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Abstract

Human coordination often benefits from executing actions in a correlated manner,
leading to improved cooperation. This concept holds potential for enhancing coop-
erative multi-agent reinforcement learning (MARL). Despite this, recent advances
in MARL predominantly focus on decentralized execution, which favors scalability
by avoiding action correlation among agents. A recent study introduced a Bayesian
network to incorporate correlations between agents’ action selections within their
joint policy, demonstrating global convergence to Nash equilibria under a tabular
softmax policy parameterization in cooperative Markov games. In this work, we
extend these theoretical results by proving the convergence rate of the Bayesian
network joint policy with log-barrier regularization.

1 Introduction

Cooperative multi-agent reinforcement learning (MARL) enables autonomous agents to collectively
maximize their utility, offering promising applications in areas such as traffic control [1], coordination
of multi-robot systems [2], and power grid management [3]. However, the joint action space in
MARL grows exponentially with the number of agents, posing scalability challenges. To mitigate
this, many approaches rely on product policies, where each agent independently selects its action
based on its observations. While this simplifies decision-making, it can lead to suboptimal outcomes
in cooperative tasks—consider a group of drones performing a synchronized search mission. If each
drone acts independently without considering the actions of others, they might overlap in their search
areas, wasting resources. In contrast, acting sequentially, where each drone’s actions depend on
the others, can significantly improve efficiency and coverage. The key research question is how to
introduce correlations in multi-agent policies without exacerbating scalability issues. A promising
solution is to use a Bayesian network (BN) to capture essential dependencies among agents. This
paper provides a theoretical justification on why action dependencies are beneficial.

Recent work has focused on addressing this challenge within Cooperative Markov Games (MGs), a
key subclass of Markov games where agents share the same reward function. Policy gradient methods
have been shown to converge to Nash policies under product joint policies, with guarantees in tabular
settings using both direct [4] and softmax parameterization [5, 6]. However, while product policies
offer scalability, they may incur suboptimality for the learned joint policy. To overcome the limitations
of product joint policies, a recent advance [7] has introduced the use of Bayesian networks to capture
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correlations among agents’ actions. This approach has demonstrated global convergence to Nash
equilibria under a tabular softmax policy parameterization. Nonetheless, challenges remain: these
methods lack convergence rate analysis and do not achieve optimality as shown in the single-agent
setting, particularly when using dense Bayesian networks that can factorize any joint policy, thereby
behaving similarly to the single-agent setting [8]. In this paper, we address these gaps by providing a
theoretical justification for the benefits of action dependencies in multi-agent policies, along with
a convergence rate analysis using log-barrier regularization. Our results show that it is possible to
achieve optimality with a dense Bayesian network, offering a promising direction for improving the
performance of cooperative MARL systems.

2 Preliminaries

Cooperative Markov Game. We consider a cooperative Markov game (MG) ⟨N ,S,A, P, r, µ⟩,
involving N agents indexed by i ∈ N = {1, . . . , N}. The game consists of a state space S, a joint
action space A = A1 × · · · × AN , a transition function P : S ×A → ∆(S), a shared team reward
function r : S ×A → R, and an initial state distribution µ ∈ ∆(S). Here, ∆(X ) denotes the set of
probability distributions over X . We assume full observability, meaning each agent observes the global
state s ∈ S . Under this assumption, a general joint policy π : S → ∆(A) maps states to distributions
over the joint action space. Given the exponential growth of A with N , the commonly used subclass
is the product policy, π = (π1, . . . , πN ) : S → ×i∈N∆(Ai), where the joint policy is factored as
a product of local policies πi : S → ∆(Ai), such that π(a|s) =

∏
i∈N πi(ai|s). The discounted

return from time step t is defined as Gt =
∑∞

l=0 γ
lrt+l, where rt := r(st, at) is the team reward

at time step t. The joint policy π induces the value function Vπ(st) = Est+1:∞,at:∞∼π[Gt|st] and
the action-value function Qπ(st, at) = Est+1:∞,at+1:∞∼π[Gt|st, at]. The cumulative team reward,
starting from s0 ∼ µ, is denoted as Vπ(µ) := Es0∼µ[Vπ(s0)]. The (unnormalized) discounted state
visitation measure under policy π, starting at s0 ∼ µ, is given by:

dπµ(s) := Es0∼µ

[ ∞∑
t=0

γtPrπ(st = s|s0)

]
,

where Prπ(st = s|s0) is the probability of being in state st = s at time t when starting from s0
and following π. Since all agents share the team reward, the objective in cooperative MARL, as in
single-agent RL, is to optimize the joint policy to maximize its value, i.e., maxπ Vπ(µ). We now
define the concepts of ϵ-Nash and ϵ-optimal policies.
Definition 1 (ϵ-Nash Policy). The Nash-gap of a policy π is defined as:

Nash-gap(π) := max
i

(
max
π̄i

Vπ̄i,π−i(µ)− Vπ(µ)

)
.

A product policy π = (π1, . . . , πN ) is an ϵ-Nash policy if Nash-gap(π) ≤ ϵ.
Definition 2 (ϵ-Optimal Policy). The optimality-gap of a policy π is defined as:

optimality-gap(π) := max
π∗

Vπ∗(µ)− Vπ(µ)

A policy π is an ϵ-optimal policy if optimality-gap(π) ≤ ϵ.

3 Bayesian Network Joint Policy

In this work, we focus on a class of joint policies introduced in [7] that extends beyond product
policies by incorporating action dependencies through a Bayesian network (BN). A BN is represented
by a directed acyclic graph (DAG) G = (N , E), where N is the set of vertices (agents), and
E ⊆ {(i, j) : i, j ∈ N , i ̸= j} is the set of directed edges. The parents of an agent i are denoted
by Pi := {j : (j, i) ∈ E}, and their actions are aP

i ∈ ×j∈PiAj , as illustrated in Figure 3. Under
full observability, a BN (joint) policy (π,G) = (π1, . . . , πN ,G) : S → ∆(A) is defined, where each
local policy πi : S × (×j∈PiAj) → ∆(Ai) depends on both the global state and the actions of its
parents. The joint action a = (a1, . . . , aN ) is then sampled as π(a|s) =

∏
i∈N πi(ai|s, aPi

).
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Figure 1: Various BN policies.

In this formulation, each local policy πi is parameterized using a
tabular softmax function:

θi =
{
θi
s,aPi ,ai ∈ R : s ∈ S, aP

i

∈ ×j∈PiAj , ai ∈ Ai
}
,

leading to the induced softmax local policy:

πi
θi(ai|s, aP

i

) ∝ exp(θi
s,aPi ,ai), (1)

with the BN policy parameterized as πθ = (π1
θ1 , . . . , πN

θN ).

In Lemma 1, we derive the policy gradient for the BN policy as parameterized in Equation (1), which
will be used to establish our convergence results in this section.

We also introduce several shorthand notations. For a subset M ⊆ N of agents and its complement
−M, a joint action is decomposed as a = (aM, a−M). The conditional policy for aM is defined as:

πM(aM|s, a−M) :=
π(aM, a−M|s)∑
āM π(āM, a−M|s)

.

The corresponding action-value function is:

Qπ(s, a
M) := Ea−M∼π−M(·|s,aM)

[
Qπ(s, a

M, a−M)
]
.

Let Pi
+ := Pi ∪ {i} denote the set of agent i and its parents. We will also use the abbreviations Vπθ

and Qπθ
as Vθ and Qθ, respectively.

Note that for BN joint policy, the notion of ϵ-Nash policy and ϵ-optimal policy still hold.

4 Learning dynamics

4.1 Policy gradient dynamics with log-barrier regularization

Building on the method in the single-agent setting [8], we introduce a log-barrier regularized objective,
detailed below, to provide finite-time convergence guarantees for policy gradient dynamics:

Lλ(θ) :=Vθ(µ)− λ
∑N

i=1 Es,aPi∼Unif
S×APi

[
KL(UnifAi , πθ(·|s, aP

i

))
]

=Vθ(µ) + λ
∑N

i=1

(∑
s,aPi

,ai log πi
θi

(ai|s,aPi
)

|S||APi ||Ai|
+ log |Ai|

)
where the log barrier regularization, i.e., the KL divergence with respect to the uniform action-
selection distribution, is applied to each agent’s policy independently.
Lemma 1 (Tabular softmax BN policy gradient form with log-barrier regularization, proof in
Appendix A). For the tabular softmax BN policy parameterized as in Equation (1), we have:

∂Lλ(θ)

∂θi
s,aPi ,ai

=
1

1− γ
dπθ
µ (s, aP

i

)πi
θi(ai|s, aP

i

)Ai
θ(s, a

Pi

, ai) +
λ

|S||APi |

(
1

|Ai|
− πi

θi(ai|s, aP
i

)

)
where dπθ

µ (s, aP
i

) := dπθ
µ (s)

∑
a−Pi πθ(a

−Pi

, aP
i |s), Ai

θ(s, a
Pi

, ai) := Qθ(s, a
Pi

+)−Qθ(s, a
Pi

).

The policy gradient form with log-barrier regularizer in Lemma 1 generalizes its counterpart for
single-agent policies [8] and for multi-agent product policies [5, 6] under the tabular softmax policy
parameterization, which enables us to extend the convergence results to the BN joint policies. Below
we state the assumptions used in the convergence results for product policies [5, 6].
Assumption 1. For any π and any state s of the Markov game, dπµ(s) > 0.
Assumption 2 (Reward function is bounded). The reward function r is bounded in the range
[rmin, rmax], such that the value function V is bounded as Vmin ≤ Vπ(s) ≤ Vmax ∀s, π.

We next present our finite-time convergence results for standard policy gradient dynamics with
log-barrier regularization in Section 4.2, with proofs in the appendix A.
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4.2 Convergence rate of Tabular Softmax BN Policy Gradient Dynamics with log-barrier
regularization

In Theorem 1, we establish, under the tabular softmax BN policy parameterization, the finite time
convergence to a near-Nash policy in a coopertaive MGs of the standard policy gradient dynamics
(with log-barrier regularization):

θit+1 = θit + η∇θiLλ(θt) (2)

where η is the fixed stepsize and the update is performed by every agent i ∈ N .

For each agent i, parent actions aP
i

, and local action ai, Equation (2) becomes

θi,t+1

s,aPi ,ai
= θi,t

s,aPi ,ai
+ η∇θi

s,aPi
,ai

Lλ(θt)(µ) (3)

Lemma 2. ((Log barrier regularization’s approximate first-order stationary points are near-Nash,
proof in Appendix A.2) Suppose θ is such that ∥∇θLλ(θ)∥2 ≤ λ/(2|S||A|maxi |Ai|). Then the BN

(joint) policy πθ = (π1
θ1 , ..., πN

θN ,G) is a 2λM -Nash policy where M := maxπ,π′

∥∥∥ dπ
µ

dπ′
µ

∥∥∥
∞

, which is

well-defined by Assumption 1.

Lemma 2 extends the results in [8] in the single-agent setting, and the results in [5, 6] in the multi-
agent setting with an uncorrelated uncorrelated product policy, stating that, with the log barrier
regularization, approximate first-order stationary points in a BN policy are near-Nash. With Lemma
2, we establish the convergence rate as stated in Theorem 1.
Theorem 1 (Convergence rate of the BN policy gradient with log-barrier regularization, proof
in Appendix A). Under Assumptions 1 and 2, suppose every agent i follows the policy gradient
dynamics (2), which results in the update dynamics (3) for each each agent i, parent actions aP

i

, and
local action ai, with η ≤ 1

βλ
, then we have mint<T Nash-gapt ≤ ϵ whenever

T ≥256NM2|S|2 maxi |Ai|2(rmax − rmin)
2

(1− γ)4ϵ2
+

32λM |S|maxi |Ai|2
∑

i
1

|APi |
(rmax − rmin)

(1− γ)ϵ

where βλ = 8N(rmax−rmin)
(1−γ)3 +

∑
i

2λ

|S||APi |
is an upper bound on the smoothness of Lλ(θ).

The main trick is to view the parent actions aP
i

as part of the state, so that dπθ
µ (s, aP

i

) becomes the
new state visitation measure for the augmented state (s, aP

i

). With this transformation, the update
dynamics in 1 is similar to the ones for the product policy,i.e., G := (N , ∅), and thus generalize the
results to the BN policy.

With the help of a log-barrier regularizer, we establish convergence to the optimal joint policy with a
dense Bayesian network in Theorem 2, an outcome not achieved in [7]. This regularizer ensures that
every action has a positive and bounded probability of selection, which is crucial for the sufficient
coverage of parent actions and achieving optimality.
Definition 3 (Fully-correlated BN policy). A BN policy (π, (N , E)) is fully-correlated if |E| =
N(N − 1)/2, the maximum number of edges in a BN.
Lemma 3. ((Fully-correlated BN policy with Log barrier regularization’s approximate first-order
stationary points are near-optimal, proof in Appendix A.4) Suppose θ is such that ∥∇θLλ(θ)∥2 ≤
λ/(2|S||A|maxi |Ai|). Then the BN (joint) policy πθ = (π1

θ1 , ..., πN
θN ,G) is a 2N+1NλM -optimal

policy where M := maxπ,π′

∥∥∥ dπ
µ

dπ′
µ

∥∥∥
∞

, which is well-defined by Assumption 1.

Theorem 2 (Convergence rate of the fully-correlated BN policy gradient with log-barrier regulariza-
tion, proof in Appendix A.5). Under Assumptions 1 and 2, suppose every agent i follows the policy
gradient dynamics (2), which results in the update dynamics (3) for each each agent i, parent actions
aP

i

, and local action ai, with η ≤ 1
βλ

, then we have mint<T optimality-gapt ≤ ϵ whenever

T ≥2N+8N3M2|S|2|A|2 maxi |Ai|2(rmax − rmin)
2

ϵ2(1− γ)4
+

8NM |S||A|2 maxi |Ai|2(rmax − rmin)
∑

i
1

|APi |

ϵ(1− γ)

where βλ = 8N(rmax−rmin)
(1−γ)3 +

∑
i

2λ

|S||APi |
is an upper bound on the smoothness of Lλ(θ).
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5 Limitations

This work primarily focuses on the theoretical aspects of Bayesian network joint policies without
exploring their integration with standard MARL algorithms for practical applications.
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A Proof of Theorem 1 and Theorem 2

Lemma 4. Lλ(θ) is βλ-smooth, where βλ = 8N(rmax−rmin)
(1−γ)3 +

∑
i

2λ

|S||APi |

Proof. Lemma A.3 in [7] shows that Vθ is 8N(rmax−rmin)
(1−γ)3 -smooth. From the perspective of the augu-

mented state, the Lemma D.4 in [8] becomes that the regularizer for each agent i is 2λ

|S||APi |
-smooth.

Thus, βλ = 8N(rmax−rmin)
(1−γ)3 +

∑
i

2λ

|S||APi |
is an upper bound on the smoothness of Lλ(θ).

A.1 Proof of lemma 1

Proof.

∂Lλ(θ)

∂θi
s,aPi ,ai

=
∂Vθ(µ)

∂θi
s,aPi ,ai︸ ︷︷ ︸
(1)

−
∂

(
λ
∑N

i=1 Es,aPi∼Unif
S×APi

[
KL(UnifAi , πθ(·|s, aP

i

))
])

∂θi
s,aPi ,ai︸ ︷︷ ︸
(2)

According to lemma 5.1 in [7],

(1) =
1

1− γ
dπθ
µ (s, aP

i

)πi
θi(ai|s, aP

i

)Ai
θ(s, a

Pi

, ai)

By the definition of KL Divergence,

(2) =

∂

(
λ
∑N

i=1 Es,aPi∼Unif
S×APi

λ
∑N

i=1

(∑
s,aPi

,ai log πi
θi

(ai|s,aPi
)

|S||APi ||Ai|
+ log |Ai|

))
∂θi

s,aPi ,ai

=− λ

|S||APi |

(
1

|Ai|
− πi

θi(ai|s, aP
i

)

)
Therefore,

∂Lλ(θ)

∂θi
s,aPi ,ai

= (1)− (2)

=
1

1− γ
dπθ
µ (s, aP

i

)πi
θi(ai|s, aP

i

)Ai
θ(s, a

Pi

, ai) +
λ

|S||APi |

(
1

|Ai|
− πi

θi(ai|s, aP
i

)

)

A.2 Proof of lemma 2

Proof. The proof extends the proof of Theorem 5.2 in [8] by the usage of the multi-agent performance
difference lemma (Lemma C.1 in [4]).

Similar to the proof of Theorem 5.2 in [8], we can bound Ai
θ(s, a

i) ≤ for any (s, ai)-pair. It suffices
to bound Ai

θ(s, a
i) for any (s, ai) where Ai

θ(s, a
i) ≥ 0 (else Ai

θ(s, a
i) ≤ is trivially true):

λ/(2|S||A|max
j

|Aj |) ≥ λ/(2|S||APi

||Ai|) =: ϵopt

≥ ∂Lλ(θ)

∂θi
s,aPi ,ai

(i)
=

1

1− γ
dπθ
µ (s, aP

i

)πi
θi(ai|s, aP

i

)Ai
θ(s, a

Pi

, ai)

+
λ

|S||APi |

(
1

|Ai|
− πi

θi(ai|s, aP
i

)

)
≥ λ

|S||APi |

(
1

|Ai|
− πi

θi(ai|s, aP
i

)

)
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where the last inequality is due to Ai
θ(s, a

Pi

, ai) ≥ 0, and by rearranging we get

πi
θi(ai|s, aP

i

) ≥ 1/2|Ai| (4)

Solving (i) for Ai
θ(s, a

Pi

, ai), we have

Ai
θ(s, a

Pi

, ai) =
1− γ

dπθ
µ (s, aPi)

(
1

πi
θi(ai|s, aPi)

∂Lλ(θ)

∂θi
s,aPi ,ai

+
λ

|S||APi |

(
1− 1

πi
θi(ai|s, aPi)|Ai|

))

≤ 1− γ

dπθ
µ (s, aPi)

(
2|Ai|ϵopt +

λ

|S||APi |

)
(πi

θi(ai|s, aP
i

) ≥ 1/2|Ai|)

≤ 2(1− γ)λ

dπθ
µ (s, aPi)|S||APi |

(ϵopt = λ/(2|S||APi

||Ai|)) (5)

We are now ready to use the multi-agent performance difference lemma on two BN joint policy with
only agent i’s parameters changed. For convenience, denote

∑
a−Pi πθ(a

−Pi

, aP
i |s) as πPi

θ (·|s) so
that dπθ

µ (s, aP
i

) = dπθ
µ (s)πPi

θ (·|s).
∀i ∈ N , let θ′∗ = [θ−i

∗ , θ̃i∗] be the parameters of any joint policy where only agent i’s parameters are
changed.
By performance difference lemma,

Vθ′
∗
− Vθ∗ =

1

1− γ
E
s̄∼d

π
θ′∗

µ

Eā∼πθ′∗

[
Aθ∗(s̄, ā)

]
=

1

1− γ
E
s̄∼d

π
θ′∗

µ (·)
E
āPi∼πPi

θ′∗
(·|s̄) Eāi∼πi

θ̃i∗
(·|s̄,āPi ) E

ā
−Pi

+∼π
−Pi

+

θ′∗
(·|s̄,aPi

+ )

[
Qθ∗(s̄, ā

Pi

, āi, ā−Pi
+)−Vθ∗(s̄)

]
Since (θ′∗)

−i = θ−i
∗ which means πPi

θ′
∗
(·|s̄) = πPi

θ∗
(·|s̄), π−Pi

+

θ′
∗

(·|s̄, aP
i
+) = π

−Pi
+

θ∗
(·|s̄, aP

i
+),

=
1

1− γ
E
s̄∼d

π
θ′∗

µ (·)
E
āPi∼πPi

θ∗
(·|s̄) Eāi∼πi

θ̃i∗
(·|s̄,āPi ) E

ā
−Pi

+∼π
−Pi

+
θ∗

(·|s̄,aPi
+ )

[
Qθ∗(s̄, ā

Pi

, āi, ā−Pi
+)−Vθ∗(s̄)

]
=

1

1− γ
E
s̄∼d

π
θ′∗

µ (·)
E
āPi∼πPi

θ∗
(·|s̄) Eāi∼πi

θ̃i∗
(·|s̄,āPi )

[
Qi

θ∗(s̄, ā
Pi

, āi)− Vθ∗(s̄)
]

=
1

1− γ
E
s̄∼d

π
θ′∗

µ (·)
E
āPi∼πPi

θ∗
(·|s̄) Eāi∼πi

θ̃i∗
(·|s̄,āPi )

[
Ai

θ∗(s̄, ā
Pi

, āi) +Qi
θ∗(s̄, ā

Pi

)− Vθ∗(s̄)
]

=
1

1− γ
E
s̄∼d

π
θ′∗

µ (·)
E
āPi∼πPi

θ∗
(·|s̄) Eāi∼πi

θ̃i∗
(·|s̄,āPi ) A

i
θ∗(s̄, ā

Pi

, āi)

+
1

1− γ
E
s̄∼d

π
θ′∗

µ (·)
E
āPi∼πPi

θ∗
(·|s̄) Eāi∼πi

θ̃i∗
(·|s̄,āPi )

[
Qi

θ∗(s̄, ā
Pi

)− Vθ∗(s̄)
]

≤ 1

1− γ
E
s̄∼d

π
θ′∗

µ (·)
E
āPi∼πPi

θ∗
(·|s̄) Eāi∼πi

θ̃i∗
(·|s̄,āPi )

2(1− λ)λ

dπθ
µ (s̄, āPi)|S||APi |

+
1

1− γ
E
s̄∼d

π
θ′∗

µ (·)
E
āPi∼πPi

θ∗
(·|s̄)

[
Qi

θ∗(s̄, ā
Pi

)− Vθ∗(s̄)
]

=
1

1− γ
E
s̄∼d

π
θ′∗

µ (·)
E
āPi∼πPi

θ∗
(·|s̄)

2(1− γ)λ

d
πθ∗
µ (s̄, āPi)|S||APi |

=
1

1− γ
E
s̄∼d

π
θ′∗

µ (·)
E
āPi∼πPi

θ∗
(·|s̄)

2(1− γ)λ

d
πθ∗
µ (s)πPi

θ∗
(·|s)|S||APi |

= E
s̄∼d

π
θ′∗

µ (·)

2λ

d
πθ∗
µ (s̄)|S||APi |

=
∑
s̄

d
πθ′∗
µ (s̄)

2λ

d
πθ∗
µ (s̄)|S||APi |

≤ 2λ

|APi |
max

s

(
d
πθ′∗
µ (s)

d
πθ∗
µ (s)

)
≤ 2λ

|APi |
M ≤ 2λM
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By definition of ϵ-Nash, we know that the BN (joint) policy πθ = (π1
θ1 , ..., πN

θN ,G) is a 2λM -Nash
policy.

A.3 Proof of Theorem 1

Since Lλ(θ) is βλ-smooth, we have

min
t≤T

∥∥∥∇θLλ(θ
(t))
∥∥∥2
2
≤ 2βλ(Lλ(θ

∗)− Lλ(θ0))

T
≤ 2βλ(Vmax − Vmin)

T
≤ 2βλ(rmax − rmin)

T (1− γ)
,

where the last inequality is because we need to choose T large enough such that√
2βλ(rmax − rmin)

T (1− γ)
≤ λ/(2|S|max

i
|Ai|).

Solving the above inequality we obtain T ≥ 8βλ|S|2 maxi |Ai|2(rmax−rmin)
λ2(1−γ) . By Lemma 2, we

should set λ = ϵ/2M to achieve the specified Nash-gap of ϵ. Plugging in λ = ϵ/2M and
βλ := 8N(rmax−rmin)

(1−γ)3 +
∑

i
2λ

|S||APi |
, we have

T ≥32M2|S|2 maxi |Ai|2βλ(rmax − rmin)

ϵ2(1− γ)

=
256NM2|S|2 maxi |Ai|2(rmax − rmin)

2

(1− γ)4ϵ2
+

64λM2|S|maxi |Ai|2
∑

i
1

|APi |
(rmax − rmin)

(1− γ)ϵ2

=
256NM2|S|2 maxi |Ai|2(rmax − rmin)

2

(1− γ)4ϵ2
+

32λM |S|maxi |Ai|2
∑

i
1

|APi |
(rmax − rmin)

(1− γ)ϵ

A.4 Proof of lemma 3

Proof. By bound on the advantage inequality (5), we know that ∀s,APi

, ai,

Ai
θ(s, a

Pi

, ai) ≤ 2(1− γ)λ

dπθ
µ (s, aPi)|S||APi |

=
2(1− γ)λ

dπθ
µ (s)πθ(aP

i |s)|S||APi |
(6)

By inequality (4), we know

πθ(a
Pi

|s) =
∑
a−Pi

πθ(a
Pi

, a−Pi

|s) =
∑
a−Pi

∏
j

πθ(a
j |s, aP

j

) ≥
∑
a−Pi

∏
j

1

2|Aj |

=
1

2N
1

|APi |
Plugging in 6, we have

Ai
θ(s, a

Pi

, ai) ≤ 2N+1(1− γ)λ

dπθ
µ (s)|S|

(7)

Assume without loss of generality that agents 1 · · ·N in G has a topological ordering of 1 · · ·N (This
means that agent i ∈ N is the source of N − i edges and target of i− 1 edges).
Note that in this case, ∀i, aPi

= [aP
i−1
+ ],

Qπθ,i(s, aP
i

) = Eā−Pi∼πθ(·|s,aPi )

[
Qπθ (s, aP

i

, ā−Pi

)
]

= E
ā
−Pi−1

+ ∼πθ(·|s,a
Pi−1
+ )

[
Qπθ (s, aP

i−1
+ , ā−Pi−1

+ )
]
= Qπθ,i−1(s, aP

i−1
+ ) (8)
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Follow the reverse topological ordering,
∀a = [aP

N

, aN ],

Qπθ∗ (s, a) = Qπθ∗ (s, aP
N

, aN ) = Qπθ∗ ,N (s, aP
N

, aN )

By inequality (5),

≤ Qπθ∗ ,N (s, aP
N

) +
2N+1(1− γ)λ

dπθ
µ (s)|S|

By Equation (8),

= Qπθ∗ ,N−1(s, aP
N−1

, aN−1) +
2N+1(1− γ)λ

dπθ
µ (s)|S|

By inequality (5),

≤ Qπθ∗ ,N−1(s, aP
N−1

) + 2 ∗ 2N+1(1− γ)λ

dπθ
µ (s)|S|

By Equation (8),

= Qπθ∗ ,N−2(s, aP
N−2), aN−2) + 2 ∗ 2N+1(1− γ)λ

dπθ
µ (s)|S|

By keep doing the same procedure above,

≤ Qπθ∗ ,1(s, aP
1

) +N ∗ 2N+1(1− γ)λ

dπθ
µ (s)|S|

Since aP
1

= ∅,

= V πθ∗ (s) +
2N+1N(1− γ)λ

dπθ
µ (s)|S|

By performance difference lemma,

Vθ∗ − Vθ =
1

1− γ
E
s̄∼d

πθ∗
µ

Eā∼πθ∗

[
Aθ(s̄, ā)

]
≤ 1

1− γ
E
s̄∼d

πθ∗
µ

Eā∼πθ∗

[2N+1N(1− γ)λ

dπθ
µ (s)|S|

]
=

1

1− γ

∑
s̄

d
πθ∗
µ (s̄)

[2N+1N(1− γ)λ

dπθ
µ (s)|S|

]
≤ 1

1− γ

∑
s̄

M
[2N+1N(1− γ)λ

|S|

]
= 2N+1NλM

Then, since ∀s, a,Qπθ∗ (s, a) ≤ V πθ∗ (s), we know that (π1
θ1
∗
, · · · , πN

θN
∗
,G) is an 2N+1NλM -optimal

policy.

A.5 Proof of Theorem 2

Since Lλ(θ) is βλ-smooth, we have

min
t≤T

∥∥∥∇θLλ(θ
(t))
∥∥∥2
2
≤ 2βλ(Lλ(θ

∗)− Lλ(θ0))

T
≤ 2βλ(Vmax − Vmin)

T
≤ 2βλ(rmax − rmin)

T (1− γ)
,

where the last inequality is because we need to choose T large enough such that√
2βλ(rmax − rmin)

T (1− γ)
≤ λ/(2|S||A|max

i
|Ai|).
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Solving the above inequality we obtain T ≥ 8βλ|S|2|A|2 maxi |Ai|2(rmax−rmin)
λ2(1−γ) . By Lemma 3, we

should set λ = ϵ
2N+1NM

to achieve the specified optimality-gap of ϵ. Plugging in λ = ϵ
2N+1NM

and
βλ := 8N(rmax−rmin)

(1−γ)3 +
∑

i
2λ

|S||APi |
, we have

T ≥2N+5N2M2|S|2|A|2 maxi |Ai|2βλ(rmax − rmin)

ϵ2(1− γ)

=
2N+8N3M2|S|2|A|2 maxi |Ai|2(rmax − rmin)

2

ϵ2(1− γ)4
+

2N+5N2M2|S|2|A|2 maxi |Ai|2(rmax − rmin)
∑

i
2λ

|S||APi |

ϵ2(1− γ)

=
2N+8N3M2|S|2|A|2 maxi |Ai|2(rmax − rmin)

2

ϵ2(1− γ)4
+

8NM |S||A|2 maxi |Ai|2(rmax − rmin)
∑

i
1

|APi |

ϵ(1− γ)
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