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Abstract

Pre-trained Transformer models have been suc-
cessfully applied to the extreme multi-label text
classification (XMTC) task, which aims to tag
each document with the relevant labels from a
very large output space. When applying Trans-
former models to text classification, a typical
usage is to adopt the special CLS token em-
bedding as the document feature. Intuitively,
the CLS embedding is a summarization of a
Transformer layer to reflect the global semantic
of a document. While this may be sufficient
for smaller scale classification tasks, we find
that the global feature itself is not sufficient to
reflect fine-grained semantics in a document
under extreme classification. As a remedy, we
propose to leverage all the token embeddings
in a Transformer layer to represent the local se-
mantics. Our approach combines both the local
and global features produced by a Transformer
model to represent different granularity of doc-
ument semantics, which outperforms the state-
of-the-art methods on benchmark datasets.

1 Introduction

Extreme multi-label text classification (XMTC) is
the task of tagging each document with relevant la-
bels where the target space may contain up to a mil-
lion categories. A central problem in XMTC is to
extract the semantic information of a document to
support the prediction over multiple relevant labels
at various granularity levels. As an example, the
Amazon product "Falling in Love Is Wonderful" is
a collection of Broadway love duets. The category
"music" reflects a high-level summarization of the
product content, while "vocalist" and "soundtracks"
are finer-grained categories which are associated
with the keywords "singer" and "recording" in the
text description. A successful XMTC model should
capture the general concept of a document and, at
the same time, identify the meaningful keywords
in order to make accurate predictions for more dis-
tinguished labels.
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Figure 1: Document representation from global feature
v.s. local features from a Transformer layer.

When applying Transformer-based models for
XMTC, previous works use the embeddings of
[CLS] token at the last (Chang et al., 2020; Ye
et al., 2020) or last few layers (Jiang et al., 2021)
as the document representation. Since the [CLS]
embeddings at each Transformer layer summarizes
the content of the input document into a single vec-
tor, we call them the global features in our paper.
However, only using global features is too coarse
to reflect the semantics of such a large label space.
As shown in figure 1, the embeddings of all word
tokens, which we call the local features, can di-
rectly participate in label prediction. Specifically,
we apply the label-word attention that lets each la-
bel attentively select the keywords in the document
text, which emphasizes the semantic matching be-
tween each label and document words.

In this paper, we propose an integrating frame-
work that combines both global and local features
in pre-trained Transformer models, namely GLO-
CALXML. Our contributions are : 1) we are the
first to reveal the effectiveness of token-level fea-
tures in pre-trained Transformers for XMTC, 2) we
investigate the effective way to combine the global
and local features in a single Transformer model,
and 3) we dig the reason of the performance gain to
the level of contextualization of Transformer layers
(in section 4 for more details).



2 Proposed Method

2.1 Preliminaries

Let x = {z1,22,..., 27} be the input document
with length T', and the set of associated ground
truth labels is y € R with 3, € {0, 1}, where L

is the label size. A classier calculates a probability
p; of the label being relevant. The binary cross

entropy (BCE) loss between p = {p1,p2,...,pL}
and y is calculated as:

Lece(p,y) = yilogpr + (1 — 1) log(1 —p1) | -

1
L
leL

The document z is usually prepended with a
special [CLS] token as the input to Transformer.
For a Transformer model with /N layers, the hidden
representations from the n-th layer is denoted as:

l(rj;l)sformer(w) = {h£79)7 h(") h(n) 7hgzl)} N (1)

We will introduce our classification system with
global and local features respectively.

2.2 Classification with Global Features

Global features are summarized in the [CLS] em-
bedding. Since the [CLS] embedding from the
last layer IV contains the richest information after
multiple layers of self-attention, we use h( (or

optionally passed to a linear pooler) as the global
feature. The probability of predicting a label [ is
calculated by:
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tures, o is the sigmoid activation and (-,
dot product.

is the label embedding for global fea-
-} is the

2.3 Classification with Local Features

The local features denote all the token embeddings
at a certain layer of Transformer, which preserve
the diverse and fine-grained token level informa-
tion. As the first layer token embeddings from
a Transformer model mostly pertain to the token
surface-level meaning (while being contextualized),

they are used as the local features.

Similar to the label-word attention (You et al.,
2018), each label attentively select the key tokens
from the document. The labels are treated as
queries to retrieve the salient tokens in the doc-
1.

uments (h is written as h( ))
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where ¢ is a linear function, e’ s the label em-
bedding for local features and 7 is the temperature.

7 controls the smoothness of the attention distri-
bution over the words. With a smaller 7 < 1, the

attention is peaked on the most salient key tokens.
~ The retrieved key tokens are aggregated accord-
ing to the relevance score «;:
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where vy is a linear function and ¢arrp(v;) is
a multi-layer perceptron that maps v; into a real-
valued score.

Equation 2 and 4 highlight the difference be-
tween using the global and local features: for the
global features, relevance scores are computed be-
tween the label embeddings and the document em-
bedding; for the local features, relevance scores are
directly computed between the label embeddings
and the token embeddings inside a document.

o(¢mrr(vj)),  (6)

2.4 Inference

Our framework integrates the classification with
local and global features, and the final prediction
for a given input text and label [ is:
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2.5 Training Objective

The training objective optimizes a summation of
global and local losses:

plzglobal) . (7)

Lioa = Loce(P™™™, y) + Loce (P, y) . (3

Optimizing the Lpcg losses for the global and lo-
cal classifiers encourages each of them to focus
on its own specialities. As the backbone of Trans-
former is shared, the number of parameters is not
increased, but the features induced by Transformer
(both latent token-level embeddings and [CLS] em-
bedding) are used more efficiently.

Dataset | Nirain Niest La L
EURLex-4K 15,539 3,809 5.30 3,956
Wikil0-31K 14,146 6,616 18.64 30,938
AmazonCat-13K | 1,186,239 306,782  5.04 13,330
Wiki-500K 1,779,881 769,421 475 501,070

Table 1: Corpus Statistics: Ny, and Ny are the num-
ber of training and testing instances respectively; L4
is the average number of labels per document, and L
is the number of unique labels. An unstemmed ver-
sion of EURLex-4K is obtained from the APLC-XLNet
github and the rest are from the Extreme classification
Repository. Details are included in appendix section B.



| EURLex-4K Wikil0-31K AmazonCat-13K Wiki-500K
Methods | P@l P@3 P@5 | P@l P@3 P@5 | Pe@l P@3 P@5|P@l P@3 P@S
DisMEC 8321 7039 58.73 | 84.13 7472 6594 | 93.81 79.08 64.06 | 7021 50.57 39.68
PfastreXML | 73.14 60.16 50.54 | 83.57 68.61 59.10 | 91.75 77.97 63.68 | 56.25 37.32 28.16
eXtremeText | 79.17 66.80 56.09 | 83.66 7328 6451 9250 78.12 63.51 | 65.17 4632 36.15
Parabel 82.12 6891 57.89 | 84.19 7246 6337 |93.02 79.14 6451 | 68.70 49.57 38.64
Bonsai 8230 69.55 58.35 | 8452 7376 64.69 | 9298 79.13 64.46 | 69.26 46.72 36.46
XML-CNN | 7532 60.14 4921 | 8141 6623 56.11 | 93.26 77.06 61.40 | 59.85 39.28 29.81
AttentionXML | 87.12 73.99 61.92 | 87.47 7848 6937 | 9592 8241 67.31 | 76.95 5842 46.14
X-Transformer | 87.22 7512 62.90 | 88.51 78.71 69.62 | 96.70 83.85 68.58 | 77.28 5747 4531
APLC-XLNet | 87.72 74.56 62.28 | 89.44 7893 69.73 | 9456 79.82 64.60 | 72.83 50.50 38.55
LightXML | 87.63 75.89 63.36 | 89.45 7896 69.85 | 96.77 84.02 68.70 | 77.78 58.85 4557
XR-Transformer | 88.41 75.97 63.18 | 88.69 80.17 7091 | 96.79 83.66 68.04 | 79.40 59.02 4625
GLOCALXML | 90.32 7890 66.20 | 90.11 80.95 71.97 | 96.60 83.97 68.78 | 80.52 61.30 47.72

Table 2: The evaluation of representative classification systems with P@k metric. The bold phase and underscore

highlight the best and second best model performance.

3 Experiments

3.1 Datasets

We conduct our experiments on 4 bench-
mark datasets: EURLex-4K, Wikil0-31K and
AmazonCat-13K, and Wiki-500K. The statistics
of the datasets are shown in Table 1.

3.2 Evaluation Metrics and Settings

We evaluate our models with the widely used pre-
cision at k (P@k) metric:

1
Pk = —
k

Zyi

i€top-k(y)
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where top-k(y) are the top k predicted labels.

Following the experimental settings in previous
XMTC evaluation (Jiang et al., 2021; Chang et al.,
2020; Zhang et al., 2021), we report the ensemble
score of three Transformer-base models (except for
Wiki-500K): BERT (Devlin et al., 2018), Roberta
(Liu et al., 2019) and XLNet (Yang et al., 2019).
For Wiki-500K, we leverage the label clustering
algorithm in LightXML for scalability and simi-
larly report the ensemble of three different label
clusters with Roberta. The implementation details
are included in appendix B.

3.3 Baselines

We compare our model with the statistical and
neural baselines. The statistical models include
one-vs-all DisMEC (Babbar and Schoélkopf, 2017),
PfastreXML (Jain et al., 2016); tree-based Para-
bel (Prabhu et al., 2018), eXtremeText (Wydmuch

et al.,, 2018). The deep learning approaches in-
clude XML-CNN (Liu et al., 2017), AttentionXML
(You et al., 2018); SOTA pre-trained Transformer
models X-Transformer (Chang et al., 2020), APLC-
XLNet (Ye et al., 2020) and LightXML (Jiang et al.,
2021), and XR-Transformer (Zhang et al., 2021).

3.4 Main Result

The performance of model evaluated with the P@k
metric is reported in table 2. Our model is com-
pared against the representative statistical and neu-
ral models, with the best performance highlighted
in bold phase and the second best in underline.
The most competitive baselines are the pre-
trained transformer-based models. Our model
outperforms those SOTA models on EURLex-4K
and Wikil10-31K, Wiki-500K measured with P@1,
P@3 and P@S5, and achieves competitive perfor-
mance on the AmazonCat-13K dataset. We at-
tribute the performance gains to the additional uti-
lization of local features in Transformers. Labels
with more specific categorization may directly ben-
efit from attending to token embeddings in the
Transformer, when the [CLS] embedding fails to
capture the fine-grained details. Although we don’t
observe significant improvement in AmazonCat-
13K dataset, our model still performs the best or
second best compared with the SOTA models.

4 Analysis on Global & Local Features

We further analyze the effectiveness of global and
local features. Experiments are performed on
EURLex-4K (more in appendix C) with single



Roberta model of sequence length 256. The global
feature uses the [CLS] embedding at the final layer,
while the local features are the token embeddings
from layers 0-12. The layer O corresponds to the
original token embedding before being passed into
any Transformer layer.
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Figure 2: (EURLex-4k) Analysis on the effectiveness of
the global feature ([CLS] embedding at the final layer)
and local feature from different layers. The horizontal
axis is the local layer number, the vertical axis is the
P@5 performance. Layer 0 corresponds to the original
token embeddings.

Q1: How effective are local features alone?
Figure 2 compares the effectiveness of classifier
with global and local features. The classifier with
global feature (layer 12) has a slight variation due
to the joint optimization of local and global fea-
tures. The classifiers with local features from any
layers inevitably underperform that with the global
feature, with layer O performing significantly worse
since its word embeddings are not contextualized.

Q2: Can local features complement global fea-
ture with additional information?

First of all, combining the global and local fea-
tures can boost performance in most cases. Sur-
prisingly, the combination of global feature with
local feature at layer O achieves competitive results,
even if the local feature at layer O performs the
worst by itself. On the other hand, even local fea-
tures from higher layers tend to perform better by
themselves, we observe that combining global fea-
ture with a higher layer of local feature, especially
at layer 12, is less effective. The performance of
GLOCALXML is peaked when the local feature is
at layer 1, providing an empirical evidence of our
design choice. We attribute the gains to the com-
plementary information in local and global feature.

Q3: Underlying reasons why lower layer local
features are better?
To explain this situation, we hypothesize: even
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Figure 3: (EURLex-4K) the relative improvement of
GLOCALXML over the global feature, and the JSD
between predicted label distributions with global and
local feature. The global feature uses [CLS] at final
layer and the local features come from different layers.

if the token embeddings at a higher layer preserves
the token meaning !, it becomes more contextual-
ized after multiple layers of self-attention. Conse-
quently, when a label queries from more contex-
tualized word embeddings, it is harder to pick up
the salient keywords information. To verify the
hypothesis, in figure 3, we study the correlation
between the relative improvement (red curve) of
GLOCALXML over the global classifier and the
Jensen—Shannon divergence (green curve) of the
predicted label distributions by the local and global
classifier. There are two observations from the ex-
periment: 1) the predicted label distributions by
local and global classifiers become more similar
when a higher Transformer layer of word embed-
dings is used, and 2) a higher distribution similarity
is correlated with a lower improvement of GLO-
CALXML over the global classifier. This indicates
that using more contextualized word embeddings
for the local classifier leads to homogeneous fea-
tures as using the global feature, which undermines
the complementary of the two.

5 Conclusion

In this paper, we propose GLOCALXML , a clas-
sification system integrating both the global and
local features from the pre-trained Transformers.
The global classifier uses [CLS] embedding as the
summarization of document, and the local classi-
fier uses the label-word attention to directly select
salient part of texts for classification. Our model
combines the two to capture different granularity
of document semantics, which achieves superior or
comparable performances over SOTA methods on
the benchmark datasets.

LAfter all, the MLM loss is optimized to predict the word
identity at the final layer of pre-trained Transformer.
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A Limitations

For large datasets like Wiki-500K in the extreme
XMTC repo, we only experiment with simple
fixed-size clusters. The recent state-of-the-art XR-
Transformer leverages different granularity of tree
structures, which could be adapted to our model
and we leave that to the future work. Another limi-
tation is that this work doesn’t leverage the label de-
scriptions, which could be helpful when combined
with the local classifier to better retrieve keywords
from the documents.

B Implementation Details

B.1 Datasets

We conduct our experiments on 4 bench-
mark datasets: EURLex-4K, Wikil0-31K and
AmazonCat-13K, and Wiki-500K. The statistics of
the datasets are shown in Table 1. An unstemmed
version of EURLex-4K is obtained from the APLC-
XLNet github? and the rest are from the Extreme
classification Repository>.

B.2 Hyperparameters

Following APLC-XLNet (Ye et al., 2020), we use
different learning rate for the Transformer back-
bone, the pooler (optional) and the classifier, which
are le — 5, 1le — 4, 1e — 3 for the Wikil0-31K and
5e —5,2e—4, 2e — 3 for the other two datasets. For
the classifier with local features, we use learning
rates of 2e — 4, 2e — 3 for the attention module and
MLP respectively. The sequence length is set to
512 for BERT and Roberta on EURLex-4K and
2https://github. com/huiyegit/APLC_XLNet.git

3http: //manikvarma.org/downloads/XC/
XMLRepository.html


https://github.com/huiyegit/APLC_XLNet.git
http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html

Wiki10-31K, and 256 for AmazonCat-13K and the
XLNet model. The fp16 training is enable to im-
prove training efficiency.

For the large scale dataset Wiki-500K, we adopt
the cluster-based algorithm from LightXML for
scalability. Following their evaluation criteria, we
report the ensemble of 3 different clusters using
the Roberta-base model. We use a learning rate of
5e — b for the Roberta backbone, 1e — 3 for the
classifier and the attention module. We use 256 as
sequence length.

C More Results
C.1 Single Model Performance

The performance of a single Roberta model (with
single cluster) is reported in table 3. The classifier
with local feature inevitably underperforms that
with the global feature, probably because the local
classifier only shares a shallow Transformer back-
bone which is less expressive. Despite that, when
the local and global features are combined, GLO-
CALXML achieves the best performance, which
could come from the complementary effect of local
and global feature (analysed below).

Dataset Global Local GLOCALXML
P@1 8727 8598 88.93
EURLex-4K P@3 75.09 73.36 76.90
P@5 6297 60.76 64.22
P@1 87.62 85.31 89.60
Wikil0-31K P@3 77.00 75.49 80.17
P@5 68.25 66.92 70.99
P@1 9627 95.08 96.27
AmazonCat-13K P@3 83.25 81.39 83.40
P@5 68.09 66.26 68.25
P@1 7648 73.82 78.91
Wiki-500K P@3 57.17 53.52 59.71
P@5 4405 41.81 45.57

Table 3: Ablation test results for GLOCALXML with a
single model initialized with Roberta. The performance
for the GLOCALXML, local and glocal classifiers is
reported separately.

C.2 GlocalXML with Different Layers

In figure 4, we report more results on the combi-
nation of global and local features from different
layers. We observe that the performance of classi-
fication with the global feature is relatively stable
which outperforms that with the local features. Our
GLOCALXML model with a combination of the
two features achieves the best performance. For
the Wiki10-31K dataset, GLOCALXML achieves
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Figure 4: Ablation test on the effectiveness of combin-
ing the global feature ([CLS] embedding at the final
layer) with different layers of local feature. The hori-
zontal axis is the local layer number, the vertical axis
is the P@5 performance. Layer O corresponds to the
original token embeddings.

better performance when the features comes from
layers < 3, even with the original token embed-
ding at layer 0. The reason is that since this dataset
has a large label space and each document has an
average of 19 labels, it is more difficult for the
[CLS] embedding to summarize the text with dis-
tinctive word-level features peculiar to the labels.
Therefore, the local classifier which allows labels
to directly query for the keywords in the document
could pick up the missing information. Combining
the two leads to better results.
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