
Published in Transactions on Machine Learning Research (07/2022)

Learning the Transformer Kernel

Sankalan Pal Chowdhury spalchowd@inf.ethz.ch
Department of Computer Science
ETH Zürich

Adamos Solomou solomou.adamos@gmail.com
Department of Computer Science
ETH Zürich

Avinava Dubey avinavadubey@google.com
Google Research
Mountain View, CA

Mrinmaya Sachan mrinmaya.sachan@inf.ethz.ch
Department of Computer Science
ETH Zürich

Reviewed on OpenReview: https://openreview.net/forum?id=tLIBAEYjcv

Abstract

In this work we introduce KL-TRANSFORMER, a generic, scalable, data driven framework for
learning the kernel function in Transformers. Our framework approximates the Transformer kernel as
a dot product between spectral feature maps and learns the kernel by learning the spectral distribution.
This not only helps in learning a generic kernel end-to-end, but also reduces the time and space
complexity of Transformers from quadratic to linear. We show that KL-TRANSFORMERs achieve
performance comparable to existing efficient Transformer architectures, both in terms of accuracy and
computational efficiency. Our study also demonstrates that the choice of the kernel has a substantial
impact on performance, and kernel learning variants are competitive alternatives to fixed kernel
Transformers, both in long as well as short sequence tasks. 1

1 Introduction

Transformer models (Vaswani et al., 2017) have demonstrated impressive results on a variety of tasks dealing with
language understanding (Devlin et al., 2019; Radford et al., 2018; Raffel et al., 2020; Brown et al., 2020), image
processing (Parmar et al., 2018; Carion et al., 2020; Lu et al., 2019), as well as biomedical informatics (Rives et al.,
2020; Ingraham et al., 2019; Madani et al., 2020). Albeit powerful, due to the global receptive field of self-attention,
the time and memory complexity of Softmax Transformer models scale quadratically with respect to the sequence
length. As a result, the application of Transformers to domains with long contexts is rather limited. This limitation has
spawned several efficient Transformer designs (Liu et al., 2018; Parmar et al., 2018; Child et al., 2019; Zaheer et al.,
2020; Beltagy et al., 2020; Roy et al., 2020; Tay et al., 2020a; Kitaev et al., 2020). Kernelization offers one such design.
The use of kernel feature maps allows to reformulate the computation of attention in a way that avoids the explicit
computation of the full attention matrix which is the key bottleneck for Softmax Transformer. This also opens up new
directions for more generic attention mechanisms.

Tsai et al. (2019) first proposed a kernel-based formulation of the attention mechanism. However, the time and
memory complexity of their approach remains quadratic with respect to the sequence length. To address this limitation,
Katharopoulos et al. (2020) expressed self-attention as the inner product of kernel feature maps and made use of the

1Our code and models are available at https://github.com/cs1160701/OnLearningTheKernel

1

https://openreview.net/forum?id=tLIBAEYjcv
https://github.com/cs1160701/OnLearningTheKernel

Published in Transactions on Machine Learning Research (07/2022)

associative property to reduce the complexity from quadratic to linear. For their experiments, they used the arbitrarily
chosen LinearElu feature map f(x) = max(x+1, ex). Performer (Choromanski et al., 2021b) replaces this with feature
maps that can directly approximate the softmax kernel, thereby allowing the use of pre-trained Softmax Transformer
weights in a linear time model. Concurrently with them, Peng et al. (2021) proposed a linear space and time method
that added causal and recency based features to random Fourier methods. More recently, Schlag et al. (2021b) showed
the formal equivalence of linearized self-attention mechanisms and fast weight programmers. While the aforementioned
approaches provide a significant reduction in computational and memory requirements, this often comes at the cost
of performance, as can be seen from Fig. 1. In this work, we posit that this is partly due to the fact that the similarity
functions/kernels, including scaled-dot-product, were hand picked and not learnt from data. Thus, we explore whether
kernel learning can help to bridge this gap in performance while retaining the scalability of efficient Transformers.

Although, to the best of our knowledge, kernel learning has never been explored within the framework of Transformers,
kernel learning methods have been an ubiquitous tool in machine learning. The most notable among them is Random
Kitchen Sinks (RKS; Rahimi & Recht, 2007), a data-independent framework for approximating shift-invariant kernels
using an explicit feature map. In RKS, the kernel is approximated by κ(x, y) ≈ ⟨ϕ(x), ϕ(y)⟩, where the explicit feature
map ϕ : Rd → Rs is obtained by sampling from a spectral distribution defined by the inverse Fourier transform of the
kernel function κ. Wilson & Adams (2013) modeled the spectral density as a mixture of Gaussians, A la Carte (Yang
et al., 2015) proposed an optimization based framework for learning the spectral distribution, BaNK (Oliva et al., 2016)
modeled the spectral distribution using an infinite mixture of Gaussians, while Fang et al. (2020) implicitly modeled it
using deep generative models. We build on these advances and incorporate them into the Transformer framework.

Contributions: In this work, we propose KL-TRANSFORMER, a scalable data driven framework for
learning the kernel of Transformers and investigate whether a fully learnable kernel can help to im-
prove the performance of linear, fixed kernel Transformers. Thus, we introduce Transformers with learn-
able similarity functions, which happen to retain the linear complexity in terms of the sequence length.

Figure 1: Peak memory (y-axis), average performance
(x-axis) and speed (denoted by area of circle) for var-
ious efficient Transformer models (i.e. bigger circles
in the bottom right corner are better) across three long
sequence tasks (> 1024 tokens) introduced in LRA (Tay
et al., 2021b). All values except for “This Paper” are
taken from Tay et al. (2021b).

We motivate our learning method using RKS and learn the
kernel by learning the corresponding spectral distribution. In
§2.1 we first propose to learn a generic Transformer kernel
by explicitly approximating the spectral distribution using
a Mixture of Gaussians (GMM) and propose modifications
to scale it further. In an attempt to further explore the trade
off between computational complexity and accuracy we also
propose to model the spectral frequency distribution of Trans-
former kernels implicitly by using deep generative models
(Goodfellow et al., 2014). Finally, we also propose a novel
method to learn the spectral distribution of positive random
feature (PRF) maps, which provides a better approximation
of the softmax kernel (Choromanski et al., 2021b).

We analyse the expressivity and precision of our proposed
models (§2.2) and show that the proposed GMM with posi-
tional encodings is Turing-complete (Pérez et al., 2019) with
controllable variance. We experimentally evaluate our mod-
els on LRA (tasks with long context), GLUE (tasks with short
context) and a synthetic dataset with controllable sparsity,
and analyze the performance of our models (§3, §2.2). In
our experiments, we find that learnt kernels improve perfor-
mance in long-context tasks, while staying competitive to the
Softmax Transformer of the same size in short-context tasks.
We also find that our models learn parameters that reduce the variance in their predictions, and can handle sparsity quite
well. We also benchmark the computational efficiency of KL-TRANSFORMERs and find that each of our proposed
KL-TRANSFORMERs scales linearly with respect to the sequence length. We conclude with a short comparison
between Random Kitchen Sinks (RKS, Rahimi & Recht (2007)) and Positive Random Features Choromanski et al.
(2021b) in terms of their performance and provide recommendations on which approach should be chosen under which
circumstances.

2

Published in Transactions on Machine Learning Research (07/2022)

2 Kernel Learning in Transformers

We begin with the generalized formulation of self-attention proposed by Tsai et al. (2019). Given a non-negative kernel
function κ(·, ·) : Rdk × Rdk → R+, the output of the generalized self-attention mechanism at index i operating on an
input sequence X = (x1, ..., xL) ∈ RL×d is defined as

ATTN(X)i =
L∑

j=1

κ(qi, kj)∑L

j′=1 κ(qi, kj′)
vj . (1)

where ki = xiW
K , qi = xiW

Q, vi = xiW
V are linear transformations of the input sequence into keys, queries

and values of dimension dq = dk and dv respectively and WK ∈ Rd×dk , WQ ∈ Rd×dq , WV ∈ Rd×dv . While the
formulation in Eq. (1) is more generic and defines a larger space of attention functions, it suffers from a quadratic time
and memory complexity. To reduce the quadratic time and memory, we briefly review the method of random Fourier
features for the approximation of kernels (Rahimi & Recht, 2007). The details of the method will help motivate and
explain our models.

Random Fourier Features for Kernels: At the heart of this method lies the theorem of Bochner (Rudin, 1990)
which states that a continuous shift invariant kernel κ(q, k) = κ̃(q − k) over arbitrary variables q and k is a positive
definite function if and only if κ̃(δ) is the Fourier transform of a non-negative measure ρ(ω). Moreover, if κ̃(0) = 1,
then Bochner’s theorem guarantees that ρ(ω) is a normalized density function, i.e.

κ̃(q − k) =
∫
Rd

ρ(ω) exp
(
iωT (q − k)

)
dω = Eω∼ρ

[
exp(iωT q) exp(iωT k)∗]

. (2)

Rahimi & Recht (2007) proposed to sample from the spectral density ρ(ω) for a Monte Carlo approximation to the
integral in Eq. (2). Specifically, for real valued kernels, they define κ(q, k) ≈ ϕ(q)Tϕ(k), where ωi ∼ ρ(ω) and

ϕ(x) := RKS(x, Ω = (ω1, . . . , ωM)) := 1√
M

[cos(ωT
1 x), . . . , cos(ωT

M x), sin(ωT
1 x), . . . , sin(ωT

M x)] (3)

To learn a kernel, we can either learn a parametric function κ(·, ·) or learn the corresponding parameterized feature
map ϕ(·) directly, which corresponds to learning the spectral density ρ(ω) (Wilson & Adams, 2013; Yang et al., 2015;
Oliva et al., 2016). In this paper, we focus on the latter because this helps us in keeping the computational complexity

linear in the sequence length L. This can be achieved by rewriting Eq. (1) as ATTN(X)i =
ϕ(qi)T (

∑L

j=1
ϕ(kj)vT

j)

ϕ(qi)T
∑L

j′=1
ϕ(kj′)

. To

the best of our knowledge this is the first attempt to learn the kernel of the generalized self-attention mechanism (Eq. 1).

2.1 Learning Kernels in Spectral Domain

GMM-RKS: Our objective is to enable learning of any translation invariant kernel. This is realizable if we can learn
the spectral distribution. Gaussian Mixture Models (GMMs) are known universal approximators of densities and hence
may approximate any spectral distribution. GMMs have been shown to be useful for kernel learning for regression
and classification tasks (Wilson & Adams, 2013; Oliva et al., 2016). Thus, to learn the kernel of the generalized
self-attention mechanism (Eq. 1), we model the spectral distribution of the kernel as a parameterized GMM, i.e.

ρ(ω) =
C∑
c=1

πcN (µc,Σc) ⇔ κ(q, k) =
C∑
c=1

πce
(iµT

c (q−k)− 1
2 (q−k)T Σc(q−k)) (4)

Here {µc ∈ Rd,Σc ∈ Rd2}Cc=1 are the learnable parameters of the feature map and C is the number of components
in the Gaussian mixture. It can be shown using Plancherel’s Theorem that ρ(ω) can approximate any shift invariant
kernel (Silverman, 1986). Since we are working with only real valued kernels, the corresponding kernel reduces to
κ(q, k) =

∑C
c=1 πce

(− 1
2 (q−k)T Σc(q−k))) cos (µTc (q − k)).

To speedup learning, we assume that πc = 1
C and parameterize the feature map with spectral frequency, Ω =

(ωc,1, . . . , ωC,M) as:

ϕGMM−RKS(x) := RKS(x,Ω), ωc,m = Σcnm + µc, nm ∼ N (0, I). (5)

This allows us to sample nm ∼ N (0, I) and learn the parameters of the feature map, ({µc ∈ Rdq ,Σc ∈ Rd
2
q }Cc=1)

end-to-end along with the other parameters of the Transformer.

3

Published in Transactions on Machine Learning Research (07/2022)

FASTFOOD-RKS: GMM-RKS removes the quadratic dependency on context length, but we still need to calculate
ΩTQ and ΩTK (where Ω = [ω1, ω2, . . . , ωM]) which takes O(MdqL) time and O(Mdq + dqL+ML) space, which
can be too much if M is large. For further gains in scalability, we approximate the spectral frequency matrix Ω, using
the product of Hadamard matrices (FastFood; Le et al., 2013), such that the computation can be done in time log-linear
in M , i.e.:

ϕFASTFOOD−RKS(x) := RKS(x, V), where V = 1
σ

√
dq
SHGΠHB. (6)

Here, Π ∈ {0, 1}dq×dq is a permutation matrix, H is the Walsh-Hadamard matrix, B is a diagonal random matrix with
{±1} entries, G is a diagonal matrix with Gaussian entries drawn from N (0, 1) and finally S is a random diagonal
scaling matrix that makes the row lengths non-uniform. The entire multiplication can be carried out in logarithmic time,
and the space requirement is reduced by storing diagonal matrices instead of full matrices. For M > dq we use multiple
blocks, and the only restriction is that we need M |dq. In order to make this learnable, Yang et al. (2015) proposed
making S and optionally G and B learnable. For the main paper, we keep all three learnable (the case where only S is
learnable is discussed in Appendix D).

GENERATIVE-RKS: If we increase the number of components (C) in GMM-RKS, the computation and space
complexity increases dramatically. Instead, to learn a more generic kernel, without blowing up the computational
complexity, we use deep generative models (DGMs). DGMs have achieved impressive results in density estimation
(Goodfellow et al., 2014; Kingma & Welling, 2014; Richardson & Weiss, 2018; Ruthotto & Haber, 2021) and end-to-end
kernel learning in the spectral domain for classification (Fang et al., 2020).

In GENERATIVE-RKS we use a DGM to replace the Gaussian probability distribution from GMM-RKS with an
arbitrary probability distribution. This DGM acts as a generator similar to the ones used by variational auto-encoders
used in computer vision (Kingma & Welling, 2014). In particular, to make the sampling process differentiable, we
use the reparameterization trick, where a learnable neural network (called the generator, and denoted by g in Figure 2)
transforms samples from a simple noise distribution (ρ0 in Fig 2) into samples from the desired distribution.

ωm = g(nm), nm ∼ ρo(·) (7)

The generator network is trained end to end with the whole model, allowing it to choose the best possible distribution
for the given data. These samples (Ω = [ω1, ω2, . . . , ωM] in Fig 2) are then used in Random Kitchen Sinks as follows:

ϕGENERATIVE−RKS(x) := RKS(x,Ω), ωm ∼ g(ρo) (8)

We experimented with various configurations and eventually and chose to learn a generator network which consisted of
4 fully connected layers with batch normalisation and LeakyReLU activation, followed by a single fully connected
layer with tanh activation. While this methodology allows us to generalise the gaussian distribution to a much larger
class of distributions, it also causes a blowup in the number of parameters e.g. a 4 + 1 layer constant width generator,
as used by us would require 5d2 + 5d parameters as opposed to the d2 + d parameters in GMM-RKS. To counter this
and to improve generalization, we share the same generator network across all heads in a layer, which means that the
different heads only differ in the Query/Key/Value projection matrix.

Positive Random Features (PRF): Until now, we focused on feature maps defined using RKS. While our formulation
is very general, recently it was shown that positive random features provide a better approximation to both Gaussian and
Softmax kernels (see Lemma 2 in Choromanski et al. 2021b). In particular they showed that κ(q, k) = exp(qT k) =
Eω∼N (0,I)[exp(ωT q − ∥q∥2

2) exp(ωT k − ∥k∥2

2)] and demonstrated that Monte Carlo approximation to this expectation
leads to a low variance estimate of the softmax kernel. Moreover, the presence of only positive values within the
randomized feature map ensures that kernel estimates remain strictly non-negative. To incorporate this prior knowledge,
we propose a novel kernel learning framework in which we learn the spectral density while using the feature map
corresponding to the above expectation. For instance, when we model the spectral distribution of Ω = (ω1, ..., ωM)
using GMM (ψ =

∑C
c=1 πcN (µc,Σc)) we have that:

4

Published in Transactions on Machine Learning Research (07/2022)

Input X

L x d

Value V

L x d
𝑊!

Key K

L x 𝑑"

Query Q

𝑊#

𝑊$

Noise 𝜌%
Samples

Generator
𝑔(.)

Frequency Ω

M x 𝑑" 𝜙&'((𝑄)

L x 2M

𝜙&'((𝐾)

L x 2M

RKS

RKS

Output

L x d

Linear
In L

L x 𝑑"

Figure 2: Generalized self-attention with deep generative RKS. Q,V and K are linear transformations of input, X . The
generator generates spectral frequency (Ω) from an implicit spectral distribution. Using RKS (Eq. 2) we create the
feature map ϕgen (Eq. 8). The numerator of the output is calculated as ϕgen(Q)(ϕgen(K)V) while the denominator is
ϕgen(qi)T

∑L
j′=1 ϕgen(kj′) making attention linear in sequence length L.

Model Space Complexity Time Complexity

Softmax Transformer O(L2(1 + dq/L)) O(L2dq)
Performer O(L(dq +M +Mdq/L)) O(LMdq)
LinearElu O(L(dq + d2

q/L)) O(Ld2
q)

GMM-RKS O(L(dq + C(d2
q/L+Mdq/L+M))) O(MC(d2

q + Ldq))
GMM-PRF O(L(dq + CMdq/L+ CM)) O(LCMdq)
FASTFOOD(RKS/ PRF) O(L(dq +M +Mdq/L)) O(LMdq)
GENERATIVE(RKS/ PRF) O(L(dq + d2

q/L+Mdq/L+M)) O(M(d2
q + Ldq))

Table 1: Space and time complexity of self-attention kernel of KL-TRANSFORMERs compared with Softmax Trans-
former (Vaswani et al., 2017), Performer (Choromanski et al., 2021b), and LinearElu (Katharopoulos et al., 2020).
L refers to length of context, dq=dv is the query/key/value dimension, while M is the number of samples (where
applicable).

κ(q, k) := Eω∼ψ[e(ωT q−∥q∥2)e(ωT k−∥k∥2)], PRF (x,Ω) := e−∥x∥2

√
M

[eω
T
1 x, ..., eω

T
Mx] (9)

ϕGMM−PRF(x) := PRF (x, (ωc,1, ..., ωC,M)), ωc,m = Σcnm + µc, nm ∼ N (0, I) (10)

Similarly we redefine the other two methods as:

ϕGENERATIVE−PRF(x) := PRF (x,Ω), ωm = g(nm), nm ∼ ρo(·) (11)

ϕFASTFOOD−PRF(x) := PRF (x, V), where V = 1
σ

√
dq
SHGΠHB. (12)

To the best of our knowledge we are the first to explore kernel learning with positive random features.

2.2 Analysis

In this section, we explore what can be said about the expressivity of the proposed linear time KL-TRANSFORMERs.
While our understanding of the properties of Transformers is rudimentary, we would still like to know whether the
known properties extend to our models. For example, it has been shown that Softmax Transformers and its sparse
counterparts are Turing complete (Pérez et al., 2019; Zaheer et al., 2020).This raises the question as to whether the
proposed linear KL-TRANSFORMERs are also Turing complete?

5

Published in Transactions on Machine Learning Research (07/2022)

It is easy to see that the generalized kernel self-attention (Eq. 1) includes the softmax kernel and hence should satisfy
the properties of Softmax Transformer. Interestingly, we can also show that this property holds for GMM-RKS
Transformers with number of components C = 1, (for a more systematic definition, see Section A.1). More formally,

Theorem 1: The class of GMM-RKS Transformers with positional embeddings is Turing complete.

Proof is in the Appendix A. We also show that:

Theorem 2: The class of GMM-PRF Transformers with positional embeddings is Turing complete.

For a detailed proof, see Appendix A.

Since the sampling of ω in Equations 5 and 9 is random, we have some stochasticity in the attention layers
of our model. We now show that the Mean Square Error (MSE) of the estimation can be reduced by reducing the
eigenvalues of the learnt covariance matrix. In particular, we show that:

Theorem 3: Let µ and Σ = STS be the learnt mean an covariance matrices of the sampling distribution. Further let
q and k be the parameters, and p = k − q and o = k + q be their vector difference and sum respectively, and m be the
number of samples. The MSE of the linear approximations is given by:

MSEGMM−RKS = 2
m

cos2(µT p)(1 − e−||ST p||2
)2 (13)

MSEGMM−PRF = 1
m
e−2(||q||2+||k||2−µT o)(e2||ST o|| − e||ST o||) (14)

It is interesting to note that in this formulation, MSEGMM−RKS
2 is bounded above by 2

m while no such bound can be
established for MSEGMM−PRF. For the detailed proof see Supplementary Section B

Complexity Analysis: While all of our models have linear complexity with respect to the context length L,
differences still exist amongst the various methods. Notable, GMM-RKS and GENERATIVE have quadratic time and
space complexity in the query size dq. Both the FASTFOOD methods avoid this approximation, whereas GMM-PRF
avoids this by the use of a diagonal covariance matrix. The complexities are listed in Table 1.

Another factor that controls timing is the sampling of Ω. Sampling too frequently can lead to significant
slowdowns whereas sampling too few times can lead to biased learning. For our experiments, we resample every 100
training iterations, although this can be changed. A detailed list of all hyperparameters along with implementation
details are provided in Appendix C.

3 Experiments

3.1 Does kernel learning improve performance of fixed kernel methods on longer sequences?

Long Range Arena (LRA; Tay et al. 2021b) is a diverse benchmark for the purpose of evaluating the ability of sequence
models to reason under long-context scenarios. It includes tasks that vary both in terms of the context length (ranging
from 1K to 4K tokens) as well as the data modalities (including text and mathematical expressions). We evaluate
the KL-TRANSFORMER architectures introduced in Section 2.1 on the Text, Retrieval and ListOps tasks from LRA
which deal with sentiment prediction from IMDB Reviews, document similarity classification and pre-order arithmetic
calculations respectively. Both Text and Retrieval use character level encodings, bringing their maximum length to
4000 tokens. The ListOps dataset is synthetically generated and has a fixed length of 2000 tokens. For more details on
the tasks, we refer the interested reader to the original paper by Tay et al. 2021b.

Setup: To ensure a fair comparison, we closely follow the same data preprocessing, data split, model size and training
procedure as in (Tay et al., 2021b). Within each task, a common configuration is used across all KL-TRANSFORMER

2For the proof of Theorem 3, we use the secific case of C = 2, µ1 + µ2 = 0 and Σ1 = Σ2 which is used in the experiments. Since Theorem 1
and 2 however, hold in general

6

Published in Transactions on Machine Learning Research (07/2022)

Model Complexity ListOps Text Retrieval Avg.
2K 4K 4K

Random Predictor NA 10.00 50.00 50.00 36.67

Baseline Models

Softmax Trans. (Vaswani et al.) O(L2) 36.38 64.27 57.46 52.70
Synthesizer (Tay et al.) O(L2) 36.50 61.68 54.67 50.95
Sinkhorn (Tay et al.) O((L/B)2) 34.20 61.20 53.83 49.74
Sparse Trans. (Child et al.) O(L

√
L) 35.78 63.58 59.59 52.98

Reformer (Kitaev et al.) O(L logL) 36.30 56.10 53.40 48.60
Local Attention (Parmar et al.) O(LK) 15.95 52.98 53.39 40.77
Longformer (Beltagy et al.) O(LK) 36.03 62.85 56.89 51.92
Linformer (Wang et al.) O(L) 35.49 53.49 52.27 52.56
Big Bird (Zaheer et al.) O(LK) 37.08 64.02 59.29 53.46
LinearElu (Katharopoulos et al.) O(L) 17.15 65.90 53.09 45.38
Performer (Choromanski et al.) O(L) 36.00 65.40 53.82 51.74

Kernelized Transformers

GMM-RKS (Eq. 5) O(L) 18.55 63.95 58.64 47.05
FASTFOOD-RKS (Eq. 6) O(L) 18.65 65.67 61.92 48.75
GENERATIVE-RKS (Eq. 8) O(L) 18.50 66.50 64.76 49.92
GMM-PRF (Eqs. 9, 10) O(L) 36.96 62.64 65.27 54.96
FASTFOOD-PRF (Eqs. 9, 12) O(L) 37.05 64.66 71.13 57.61
GENERATIVE-PRF (Eqs. 9, 11) O(L) 37.42 62.90 69.81 56.71

Table 2: Experimental results on the LRA benchmark. We report accuracy on the test set, except for Text where
validation set is used. The best model is in boldface and the second best is underlined if within 1% f the best. Accuracy
scores for all baseline models are from Tay et al. (2021b). Here, L refers to the sequence length, K refers to the size of
a local window and B ≪ L is a model specific parameter. For our models, accuracy is averaged over 100 runs.

models based on the configuration specified in the LRA code repository3. We outline the hyperparameters for all tasks
in Table 6 in the Appendix.

Results: The results across all LRA tasks are summarized in Table 2. KL-TRANSFORMER variants that learn the
kernel function directly from the data in an end-to-end manner outperform the baseline models by occupying both
best and second-best performances. We find that KL-TRANSFORMERs based on PRFs tend to outperform their RKS
counterparts which is also reflected on the average LRA score, with FASTFOOD-PRF being the best-performing model.

3.2 Trade-off between Accuracy and Efficiency

We benchmark the efficiency of each KL-TRANSFORMER in terms of peak memory usage and training speed and
compare it against three baseline models from the LRA benchmark. Specifically, we compare against other efficient
Transformer architectures that employ fixed kernel feature maps (e.g. LinearElu and Performer) as well as the Softmax
Transformer which is one of the strongest baseline models (see Table 2). We conduct efficiency benchmarks on the two
LRA tasks with sequence length equal to 4K in order to assess the efficiency of these methods in modelling tasks that
require a long context (results for the other two datasets are included in the Appendix). Speed measurements (steps
per second) refer to wall-clock training time (including overheads). In both cases experiments are conducted on 8
NVIDIA TITAN RTX GPUs. The comparison is illustrated in Figure 3. On the Text task, GENERATIVE-RKS is the
best performing model, although it consumes more memory than the remaining KL-TRANSFORMER architectures
(it is still more efficient than the Softmax Transformer). LinearElu consumes the least amount of memory, while
GMM-RKS provides a trade-off between the two. In Retrieval the situation is much clearer, with FASTFOOD-PRF
and GENERATIVE-PRF outperforming significantly other models in terms of accuracy while having very low memory

3https://github.com/google-research/long-range-arena

7

https://github.com/google-research/long-range-arena

Published in Transactions on Machine Learning Research (07/2022)

Figure 3: We compare the peak memory consumption (y-axis), performance (x-axis) and speed (denoted by area of
circle) for the various KL-TRANSFORMER architectures on the two LRA tasks with sequence length equal to 4K.
Memory usage refers to average memory usage across GPUs and speed (steps per second) for each model is reported
relative to the speed of Softmax Transformer (larger circles denote faster models). For a similar graph on the ListOps
Task see Fig 8 in the Supplementary

consumption. The training speed of KL-TRANSFORMERs is of the same order of magnitude as Performers (as indicated
by the area of each circle in Figure 3).

Figure 4: Memory vs sequence length

Lastly, in Figure 4, we report the peak memory consumption as the
sequence length changes from 1K to 4K on the Text dataset. As
expected, all our models have a linear increase in memory consump-
tion with increasing sequence length, as opposed to the Softmax
Transformer which has dramatic increase in memory consumption.
Furthermore, Figure 7 in the Appendix reports the memory us-
age of each KL-TRANSFORMER across all datasets. We find that
FASTFOOD-PRF and GENERATIVE-PRF are not only our best
performing models on average, but they also consume the least
memory among various KL-TRANSFORMERs across all datasets.
Thus, among the models proposed in this paper, we can recom-
mend FASTFOOD-PRF and GENERATIVE-PRF as the model that
achieves the best accuracy with the least memory consumption.

3.3 How do KL-TRANSFORMERs perform on short sequence tasks?

We compare the KL-TRANSFORMERs and Softmax Transformer in a common transfer learning setting. We adopt the
setting of BERT-like models (Devlin et al., 2019; Liu et al., 2019), except that we have fewer layers and heads (see
Table 8 for details) and pre-train all models (including Softmax Transformer) on the WikiText-103 dataset (Merity et al.,
2016) using non-contextual WordPiece embeddings (Wu et al., 2016). Pre-trained models are then fine-tuned on the
General Language Understanding Evaluation (GLUE) benchmark (Wang et al., 2019), a collection of resources for
training and evaluating language understanding systems. All tasks in GLUE consist of either one or two sentences
as input and can therefore be easily captured with a context of size 512. Since the context length is rather short, the
difference between training and inference time across the various models is minimal. Instead, the main goal of this task
is to assess how do KL-TRANSFORMERs compare against Softmax Transformers on a set of tasks where the later have
been established as the de-facto architecture.

The results on all downstream GLUE tasks are shown in Table 3. Crucially, we demonstrate that there is no significant
loss in performance compared to Softmax Transformers when kernelized variants are used on short language modelling
tasks. As illustrated in Table 3, KL-TRANSFORMERs perform on par with the Softmax Transformer.

8

Published in Transactions on Machine Learning Research (07/2022)

Model SST2
(acc)

MRPC
(acc/f1)

QQP
(acc/f1)

MNLI-
m/mm
(acc/acc)

QNLI
(acc)

WNLI
(acc)

RTE
(acc)

CoLA
(MCor)

Softmax Trans. 0.81 0.70/0.82 0.83/0.76 0.64/0.64 0.68 0.56 0.6 0.18

FASTFOOD-RKS 0.83 0.71/0.82 0.81/0.74 0.57/0.57 0.64 0.59 0.56 0.13
GMM-RKS 0.80 0.70/0.82 0.77/0.69 0.47/0.48 0.60 0.61 0.57 0.07
GENERATIVE-RKS 0.81 0.70/0.82 0.81/0.73 0.59/0.58 0.63 0.62 0.58 0.16
FASTFOOD-PRF 0.81 0.71/0.82 0.81/0.74 0.56/0.57 0.64 0.59 0.58 0.12
GENERATIVE-PRF 0.80 0.71/0.82 0.80/0.74 0.56/0.56 0.61 0.60 0.55 0.10
GMM-PRF 0.82 0.71/0.82 0.81/0.74 0.56/0.56 0.64 0.59 0.59 0.21

Table 3: Results on the GLUE benchmark after fine-tuning on respective tasks. KL-TRANSFORMERs continue to be
competitive to Transformers even in short context problems.

Task Model Max Egv. Mean Egv. Task Model Max Egv. Mean Egv.

Text GMM-RKS 0.486 0.031 Retrieval GMM-RKS 0.499 0.053
GMM-PRF 0.096 0.025 GMM-PRF 0.186 0.042

Table 4: Distribution of Eigenvalues for GMM-RKS and GMM-PRF models for the Text and Retrieval tasks. For a
head by head distribution see Tables 9, 10, 11 and 12

4 Empirical Analysis

In section 3, we observed that our models compare favourably with other linear models, with Positive Random Features
(PRF) based models usually doing better that the ones based on Random Kitchen Sinks (RKS) (although RKS does
better on the Text task). In this section, we want to compare these linear kernels in terms of their empirical variance and
how well they deal with sparsity. In Theorem 3, we already noted that the MSE for both GMM-RKS and GMM-PRF
models decreases with decrease in eigenvalues of the covariance matrices, making it useful to learn such a matrix. We
also noted that the variance in the output of GMM-RKS is bounded, and thus it should not face issues with sparse
datasets when approximating the softmax kernel as show in Choromanski et al. (2021b)). We test for these results
empirically in subsections 4.1 and 4.2 respectively. We then conclude in 4.3 with a discussion on which of our proposed
models is best to use in a given scenario.

4.1 Comparison of variance

Looking at the eigenvalues of the covariance matrices of our final trained models4 in Table 4, we find that GMM-RKS
and GMM-PRF models trained on the Text and Retrieval tasks indeed learn to have eigenvalues significantly smaller
than 1 (which would be the case for non-learnable co-variances).

While lower eigenvalues reduce the variance in our models significantly, it does not get completely nullified. To
understand how much stochastic remains in our models, and also to compare RKS with PRF in regards to their variance,
we look at the final outputs5 the models produce when repeatedly run on the same example. We record the output
produced by the model for 100 runs on each datapoint, and calculate the following 3 metrics to quantify the variance:

1. Relative Standard Deviation (RSD): RSD is a standardised measure of dispersion (see Currie & Svehla
(1994), def 3.9), defined as the ratio of the standard deviation of a set of observations to the absolute value of
their mean. The ratio ensures that the measure is invariant to scaling (eg. multiplying the penultimate layer
of the model by a constant factor does not affect RSD) while the absolute of the mean ensures that opposing
classes don’t cancel each other out.

4We only report eigenvalues for the GMM models since covariance matrices are not well defined in the Generator and FastFood. Also, the ListOps
task is left out of the entire analysis because its multi-class nature makes the analysis complex

5While the theory makes a claim about the output of each attention head, evaluating every head at every layer would give us a large number of
values to analyse. The output is considered before aplying the final sigmoid

9

Published in Transactions on Machine Learning Research (07/2022)

2. Prediction Inconsistency (PI): While RSD quantifies the variance in the model’s continuous output, in
practice, only the sign of the output is of interest as that decides the predicted class. As a way to quantify
stochasticity in the discrete output, we count the number of times the output does not have the majority label,
i.e., if the output is positive x times, then we have PI = min (x, 100 − x). Alternately, it can be seen as the
failure rate if we treat the majority prediction as the true class.

3. Accuracy Gain with Voting (AGV): Since the final output has a propensity to change its sign, we can get
a more robust prediction at inference time by running the model multiple times and considering the class it
predicts more times as its output, instead of taking the prediction from a single inference step. Doing so, we
are likely to get closer to the mean prediction (by the Law of Large Numbers, see Révész et al. (2014)), and we
get accuracy scores which are slightly higher than those reported in Table 2, and we call this value the Voting
Accuracy (VA). AGV is then defined as the ratio between the voting accuracy and the regular accuracy.

Figure 5: Values of variance metrics Relative Standard Deviation (RSD), Prediction Inconsistence(PI), Average Gain
with Voting (AGV) as well as Voting Accuracy (VA) on the Text and Retrieval tasks.

The above metrics, in addition to the Voting Accuracy, are calculated over all instances in the validation and test set for
Text and Retrieval tasks respectively, and plotted in Fig. 5. We note that our 3 metrics are all highly correlated with each
other (R2 values 0.95, 0.98 and 0.89 for RSD-AGV, RSD-PI and AGV-PI respectively, see supplementary Fig 9, 10).

We notice that our RKS based models, in general, have lower variance as compared to our PRF models. We also note
that Generator and FastFood are able to further reduce the variance in the output, possibly due to additional learnable
parameters in Generator and fewer sources of randomness in FastFood. We also notice that all models have greater
variance in the Text task, and it is possible that this is related to the better performance of RKS based models in this
task, and their inherent lower variance helps them outperform their PRF counterparts.

4.2 Effectiveness on Sparse Datasets

Choromanski et al. (2021b) demonstrated that if Random Kitchen Sinks are used to estimate the softmax-kernel, the
MSE tends to ∞ as the raw softmax scores tend to 0. This makes it particularly hard to deal with sparse datasets where
multiple positions need near-zero attention.

Figure 6: Learning curves for our synthetic experi-
ment. The number after the model name is inversely
proportional to sparsity in the dataset

Thus, in order to test how sparsity in the dataset affects our
models, we design a synthetic experiment where the model is
fed a sequence of ordered pairs, where the first element, which
we call score, takes a value of −1 or 1, and the second element,
which we call relevance, takes a value of 0 or 1. Looking at
the sequence, the model must predict the sum of the scores at
all positions with relevance 1. Note that any position with rele-
vance = 0 does not contribute to the final answer, and therefore,
does not need to be attended to. We construct the inputs by sam-
pling the relevance of each position from Bernoulli(p). Thus,
the sparsity can be controlled by changing p (for a detailed
description of the task, see Supplementary).

Figure 6 shows the learning curves for various sparsity levels in
our synthetic experiment. Due to the simple nature of the task,
all models eventually reach 100% accuracy. We observe that

10

Published in Transactions on Machine Learning Research (07/2022)

the convergence time of GMM-RKS remains more or less unchanged with increasing sparsity, while for GMM-PRF
the model converges slower as sparsity decreases. We believe that the slower convergence of GMM-PRF is correlated
to the variance in its output, which leads to variance in gradients. Observing the gradients propagated to the classifier
layer (See Table 14 in Supplementary), we find that this is indeed the case, and not only is the variance in the gradients
higher for GMM-PRF, but also the mean is higher, making it take bigger steps in an uncertain direction. This result
provides us an insight into which models to use under which circumstances.

4.3 Which Model to Use?

PRF outperforms RKS is terms of accuracy in most of our experiments, especially if we are able to run multiple
inference steps. Therefore, in general, we recommend using PRF over RKS. However, if consistency of predictions is
important, or rapid training is required on a not-so-sparse task, one may consider RKS as well.

Finally, we observe that Generator and Fastfood methods always outperform the vanilla linearisations. Between them,
Fastfood can be significantly faster if properly implemented on GPU. However, generators may perform better if a large
amount of data is available since they provide a greater amount of flexibility.

5 Related Work

5.1 Efficient Transformers

A wide variety of approaches belong to the class of efficient Transformers (Tay et al., 2020b). We survey them below:

Sparse models: Memory Compressed Transformer (Liu et al., 2018) uses a convolution kernel (of size K) to sub-
sample keys and values reducing the complexity to O(L2K−1). Inspired by the notion of sparsity, Child et al. (2019)
introduced sparse factorizations of the attention matrix to reduce the overall complexity to O(L

√
L). Subsequently,

Roy et al. (2020) proposed the Routing Transformer which employs K-means clustering to learn dynamic sparse
attention regions, achieving an overall complexity of O(L

√
L). Recently, Sun et al. (2022) proposed yet another sparse

O(L
√
L) approach that learns which bucket each query/key is to be placed in based on final attention values. Sparsity

has also been achieved by efficiently subsampling queries and/or keys (Chen et al., 2021). Kitaev et al. (2020) proposed
the Reformer, which reduces complexity to O(L logL) by using locality-sensitive hashing to group together similar
symbols. Ye et al. (2019) also proposed a O(L logL) algorithm using binary partitions of data. There also exist other
works that mainly focus on memory reduction (Liu et al., 2018; Tay et al., 2020a; Gupta et al., 2021). While these
methods are faster than Softmax Transformers, their asymptotic time complexity remains quadratic. Further approaches
attempt to minimize the constants involved in the quadratic attention, but keep the same assymptotic complexity (Dutta
et al., 2021; Chen et al., 2022).

Local or Global Attention: Parmar et al. (2018) was one of the first local attention models that achieved O(L)
complexity in both time and space, by using local attention over a constant length-context. A similar local attention
based method was also utilized by Zhang et al. (2021) and Liu et al. (2022), the latter of which added special tokens
at the start of each local attention block, which attend globally. Another set of methods proposed to approximate the
global attention by replacing the softmax to allow changing the order of matrix multiplication, making the calculation
of the QKV product linear in the context length (Yorsh et al., 2021; Hua et al., 2022; Qin et al., 2022). Linearised
global attention is also used by Performer (Choromanski et al., 2021b), which has been built upon by other works. Chen
(2021) and Luo et al. (2021) both try to improve the performance of Performer by incorporating relative positional
embeddings which they show makes it strictly stronger in terms of representability. Choromanski et al. (2021a) tries to
combine RKS and PRF attentions by a learnable weight parameter to get the best of both worlds. Both these methods
can be applied as is to our work. Schlag et al. (2021a) take a different view on this, claiming that having stochasticity
hampers performance, and propose a deterministic feature map to avoid this.

Multiple Types of Attention: Beltagy et al. (2020) proposed a O(L) method that combines the above two approaches
by using local sliding windows as well as global attention components. Zaheer et al. (2020) proposed Big Bird,
another sparse attention mechanism which combines global attention, random attention and local attention to reduce the
complexity to O(L). A similar construction was previously used by Ainslie et al. (2020). More recently the combination
of global and local attention has been utilized by Zhu et al. (2021) and Nguyen et al. (2021). Further, Xiong et al. (2021)
adapted the Nyström method to approximate standard self-attention with O(L) complexity. Lu et al. (2021) also makes

11

Published in Transactions on Machine Learning Research (07/2022)

use of a similar near-field and far-field attention mechanism, where the far field attention is calculated via a low rank
approximation using tanh and ReLU non-linearities. A different line of work has attempted to limit the number of
key-value pairs that are to be attended to, by attempting to summarise the variable length context with a fixed number
of memory-cells (Zhang & Cai, 2022; Ma et al., 2021). While some of these more nuanced approaches outperform
KL-TRANSFORMER, most of their innovations are orthogonal to ours, and none of these approaches explore kernel
learning within the attention mechanism of Transformers.

5.2 Kernel Learning

While kernel methods have long been used to solve non-linear statistical problems, they traditionally scaled poorly
with the number of data points thereby limiting their applicability on large datasets (Vapnik et al., 1997; Cortes &
Vapnik, 1995; Schölkopf et al., 1998; Schölkopf & Smola, 2001; Hofmann et al., 2008). Prior to RKS, several kernel
approximation techniques have been proposed to improve the scalability of kernel methods, including greedy basis
selection techniques (Smola & Schökopf, 2000), divide-and-conquer approaches (Hsieh et al., 2014; Zhang et al., 2013;
Liu et al., 2020), non-stationary spectral kernels (Remes et al., 2017), generalized spectral kernels (Samo & Roberts,
2015) as well as Nyström methods (Williams & Seeger, 2001).

The method of Random Kitchen Sinks has been revisited several times, either to improve the approximation quality (Yu
et al., 2016b; Choromanski et al., 2017; Li, 2017; Avron et al., 2016; Lyu, 2017), reduce the time and memory complexity
(Le et al., 2013; Choromanski & Sindhwani, 2016; Feng et al., 2015; Dao et al., 2017) or analyze theoretically the risk
and generalization properties of the algorithm (Sutherland & Schneider, 2015; Sun et al., 2018; Li et al., 2019b). A
systematic survey of random feature methods for approximating kernel functions can be found in (Liu et al., 2021).

Lastly, there exist a class of methods that extend the RKS framework to enable kernel learning. Representative
approaches involve either a one-stage (Yang et al., 2015; Fang et al., 2020) or a two-stage procedure (Sinha & Duchi,
2016; Li et al., 2019a; Bullins et al., 2018; Shen et al., 2019). Two-stage approaches involve an intermediate step in
which the problem of kernel-alignment is solved (Cristianini et al., 2002). However, solving the kernel-alignment
problem requires accessed to labeled data which is not available in this case, as inputs to the kernel learning algorithm
are the intermediate representations of the input sequence.

6 Conclusion

In this paper, we bridged the gap between advances in kernel learning and efficient Transformers by proposing
several kernel learning methods for Transformers that increase the expressiveness of Transformers while keeping
the computational complexity linear in sequence length. We showed that our proposed KL-TRANSFORMER are
Turing-complete and can control their variance. Experimentally our proposed models perform on par with, and possibly
exceed the performance of existing efficient transformer architectures on long context tasks without falling behind on
short context tasks. We also found that for some datasets such as ListOps, RKS based models tend to fall short of their
PRF counterparts. Our experiments further demonstrate that the memory consumption of our models scales linearly
with the sequence length.

Ethical Considerations

Our work is on making Transformers computationally efficient without losing expressiveness. Our models were
evaluated on publicly available benchmark datasets. The datasets used in our work do not contain sensitive information
to the best of our knowledge.

Reproducibility: We plan to open source the entire code of the KL-TRANSFORMER framework (including the
implementation of all models as well as the code for replicating all of our experiments) before the camera ready version
of the paper. As part of this submission, we include code for all the methods proposed by us along with instructions on
how to reproduce results. A detailed description of all hyperparameters (for both LRA as well as GLUE benchmarks)
has been included in Appendix C. Finally, regarding our theoretical contributions, we present a detailed theoretical
analysis in Appendix A.

12

Published in Transactions on Machine Learning Research (07/2022)

References
Milton Abramowitz and Irene A Stegun. Handbook of mathematical functions with formulas, graphs, and mathematical

tables. national bureau of standards applied mathematics series 55. tenth printing. 1972.

Joshua Ainslie, Santiago Ontañón, Chris Alberti, Philip Pham, Anirudh Ravula, and Sumit Sanghai. ETC: encoding
long and structured data in transformers. CoRR, abs/2004.08483, 2020.

Haim Avron, Vikas Sindhwani, Jiyan Yang, and Michael W. Mahoney. Quasi-monte carlo feature maps for shift-invariant
kernels. Journal of Machine Learning Research, 17(120):1–38, 2016.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom
Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato,
R. Hadsell, M. F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp.
1877–1901. Curran Associates, Inc., 2020.

Brian Bullins, Cyril Zhang, and Yi Zhang. Not-so-random features. In International Conference on Learning
Representations, 2018.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko.
End-to-end object detection with transformers, 2020.

Peng Chen. Permuteformer: Efficient relative position encoding for long sequences, 2021. URL https://arxiv.
org/abs/2109.02377.

Yifan Chen, Qi Zeng, Dilek Hakkani-Tur, Di Jin, Heng Ji, and Yun Yang. Sketching as a tool for understanding and
accelerating self-attention for long sequences, 2021.

Zhaodong Chen, Yuying Quan, Zheng Qu, Liu Liu, Yufei Ding, and Yuan Xie. Dynamic n:m fine-grained structured
sparse attention mechanism, 2022. URL https://arxiv.org/abs/2203.00091.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse transformers, 2019.

Krzysztof Choromanski and Vikas Sindhwani. Recycling randomness with structure for sublinear time kernel expansions.
In Proceedings of the 33rd International Conference on International Conference on Machine Learning - Volume 48,
ICML’16, pp. 2502–2510. JMLR.org, 2016.

Krzysztof Choromanski, Haoxian Chen, Han Lin, Yuanzhe Ma, Arijit Sehanobish, Deepali Jain, Michael S. Ryoo, Jake
Varley, Andy Zeng, Valerii Likhosherstov, Dmitry Kalashnikov, Vikas Sindhwani, and Adrian Weller. Hybrid random
features. CoRR, abs/2110.04367, 2021a. URL https://arxiv.org/abs/2110.04367.

Krzysztof M Choromanski, Mark Rowland, and Adrian Weller. The unreasonable effectiveness of structured random
orthogonal embeddings. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas Sarlos,
Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser, David Benjamin Belanger, Lucy J Colwell,
and Adrian Weller. Rethinking attention with performers. In International Conference on Learning Representations,
2021b.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Mach. Learn., 20(3):273–297, September 1995. ISSN
0885-6125. doi: 10.1023/A:1022627411411.

Nello Cristianini, John Shawe-Taylor, André Elisseeff, and Jaz Kandola. On kernel-target alignment. In T. Dietterich,
S. Becker, and Z. Ghahramani (eds.), Advances in Neural Information Processing Systems, volume 14. MIT Press,
2002.

13

https://arxiv.org/abs/2109.02377
https://arxiv.org/abs/2109.02377
https://arxiv.org/abs/2203.00091
https://arxiv.org/abs/2110.04367

Published in Transactions on Machine Learning Research (07/2022)

L. A. Currie and G. Svehla. Nomenclature for the presentation of results of chemical analysis (iupac recommendations
1994). Pure and Applied Chemistry, 66(3):595–608, 1994. doi: doi:10.1351/pac199466030595. URL https:
//doi.org/10.1351/pac199466030595.

Tri Dao, Christopher M De Sa, and Christopher Ré. Gaussian quadrature for kernel features. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc., 2017.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirectional
transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers), pp. 4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. doi:
10.18653/v1/N19-1423.

Subhabrata Dutta, Tanya Gautam, Soumen Chakrabarti, and Tanmoy Chakraborty. Redesigning the transformer
architecture with insights from multi-particle dynamical systems. In M. Ranzato, A. Beygelzimer, Y. Dauphin,
P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34, pp.
5531–5544. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/
file/2bd388f731f26312bfc0fe30da009595-Paper.pdf.

Kun Fang, Xiaolin Huang, Fanghui Liu, and Jie Yang. End-to-end kernel learning via generative random fourier
features, 2020.

Chang Feng, Qinghua Hu, and Shizhong Liao. Random feature mapping with signed circulant matrix projection. In
Proceedings of the 24th International Conference on Artificial Intelligence, IJCAI’15, pp. 3490–3496. AAAI Press,
2015. ISBN 9781577357384.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Q.
Weinberger (eds.), Advances in Neural Information Processing Systems, volume 27. Curran Associates, Inc., 2014.

Ankit Gupta, Guy Dar, Shaya Goodman, David Ciprut, and Jonathan Berant. Memory-efficient transformers via top-k
attention, 2021. URL https://arxiv.org/abs/2106.06899.

Thomas Hofmann, Bernhard Schölkopf, and Alexander J. Smola. Kernel methods in machine learning. The Annals of
Statistics, 36(3):1171 – 1220, 2008. doi: 10.1214/009053607000000677.

Cho-Jui Hsieh, Si Si, and Inderjit S. Dhillon. A divide-and-conquer solver for kernel support vector machines. In
Proceedings of the 31st International Conference on International Conference on Machine Learning - Volume 32,
ICML’14, pp. I–566–I–574. JMLR.org, 2014.

Weizhe Hua, Zihang Dai, Hanxiao Liu, and Quoc V. Le. Transformer quality in linear time, 2022. URL https:
//arxiv.org/abs/2202.10447.

John Ingraham, Vikas Garg, Regina Barzilay, and Tommi Jaakkola. Generative models for graph-based protein design.
In H. Wallach, H. Larochelle, A. Beygelzimer, E. Fox, and R. Garnett (eds.), Advances in Neural Information
Processing Systems, volume 32, pp. 15820–15831. Curran Associates, Inc., 2019.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are RNNs: Fast au-
toregressive transformers with linear attention. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp.
5156–5165. PMLR, 13–18 Jul 2020.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2014.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In International Conference
on Learning Representations, 2020.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

14

https://doi.org/10.1351/pac199466030595
https://doi.org/10.1351/pac199466030595
https://proceedings.neurips.cc/paper/2021/file/2bd388f731f26312bfc0fe30da009595-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/2bd388f731f26312bfc0fe30da009595-Paper.pdf
https://arxiv.org/abs/2106.06899
https://arxiv.org/abs/2202.10447
https://arxiv.org/abs/2202.10447

Published in Transactions on Machine Learning Research (07/2022)

Quoc Le, Tamas Sarlos, and Alexander Smola. Fastfood - computing hilbert space expansions in loglinear time.
In Sanjoy Dasgupta and David McAllester (eds.), Proceedings of the 30th International Conference on Machine
Learning, volume 28 of Proceedings of Machine Learning Research, pp. 244–252, Atlanta, Georgia, USA, 17–19
Jun 2013. PMLR.

Chun-Liang Li, Wei-Cheng Chang, Youssef Mroueh, Yiming Yang, and Barnabas Poczos. Implicit kernel learning.
In Kamalika Chaudhuri and Masashi Sugiyama (eds.), Proceedings of Machine Learning Research, volume 89 of
Proceedings of Machine Learning Research, pp. 2007–2016. PMLR, 16–18 Apr 2019a.

Ping Li. Linearized gmm kernels and normalized random fourier features. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’17, pp. 315–324, New York, NY, USA,
2017. Association for Computing Machinery. ISBN 9781450348874. doi: 10.1145/3097983.3098081.

Zhu Li, Jean-Francois Ton, Dino Oglic, and Dino Sejdinovic. Towards a unified analysis of random Fourier features. In
Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning Research, pp. 3905–3914. PMLR, 09–15 Jun 2019b.

Fanghui Liu, Xiaolin Huang, Chen Gong, Jie Yang, and Li Li. Learning data-adaptive non-parametric kernels. Journal
of Machine Learning Research, 21(208):1–39, 2020.

Fanghui Liu, Xiaolin Huang, Yudong Chen, and Johan A. K. Suykens. Random features for kernel approximation: A
survey on algorithms, theory, and beyond, 2021.

Peter J. Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz Kaiser, and Noam Shazeer. Generating
wikipedia by summarizing long sequences. In International Conference on Learning Representations, 2018.

Yang Liu, Jiaxiang Liu, Li Chen, Yuxiang Lu, Shikun Feng, Zhida Feng, Yu Sun, Hao Tian, Hua Wu, and Haifeng
Wang. Ernie-sparse: Learning hierarchical efficient transformer through regularized self-attention, 2022. URL
https://arxiv.org/abs/2203.12276.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer,
and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach, 2019.

Jiachen Lu, Jinghan Yao, Junge Zhang, Xiatian Zhu, Hang Xu, Weiguo Gao, Chunjing Xu, Tao Xiang, and Li Zhang.
Soft: Softmax-free transformer with linear complexity, 2021.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vilbert: Pretraining task-agnostic visiolinguistic representations
for vision-and-language tasks. In H. Wallach, H. Larochelle, A. Beygelzimer, E. Fox, and R. Garnett (eds.), Advances
in Neural Information Processing Systems, volume 32, pp. 13–23. Curran Associates, Inc., 2019.

Shengjie Luo, Shanda Li, Tianle Cai, Di He, Dinglan Peng, Shuxin Zheng, Guolin Ke, Liwei Wang, and Tie-
Yan Liu. Stable, fast and accurate: Kernelized attention with relative positional encoding, 2021. URL https:
//arxiv.org/abs/2106.12566.

Yueming Lyu. Spherical structured feature maps for kernel approximation. In Doina Precup and Yee Whye Teh (eds.),
Proceedings of the 34th International Conference on Machine Learning, volume 70 of Proceedings of Machine
Learning Research, pp. 2256–2264. PMLR, 06–11 Aug 2017.

Xuezhe Ma, Xiang Kong, Sinong Wang, Chunting Zhou, Jonathan May, Hao Ma, and Luke Zettlemoyer.
Luna: Linear unified nested attention. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and
J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34, pp. 2441–
2453. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/file/
14319d9cfc6123106878dc20b94fbaf3-Paper.pdf.

Ali Madani, Bryan McCann, Nikhil Naik, Nitish Shirish Keskar, Namrata Anand, Raphael R. Eguchi, Po-Ssu Huang,
and Richard Socher. Progen: Language modeling for protein generation, 2020.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture models, 2016.

15

https://arxiv.org/abs/2203.12276
https://arxiv.org/abs/2106.12566
https://arxiv.org/abs/2106.12566
https://proceedings.neurips.cc/paper/2021/file/14319d9cfc6123106878dc20b94fbaf3-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/14319d9cfc6123106878dc20b94fbaf3-Paper.pdf

Published in Transactions on Machine Learning Research (07/2022)

Tan Nguyen, Vai Suliafu, Stanley Osher, Long Chen, and Bao Wang. Fmmformer: Efficient and flexible trans-
former via decomposed near-field and far-field attention. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang,
and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34, pp. 29449–
29463. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/file/
f621585df244e9596dc70a39b579efb1-Paper.pdf.

Junier B. Oliva, Avinava Dubey, Andrew G. Wilson, Barnabas Poczos, Jeff Schneider, and Eric P. Xing. Bayesian
nonparametric kernel-learning. In Arthur Gretton and Christian C. Robert (eds.), Proceedings of the 19th International
Conference on Artificial Intelligence and Statistics, volume 51 of Proceedings of Machine Learning Research, pp.
1078–1086, Cadiz, Spain, 09–11 May 2016. PMLR.

Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, Alexander Ku, and Dustin Tran. Image
transformer. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pp. 4055–4064, Stockholmsmässan, Stockholm
Sweden, 10–15 Jul 2018. PMLR.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin
Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch:
An imperative style, high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019.

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah A. Smith, and Lingpeng Kong. Random feature
attention. CoRR, abs/2103.02143, 2021.

Jorge Pérez, Javier Marinkovic, and Pablo Barceló. On the turing completeness of modern neural network architectures.
CoRR, abs/1901.03429, 2019.

Jorge Pérez, Javier Marinković, and Pablo Barceló. On the turing completeness of modern neural network architectures.
In International Conference on Learning Representations, 2019.

Zhen Qin, Weixuan Sun, Hui Deng, Dongxu Li, Yunshen Wei, Baohong Lv, Junjie Yan, Lingpeng Kong, and Yiran
Zhong. cosformer: Rethinking softmax in attention, 2022.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language understanding by generative
pre-training, 2018.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and
Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of Machine
Learning Research, 21(140):1–67, 2020.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Proceedings of the 20th
International Conference on Neural Information Processing Systems, NIPS’07, pp. 1177–1184, Red Hook, NY, USA,
2007. Curran Associates Inc. ISBN 9781605603520.

Sami Remes, Markus Heinonen, and Samuel Kaski. Non-stationary spectral kernels. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017.

P. Révész, Z.W. Birnbaum, and E. Lukacs. The Laws of Large Numbers. Probability and mathematical statistics. Elsevier
Science, 2014. ISBN 9781483269023. URL https://books.google.ch/books?id=ocHiBQAAQBAJ.

Eitan Richardson and Yair Weiss. On gans and gmms. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran Associates,
Inc., 2018.

Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Demi Guo, Myle Ott, C. Lawrence Zitnick,
Jerry Ma, and Rob Fergus. Biological structure and function emerge from scaling unsupervised learning to 250
million protein sequences. bioRxiv, 2020. doi: 10.1101/622803.

16

https://proceedings.neurips.cc/paper/2021/file/f621585df244e9596dc70a39b579efb1-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/f621585df244e9596dc70a39b579efb1-Paper.pdf
https://books.google.ch/books?id=ocHiBQAAQBAJ

Published in Transactions on Machine Learning Research (07/2022)

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. Efficient content-based sparse attention with
routing transformers, 2020.

Walter Rudin. Fourier Analysis on Groups. John Wiley & Sons, Ltd, 1990.

Lars Ruthotto and Eldad Haber. An introduction to deep generative modeling, 2021.

Yves-Laurent Kom Samo and Stephen Roberts. Generalized spectral kernels, 2015.

Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast weight programmers. In
Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning Research, pp. 9355–9366. PMLR, 18–24 Jul 2021a. URL
https://proceedings.mlr.press/v139/schlag21a.html.

Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast weight programmers. In
Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning Research, pp. 9355–9366. PMLR, 18–24 Jul 2021b.

Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels: Support Vector Machines, Regularization,
Optimization, and Beyond. MIT Press, Cambridge, MA, USA, 2001. ISBN 0262194759.

Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Nonlinear component analysis as a kernel eigenvalue
problem. Neural Computation, 10(5):1299–1319, 1998. doi: 10.1162/089976698300017467.

Zheyang Shen, Markus Heinonen, and Samuel Kaski. Harmonizable mixture kernels with variational fourier features.
In Kamalika Chaudhuri and Masashi Sugiyama (eds.), Proceedings of the Twenty-Second International Conference
on Artificial Intelligence and Statistics, volume 89 of Proceedings of Machine Learning Research, pp. 3273–3282.
PMLR, 16–18 Apr 2019.

Bernard W Silverman. Density estimation for statistics and data analysis, volume 26. CRC press, 1986.

Aman Sinha and John C Duchi. Learning kernels with random features. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 29. Curran Associates, Inc., 2016.

Alex J. Smola and Bernhard Schökopf. Sparse greedy matrix approximation for machine learning. In Proceedings of
the Seventeenth International Conference on Machine Learning, ICML ’00, pp. 911–918, San Francisco, CA, USA,
2000. Morgan Kaufmann Publishers Inc. ISBN 1558607072.

Yitong Sun, Anna Gilbert, and Ambuj Tewari. But how does it work in theory? linear svm with random features. In
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 31. Curran Associates, Inc., 2018.

Zhiqing Sun, Yiming Yang, and Shinjae Yoo. Sparse attention with learning to hash. In International Conference on
Learning Representations, 2022. URL https://openreview.net/forum?id=VGnOJhd5Q1q.

Dougal J. Sutherland and Jeff Schneider. On the error of random fourier features. In Proceedings of the Thirty-First
Conference on Uncertainty in Artificial Intelligence, UAI’15, pp. 862–871, Arlington, Virginia, USA, 2015. AUAI
Press. ISBN 9780996643108.

Yi Tay, Dara Bahri, Liu Yang, Donald Metzler, and Da-Cheng Juan. Sparse sinkhorn attention. In Hal Daumé III
and Aarti Singh (eds.), Proceedings of the 37th International Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pp. 9438–9447. PMLR, 13–18 Jul 2020a.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey, 2020b.

Yi Tay, Dara Bahri, Donald Metzler, Da-Cheng Juan, Zhe Zhao, and Che Zheng. Synthesizer: Rethinking self-attention
in transformer models, 2021a.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao, Liu Yang, Sebastian
Ruder, and Donald Metzler. Long range arena : A benchmark for efficient transformers. In International Conference
on Learning Representations, 2021b.

17

https://proceedings.mlr.press/v139/schlag21a.html
https://openreview.net/forum?id=VGnOJhd5Q1q

Published in Transactions on Machine Learning Research (07/2022)

Yao-Hung Hubert Tsai, Shaojie Bai, Makoto Yamada, Louis-Philippe Morency, and Ruslan Salakhutdinov. Transformer
dissection: An unified understanding for transformer’s attention via the lens of kernel. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), pp. 4344–4353, Hong Kong, China, November 2019. Association
for Computational Linguistics. doi: 10.18653/v1/D19-1443.

Vladimir Vapnik, Steven Golowich, and Alex Smola. Support vector method for function approximation, regression
estimation and signal processing. In M. C. Mozer, M. Jordan, and T. Petsche (eds.), Advances in Neural Information
Processing Systems, volume 9. MIT Press, 1997.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30, pp. 5998–6008. Curran
Associates, Inc., 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. GLUE: A multi-task
benchmark and analysis platform for natural language understanding. In International Conference on Learning
Representations, 2019.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with linear complexity,
2020.

Christopher Williams and Matthias Seeger. Using the nyström method to speed up kernel machines. In T. Leen,
T. Dietterich, and V. Tresp (eds.), Advances in Neural Information Processing Systems, volume 13. MIT Press, 2001.

Andrew Wilson and Ryan Adams. Gaussian process kernels for pattern discovery and extrapolation. In Sanjoy Dasgupta
and David McAllester (eds.), Proceedings of the 30th International Conference on Machine Learning, volume 28 of
Proceedings of Machine Learning Research, pp. 1067–1075, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang Macherey, Maxim Krikun,
Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Łukasz Kaiser,
Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei
Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and
Jeffrey Dean. Google’s neural machine translation system: Bridging the gap between human and machine translation,
2016.

Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, and Vikas Singh.
Nyströmformer: A nyström-based algorithm for approximating self-attention. Proceedings of the AAAI Conference
on Artificial Intelligence, 35(16):14138–14148, May 2021.

Zichao Yang, Andrew Wilson, Alex Smola, and Le Song. A la Carte – Learning Fast Kernels. In Guy Lebanon and
S. V. N. Vishwanathan (eds.), Proceedings of the Eighteenth International Conference on Artificial Intelligence and
Statistics, volume 38 of Proceedings of Machine Learning Research, pp. 1098–1106, San Diego, California, USA,
09–12 May 2015. PMLR.

Zihao Ye, Qipeng Guo, Quan Gan, Xipeng Qiu, and Zheng Zhang. Bp-transformer: Modelling long-range context via
binary partitioning, 2019.

Uladzislau Yorsh, Pavel Kordík, and Alexander Kovalenko. Simpletron: Eliminating softmax from attention computa-
tion, 2021. URL https://arxiv.org/abs/2111.15588.

Felix Xinnan X Yu, Ananda Theertha Suresh, Krzysztof M Choromanski, Daniel N Holtmann-Rice, and Sanjiv Kumar.
Orthogonal random features. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.), Advances in Neu-
ral Information Processing Systems, volume 29. Curran Associates, Inc., 2016a. URL https://proceedings.
neurips.cc/paper/2016/file/53adaf494dc89ef7196d73636eb2451b-Paper.pdf.

Felix Xinnan X Yu, Ananda Theertha Suresh, Krzysztof M Choromanski, Daniel N Holtmann-Rice, and Sanjiv Kumar.
Orthogonal random features. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.), Advances in
Neural Information Processing Systems, volume 29. Curran Associates, Inc., 2016b.

18

https://arxiv.org/abs/2111.15588
https://proceedings.neurips.cc/paper/2016/file/53adaf494dc89ef7196d73636eb2451b-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/53adaf494dc89ef7196d73636eb2451b-Paper.pdf

Published in Transactions on Machine Learning Research (07/2022)

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip
Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed. Big bird: Transformers for longer sequences. In
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing
Systems, volume 33, pp. 17283–17297. Curran Associates, Inc., 2020.

Hang Zhang, Yeyun Gong, Yelong Shen, Weisheng Li, Jiancheng Lv, Nan Duan, and Weizhu Chen. Poolingformer:
Long document modeling with pooling attention. In Marina Meila and Tong Zhang (eds.), Proceedings of the
38th International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research,
pp. 12437–12446. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/zhang21h.
html.

Yizhe Zhang and Deng Cai. Linearizing transformer with key-value memory, 2022.

Yuchen Zhang, John Duchi, and Martin Wainwright. Divide and conquer kernel ridge regression. In Shai Shalev-
Shwartz and Ingo Steinwart (eds.), Proceedings of the 26th Annual Conference on Learning Theory, volume 30 of
Proceedings of Machine Learning Research, pp. 592–617, Princeton, NJ, USA, 12–14 Jun 2013. PMLR.

Chen Zhu, Wei Ping, Chaowei Xiao, Mohammad Shoeybi, Tom Goldstein, Anima Anandkumar, and Bryan Catanzaro.
Long-short transformer: Efficient transformers for language and vision. In M. Ranzato, A. Beygelzimer, Y. Dauphin,
P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34, pp.
17723–17736. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/
file/9425be43ba92c2b4454ca7bf602efad8-Paper.pdf.

19

https://proceedings.mlr.press/v139/zhang21h.html
https://proceedings.mlr.press/v139/zhang21h.html
https://proceedings.neurips.cc/paper/2021/file/9425be43ba92c2b4454ca7bf602efad8-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/9425be43ba92c2b4454ca7bf602efad8-Paper.pdf

Published in Transactions on Machine Learning Research (07/2022)

Learning The Transformer Kernel – Appendix

A Detailed proof of Theorems

A.1 Definitions

Transformer:A transformer consists of an Encoder and a Decoder, which in turn consist of several encoder and
decoder layers respectively. A single encoder layer consists of an attention layer(Att) and a 2 layer feed-forward neural
network(O) :

ai = Att(Wqxi,WkX,WvX) + xi (15)
zi = O(ai) + ai (16)

In our case, the feed-forward neural network uses perceptron activations(ie fperc(x) = 1 iff x > 0 and 0 otherwise)
and the attention is gaussian(discussed in detail later). The final layer of the encoder is followed by a couple of two
layer output neural networks, which produce the Encoder Key(Ke) and Encoder Value(Ve) to be used by the decoder.
In our proof, we assume these to have ReLU activation(fReLU (x) = max(0, x))

The decoder layers are similar to the encoder layer except for an additional cross attention layer which attends to the
encoder output:

pi = Att(Wqyi,WkY,WvY) + yi (17)
ai = Att(W ′

qpi,Ke,Ve) + yi (18)

zi = O(ai) + ai (19)

Unlike the encoder, the decoder self attention if Eq. 17 can only attend to previous position. After the final layer we
have a two layer feed-forward neural network with ReLU activation to produce the output. The decoder is initialised
with a special seed vector and is repeatedly applied with the right shifted output of the last application as the input of
the current application, until some termination condition is fulfilled.

Both the encoder and decoder can further use position embeddings, which have the same dimension as the output of
each layer, and are added to the input prior to the first layer. These help in establishing the order of the input

Since the output of any unit of a layer is independent of values to its right, these do not change with time and
can be cached. The output of the final layer of the rightmost cell can therefore be regarded as the model state encoding(v)

Turing Machine:A Turing Machine is an abstract construct which consists of a right infinite tape and a read-write
head. Each cell of the tape can hold one of many symbols from a predefined alphabet Σ which includes a special blank
symbol b. Additionally, the read-write head can be in one of many possible states within the state-space Q which
includes a special initial state qinit and a subset of final states F .

Initially, the tape contains the input followed by an infinite number of blank symbols, while the head starts off in
the last non-blank cell. In each step, the head executes in accordance with a transition function T (s(i), q(i)) =
(v(i), q(i+1),m(i)) , ie, based on the symbol currently under the head and the current state, it decides the symbol it
wants to overwrite the current symbol with, the state it will be in the next step and the direction it wants to move, which
can be either left(−1) or right(1). We assume that the transition function already makes sure that the head never moves
left from the leftmost cell.

For the purpose of our proof, we additionally define c(i) as the index of the cell to which the head currently points, ℓ(i),
which represents the step number when the head last pointed to the current cell, ie ℓ(i) = max{j|c(j) = c(i)}. In the
special case where the current cell is being visited for the first time, we have ℓ(i) = i− 1

A.2 The Proof

In this section, we provide a general proof which works for both Theorem 1 and Theorem 2 in the paper. This is
possible since the construction only makes use of the dual of the kernel functions used, i.e. the gaussian. The fact that

20

Published in Transactions on Machine Learning Research (07/2022)

both kernel functions map to the gaussian is shown in lemma S.2 (Sec A.6)

Our proof is based on the similar proof in Pérez et al. (2019). Any symbols not explicitly defined have same meanings
from that paper. We begin the proof by defining our model encoding(v):

v = [q1, s1, x1, x2

q2, s2, x3, x4, x5, x6,

x7, s4, x8,

x9, x10, x11, x12]

(20)

where qi ∈ Q|Q|, si ∈ Q|Σ|, and xi ∈ Q, giving a total model size of 2|Q| + 3|Σ| + 14. Hereafter, [[x]] represents the
one-hot encoding for the state x or symbol x depending on the position it is being used in. 0q represents all 0’s in a
state field, and represents the qcopy state discussed later, while 0s represents all 0’s in a symbol field, and represents the
blank symbol. Further, β(i) = min(i, n) where n is the size of the encoder and α(i) represents the symbol at position
β(i) in the encoder. We assume that atleast the last cell of the encoder contains a blank symbol.

This differs from Pérez et al. (2019) in the addition of a fourth scalar in the first group, in which we intend to store the
current position c(i) of the head.
Our invariant is that yi the output from the decoder at timestep i, stores:

1. The current state of the Turing Machine(q(i))

2. The symbol under the head(s(i))

3. The direction of movement of the head in the previous timestep (m(i−1))

4. The current position of the head(c(i))

In all, we get yi = [[[q(i)]], [[s(i)]],m(i−1), c(i), 0, . . . , 0]

Positional Embeddings: The last group (x9, x10, x11, x12) is dedicated to the positional embeddings, which
are given as(1, i, 1

i ,
1
i2) These same embeddings are added on both the Encoder and Decoder side.

Encoder: The encoder consists of a single layer. It gets as input the symbol at position i and the positional
embeddings, ie inputi = [0q,0s, 0, 0,0q, , [[s(i)]], 0, 0, 0, 0, i,0s, 0, 1, i, 1

i ,
1
i2] which has a trivial attention layer(ie,

one that outputs all zeroes) and a feed forward layer which separates the positional embeddings from the symbols,
giving kei = [0, . . . , 0, i,−1, 0, 0] and vei = [0q,0s, 0, 0,0q, , [[s(i)]], 0, 0, 0, 0, i,0s, 0, 0, 0, 0, 0].

Decoder Layer 1: The first layer of the decoder calculates the next state, the symbol to be written and the
direction of movement of the head. This includes 2 cases:

1. Initially, the Decoder starts off with in the state qcopy . While the state is still qcopy , the head writes the symbol
at the ith position in the encoder and moves right, until a blank symbol is seen. Once a blank symbol is
reached, the tape rewrites the blank symbol, moves left and the state changes to qinit.

2. Once we move into qinit, the output is fully defined by the current state and symbol under the head.

To facilitate the first case, we make use of the cross attention layer, to get

Att(q,Ke,Ve) = [0, . . . , 0,
0q, [[α(i)]], 0, 0, 0, 0,
β(i),0s, 0,
0, 0, 0, 0]

= veβ(i)

(21)

21

Published in Transactions on Machine Learning Research (07/2022)

The details of this process are explained in lemma S.1(see sec. A.4) Adding in the residual connection, we have:

a1
i = [[[q(i)]], [[s(i)]],m(i−1), c(i)

0q, [[α(i)]], 0, 0, 0, 0,
β(i),0s, 0,

1, i+ 1, 1
(i+ 1) ,

1
(i+ 1)2]

(22)

Hereafter, we make use of the feed-forward layer to get:

O(a1
i) = [−[[q(i)]],−[[s(i)]],−m(i−1),m(i),

[[q(i+1)]], [[v̄(i)]],m(i),m(i−1), 0, 0,
0, . . . , 0
0, . . . , 0]

(23)

If the state is qinit then we set [[v̄(i)]] = 0s, else we have [[v̄(i)]] = [[v(i)]]. Note that this gives us [[v̄(i)]] + [[α(i)]] = [[v(i)]].

To get all the required values, we first project[[q(i)]] and [[s(i)]] to a one-hot encoding of Q × Σ. from there, we can
calculate all the required values in a look-up table fashion. if the state is qinit then we set [[v(i)]] = 0s

The final output of this layer is then:

z1
i = [0, . . . , 0, c(i+1)

[[q(i+1)]], [[v(i)]],m(i),m(i−1), 0, 0,
β(i),0s, 0,

1, i+ 1, 1
(i+ 1) ,

1
(i+ 1)2]

(24)

Decoder Layer 2: In this layer we calculate the symbol under the head in the next timestep. In order to do so, we first
use the self attention layer to calculate [[v(ℓ(i+1))]] and (ℓ(i+ 1))(For details, see sec A.7.):

Att(W 2
q z2

i ,W
2
kZ2,W 2

vZ2) = [0, . . . , 0,
0, . . . , 0,
0, [[v(ℓ(i+1))]], (ℓ(i+ 1)),
0, 0, 0, 0]

(25)

Adding the residual layer, we have

a2
i = [0, . . . , 0, c(i+1)

[[q(i+1)]], [[v(i)]],m(i),m(i−1), 0, 0,
β(i), [[v(ℓ(i+1))]], (ℓ(i+ 1)),

1, i+ 1, 1
(i+ 1) ,

1
(i+ 1)2]

(26)

The feed-forward layer then givesO2(a2
i) = [[[q(i+1)]], [[v(ℓ(i+1))]]−fperc((ℓ(i+1)+2−(i+1)),m(i−1), 0,−M, . . .−

M] where M is a large negative value. The perceptron function in the s1 is added positionwise, and is 0 unless
ℓ(i+ 1) = i. In this special case, it makes s1 contain only 0 or −1 which is converted into 0s by the ReLU activation
in the output MLP. The same is also true for every field after the first 4, where we add a large negative value to make the
ReLU output 0.

22

Published in Transactions on Machine Learning Research (07/2022)

A.3 The Attention Mechanism

The attention mechanism in the Gaussian kernel is defined as follows:

Attn(Q,K,V) = V
(
ColNorm

(
Φ(Q)TΦ(K)

))
(27)

where Φ is ΦRKS (Eq 34) for Theorem 1 and ΦPRF (Eq 33) for Theorem 2, and ωi is sampled from a gaussian
with zero mean and diagonal covariance. However, for the proof construction, we use a hard version of this attention
mechanism, and limit ourselves to the standard gaussian for ω(since the mean and sigma is learnable, this can always
be achieved). To begin with, we replace the kernels with their common dual, using lemma S.2 (sec A.6). In our
construction, we do not require learnable means and variances, so we fix them to be 0dq and I hereafter:

Attn(Q,K,V) =
h−1∑
i=0

Wi
OV

(
ColNorm

[[
e− ||ql−km||2

2

]]d−1,d−1

l=0,m=0

)
(28)

where [[f(l,m)]]α,βl=0,m=0 denotes an α× β matrix whose (l,m)th entry is f(l,m), ColNorm(X) indicates the matrix
X with its columns normalised to and d is the dimension of the query/key vector.

While this definition does not seem to allow multiplying the exponent, one must remember that the query and key
matrices are calculated using projection matrices, and any required scalar factor can be incorporated into them.
Therefore, we define hard gaussian attention as:

score(u,v) = −||u − v||2 (29)

Hard attention is them computed as

Att(qi,K,V) =
∑n−1
j=0 I[score(qi,kj) = (maxj′score(qi,kj′))]vj∑n−1
j=0 I[score(qi,kj) = maxj′(score(qi,kj′))]

(30)

Here I in the indicator function.

A.4 Lemma S.1

A.5 Statement

Given

q = [__, . . . , __, 1, i, __, __]
kej = [0, . . . , 0,

0, . . . , 0,
0, . . . 0,
j,−1, 0, 0]

vej = [0, . . . , 0,
0q, [[s(j)]], 0, 0, 0, 0,
j,0s, 0,
0, 0, 0, 0]

(31)

For j ∈ {0, . . . , n}, we need a construction that gives

Att(q,Ke,Ve) = [0, . . . , 0,
0q, [[α(i)]], 0, 0, 0, 0,
β(i),0s, 0,
0, 0, 0, 0]

= veβ(j)

(32)

23

Published in Transactions on Machine Learning Research (07/2022)

A.5.1 Proof

Note that while the key and value comes from the encoder, and is therefore fixed, the query comes from the decoder and
thus can be projected as we please. It is easy to construct a projection matrix that gives WQq = [0, . . . , i,−1, 0, 0].
Then we have score(q,kj′) = −||i = j||2 = −(i− j)2, whose maxima on j′ is unique and occurs at i = β(j). Thus,
we have Att(q,Ke,Ve) = ve

β(j) , which is exactly what we wanted.

A.6 Lemma S.2

A.6.1 Statement

Let

ΦPRF (x) = [exp(−||x|| + ωT0 x), . . . , exp(−||x|| + ωTk−1x)] (33)

ΦRKS(x) =
√

2m
k

[cos(ωT1 x), . . . , cos(ωTk x), sin(ωT1 x), . . . , sin(ωTk x)] (34)

We want to show that if ω ∼ N (0, I) then the kernels as defined above corresponds to the GMM kernel, ie.

ΦRKS(X)ΦRKS(Y) ≈ ΦPRF (X)ΦPRF (Y) ≈ e− ||x−y||2
2 (35)

A.6.2 Proof

Positive Random Features:The proof actually follows from a trivial extension of Lemma 1 in (Choromanski et al.,
2021b), but we present it here end to end for the convenience of the reader.

First we observe that

e− ||x−y||2
2 = e− ||x||2−2xTy+||y||2

2

= e− 2∗||x||2−||x||2−2xTy+2∗||y||2−||y||2
2

= e−||x||2
e

||x+y||2
2 e−||y||2

(36)

Next we leverage the fact that (2π)−dq/2 ∫
e− ||ω−c||2

2 dω = 1 in to evaluate the second factor above:

e
||x+y||2

2 = (2π)−dq/2e
||x+y||2

2

∫
e− ||ω−x+y||2

2 dω

= (2π)−dq/2
∫
e− ||ω||2+||x+y||2−||x+y||2−2ωT x−2ωT y

2 dω

= (2π)−dq/2
∫
e− ||ω||2

2 eω
T xeω

T ydω

= Eωi∼N (0,I)(eω
T xeω

T y)

(37)

The terms e−||x||2
and e−||y||2

in the last line of Eq.36 are independent of ω and can thus be pushed into the expectation.
Finally, we approximate the expectation by sampling in order to get the required result.
Random Kitchen Sinks:For the second kernel, we start with Eq. 7.4.6 in Abramowitz & Stegun (1972) and extend it
to vectors. We have,

24

Published in Transactions on Machine Learning Research (07/2022)

∫
Rm

e−||t||2
cos(2tTx)dt

=
∫
Rm

e−(t20+
∑m−1

i=1
t2i) cos

(
2x0t0 + 2

m−1∑
i=1

tixi

)
dt0dt1 . . . dtm−1

=
∫
Rm

e−(t20+
∑m−1

i=1
t2i) cos(2x0t0) cos

(
2
m−1∑
i=1

tixi

)
dt0dt1 . . . dtm−1

−
∫
Rm

e−(t20+
∑m−1

i=1
t2i) sin(2x0t0) sin

(
2
m−1∑
i=1

tixi

)
dt0dt1 . . . dtm−1

The second integral involving sin is odd and therefore evaluates to 0. That leaves us with:

=
∫
Rm

e−(t20+
∑m−1

i=1
t2i) cos(2x0t0) cos

(
2
m−1∑
i=1

tixi

)
dt0dt1 . . . dtm−1

=
∫
Rm−1

(∫ ∞

−∞
e−t20 cos(2x0t0)dt0

)
e−

∑m−1
i=1

t2i cos
(

2
m−1∑
i=1

tixi

)
dt1 . . . dtm−1

= 1
2

√
πe−x2

0

∫
Rm−1

e−
∑m−1

i=1
t2i cos

(
2
m−1∑
i=1

tixi

)
dt1 . . . dtm−1

This process can now be repeated for every dimension of t and x to finally give:

∫
Rm

e−||t||2
cos(2tTx)dt = πm/2

2m e−||x||2
(38)

Using Eq. 38, we can now get

ΦRKS(X)ΦRKS(Y) = 2m

k

k−1∑
i=0

(
cos(ωTi x) cos(ωTi y) + sin(ωTi x) sin(ωTi y)

)
= 2m

k

k−1∑
i=0

cos
(
ωi(x − y)

)
≈ 2m E

ωi∼N (0m,I)
cos

(
ω(x − y)

)
= 2m

∫
Rm

1
(2π)m/2 e

− ||ω||2
2 cos(2ωT x − y

2)dω

= 2m

πm/2

∫
Rm

e
−|| ω√

2
||2

cos(2 ω√
2
T x − y√

2
)d ω√

2

= e− ||x−y||2
2

(39)

In either case, the error stems from the approximation of the expectation by sampling, which can be made arbitrarily
small by increasing k

25

Published in Transactions on Machine Learning Research (07/2022)

A.7 Lemma S.3

A.7.1 Statement

Given,

z1
i = [0, . . . , 0, c(i+1),

[[q(i+1)]], [[v(i)]],m(i),m(i−1), 0, 0,
β(i+1),0s, 0,

1, (i+ 1), 1
(i+ 1) ,

1
(i+ 1)2]

(40)

we need a construction that gives

Att(W 2
q z2

i ,W
2
kZ2,W 2

vZ2) = [0, . . . , 0,
0, . . . , 0,
0, [[v(ℓ(i+1))]], (ℓ(i+ 1)),
0, 0, 0, 0]

(41)

A.7.2 Proof

We set the weight matrices to get qj = W 2
q z2

j = [0, . . . , 0, c(j+1), 0, 0], kj = W 2
k z2

j = [0, . . . , 0, c(j) =
c(j+1) − m(i), 0, 1

(j+1)] and vj = W 2
v z2

j = [0, . . . , 0, [[v(j)]], j, 0, 0, 0, 0]. All these are partial permutations and
therefore can be done using appropriate binary matrices.

Note that the required output is exactly the value at j = ℓ(i+ 1), so it is sufficient to show that the score(qi,kj) is
maximised in j for j = ℓ(i+ 1), i.e.

j =
{

max{j′|c(j′) = c(i+1)}, if ∃j′ s.t. c(j′) = c(i+1)

i, otherwise
(42)

Now we have score(qi,kj) = −(c(i+1) − c(j))2 − 1
(j+1)2 . For all j such that c(i+1) ̸= c(j)), the score is almost −1

since c is an integer. If there ∃j′ s.t. c(j′) = c(i+1) then the corresponding score is greater that −1, and the maxima is
achieved at the highest such value of j. If such j does not exist however, then ∀j < i, score(qi,kj) < −1 − 1

(i+1)2

and therefore, the maxima is achieved at j = i.

B Mean Square Error of Linear Approximations

In this section, we calculate the Variance/Mean Square Error(MSE) in the Linear approximation of the Gaussian Kernel.
Our proof is based on the similar proof in Choromanski et al. (2021b).

B.1 Random Kitchen Sinks

B.1.1 Statement

For a GMM-RKS estimator with m samples for a Normal distribution with mean vector µ and Covariance Matrix
Σ = STS, the variance of the estimate around its mean is given by:

MSE(ϕGMM−RKS(q)TϕGMM−RKS(k)) = 2
m

cos2(µT (k − q))(1 − exp(−||ST (k − q)||2))2 (43)

26

Published in Transactions on Machine Learning Research (07/2022)

B.1.2 Proof

MSE(ϕGMM−RKS(q)TϕGMM−RKS(k))

= 1
m2V arωi∼N (µ,Σ),χi∼N (−µ,Σ)(

m∑
i=1

(cos(ωTi q) cos(ωTi k) + sin(ωTi q) sin(ωTi k)

+ cos(χTi q) cos(χTi k) + sin(χTi q) sin(χTi k)))

= 1
m2V arωi∼N (µ,Σ),χi∼N (−µ,Σ)(

m∑
i=1

(cos(ωTi (q − k)) + cos(χTi (q − k)))

= 1
m2V arηi∼N (0,I)(

m∑
i=1

(cos((ηTi ST + µT)(q − k)) + cos((ηTi ST − µT)(q − k))))

= 4
m2V arηi∼N (0,I)(

m∑
i=1

cos(ηTi ST (q − k)) cos(µT (q − k)))

= 4
m2 cos

2(µT (q − k))V arηi∼N (0,I)(
m∑
i=1

cos(ηTi ST (q − k)))

= 4
m
cos2(µT (q − k))V arη∼N (0,I) cos(ηT (ST (q − k)))

= 2
m
cos2(µT (q − k))(1 − exp(−||ST (q − k)||2)2)

(44)

Note that there is a slight abuse of notation in that ω and χ are not independently sampled, but are transforms of the
same sample, making the change of variable valid. Since all η are iid, we can pull the summation out of the variance.
Thereafter we apply Lemma 1 from Yu et al. (2016a) to calculate the final variance.

B.2 Positive Random Features

For a GMM-PRF estimator with m samples for a Normal distribution with mean vector µ and Covariance Matrix
Σ = STS, the variance of the estimate around its mean is given by:

MSE(ϕGMM−PRF(q)TϕGMM−PRF(k))

= 1
m

exp(−2(||q||2 + ||k||2 − µT (q + k)))(exp(2||ST (q + k)||) − exp(||ST (q + k)||))
(45)

B.2.1 Proof

MSE(ϕGMM−PRF(q)TϕGMM−PRF(k))

= 1
m2V arωi∼N (µ,Σ)(

m∑
i=1

(exp(ωTi (q + k) − ||q||2 − ||k||2)))

= 1
m

exp(−2(||q||2 + ||k||2))V arω∼N (µ,Σ) exp(ωT (q + k))

= 1
m

exp(−2(||q||2 + ||k||2))V arη∼N (0,I)(exp(ηTST (q + k) + µT (q + k)))

= 1
m

exp(−2(||q||2 + ||k||2 − µT (q + k))).

(Eη∼N (0,I)(exp(2ηTST (q + k))) − (E2
η∼N (0,I)(exp(ηTST (q + k)))))

= 1
m

exp(−2(||q||2 + ||k||2 − µT (q + k)))(exp(2||ST (q + k)||) − exp(||ST (q + k)||))

(46)

Where the last step follows from Eq. 16 in Choromanski et al. (2021b) which in turn follows from the fact that
GMM-PRF is an unbiased estimator for gaussians.

27

Published in Transactions on Machine Learning Research (07/2022)

Model Image

Random Predictor 10.00

Baseline Models

Softmax Trans.(Vaswani et al.) 42.44
Synthesizer(Tay et al.) 41.61
Sinkhorn(Tay et al.) 41.23
Sparse Trans.(Child et al.) 44.24
Reformer(Kitaev et al.) 38.07
Local Attention (Parmar et al.) 41.46
Longformer(Beltagy et al.) 42.22
Linformer(Wang et al.) 38.56
Big Bird(Zaheer et al.) 40.83
LinearElu(Katharopoulos et al.) 42.34
Performer(Choromanski et al.) 42.77

Kernelized Transformers

GMM-RKS (Eq. 5) 42.33
FASTFOOD-RKS (Eq. 6) 36.74
GENERATIVE-RKS (Eq. 8) 39.84
GMM-PRF (Eqs. 9, 10) 39.94
FASTFOOD-PRF (Eqs. 9, 12) 38.31
GENERATIVE-PRF (Eqs. 9, 11) 40.01

Table 5: Experimental results on the Image dataset with 1024 tokens from LRA benchmark.

C Experimental Details

C.1 Source Code

We implemented KL-TRANSFORMERs in Python 3 and PyTorch (Paszke et al., 2019) and plan to open-source the code
for reproducing all experiments upon acceptance.

C.2 LRA image dataset results

For completeness we also give results on Image datasets from LRA task where a N × N image is flattened into a
sequence of N2 pixels which is then provided as input to the model. The gray-scaled CIFAR10 image classification
dataset (Krizhevsky, 2009) is used, resulting in a sequence length of 1024.

C.3 Hyperparameters for LRA Tasks

Further Notes:

• To benchmark memory in Figure 3, we used a batch size of 32 for Text and a batch size of 2 for Retrieval.

• For GMM-RKS and GMM-PRF the number of components C in the mixture was set to C = 2.

28

Published in Transactions on Machine Learning Research (07/2022)

Parameter ListOps Text Retrieval Image

Batch Size 32 32 32 256
Learning Rate 5 × 10−3 5 × 10−2 5 × 10−2 5 × 10−4

Training Steps/Epochs 10K/NA 20K/NA 5K/NA NA/200
Optimizer Adam with Weight Decay (β1 = 0.9, β2 = 0.98)
Weight Decay 0.1 0.1 0.1 0.0
Warmup Steps 1000 8000 8000 175
Scheduler Sqrt Decay Sqrt Decay Sqrt Decay Cosine Decay
Loss Cross Entropy
Sequence Length 2000 4000 4000 1024
Num. Layers 6 4 4 1
Num. Heads 8 4 4 8
Embedding Dim. 512 256 128 128
Key/Query/Value Dim. 64 64 32 8
Feedforward Dim. 2048 1024 512 128
Dropout Rate 0.1 0.1 0.1 0.3
Activation Function Gelu Gelu Gelu Gelu
Positional Encoding Sinusoidal Sinusoidal Sinusoidal Learnable
Pooling Mode CLS CLS CLS CLS

Table 6: Hyperparameters for LRA tasks.

Model ListOps Text Retrieval Image

GMM-RKS 256 128 64 128
FASTFOOD-RKS 64 64 32 8
GENERATIVE-RKS 256 256 128 128
GMM-PRF 256 256 128 128
FASTFOOD-PRF 64 64 32 8
GENERATIVE-PRF 128 128 64 8

Table 7: Number of random samples M used within each KL-TRANSFORMER.

29

Published in Transactions on Machine Learning Research (07/2022)

C.4 Hyperparameters for GLUE Tasks

Parameter Value(s)

Pre-Training Batch Size 64
Batch Size 64
Pre-Training Learning Rate (ηpre) 5 × 10−4

Pre-Training Learning Rate at Step i min(i
10000 ,

Ipre−i
Ipre−10000) ∗ ηpre

Training Learning Rate (ηtrain) {2 × 10−3, 1 × 10−4, 5 × 10−4, 2 × 10−5, 5 × 10−6}
Training Learning Rate at Step i (ηtrain) min(10i

Itune
, Itune−i

0.9∗Itune
) ∗ ηtrain

Pre-Training Epochs 5
Training Epochs 10
Optimizer Adam with Weight Decay (β1 = 0.9, β2 = 0.999)
Weight Decay 0.01
Loss Cross Entropy
Sequence Length 512
Num. Layers 3
Num. Heads 10
Embedding Dimension 300
Key/Query/Value Dimension 64
Transformer Feedforward Dimension 512
Classifier Feedforward Dimension 128
Dropout Rate 0.1
Transformer Activation Function Gelu
Classifier Activation Function Tanh
Positional Encoding Sinusoidal
Pooling Mode CLS
Num. of Samples from Distribution {64, 128}

Table 8: Hyperparameters for GLUE tasks. Where multiple parameters were tried, they are listed in curly brackets.
Ipre denotes the total number of pre-training steps, whereas Itune denotes the total number of fine-tuning steps on each
GLUE task.

Our model has significantly fewer number of parameters as compared to Devlin et al. (2019) and therefore we perform
poorer on than them on all datasets. They use 24 layers with 16 heads each. If reported in the same order as the columns
of Table 3, their numbers would look like: 97.5, 89.3/85.4, 72.1/89.3, 87.2/86.4, 92.7, 65.1, 70.1.

While we had to limit model sizes due to resource limitations, this handicaps all models equally, and therefore should
not prevent comparison across various models reported in our paper.

C.5 Further Results on Efficiency Benchmarks

Figure 7 shows how much memory each model uses. Figure 8 plots this memory usage against the model performance

C.6 Correlation of Variance Metrics

Figures 9 and 10 show the correlation of Average Gain by Voting with the other twp variance metrics for the text and
retrieval tasks respectively

30

Published in Transactions on Machine Learning Research (07/2022)

Layer Head Minimum Maximum Mean

1

1 7.601e-7 4.584e-1 3.531e-2
2 2.380e-8 4.863e-1 3.576e-2
3 1.400e-5 4.469e-1 3.319e-2
4 4.214e-6 4.197e-1 3.208e-2

2

1 4.242e-6 2.790e-1 3.070e-2
2 2.971e-6 3.238e-1 3.161e-2
3 5.081e-6 2.842e-1 3.078e-2
4 5.212e-7 3.006e-1 3.086e-2

3

1 2.297e-6 2.219e-1 2.872e-2
2 7.094e-6 2.036e-1 2.594e-2
3 1.074e-7 1.953e-1 2.772e-2
4 6.330e-9 1.836e-1 2.442e-2

Table 9: Distribution of Eigenvalues of covariances of GMM-RKS model for the Text task

Layer Head Minimum Maximum Mean

1

1 1.363e-5 9.660e-2 2.440e-2
2 6.659e-5 7.900e-2 2.200e-2
3 7.241e-6 9.050e-2 2.810e-2
4 2.760e-5 7.790e-2 2.630e-2

2

1 2.068e-5 7.520e-2 2.430e-2
2 2.386e-5 7.580e-2 2.400e-2
3 7.256e-6 7.400e-2 2.370e-2
4 1.911e-4 8.080e-2 2.680e-2

3

1 2.871e-5 6.710e-2 2.570e-2
2 6.117e-6 7.370e-2 2.190e-2
3 7.830e-6 6.600e-2 2.010e-2
4 2.186e-5 7.620e-2 2.810e-2

Table 10: Distribution of Eigenvalues of covariances of GMM-PRF model for the Text task

Layer Head Minimum Maximum Mean

1

1 4.011e-05 4.994e-01 5.998e-02
2 4.250e-05 2.294e-01 5.390e-02
3 1.918e-04 3.427e-01 5.842e-02
4 5.615e-06 3.943e-01 5.866e-02

2

1 3.232e-06 2.605e-01 5.469e-02
2 2.746e-06 2.581e-01 5.333e-02
3 6.364e-06 2.329e-01 5.091e-02
4 2.071e-05 1.743e-01 5.020e-02

3

1 4.358e-05 1.919e-01 5.157e-02
2 1.143e-04 1.738e-01 4.819e-02
3 2.546e-05 1.735e-01 4.705e-02
4 9.697e-07 2.075e-01 4.982e-02

Table 11: Distribution of Eigenvalues of covariances of GMM-RKS model for the Retrieval task

31

Published in Transactions on Machine Learning Research (07/2022)

Figure 7: Peak memory used by KL-TRANSFORMERs across different datasets.

Figure 8: We demonstrate the peak memory consumption (y-axis) and performance (x-axis) of the various Kernelized
Transformer architectures on the ListOps dataset from LRA. Memory usage refers to per device memory usage across
each GPU.

C.7 Eigenvalues of Trained Models

D Ablation Studies

D.1 FastFood Attention

In the main paper, we use FastFood-SGB, which has all the diagonal matrices learnable. However, B and G matrices
have a very special structure (their elements being drawn from Bernoulli{−1,1}(0.5) and N (0, 1) respectively), which
is lost if we make them learnable. Therefore, it makes sense to have FastFood-S, which only has S learnable. Finally, we
can also have everything fixed, giving us the basic FastFood version. The results of these two versions, along with the
original FastFood-SGB kernel on the GLUE benchmaark are summarised in Table 13. As one can see, FastFood-SGB is
either the best or close to it except for WNLI and CoLA, therefore we choose to use this version for our main analysis.

32

Published in Transactions on Machine Learning Research (07/2022)

Figure 9: Correlation between AGV and the other two variance metrics on the Text task.

Figure 10: Correlation between AGV and the other two variance metrics on the Retrieval task.
.

E Sparsity Synthetic Experiment

E.1 Task Description

Given a sequence of ordered pairs (vi, ai), where vi ∈ {−1, 1} and ai ∈ {0, 1}, the task is to output
∑L
i=0 viai. Here,

vi can be seen as the value of a given position, while ai indicates whether or not we need to attend to that position.
The dataset is generated by (pseudo-randomly flipping a coin independently for ai and vi. The bias in the flip for ai
defines the sparsity of the dataset. The flip for vi is appropriately biased to ensure that no prefix has an absolute sum
of more that 4. The final prediction is outputted as a 9-way classification over integer values between −4 and 4 (both

Layer Head Minimum Maximum Mean

1

1 8.225e-05 2.114e-01 4.818e-02
2 5.386e-05 1.525e-01 4.066e-02
3 9.659e-05 1.707e-01 5.638e-02
4 1.498e-07 1.467e-01 4.166e-02

2

1 1.294e-06 9.798e-02 3.024e-02
2 9.306e-05 1.289e-01 4.334e-02
3 4.300e-06 1.865e-01 4.846e-02
4 2.418e-05 1.047e-01 4.458e-02

3

1 2.466e-08 1.133e-01 3.987e-02
2 2.291e-04 1.429e-01 5.099e-02
3 3.997e-05 1.134e-01 3.380e-02
4 6.653e-05 1.129e-01 2.827e-02

Table 12: Distribution of Eigenvalues of covariances of GMM-PRF model for the Retrieval task

33

Published in Transactions on Machine Learning Research (07/2022)

Dataset SST2
(acc)

MRPC
(acc)

MRPC
(f1)

QQP
(acc)

QQP
(f1)

MNLI
(mat)

MNLI
(mis)

QNLI
(acc)

WNLI
(acc)

RTE
(acc)

CoLA
(MCorr)

FastFood 0.814 0.713 0.820 0.811 0.738 0.571 0.568 0.629 0.634 0.563 0.152
FastFood-S 0.807 0.706 0.822 0.810 0.741 0.571 0.571 0.642 0.606 0.570 0.101
FastFood

SGB 0.828 0.707 0.820 0.810 0.739 0.569 0.572 0.638 0.592 0.563 0.129

Table 13: Ablation studies using FastFood variants on the GLUE benchmark.

Dataset
Sparsity

Checkpoint
Acc.(%)

GMM-RKS GMM-PRF GMM-RKS/GMM-PRF
Std. Dev. Abs. Mean Std. Dev. Abs. Mean Std. Dev. Abs. Mean

0.1

20 0.083064 0.144132 0.079822 0.139948 0.960974 0.97097
40 0.094528 0.16609 0.11077 0.193444 1.171828 1.164689
60 0.099791 0.176456 0.116044 0.201462 1.162868 1.141712
80 0.131252 0.228456 0.154802 0.275594 1.179433 1.206332

0.5

20 0.069646 0.121306 0.434024 0.53019 6.231835 4.370671
40 0.11552 0.201468 6.432806 12.17245 55.68558 60.41891
60 0.142631 0.249917 3.752173 5.886064 26.30681 23.55206
80 0.166899 0.295308 22.46943 42.14157 134.6289 142.7036

0.9

20 0.059153 0.102415 0.065438 0.115866 1.106237 1.131343
40 0.108255 0.186704 0.123171 0.211465 1.137784 1.132622
60 0.119243 0.206855 0.126247 0.217067 1.058737 1.049365
80 0.136816 0.240525 0.168633 0.295976 1.232546 1.230542

Table 14: Means and Variances of gradients received at the classifier layer for the synthetic experiment

inclusive). The bias against higher absolute values causes −4 and 4 classes to appear less often. This is balanced out by
overgeneration and sampling.

We generate 3 datasets corresponding to sparsities 0.1, 0.5 and 0.9. Each dataset has 200K instances, of sequence
length 200. Of these, we use 80% as the training set and the rest for validation.

E.2 Model Description

We use a 3 layer transformer with dmodel = dfeedforward = 64 and dquery == dvalue = 16. The input is encoded as
a 3-d many-hot vector (vi = 1, vi = −1, ai). this is then passed through an embedding layer and added to learnable
position embeddings and passed through the transformer. The final embedding of the 0th position is then passed through
a hidden layer with 64 units and then passed on to the final layer for a 9-way softmax. For both linear attention models,
we use 64 samples.

All models are trained using AdamW optimizer with β2 = 0.98, ϵ = 10−9, weight decay=0.1, Learning Rate=5 × 10−6

and all other parameters set to default. We use SGD with a batch size of 400 and cross entropy loss.

E.3 Gradients

We create checkpoints for the GMM-RKS and GMM-PRF models when they first achieve validation accuracies of
20%, 40%, 60% and 80%. For each of these checkpoints, we pass the first 50 validation datapoints and record the
gradients on the classifier layer. This process is repeated 50 times. Thereafter, we calculate the mean and standard
deviation of gradients to each neuron. To avoid cancellation of opposite signs, the mean is calculated over absolute
values. The final reported numbers are averages over the 64 neurons. The results are shown in Table 14

34

	Introduction
	Kernel Learning in Transformers
	Learning Kernels in Spectral Domain
	Analysis

	Experiments
	Does kernel learning improve performance of fixed kernel methods on longer sequences?
	Trade-off between Accuracy and Efficiency
	How do blackKL-Transformers perform on short sequence tasks?

	Empirical Analysis
	Comparison of variance
	Effectiveness on Sparse Datasets
	Which Model to Use?

	Related Work
	Efficient Transformers
	Kernel Learning

	Conclusion
	Detailed proof of Theorems
	Definitions
	The Proof
	The Attention Mechanism
	Lemma S.1
	Statement
	Proof

	Lemma S.2
	Statement
	Proof

	Lemma S.3
	Statement
	Proof

	Mean Square Error of Linear Approximations
	Random Kitchen Sinks
	Statement
	Proof

	Positive Random Features
	Proof

	Experimental Details
	Source Code
	LRA image dataset results
	Hyperparameters for LRA Tasks
	Hyperparameters for GLUE Tasks
	Further Results on Efficiency Benchmarks
	Correlation of Variance Metrics
	Eigenvalues of Trained Models

	Ablation Studies
	FastFood Attention

	Sparsity Synthetic Experiment
	Task Description
	Model Description
	Gradients

