLE = H∗(X), H∗ = argmax
H

P (X;H(X)) s.t. EX,Y[H(Y)−H(X)] = 0. (4)

Equation 4 is essentially MLE with an equality constraint enforcing the statistics of synthetic
data, Y to match that of the observed data X. The key here is that the same estimation
procedure H (which will eventually be a hypernetwork in our experimental setup) that
produces θ from X can also be used to estimate parameters from synthetic data Y. When
this synthetic data is drawn from a distribution parameterized by θ itself, any change in
estimated parameters (in expectation) becomes a proxy for estimator bias.

The difference between Equation 4 and traditional debiasing techniques such as those
discussed in Section 2.1 is that PLE is recursive and adapts to the observed data X. As a
result, it does not depend on a specific choice of H and can be used in general to debias of
estimators when a closed form expression is available (See Sections E.4 and F.3) and, with a
few modifications, to debias the training generative models, as discussed in the next several
sections.

3.2 Computational Implementation

Evaluating the constraint in Equation 4 is computationally intractable because the expectation
requires integrating over all possible synthetic data. We make this problem tractable by first
turning the constrained optimization problem into an unconstrained one via a Lagrangian
relaxation:

H∗ = argmax
H

P (X;H(X)) + λEX,Y[H(Y)−H(X)].

Here, λ is a hyperparemeter called the PLE penalty which penalizes differences in the
statistics of parameters estimated from training versus synthetic data. For our experiments,
we set λ = 0.1 based on the empirical ablation experiments (See Section J for more details).
To make this expression even more tractable, we can estimate this expectation above via a
parametric bootstrap with m synthetic samples. Let Ŷ = [y1, . . .ym] represent m samples8
of synthetic data drawn from a distribution parametrized by H(X).

H∗ = argmax
H

P (X;H(X)) +
λ

m

m∑
i=1

∣∣∣H(Ŷi)−H(X)
∣∣∣ (5)

The above equation is how PLE can be used in principle to train generative models, and
it differs from traditional, MLE-based training in two ways. The first is that rather than
maximizing the likelihood function P (X|θ) with respect to the parameters θ, we maximize
the likelihood with respect to a hyper learning task H. This hyper learning task is designed
to generate parameters θ when given training data X or synthetic data Y. The second is our
introduction of the PLE penalty λ

m

∑m
i=1

∣∣∣H(Ŷi)−H(X)
∣∣∣ , which penalizes hyper-learning

mechanisms that recursively differ in estimated parameters.
8These samples need not be individual points; they can each be n−dimensional or share the

batch size of X.
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4 Implementing H with Hypernetworks

Solving the optimization problem in Equation 4 in real-world applications is intractable due to
two main computational bottlenecks. First, the operator H that produces the weights of the
generative model, P (X; θ), from training data, X, is not an explicit operator. Instead, it is
usually an optimization routine, (i.e., training of a generative model given data). As a result,
evaluating the PLE constraint in Equation 4 involves solving an inner optimization problem
that trains a secondary generative model on synthetic data. This is clearly intractable as it
requires training a new generative model at every iteration. Second, it is unclear how the
PLE constraint can be strictly imposed.

To address these challenges, we propose parameterizing H as a hypernetwork (Ha et al.,
2017) denoted by Hϕ, i.e., a neural network that is trained to predict the weights of another
neural network. In our case, we use Hϕ to learn the parameters of P (X; θ): Hϕ takes as
input training data and predicts the weights of a generative model that approximates the
distribution of the training data. This downstream generative model is never explicitly
trained via backpropagation; rather its weights are set via H. This allows the PLE constraint
to be tractably evaluated by a sample of data through Hϕ. To address the second challenge,
we relax the optimization problem in Equation 4 so the constraint is turned into a penalty
term.

Inspired by the form of H obtained analytically for some simple distributions in Appendix
E.1, and to impose permutation invariance — with respect to ordering of data points — we
propose the following functional form for the hypernetwork Hϕ following Radev et al. (2022):

Hϕ(X) := h
(2)
ϕ

(
1

n

n∑
i=1

h
(1)
ϕ (xi)

)
, (6)

where h
(1)
ϕ and h

(2)
ϕ are two different fully-connected neural networks and X = [x1, . . . ,xn] is

a set of data samples. This permutation invariance is similar to the permutation symmetry
assumed in U-statistics (DasGupta, 2008b; Hoeffding, 1948). More recommendations for
choosing H based on theoretical considerations can be found in Section H.1.

While more expressive architectures can be used, in our experiments we found it sufficient
to choose h

(2)
ϕ to be a set of independent fully-connected layers such that for any layer

in the target generative model, we predict its weights via applying an independent fully-
connected layer to the intermediate representation 1

n

∑n
i=1 h

(1)
ϕ (xi). This functional form

has several advantages: (i) it is permutation invariant, which is required since the weights of
the generative model P (X; θ) do not depend on the order of data points X = [x1, . . . ,xn];
(ii) it can deal with an arbitrary number of data points, which enables batch training and
in turn allows for evaluating Hϕ over a large number of data points that otherwise would
not fit into memory; and (iii) the inner sum in the functional form of Hϕ and the proposed
architecture for h

(2)
ϕ (a set of independent linear layers) are highly parallelizable, allowing us

to train existing generative models with minimal computational overhead.

5 Experiments

For each experiment, we use one or two NVIDIA Titan X GPUs with 12 GB of RAM. The
time of execution for each experiment varies from a few minutes to 14 hours per model
trained. For the experiments with multiple models trained, since we must train the models
sequentially, the time of execution of the whole experiment is just the number of models
times the time necessary to train one model.

5.1 Fairness Experiments

As discussed in Section 1.2, we evaluate the quality of generated samples on datasets with
varying imbalance ratios, RI . As is common in the literature, we use the Frechet Inception

6
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Table 1: FID for Minority and Majority data, trained on MNIST with a Variational
Autoencoder (VAE). Note that this task is an unconditional generative task; the generated
images are sent through a pretrained classifier to determine the corresponding class. FID
is calculated using the weights from ResNET-18 on the MNIST training set. Lower FID
is better, as this corresponds to generated images being more similar to the images in the
training set; example images can be seen in Section K. The VAE consists of an encoder and
decoder, each with 5 layers containing a fully connected layer with batchnorm and leaky
Relu. This was trained on a single CPU in several hours. The hypernetwork architecture
consists of hidden sizes of 32,64, and 96, which takes several hours to train on a single CPU,
taking a few hours longer than the baseline. The majority class was the digit 3 and the
minority class was the digit 6 (this choice done randomly, as the goal of this experiment
is to show the effect of our method on the minority class, which depends primarily on the
frequency of occurrence and not the class itself.), with the ratio of majority to minority
datapoints used for training shown in the table.

Model Majority Class FID Minority Class FID RFair
10 Overall FID

RI = CMaj : CMin = 2 : 1
VAE 0.6666 1.0544 1.5817 0.6670

Hyper-VAE (Ours) 0.4456 0.9671 2.1703 0.5227

RI = CMaj : CMin = 5 : 1
VAE 0.4147 2.6167 6.3097 0.6313

Hyper-VAE (Ours) 0.4572 2.0532 4.4904 0.6299

RI = CMaj : CMin = 10 : 1
VAE 0.3060 3.9760 12.993 0.4803

Hyper-VAE (Ours) 0.4482 2.9806 6.650 0.5856

RI = CMaj : CMin = 20 : 1
VAE 0.2324 9.9098 42.641 0.6116

Hyper-VAE (Ours) 0.4122 6.03186 14.633 0.8603

Distance (FID) (Heusel et al., 2017a) to evaluate the quality of generated images. Our score
metric S is the inverse of FID since smaller distances correspond to higher quality generated
images. This is so it can be used as an appropriate score metric S in the fairness ratio RFair

9.

While it may not be reasonable to expect RFair = 1 in cases when |CMaj| ≫ |CMin|, we show
that models trained with hypernetworks plus a PLE penalty have values of RFair much closer
to 1 than those trained with MLE. Furthermore, our experiments suggest models trained
with PLE have RFair < |CMaj|/|CMin|, implying that PLE helps the generation of minority
data beyond what the class imbalance would predict. The results for models trained with
Hypernetworks versus MLE based training are shown in Table 1, showing that hypernetwork
training produces results that are more fair. These results become mxore pronounced as the
classes become more and more imbalanced (as RI = |CMaj|/|CMin| increases)

9Recall from Section1.2 that S compares the representation quality of samples from the majority
to the minority classes.

10Closer to 1 is better.
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Figure 2: PLE is more stable and outperforms the baseline as we train models on their own
outputs (MADness). This plot shows the generation versus FID for BigGAN trained on
CIFAR-10. The baseline (labeled BigGAN) uses normal BigGAN training and collapses after
only three generations. On the other hand, our method is very stable and only sees a slight
increase in FID over the course of the three generations.

5.2 Illustrative Example: Unbalanced Gaussian Mixture Model
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Figure 3: Comparison of KL divergence differences, i.e., DKL(qMLE || pGMM)−DKL(qPLE ||
pGMM), for estimating GMM parameters. Positive values indicate scenarios where PLE
outperforms MLE, particularly in imbalanced datasets and low-data regimes.

To showcase the benefits of hypernetwork training when dealing with imbalanced datasets,
we estimate the weights of a one-dimensional Gaussian mixture model (GMM) with two
components that have considerable overlap. The means of the two Gaussian components
are 0.0 and 2.0 and the variances are both equal to 1.0. We vary the responsibility vector
such that the contribution of one of the two Gaussian components is decreased. This makes
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estimating the true GMM parameters challenging, especially in low-data regimes and as the
GMM becomes more imbalanced.

We estimate the GMM weights using expectation maximization (EM), the gold standard
MLE approach, and compare the results to the estimated GMM via hypernetwork training.
We rely on sklearn for estimating the GMM via the EM approach, choosing an optimization
tolerance smaller than floating point precision, and setting the maximum number of iterations
to 105 (we did not observe improvement by increasing this number). For hypernetwork
training, we define H to predict the means, variances, and the responsibility vector from the
training data in one step. The architecture of h(1)

ϕ contains three fully-connected layers with

hidden dimensions of 8 and ReLU activation functions. We design h
(2)
ϕ in a similar manner,

with the only difference being the last layer, which contains three branches. Each branch
includes a linear layer aimed at predicting the mean, variance, and responsibility vector
of the GMM. We ensure the predicted variance is positive by using a softplus activation
function and ensure the predicted responsibilities are positive and sum to one by using a
softmax function. The objective function in the PLE case is to maximize the likelihood
of observing the training data under a GMM model whose weights are predicted via the
hypernetwork, while also including the PLE constraint as a penalty term with a weight of
0.1.

To compare the performance between MLE and PLE, after optimization, we calculate the KL
divergence between the estimated and the ground truth GMMs using 105 samples. We repeat
the GMM estimation for 100 different random seeds and average this quantity. Figure 3
illustrates the difference between the KL divergence between PLE and the true GMM minus
the KL divergence between MLE and the true GMM, i.e., DKL(qMLE || pGMM)−DKL(qPLE ||
pGMM). The negative values (shown in blue) correspond to settings where PLE outperforms
MLE (in terms of KL divergence). We observe that for imbalanced GMMs, and when the
training data size is smaller, PLE clearly outperforms MLE. In addition, as expected, as
the number of training samples goes to infinity, the performance of PLE and MLE become
similar.
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5.3 MADness Experiments
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Figure 4: MLE vs PLE Estimates of the parameters of various distributions. Notice how
MLE collapses into MADNess much faster than PLE. More details can be found in Section
H.3

Our experiments in this section show that models trained with PLE (either analytically
or via our hypernetwork approach) are less susceptible to MADness (Model Autophagy
Disorder (Alemohammad et al., 2023)) than models trained with MLE. In the following
experimental setups, parameters are estimated from fully synthetic data, generated either
from a model trained on the ground truth data, or the synthetic data from a previous
generation.

An illustrative example involves estimating the parameter a of a one-sided uniform, U [0, a].
While the MLE and PLE of a are similar in their closed-form expression (See E.1 for more
details), the two quickly diverge and the MLE collapses to 0 as a new estimate is produced
from data generated from the previous estimate. MLE’s collapse is due to its bias: this bias
degrades the estimation quality after each generation, as seen in Figure 4. Section E.3 shows
the result of PLE when using a linear function class, while Section E.4 shows the result of
PLE when using a linear function of the nth order statistic. These two PLE results agree
in expectation and are both unbiased. Similar comparisons of MLE vs. PLE on various
distributions are shown in Figure 4.

We also trained BigGAN (Brock et al., 2018) on CIFAR-10 (Krizhevsky et al., 2009)
and observe a similar result. Specifically, the BigGAN 11 data generation collapses after
3 iterations whereas our PLE method does not. We measure performance here using
FID (Heusel et al., 2017b), which does not change much for our method over the course of 3
generations yet completely explodes for the BigGAN baseline (see Figure 2). Additionally,
both the baseline and the PLE took about the same time, 14 hours on two GPUs.

11We use https://github.com/ajbrock/BigGAN-PyTorch
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6 Conclusion

Hypernetwork training is promising for the training of generative models due to its removal of
bias, its improvement of representation fairness, and its mitigation of MADness. Future work
can focus on additional applications of hypernetwork training, such as mitigating overfitting
due to the ability of hypernetworks to quantify uncertainty. Since hypernetwork training
involves sampling the generative model to evaluate the penalty, future work is needed to allow
tractable training of diffusion models, which are expensive to sample from12. Furthermore,
future work can explore guidelines for setting and scheduling the PLE penalty λ during
training. By combining unbiased statistical estimation methods with deep learning, we
believe we can make artificial intelligence more fair and stable.
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A PLE as Bayesian and Frequentest Estimation

In the field of statistics, there is a divide between Bayesians and frequentists. The Bayesian
approach sees the fixed (and unknown) parameters as random variables (Wakefield, 2013).
In this case, the data is fixed while the parameters are random (Fornacon-Wood et al.,
2022). The benefit of the Bayesian approach is its ability to find optimal estimators: because
parameters are mapped to a probability measure, they can be compared and a maximum
conditioned on data can be found (when it exists). The drawback of Bayesian estimation is
that it requires an accurate prior; if the prior is inaccurate, the estimator may ignore the
data and produce a biased result (Dias et al., 2014). Additionally, detractors point out that
the choice of prior (and the form of the posterior itself) is often subjective Gelman (2008).

The frequentist approach, on the other hand, evaluates a hypothesis, which corresponds to
a specific choice of parameters, by calculating the probability of observed data under this
hypothesis. In this case, the hypothesis is fixed while the data is a random variable. As one
statistician writes:

As the name suggests, the frequentist approach is characterized by a fre-
quency view of probability, and the behavior of inferential procedures is
evaluated under hypothetical repeated sampling of the data (Wakefield,
2013).

Since the true parameters in an estimation problem are often assumed to be non-random,
the frequentist is correct to point out that uncertainty in estimation is usually epistemic, not
ontic. This observation, as true as it may be, comes at a cost: there becomes no obvious
way of choosing optimal parameters. For the Baysian, the a posteriori distribution serves as
a goodness measure that tells us how well a given hypothesis fits the observed data. The
frequentist, on the other hand, has no such measure: since the parameters are fixed, we
are unable to make probability statements about the parameters given the observed data
(Wagenmakers et al., 2008). This leads to the most fundamental limitation of frequentist
inference: it does not condition the observed data (Wagenmakers et al., 2008). Of course, a
frequentist can make choices based on the observed data (such as a particular choice of a
kernel function in Kernel Density Estimation), however the Bayesian will often point out
such assumptions are contrived (Hájek, 2007; Romeijn, 2022).

The promise of a hybrid view comes from an acknowledgement of the benefits and short-
comings of each approach. As Roderick Little suggests, “inferences under a particular model
should be Bayesian, but model assessment can and should involve frequentist ideas (Little,
2006)13” The Bayesian is correct to point out that we are estimating our parameters from

13See also (Gelman, 2008; Rubin, 1984).
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observed data, so there will be uncertainty in the parameters themselves. The frequentist, on
the other hand, is correct to point out that the randomness in estimation results from the
data itself and not true parameters we wish to estimate. This is what causes the problem
in Section E.1, and with bias in MLE more generally: while the estimated parameters are
random under the data (which is true), the randomness of the data under the ground truth
model (which are used to estimate the parameters) is ignored.

PLE bridges this gap: it treats the true parameters as nonrandom, while acknowledging
that the estimated parameters are random because the data is random. It incorporates the
uncertainty of the estimation process from the uncertainty of the data in a given model class.
As a result, in virtually all cases, the strength of estimation uncertainty is related to the
number of datapoints - for consistent models, as n → ∞, the mutual information between
the data and the true parameters increases.

B Sampling, Randomness, and Modal Logic

Probability theory is a way of saying how “likely” something is to happen. A probability
space is a 3−element tuple, S = (Ω, F, P ), consisting of

• A sample space Ω which is a (nonempty) set of all possible outcomes ω ∈ Ω

• An event space F , which is a set of events f which themselves are sets of outcomes.
More precisely, F is a σ-algebra over Ω (Stroock, 2010).

• A probability function P which assigns each f ∈ F to a probability, which is a
number between 0 and 1 inclusive.

This triple must satisfy a set of probability axioms to be considered a legitimate probability
space (Papoulis and Pillai, 2002). An event with probability 1 is said to happen almost surely
while an event with zero probability is said to happen almost never. Note that not all zero
probability events are logically impossible (The probability of any outcome on a continuous
probability distribution is 0, even after one observes such an outcome). Impossible events
are thus those not contained within F ; these are assigned probability of zero by definition.

This idea of probability is closely related to the idea possible worlds, other ways the world
could have been. We use the semantics of modal logic to write the different “modes” of truth,
including necessary propositions (□x), possible propositions (♢y) and impossible propositions
(¬♢z) (Garson, 2024). Consider a fair dice roll on a six-sided die, where each outcome is the
corresponding number on top of the die (from 1-6). Let fn<10 be the event that one rolls
a number less than 10. Since all possible outcomes have a value less than 10, we say it is
necessary that one rolls a number less than 10, or □fn<10. Let the f4 be the event that one
rolls a 4. It is possible that one rolls a 4, so we say ♢f4, however it is not necessary, because
one could have rolled a 5 instead. It is impossible to roll a 7, so we say ¬♢roll a seven.
Rolling a seven is not an event because it does not exist in Ω; 7 is not a legitimate outcome
as constructed14.

An outcome x ∼ P (θ) from a probability distribution P cannot feature all possibilities from
the distribution except in the case of a trivial distribution (which has no randomness). For
nontrivial distributions, or ones with infinite support, there will always be at least some
other outcome with nonzero probability x̃ that could have happened if our observed outcome
was different. Semantically, we say there is a possible world in which x̃ happens as long as
x̃ ∈ F (Menzel, 2023).

C Background on Generative Models

Generative models use data to estimate an unknown probability distribution, generating
“new” data by sampling from the estimated distribution. A good generative model generates
data whose statistics match that of the observed data used to train the model (Schwarz et al.,
2021). From a Bayesian perspective, training a generative model amounts to using observed

14It is common to notate such events using the empty set.
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data to update the estimated parameters that are assumed to give rise to the data. The
architecture of a generative model can be viewed as a prior on the estimated distribution,
constraining the overall shape of the distribution itself (Ulyanov et al., 2018).

Of course, the data are merely samples of (what is usually assumed to be) an underlying
stationary stochastic process with fixed parameters. Generative models seek to find these
fixed parameters so as to determine the shape and location of the distribution from which
our data are assumed to have been drawn. Randomness is introduced in the estimation
process in two ways: 1) Each datapoint is random and 2) the sampling process itself contains
randomness based on the relationship between the given datapoints. More data implies
a given model can better discriminate between competing parameter choices, decreasing
estimation uncertainty and thus estimation randomness. In many cases, an infinite amount
of data would lead to an estimator that is completely deterministic, as there would be enough
data to remove any estimation uncertainty.

D Maximum Likelihood Estimation

D.1 Model Estimation

Model estimation involves estimating an unknown probability function P (one of the elements
of a probability triple (Ω, F, P ) (Kolmogorov and Bharucha-Reid, 2018)) from samples, each
sample an outcome from its sample space (see B for more details). We notate this as
X = [x1, . . .xn], xi ∈ Ω, i = 1, . . . , n. In most cases (and in all practical cases), the number
of samples we observe is finite (|X| ∈ Z+). Estimating P from a finite number of samples is
made difficult by the fact that we not only want to estimate the probability of the observed
events (corresponding to the samples), but also estimate the probability of unobserved events
that could have happened. Since we do not directly observe all events or the probability
function itself, we must estimate the elements of a probability triple (Ω, F and P ) from the
samples we do observe.

Estimating P is especially challenging when Ω is continuous. In these cases, we are estimating
Ω from a set with zero measure in Ω. When |Ω| is finite, a sample of Ω may contain all
possible outcomes, and thus the only unknown may be P . However, no finite sample can
come close to exhausting all outcomes in Ω when |Ω| is infinite.

To make the estimation problem more tractable, we often assume that P has a parametric
form. Saying P is parameterized by θ means we can know everything there is to know about
P from θ. To estimate P , we first estimate (or a priori assume) Ω, and then estimate θ.

D.2 Maximum Likelihood Parameter Estimation

The maximum likelihood parameter estimation procedure chooses parameter values that
maximize the likelihood function: the conditional probability of the observed data on the
parameters, P (X; θ) (Murphy, 2012). The problem with maximum likelihood is that it is too
“greedy.” The maximum likelihood parameter estimation method does take into account the
randomness associated with the assumed parametric form of the distribution, but not the
randomness associated with choosing θ from n samples. Consequently, maximum likelihood
estimates are only guaranteed to be asymptotically unbiased and consistent (Johnson, 2013)
but not unbiased for any n. Our method, PLE, seeks to incorporate the randomness
associated with sampling n times from a given parametrically defined probability function.
This approach effectively de-biases the maximum likelihood estimate proportional to the
uncertainty involved in the sampling process itself.

E One-Sided Uniform

E.1 Maximum Likelihood Estimation of the One-Sided Uniform

Consider a n samples drawn from the following uniform distribution

X = [x1, . . . ,xn], xi ∼ U [0, a] i = 1, . . . , n.
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We wish to estimate the parameter â from X so â = a. First, we write out the likelihood
function: PX|â(X|â) as

PX|â(X|â) =
{
0 if â < max(X)
1

αân else
Where α is a scaling factor that ensures the conditional PDF integrates to 1. Since this func-
tion is monotonic with respect to â, the MLE is easily found as âMLE = argmaxâ PX|â(X|â) =
max(X). This also corresponds to the n-th order statistic.

E.2 Bias of the MLE of the One-Sided Uniform

Now that we have âMLE, we can calculate the bias as follows:

b(âMLE) = EX|a[âMLE]− a = EX|a[max (X)]− a (7)

The expected value of the maximum of X (the n-th order statistic of X) can be calculated
by taking the derivative of the CDF of the maximum value with respect to the parameter in
question:

F (max(X)) = P (max(X) ≤ â) =


0 a < 0(
â
a

)n
â ∈ [0, a]

1 â > a

f(max(X)) = P (max(X) = â)


0 a < 0
nân−1

an â ∈ [0, a]

0 â > a

Now we can calculate E[max(X)] as follows:

EX|a[max(X)] =
n

an

∫ a

0

ândâ =
n

n+ 1
a. (8)

Therefore, the bias of the MLE is

b(âMLE) =
n

n+ 1
a− a = − 1

n+ 1
a.

Note that the bias here is negative, implying that the MLE âMLE will consistently underesti-
mate a.

E.3 One-Sided Uniform Example - Linear Function Class

Suppose we have data X = [x1, . . .xn],xi ∼ U [0, a], i = 1, . . . , n and we want to estimate â
from X. We assume that H is linear, so

â = H(X) =

n∑
i=1

αixi

Now we calculate H(Y), via

EX,Y [H(Y)−H(X)] = 0 ⇐⇒ EX,Y [H(Y)] = EX [H(X)]

First, we look at EX [H(X)]:

EX [H(X)] =

n∑
i=1

αiE [xi] = µ

n∑
i=1

αi

Now we look at EX,Y [sH(Y)]:

EX,Y [sH(Y)] =

n∑
i=1

αiEX,Y [yi] =

n∑
i=1

αi ·

µ

2

n∑
j=1

αj

 =
µ

2

 n∑
j=1

αj

2
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Combining these results gives:

EX,Y [H(Y)] = EX [H(X)] =⇒ µ

(
n∑

i=1

αi

)
=

µ

2

 n∑
j=1

αj

2

.

This equality only holds if
∑n

j=1 αj = 1
2

(∑n
j=1 αj

)2
. So

∑n
j=1 αj must be 2 or 0. It can

only sum to 0 if the mean is zero, otherwise E [H(X)] = 0 always (this is the degenerate
case). Thus, it must sum to 2. Also, αi must be equal to 2

n because otherwise, permutations
of the data would yield different results, and we are assuming they are independent. As a
result,

âPLE = H(X) =
2

n

n∑
i=1

xi = 2mX.

Where mX is the sample mean, mX = 1
n

∑n
i=1 xi. We calculate the bias by computing

EX|a [âPLE] = EX|a [2E [X]] = 2 · a
2
= a =⇒ b(â) = a− a = 0.

Thus the PLE estimate of the one-sided uniform is unbiased.

E.4 One-Sided Uniform Example - Function of the n-th order statistic

As before, we have a dataset X = [x1, . . .xn],xi ∼ U [0, a], i = 1, . . . , n, However this time,
knowing the MLE estimate of a is âMLE = max(X), we assume the form of PLE is a linear
function of the maximum of the data; i.e. âPLE = H(X) = c ·maxX. We want to estimate
â from U [0, a]. We calculate H(Y), via H(X), since Y ∼ U [0, H(X)]

We calculate H(Y ) as

EX,Y [H(Y)−H(X)] = 0 =⇒ EX,Y [H(Y)] = EX [H(X)]

Looking at EX,Y [H(Y)], we have

EX,Y [H(Y)] = c · EY [maxY] = c · n

n+ 1
EX [H(X)]

Combining this with EX,Y [H(Y)], we have

cn

n+ 1
EX [H(X)] = EX [H(X)] =⇒ c =

n+ 1

n

As a result, âPLE = H(X) = n+1
n maxX. We show the PLE estimate is unbiased by taking

the expected value of this estimator,

EX|a [âPLE] = EX|a

[
n+ 1

n
maxX

]
=

n+ 1

n
· n

n+ 1
a =⇒ EX|a [âPLE] = a,

Since b(â) = a− a = 0), the PLE estimate of a is unbiased. Furthermore, notice how we get
the same result (in expectation) as the parametrization considered in section E.3. In other
words, as long as different H’s contain the optimal value, PLE is transformation invariant
and will select this optimal value regardless of the parametrization.

F Univariate Gaussian Parameters

F.1 Maximum Likelihood Estimation

The probability density function for a univariate Gaussian random variable can be written
as:

f(x) =
1√
2πσ2

e−
(x−µ)

2σ . (9)
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The likelihood function of a dataset X of n such datapoints xi, i = 1, . . . , n can be written
as:

f(x1, . . . , xn|µ, σ) =
n∏

i=1

1√
2πσ2

e−
(xi−µ)2

2σ2 (10)

We find our maximum likelihood estimate of µ and σ as

µMLE = argmax
µ

f(x1, . . . , xn|µ)

and
σMLE = argmax

σ
f(x1, . . . , xn|σ).

Because we will be maximizing the likelihood, we can apply a logarithm (which is monotonic)
to the likelihood function to get the log likelihood (ll) function:

ll(x1, . . . , xn|µ, σ) = ln f(x1, . . . , xn) = −n

2
ln 2π − n

2
lnσ2 − 1

2σ2

n∑
i=1

(xi − µ)2

First, the maximum likelihood of the mean can be found by taking the gradient of the above
with respect to µ and solving when the gradient is 0:

∂ll

∂µ
= 0 =⇒ 1

σ2

n∑
i=1

(xi − µ) = 0 =⇒ µMLE =
1

n

n∑
i=1

xi.

Similarly, we can calculate the maximum likelihood of the variance as

∂ll

∂σ2
= 0 =⇒ − n

2σ2
+

1

2(σ2)2

n∑
i=1

(xi − µ)2 = 0 =⇒ σ2
MLE =

1

n

n∑
i=1

(xi − µ)2.

Substituting in µMLE for µ in our MLE for σ2
MLE, we have

σ2
MLE =

1

n

n∑
i=1

xi −
1

n

n∑
j=1

xj

2

=
1

n

n∑
i=1

x2
i −

2

n2

n∑
i=1

n∑
j=1

xixj +
1

n2

n∑
i=1

n∑
j=1

xixj

=
1

n

n∑
i=1

x2
i −

 1

n

n∑
j=1

xj

2

.

F.2 Estimating the mean of a Gaussian with unknown parameters

Suppose X = [x1, . . . ,xn],xi ∼ N(µ, σ2), i = 1, . . . , and we wish to estimate µ. Assume that
H is linear, so

µ̂ = H(X) =

n∑
i=1

αixi

Now we solve for H(Y)

EX,Y [H(Y)−H(X)] = 0 ⇐⇒ EX,Y [H(Y)] = EX [H(X)]

Looking at EX,Y [H(X)], we have:

Ex [H(X)] =

n∑
i=1

αiE [xi] = nµX

n∑
i=1

αi
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Now we look at EX,Y [H(Y)]:

Ex,y [H(y1, . . . ,yn)] =

n∑
i=1

αiE [yi] =

n∑
i=1

αi

µX

n∑
j=1

αj



Setting these two equal to each other, we have

n∑
i=1

αi

µX

n∑
j=1

αj

 = nµX

 n∑
j=1

αj

2

The only way that this works is if
∑n

j=1 αj =
(∑n

j=1 αj

)2
. So

∑n
j=1 αj must be 1 or

0. It can only sum to 0 if the mean is zero, otherwise E [H(x1, . . . ,xn)] = 0 always (this
is the degenerate case). Thus, it must sum to 1. Also, αi must be equal to 1

n because
otherwise, permutations of the data would yield different results, and we are assuming they
are independent. Thus,

µPLE = µX.

Obviously, the sample mean is an unbiased estimator of the expected value, so this result is
unbiased.

Since the above derivation does not use the Gaussian assumption, it can be repeated for any
distribution to estimate its mean. Therefore, distributions whose mean characterize them
are estimated unbiasedly with PLE. Such distributions include exponential, Bernoulli, Borel,
Irwin–Hall, etc.

F.3 Estimating the standard deviation of a Gaussian with unknown
parameters

Now that we have the mean estimated, let us estimate the standard deviation. Since we used
H above to estimate the mean (which we now notate Hµ), we will use Hσ to estimate the
variance to distinguish between the two. Suppose that Hσ has the following quadratic form:

σ̂2 = Hσ(X) =

n∑
i=1

βi (xi −Hµ(X))
2
=

n∑
i=1

βi

xi −
1

n

n∑
j=1

xj

2

.
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Now, we would like to evaluate EX [Hσ(X)] and EX,Y [Hσ(Y)] so that we can set them equal
to each other and solve. Let us start with the former:

EX [Hσ(X)] = EX

 n∑
i=1

βi

xi −
1

n

n∑
j=1

xj

2


= EX

 n∑
i=1

βi

x2
i −

2

n
xi

n∑
j=1

xj +
1

n2

n∑
j=1

n∑
k=1

xjxk


=

n∑
i=1

βi

EX

[
x2
i

]
− 2

n
EX

xi

n∑
j=1

xj

+
1

n2

n∑
j=1

n∑
k=1

EX [xjxk]


=

n∑
i=1

βi

((
σ2 + µ2

)
− 2

n

(
[σ2 + µ2] + [n− 1]µ2

)
+

1

n2

(
n[σ2 + µ2] + [n2 − n]µ2

))

=
n∑

i=1

βi

((
1− 2

n
+

1

n

)(
σ2 + µ2

)
−
(2n− 2

n
− n− 1

n

)
µ2

)

=

n∑
i=1

βi

(
n− 1

n

(
σ2 + µ2

)
− n− 1

n
µ2

)

=
n− 1

n

n∑
i=1

βiσ
2.

On the other hand, we have

EX,Y [Hσ(X)] =
n− 1

n

n∑
i=1

βiE [Hσ(X)] (∗)

=
n− 1

n

n∑
i=1

βi

n− 1

n

n∑
j=1

βjσ
2

 ,

where (∗) is obtained by repeating the EX [Hσ(X)] derivation for EX,Y [Hσ(Y)]. Setting
these two equal to one another, we see that a necessary condition for H[X]σ is that

n− 1

n

n∑
i=1

βi = 1.

Using similar arguments that we used with Hµ, we see that βi = βj for all i, j ∈ {1, . . . , n}.
Therefore, we have that βi =

1
n−1 for all i, leading us to the unbiased MLE solution for the

variance:

H(X) =
1

n− 1

n∑
i=1

xi −
1

n

n∑
j=1

xj

2

.

If, instead, the mean µ is known and we do not have to solve for Hµ, then βj =
1
n and the

proof is similar to the one in F.2.

G PLE is Asymptotically Unbiased

Suppose X ∼ Pθ, and we wish to estimate θ. Let Y be drawn from PH(X) so that Y is a
new random variable which we want to satisfy the following equation

EX,Y [H(Y)−H(X)] = 0.
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Figure 5: Generation index versus MLE and PLE of standard deviation for standard normal,
U [0, 1]. The error bars display the standard error for 100 different initializations. These
results use the analytic form of the Gaussian standard deviation derived in Section F.3. For
a data-driven version of this plot, see Figure 4.

This is equivalent to∫
y

∫
x

H(y)P (y|H(x))P (x)dxdy =

∫
x

H(x)P (x)dx (11)

Our ultimate goal is to calculate the bias. Let sx = H(X) = 1
n

∑n
i=1 H(xi) and sy =

H(Y) = 1
n

∑n
i=1 H(yi).∫

y

∫
sx

H(Y)P (Y|sx)P (sx|θ) dsxdY =

∫
sx

sxP (sx|θ)dsx

∫
sy

∫
sx

syP (sy|sx)P (sx|θ) dsxdsy =

∫
sx

sxP (sx|θ)dsx (12)

We can thus say (in expectation)?

Esx;θ

[∫
sy

syP (sy|sx; θ)dsy

]
= EX;θ [sx] (13)

Thus when sx = θ,

θ =

∫
sy

syP (sy|θ) = E[θ̂|θ] =⇒ b(θ̂) = 0.

H Experimental Details

H.1 Choosing H

As we show in E.1, as long as θ̂PLE (calculated from Equation 3) is in the domain of H,
the choice of H itself does not matter. In other words, PLE is transformation invariant for
any transformation that could produce θ̂PLE. In the absence of any prior information about
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the form of H, the form of the MLE can be used as a reasonable prior for selecting H and
thus θ̂PLE. In cases when MLE is strictly unbiased (not just asymptotically unbiased, as it is
guaranteed to be (Johnson, 2013)), PLE will give the same result as MLE. At the very least,
the MLE should be in the range of H, so when the MLE is unbiased, it is chosen.

H.2 Implementation of Hypernetworks

In our implementation, we are able to automatically create a hypernetwork architecture given
a generative model architecture. As long as the given architecture is a torch.nn.Module, our
hypernetwork implementation outputs a named dictionary containing the layer names and
weights for the target generative model. In addition, to allow for seamless usage of our PLE
formulation as a drop-in replacement for existing objective functions for generative models,
we exploit the abstractions provided by PyTorch that allow functional calls to any PyTorch
torch.nn.Module that uses the predicted weights from our hypernetwork architecture. This
allows us train existing generative models with PLE in just a few additional lines of code.
More details regarding our implementation and code to reproduce the results can be found
on GitHub15.

H.3 MADness Experiments on Various Distributions

This section explains how the plots for Figure 4 were generated. Error bars show the
standard error after either 100 or 1000 different initializations (some of the figures needed
1000 initializations for the error bars to decrease). Subfigure 1 shows the result from using the
closed-form expression of PLE described in Section E.4, Subfigures 2-6 use the data-driven
form from Equation 5, with 100 synthetic samples (m = 100) used to estimate the expectation
in Equation 4.

Subfigure 1 (top-left) was generated from a one-sided Uniform distribution X ∼ U [0, a]
with true parameter a = 1, using n = 20 datapoints. The MLE is aMLE = maxX, which
is derived in SectionE.1, while aPLE = n+1

n max (X), which is derived in Section E.4. The
parameter â is estimated each iteration. Error bars show the standard error after 100 different
initializations.

Subfigure 2 (top-middle) shows samples generated from a standard Gaussian (normal)
distribution X ∼ N [µ, σ], with true parameters µ = 0, σ = 1. The mean µ̂ and the
standard deviation σ̂ are estimated each iteration. We use µMLE = 1

n

∑n
i=1 xi and σMLE =

1
n

∑n
i=1(xi −µ)2, which is derived in Section 5. The PLE estimates use the data-driven form

from Equation 5, with 100 synthetic samples (m = 100). The estimates are generated with
n = 20 points, and the results are averaged from 1000 initializations.

Subfigure 3 (top-right) shows samples generated from a Laplacian distribution X ∼
Laplace[µ, b] with true parameters µ = 0, b = 1. The mean µ and the scale parameter
b are estimated each iteration. The MLE of the parameters are µMLE = median(X) and
bMLE = 1

n

∑n
i=1 |xi − µ| , and PLE estimates use the data-driven form from Equation 5, with

100 synthetic samples (m = 100). The estimates are generated with n = 25 points, and the
results are averaged from 1000 initializations.

Subfigure 4 (bottom-left) shows samples generated from a Geometric distribution X ∼
Geometric[p], where the true parameter p = 0.5. The parameter p̂ is estimated each iteration.
The MLE of p is pMLE = n∑n

i=1 xi
, and PLE estimates use the data-driven form from Equation

5, with 100 synthetic samples (m = 100). The estimates are generated with n = 25 points,
and the results are averaged over 1000 initializations.

Subfigure 5 (bottom-middle) shows samples generated from an Exponential distribution
X ∼ Exponential[λ], where the true parameter λ = 0.5). The parameter λ̂ is estimated each
iteration. The MLE of λ is λMLE = n∑n

i=1 xi
, and PLE estimates use the data-driven form

15Link is removed for double-blind review. Please refer to the code uploaded as supplementary
material.
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from Equation 5, with 100 synthetic samples (m = 100). The estimates are generated with
n = 25 points, and the results are averaged over 1000 initializations.

Subfigure 6 (bottom-right) shows samples generated from a Type-I Pareto distribution
X ∼ Pareto[b], where the true parameter b = 1.0. The PDF of this distribution is f(x, b) =

b
xb+1 , and b̂ is estimated each iteration. The MLE of b is bMLE = n∑n

i=1(log (xi))−n log (min (X)) ,

and PLE estimates use the data-driven form from Equation 5, with 100 synthetic samples
(m = 100). The estimates are generated with n = 25 points, and the results are averaged
over 100 initializations.

The upper-left and upper-middle sub-figures show PLE estimated parameters slope down
slightly. This is due to the fact that for a few runs, the variance goes to zero and cannot
“recover” via a multiplicative constant. These degenerate runs bring the overall average down
slightly, as there is no analogous degeneracy for large values. In essence, for the few estimates
of the variance that are near zero, the result becomes clipped. This is sometimes described
as variance collapse or model collapse in the literature (Alemohammad et al., 2023).

I Extending Fairness

While our definition of fairness considers only two classes of data (a majority and a minority
class), this idea can easily be extended multi-class data. Suppose we have a dataset X with n
classes and a labeling of the data class(x) = y. Consider a partitioning of X into each of these
classes, where Xi = {x ∈ X|class(x) = i} i = 1, . . . , n , where X = X1 ∪X2 ∪ · · · ∪Xn

and |X| = |X1|+ |X2|+ · · ·+ |Xn|
This partitioning allows us to consider the imbalance ratios of data belonging to each class:
Let Ri:j = |Xi|/|Xj |. We also consider the ratio score ratio between generated data from
each class, SRi:j = S(M)i/S(M)j (note that with two classes, this is simply the fairness
ratio between the majority and minority class indices). With multiple classes, the ratio of
representation scores for a metric M on generated data from two classes can be compared
with the ratio of frequencies of data belonging to each class. This is a multi-class extension
of the imbalance and fairness ratios described in Section 1.2.

Additionally, what is important to report is the generated freuqency of data belonging to
each class. When the task is unconditional, an external classifier or oracle is needed to
determine which class each generated datapoint belongs to. The frequency of generated
data belonging to a given class should be compared to that class’s frequency in the training
data; i.e. if X̂ refers to synthetic data from a generative model and X̂i i = 1, . . . , n is a
partitioning of the data according to its classified value, one should compare

|X̂i|/|X̂| ⋚ |Xi|/|X|

to determine if the generative model generates biased data according to the given classification.

J Ablation Experiments for PLE Penalty

Our choice of λ = 0.1 was based on ablation experiments for the GMM example shown in
Section 5.2. These experiments show that λ = 0.1 is the best choice; it performs better than
MLE in the low-data regime and has less of a negative impact for larger samples than λ = 0.0
and λ ≥ 10. Very large values of λ cause the training to ignore the maximum likelihood
term altogether which leads to poor performance.

Note that hyperparameter training provides an advantage over MLE even when the PLE
penalty λ is zero, as shown in Figure 6). We believe some of this benefit comes from
averaging the weights from different batches, which is part of hyperparameter training shown
in Equation 6. Work by Izmailov et al. (2019) has shown that averaging in weight space (as
is done with evaluating the hypernetwork on batches of data) leads to better generalization
and wider optima. As shown in the following figures, this averaging accounts for some (but
not all) of the benefit of using our hypernetwork approach for training generative models.
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Figure 6: PLE vs MLE with λ = 0.0

Figure 7: PLE vs MLE with λ = 0.1

Figure 8: PLE vs MLE with λ = 1.0

Figure 9: PLE vs MLE with λ = 10.0
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Figure 10: PLE vs MLE with λ = 100.0

Furthermore, our choice of hypernetwork architecture described in Section H.1 implicitly
applies the PLE penalty during training. Below is a plot of training epoch versus estimated
empirical bias, 1

m

∑m
i=1

∣∣∣H(Ŷi)−H(X)
∣∣∣ for both a naive hypernetwork architecture which

features no averaging (Figure 11) and our proposed hypernetwork architecture (Figure 12).
For both of these experiments, our hyperparameter λ was chosen to be 0, so the empirical
bias is not explicitly minimized. However our chosen hypernetwork structure implicitly
minimizes the empirical bias during training to a certain extent. Increasing the value for λ
penalizes the empirical bias more, leading to models that are even more fair to datapoints
belonging to minority classes and further stabilizing self-consumed estimation.

Figure 11: Training epoch vs. 1
m

∑m
i=1

∣∣∣H(Ŷi)−H(X)
∣∣∣, naive hypernetwork architecture

and λ = 0
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Figure 12: Training epoch vs. 1
m

∑m
i=1

∣∣∣H(Ŷi)−H(X)
∣∣∣, proposed architecture and λ = 0

K Generated Image Examples

Below are example images generated from the fairness experiments described in Section
5.1. Notice both the quality and quantity of minority images (Digit 6) are increased when
training with the hypernetwork, shown in Figure, 13) versus standard training, shown in
Figure 13).

Figure 13: Sampled images from Hypernetwork VAE trained on subset of MNIST images
with RI = 10 : 1
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Figure 14: Sampled images from Vanilla VAE trained on subset of MNIST images with
RI = 10 : 1
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