
Published in Transactions on Machine Learning Research (07/2022)

Learning the Transformer Kernel

Sankalan Pal Chowdhury spalchowd@inf.ethz.ch
Department of Computer Science
ETH Zürich

Adamos Solomou solomou.adamos@gmail.com
Department of Computer Science
ETH Zürich

Avinava Dubey avinavadubey@google.com
Google Research
Mountain View, CA

Mrinmaya Sachan mrinmaya.sachan@inf.ethz.ch
Department of Computer Science
ETH Zürich

Reviewed on OpenReview: https://openreview.net/forum?id=tLIBAEYjcv

Abstract

In this work we introduce KL-TRANSFORMER, a generic, scalable, data driven framework for
learning the kernel function in Transformers. Our framework approximates the Transformer kernel as
a dot product between spectral feature maps and learns the kernel by learning the spectral distribution.
This not only helps in learning a generic kernel end-to-end, but also reduces the time and space
complexity of Transformers from quadratic to linear. We show that KL-TRANSFORMERs achieve
performance comparable to existing efficient Transformer architectures, both in terms of accuracy and
computational efficiency. Our study also demonstrates that the choice of the kernel has a substantial
impact on performance, and kernel learning variants are competitive alternatives to fixed kernel
Transformers, both in long as well as short sequence tasks. 1

1 Introduction

Transformer models (Vaswani et al., 2017) have demonstrated impressive results on a variety of tasks dealing with
language understanding (Devlin et al., 2019; Radford et al., 2018; Raffel et al., 2020; Brown et al., 2020), image
processing (Parmar et al., 2018; Carion et al., 2020; Lu et al., 2019), as well as biomedical informatics (Rives et al.,
2020; Ingraham et al., 2019; Madani et al., 2020). Albeit powerful, due to the global receptive field of self-attention,
the time and memory complexity of Softmax Transformer models scale quadratically with respect to the sequence
length. As a result, the application of Transformers to domains with long contexts is rather limited. This limitation has
spawned several efficient Transformer designs (Liu et al., 2018; Parmar et al., 2018; Child et al., 2019; Zaheer et al.,
2020; Beltagy et al., 2020; Roy et al., 2020; Tay et al., 2020a; Kitaev et al., 2020). Kernelization offers one such design.
The use of kernel feature maps allows to reformulate the computation of attention in a way that avoids the explicit
computation of the full attention matrix which is the key bottleneck for Softmax Transformer. This also opens up new
directions for more generic attention mechanisms.

Tsai et al. (2019) first proposed a kernel-based formulation of the attention mechanism. However, the time and
memory complexity of their approach remains quadratic with respect to the sequence length. To address this limitation,
Katharopoulos et al. (2020) expressed self-attention as the inner product of kernel feature maps and made use of the

1Our code and models are available at https://github.com/cs1160701/OnLearningTheKernel

1

https://openreview.net/forum?id=tLIBAEYjcv
https://github.com/cs1160701/OnLearningTheKernel

Published in Transactions on Machine Learning Research (07/2022)

associative property to reduce the complexity from quadratic to linear. For their experiments, they used the arbitrarily
chosen LinearElu feature map f(x) = max(x+1, ex). Performer (Choromanski et al., 2021b) replaces this with feature
maps that can directly approximate the softmax kernel, thereby allowing the use of pre-trained Softmax Transformer
weights in a linear time model. Concurrently with them, Peng et al. (2021) proposed a linear space and time method
that added causal and recency based features to random Fourier methods. More recently, Schlag et al. (2021b) showed
the formal equivalence of linearized self-attention mechanisms and fast weight programmers. While the aforementioned
approaches provide a significant reduction in computational and memory requirements, this often comes at the cost
of performance, as can be seen from Fig. 1. In this work, we posit that this is partly due to the fact that the similarity
functions/kernels, including scaled-dot-product, were hand picked and not learnt from data. Thus, we explore whether
kernel learning can help to bridge this gap in performance while retaining the scalability of efficient Transformers.

Although, to the best of our knowledge, kernel learning has never been explored within the framework of Transformers,
kernel learning methods have been an ubiquitous tool in machine learning. The most notable among them is Random
Kitchen Sinks (RKS; Rahimi & Recht, 2007), a data-independent framework for approximating shift-invariant kernels
using an explicit feature map. In RKS, the kernel is approximated by κ(x, y) ≈ 〈φ(x), φ(y)〉, where the explicit feature
map φ : Rd → Rs is obtained by sampling from a spectral distribution defined by the inverse Fourier transform of the
kernel function κ. Wilson & Adams (2013) modeled the spectral density as a mixture of Gaussians, A la Carte (Yang
et al., 2015) proposed an optimization based framework for learning the spectral distribution, BaNK (Oliva et al., 2016)
modeled the spectral distribution using an infinite mixture of Gaussians, while Fang et al. (2020) implicitly modeled it
using deep generative models. We build on these advances and incorporate them into the Transformer framework.

Contributions: In this work, we propose KL-TRANSFORMER, a scalable data driven framework for
learning the kernel of Transformers and investigate whether a fully learnable kernel can help to im-
prove the performance of linear, fixed kernel Transformers. Thus, we introduce Transformers with learn-
able similarity functions, which happen to retain the linear complexity in terms of the sequence length.

Figure 1: Peak memory (y-axis), average performance
(x-axis) and speed (denoted by area of circle) for var-
ious efficient Transformer models (i.e. bigger circles
in the bottom right corner are better) across three long
sequence tasks (> 1024 tokens) introduced in LRA (Tay
et al., 2021b). All values except for “This Paper” are
taken from Tay et al. (2021b).

We motivate our learning method using RKS and learn the
kernel by learning the corresponding spectral distribution. In
§2.1 we first propose to learn a generic Transformer kernel
by explicitly approximating the spectral distribution using
a Mixture of Gaussians (GMM) and propose modifications
to scale it further. In an attempt to further explore the trade
off between computational complexity and accuracy we also
propose to model the spectral frequency distribution of Trans-
former kernels implicitly by using deep generative models
(Goodfellow et al., 2014). Finally, we also propose a novel
method to learn the spectral distribution of positive random
feature (PRF) maps, which provides a better approximation
of the softmax kernel (Choromanski et al., 2021b).

We analyse the expressivity and precision of our proposed
models (§2.2) and show that the proposed GMM with posi-
tional encodings is Turing-complete (Pérez et al., 2019) with
controllable variance. We experimentally evaluate our mod-
els on LRA (tasks with long context), GLUE (tasks with short
context) and a synthetic dataset with controllable sparsity,
and analyze the performance of our models (§3, §2.2). In
our experiments, we find that learnt kernels improve perfor-
mance in long-context tasks, while staying competitive to the
Softmax Transformer of the same size in short-context tasks.
We also find that our models learn parameters that reduce the variance in their predictions, and can handle sparsity quite
well. We also benchmark the computational efficiency of KL-TRANSFORMERs and find that each of our proposed
KL-TRANSFORMERs scales linearly with respect to the sequence length. We conclude with a short comparison
between Random Kitchen Sinks (RKS, Rahimi & Recht (2007)) and Positive Random Features Choromanski et al.
(2021b) in terms of their performance and provide recommendations on which approach should be chosen under which
circumstances.

2

Published in Transactions on Machine Learning Research (07/2022)

2 Kernel Learning in Transformers

We begin with the generalized formulation of self-attention proposed by Tsai et al. (2019). Given a non-negative kernel
function� (�; �) : Rdk � Rdk ! R+ , the output of the generalized self-attention mechanism at indexi operating on an
input sequenceX = (x1; :::; xL) 2 RL � d is de�ned as

ATTN(X) i =
LX

j =1

� (qi ; kj)
P L

j 0=1 � (qi ; kj 0)
vj : (1)

whereki = x i W K ; qi = x i W Q ; vi = x i W V are linear transformations of the input sequence into keys, queries
and values of dimensiondq = dk anddv respectively andW K 2 Rd� dk , W Q 2 Rd� dq , W V 2 Rd� dv . While the
formulation in Eq. (1) is more generic and de�nes a larger space of attention functions, it suffers from a quadratic time
and memory complexity. To reduce the quadratic time and memory, we brie�y review the method of random Fourier
features for the approximation of kernels (Rahimi & Recht, 2007). The details of the method will help motivate and
explain our models.

Random Fourier Features for Kernels: At the heart of this method lies the theorem of Bochner (Rudin, 1990)
which states that a continuous shift invariant kernel� (q; k) = ~� (q � k) over arbitrary variablesq andk is a positive
de�nite function if and only if~� (�) is the Fourier transform of a non-negative measure� (!). Moreover, if~� (0) = 1 ,
then Bochner's theorem guarantees that� (!) is a normalized density function, i.e.

~� (q � k) =

Z

Rd

� (!) exp
�
i! T (q � k)

�
d! = E! � �

�
exp(i! T q) exp(i! T k) �

�
: (2)

Rahimi & Recht (2007) proposed to sample from the spectral density� (!) for a Monte Carlo approximation to the
integral in Eq. (2). Speci�cally, for real valued kernels, they de�ne� (q; k) � � (q)T � (k), where! i � � (!) and

� (x) := RKS (x;
 = (! 1 ; : : : ; ! M)) :=
1

p
M

[cos(! T
1 x); : : : ; cos(! T

M x); sin(! T
1 x); : : : ; sin(! T

M x)] (3)

To learn a kernel, we can either learn a parametric function� (�; �) or learn the corresponding parameterized feature
map� (�) directly, which corresponds to learning the spectral density� (!) (Wilson & Adams, 2013; Yang et al., 2015;
Oliva et al., 2016). In this paper, we focus on the latter because this helps us in keeping the computational complexity

linear in the sequence lengthL . This can be achieved by rewriting Eq. (1) asATTN(X) i =
� (qi)T (

P L

j =1
� (k j)vT

j)

� (qi)T
P L

j 0=1
� (k j 0)

. To

the best of our knowledge this is the �rst attempt to learn the kernel of the generalized self-attention mechanism (Eq. 1).

2.1 Learning Kernels in Spectral Domain

GMM -RKS: Our objective is to enable learning of any translation invariant kernel. This is realizable if we can learn
the spectral distribution. Gaussian Mixture Models (GMMs) are known universal approximators of densities and hence
may approximate any spectral distribution.GMMs have been shown to be useful for kernel learning for regression
and classi�cation tasks (Wilson & Adams, 2013; Oliva et al., 2016). Thus, to learn the kernel of the generalized
self-attention mechanism (Eq. 1), we model the spectral distribution of the kernel as a parameterized GMM, i.e.

� (!) =
CX

c=1

� cN (� c; � c) , � (q; k) =
CX

c=1

� ce(i� T
c (q� k) � 1

2 (q� k)T � c (q� k)) (4)

Heref � c 2 Rd; � c 2 Rd2
gC

c=1 are the learnable parameters of the feature map andC is the number of components
in the Gaussian mixture. It can be shown using Plancherel's Theorem that� (!) can approximate any shift invariant
kernel (Silverman, 1986). Since we are working with only real valued kernels, the corresponding kernel reduces to
� (q; k) =

P C
c=1 � ce(� 1

2 (q� k)T � c (q� k))) cos (� T
c (q � k)) .

To speedup learning, we assume that� c = 1
C and parameterize the feature map with spectral frequency,
 =

(! c;1; : : : ; ! C;M) as:

� GMM� RKS(x) := RKS (x;
) ; ! c;m = � cnm + � c; nm � N (0; I): (5)

This allows us to samplenm � N (0; I) and learn the parameters of the feature map, (f � c 2 Rdq ; � c 2 Rd2
q gC

c=1)
end-to-end along with the other parameters of the Transformer.

3

Published in Transactions on Machine Learning Research (07/2022)

FASTFOOD-RKS: GMM-RKS removes the quadratic dependency on context length, but we still need to calculate

 T Q and
 T K (where
 = [! 1; ! 2; : : : ; ! M]) which takesO(MdqL) time andO(Mdq + dqL + ML) space, which
can be too much ifM is large. For further gains in scalability, we approximate the spectral frequency matrix
 , using
the product of Hadamard matrices (FastFood; Le et al., 2013), such that the computation can be done in time log-linear
in M , i.e.:

� FASTFOOD� RKS(x) := RKS (x; V); whereV =
1

�
p

dq
SHG� HB: (6)

Here,� 2 f 0; 1gdq � dq is a permutation matrix,H is the Walsh-Hadamard matrix,B is a diagonal random matrix with
f� 1g entries,G is a diagonal matrix with Gaussian entries drawn fromN (0; 1) and �nally S is a random diagonal
scaling matrix that makes the row lengths non-uniform. The entire multiplication can be carried out in logarithmic time,
and the space requirement is reduced by storing diagonal matrices instead of full matrices. ForM > d q we use multiple
blocks, and the only restriction is that we needM jdq. In order to make this learnable, Yang et al. (2015) proposed
makingS and optionallyG andB learnable. For the main paper, we keep all three learnable (the case where onlyS is
learnable is discussed in Appendix D).

GENERATIVE -RKS: If we increase the number of components (C) in GMM-RKS, the computation and space
complexity increases dramatically. Instead, to learn a more generic kernel, without blowing up the computational
complexity, we use deep generative models (DGMs). DGMs have achieved impressive results in density estimation
(Goodfellow et al., 2014; Kingma & Welling, 2014; Richardson & Weiss, 2018; Ruthotto & Haber, 2021) and end-to-end
kernel learning in the spectral domain for classi�cation (Fang et al., 2020).

In GENERATIVE-RKS we use a DGM to replace the Gaussian probability distribution fromGMM-RKS with an
arbitrary probability distribution. This DGM acts as a generator similar to the ones used by variational auto-encoders
used in computer vision (Kingma & Welling, 2014). In particular, to make the sampling process differentiable, we
use the reparameterization trick, where a learnable neural network (called the generator, and denoted by g in Figure 2)
transforms samples from a simple noise distribution (� 0 in Fig 2) into samples from the desired distribution.

! m = g(nm); nm � � o(�) (7)

The generator network is trained end to end with the whole model, allowing it to choose the best possible distribution
for the given data. These samples (
 = [! 1; ! 2; : : : ; ! M] in Fig 2) are then used in Random Kitchen Sinks as follows:

� GENERATIVE� RKS(x) := RKS (x;
) ; ! m � g(� o) (8)

We experimented with various con�gurations and eventually and chose to learn a generator network which consisted of
4 fully connected layers with batch normalisation and LeakyReLU activation, followed by a single fully connected
layer withtanh activation. While this methodology allows us to generalise the gaussian distribution to a much larger
class of distributions, it also causes a blowup in the number of parameters e.g. a4 + 1 layer constant width generator,
as used by us would require5d2 + 5d parameters as opposed to thed2 + d parameters inGMM-RKS. To counter this
and to improve generalization, we share the same generator network across all heads in a layer, which means that the
different heads only differ in the Query/Key/Value projection matrix.

Positive Random Features (PRF): Until now, we focused on feature maps de�ned usingRKS. While our formulation
is very general, recently it was shown that positive random features provide a better approximation to both Gaussian and
Softmax kernels (see Lemma 2 in Choromanski et al. 2021b). In particular they showed that� (q; k) = exp(qT k) =

E! �N (0 ;I) [exp(! T q � kqk2

2) exp(! T k � kkk2

2)] and demonstrated that Monte Carlo approximation to this expectation
leads to a low variance estimate of the softmax kernel. Moreover, the presence of only positive values within the
randomized feature map ensures that kernel estimates remain strictly non-negative. To incorporate this prior knowledge,
we propose a novel kernel learning framework in which we learn the spectral density while using the feature map
corresponding to the above expectation. For instance, when we model the spectral distribution of
 = (! 1; ...; ! M)
using GMM (=

P C
c=1 � cN (� c; � c)) we have that:

4

Published in Transactions on Machine Learning Research (07/2022)

Figure 2: Generalized self-attention with deep generative RKS.Q; V andK are linear transformations of input,X . The
generator generates spectral frequency (
) from an implicit spectral distribution. Using RKS (Eq. 2) we create the
feature map� gen (Eq. 8). The numerator of the output is calculated as� gen (Q)(� gen (K)V) while the denominator is
� gen (qi)T P L

j 0=1 � gen (kj 0) making attention linear in sequence lengthL .

Model Space Complexity Time Complexity

Softmax Transformer O(L 2(1 + dq=L)) O(L 2dq)
Performer O(L(dq + M + Mdq=L)) O(LMd q)
LinearElu O(L(dq + d2

q=L)) O(Ld2
q)

GMM-RKS O(L(dq + C(d2
q=L + Mdq=L + M))) O(MC (d2

q + Ldq))
GMM-PRF O(L(dq + CMdq=L + CM)) O(LCMd q)
FASTFOOD(RKS/PRF) O(L(dq + M + Mdq=L)) O(LMd q)
GENERATIVE(RKS/PRF) O(L(dq + d2

q=L + Mdq=L + M)) O(M (d2
q + Ldq))

Table 1: Space and time complexity of self-attention kernel ofKL-T RANSFORMERs compared with Softmax Trans-
former (Vaswani et al., 2017), Performer (Choromanski et al., 2021b), and LinearElu (Katharopoulos et al., 2020).
L refers to length of context,dq=dv is the query/key/value dimension, whileM is the number of samples (where
applicable).

� (q; k) := E! � [e(! T q�k qk2) e(! T k �k kk2)]; PRF (x;
) :=
e�k x k2

p
M

[e! T
1 x ; ...; e! T

M x] (9)

� GMM� PRF(x) := PRF (x; (! c;1; ...; ! C;M)) ; ! c;m = � cnm + � c; nm � N (0; I) (10)

Similarly we rede�ne the other two methods as:

� GENERATIVE� PRF(x) := PRF (x;
) ; ! m = g(nm); nm � � o(�) (11)

� FASTFOOD� PRF(x) := PRF (x; V); whereV =
1

�
p

dq
SHG� HB: (12)

To the best of our knowledge we are the �rst to explore kernel learning with positive random features.

2.2 Analysis

In this section, we explore what can be said about the expressivity of the proposed linear timeKL-T RANSFORMERs.
While our understanding of the properties of Transformers is rudimentary, we would still like to know whether the
known properties extend to our models. For example, it has been shown that Softmax Transformers and its sparse
counterparts are Turing complete (Pérez et al., 2019; Zaheer et al., 2020).This raises the question as to whether the
proposed linear KL-TRANSFORMERs are also Turing complete?

5

Published in Transactions on Machine Learning Research (07/2022)

It is easy to see that the generalized kernel self-attention (Eq. 1) includes the softmax kernel and hence should satisfy
the properties of Softmax Transformer. Interestingly, we can also show that this property holds forGMM-RKS
Transformers with number of componentsC = 1 , (for a more systematic de�nition, see Section A.1). More formally,

Theorem 1: The class ofGMM-RKS Transformers with positional embeddings is Turing complete.

Proof is in the Appendix A. We also show that:

Theorem 2: The class ofGMM-PRFTransformers with positional embeddings is Turing complete.

For a detailed proof, see Appendix A.

Since the sampling of! in Equations 5 and 9 is random, we have some stochasticity in the attention layers
of our model. We now show that the Mean Square Error (MSE) of the estimation can be reduced by reducing the
eigenvalues of the learnt covariance matrix. In particular, we show that:

Theorem 3: Let � and� = ST S be the learnt mean an covariance matrices of the sampling distribution. Further let
q andk be the parameters, andp = k � q ando = k + q be their vector difference and sum respectively, and m be the
number of samples. The MSE of the linear approximations is given by:

MSE GMM� RKS =
2
m

cos2(� T p)(1 � e�jj ST pjj 2
)2 (13)

MSE GMM� PRF =
1
m

e� 2(jj qjj 2 + jj k jj 2 � � T o) (e2jj ST ojj � ejj ST ojj) (14)

It is interesting to note that in this formulation,MSE GMM� RKS
2 is bounded above by2m while no such bound can be

established forMSE GMM� PRF. For the detailed proof see Supplementary Section B

Complexity Analysis: While all of our models have linear complexity with respect to the context lengthL ,
differences still exist amongst the various methods. Notable,GMM-RKS andGENERATIVE have quadratic time and
space complexity in the query sizedq. Both theFASTFOOD methods avoid this approximation, whereasGMM-PRF
avoids this by the use of a diagonal covariance matrix. The complexities are listed in Table 1.

Another factor that controls timing is the sampling of
 . Sampling too frequently can lead to signi�cant
slowdowns whereas sampling too few times can lead to biased learning. For our experiments, we resample every100
training iterations, although this can be changed. A detailed list of all hyperparameters along with implementation
details are provided in Appendix C.

3 Experiments

3.1 Does kernel learning improve performance of �xed kernel methods on longer sequences?

Long Range Arena (LRA; Tay et al. 2021b) is a diverse benchmark for the purpose of evaluating the ability of sequence
models to reason under long-context scenarios. It includes tasks that vary both in terms of the context length (ranging
from 1K to 4K tokens) as well as the data modalities (including text and mathematical expressions). We evaluate
theKL-T RANSFORMERarchitectures introduced in Section 2.1 on theText, RetrievalandListOpstasks fromLRA
which deal with sentiment prediction from IMDB Reviews, document similarity classi�cation and pre-order arithmetic
calculations respectively. BothTextandRetrievaluse character level encodings, bringing their maximum length to
4000tokens. TheListOpsdataset is synthetically generated and has a �xed length of2000tokens. For more details on
the tasks, we refer the interested reader to the original paper by Tay et al. 2021b.

Setup: To ensure a fair comparison, we closely follow the same data preprocessing, data split, model size and training
procedure as in (Tay et al., 2021b). Within each task, a common con�guration is used across allKL-T RANSFORMER

2For the proof of Theorem 3, we use the seci�c case ofC = 2 , � 1 + � 2 = 0 and� 1 = � 2 which is used in the experiments. Since Theorem 1
and 2 however, hold in general

6

Published in Transactions on Machine Learning Research (07/2022)

Model Complexity ListOps Text Retrieval Avg.
2K 4K 4K

Random Predictor NA 10.00 50.00 50.00 36.67

Baseline Models

Softmax Trans. (Vaswani et al.) O(L 2) 36.38 64.27 57.46 52.70
Synthesizer (Tay et al.) O(L 2) 36.50 61.68 54.67 50.95
Sinkhorn (Tay et al.) O((L=B)2) 34.20 61.20 53.83 49.74
Sparse Trans. (Child et al.) O(L

p
L) 35.78 63.58 59.59 52.98

Reformer (Kitaev et al.) O(L logL) 36.30 56.10 53.40 48.60
Local Attention (Parmar et al.) O(LK) 15.95 52.98 53.39 40.77
Longformer (Beltagy et al.) O(LK) 36.03 62.85 56.89 51.92
Linformer (Wang et al.) O(L) 35.49 53.49 52.27 52.56
Big Bird (Zaheer et al.) O(LK) 37.08 64.02 59.29 53.46
LinearElu (Katharopoulos et al.) O(L) 17.15 65.90 53.09 45.38
Performer (Choromanski et al.) O(L) 36.00 65.40 53.82 51.74

Kernelized Transformers

GMM-RKS (Eq. 5) O(L) 18.55 63.95 58.64 47.05
FASTFOOD-RKS (Eq. 6) O(L) 18.65 65.67 61.92 48.75
GENERATIVE-RKS (Eq. 8) O(L) 18.50 66.50 64.76 49.92
GMM-PRF (Eqs. 9, 10) O(L) 36.96 62.64 65.27 54.96
FASTFOOD-PRF (Eqs. 9, 12) O(L) 37.05 64.66 71.13 57.61
GENERATIVE-PRF (Eqs. 9, 11) O(L) 37.42 62.90 69.81 56.71

Table 2: Experimental results on theLRA benchmark. We report accuracy on the test set, except forTextwhere
validation set is used. The best model is in boldface and the second best is underlined if within 1% f the best. Accuracy
scores for all baseline models are from Tay et al. (2021b). Here,L refers to the sequence length,K refers to the size of
a local window andB � L is a model speci�c parameter. For our models, accuracy is averaged over100runs.

models based on the con�guration speci�ed in theLRAcode repository3. We outline the hyperparameters for all tasks
in Table 6 in the Appendix.

Results: The results across allLRAtasks are summarized in Table 2.KL-T RANSFORMERvariants that learn the
kernel function directly from the data in an end-to-end manner outperform the baseline models by occupying both
best and second-best performances. We �nd thatKL-T RANSFORMERs based on PRFs tend to outperform theirRKS
counterparts which is also re�ected on the averageLRAscore, withFASTFOOD-PRFbeing the best-performing model.

3.2 Trade-off between Accuracy and Ef�ciency

We benchmark the ef�ciency of eachKL-T RANSFORMERin terms of peak memory usage and training speed and
compare it against three baseline models from theLRAbenchmark. Speci�cally, we compare against other ef�cient
Transformer architectures that employ �xed kernel feature maps (e.g. LinearElu and Performer) as well as the Softmax
Transformer which is one of the strongest baseline models (see Table 2). We conduct ef�ciency benchmarks on the two
LRAtasks with sequence length equal to4K in order to assess the ef�ciency of these methods in modelling tasks that
require a long context (results for the other two datasets are included in the Appendix). Speed measurements (steps
per second) refer to wall-clock training time (including overheads). In both cases experiments are conducted on8
NVIDIA TITAN RTX GPUs. The comparison is illustrated in Figure 3. On theTexttask,GENERATIVE-RKS is the
best performing model, although it consumes more memory than the remainingKL-T RANSFORMERarchitectures
(it is still more ef�cient than the Softmax Transformer). LinearElu consumes the least amount of memory, while
GMM-RKS provides a trade-off between the two. InRetrievalthe situation is much clearer, withFASTFOOD-PRF
andGENERATIVE-PRFoutperforming signi�cantly other models in terms of accuracy while having very low memory

3https://github.com/google-research/long-range-arena

7

Published in Transactions on Machine Learning Research (07/2022)

Figure 3: We compare the peak memory consumption (y-axis), performance (x-axis) and speed (denoted by area of
circle) for the variousKL-T RANSFORMERarchitectures on the twoLRAtasks with sequence length equal to4K .
Memory usage refers to average memory usage across GPUs and speed (steps per second) for each model is reported
relative to the speed of Softmax Transformer (larger circles denote faster models). For a similar graph on theListOps
Task see Fig 8 in the Supplementary

consumption. The training speed ofKL-T RANSFORMERs is of the same order of magnitude as Performers (as indicated
by the area of each circle in Figure 3).

Figure 4: Memory vs sequence length

Lastly, in Figure 4, we report the peak memory consumption as the
sequence length changes from1K to 4K on theTextdataset. As
expected, all our models have a linear increase in memory consump-
tion with increasing sequence length, as opposed to the Softmax
Transformer which has dramatic increase in memory consumption.
Furthermore, Figure 7 in the Appendix reports the memory us-
age of eachKL-T RANSFORMERacross all datasets. We �nd that
FASTFOOD-PRFandGENERATIVE-PRFare not only our best
performing models on average, but they also consume the least
memory among variousKL-T RANSFORMERs across all datasets.
Thus, among the models proposed in this paper, we can recom-
mendFASTFOOD-PRFandGENERATIVE-PRFas the model that
achieves the best accuracy with the least memory consumption.

3.3 How do KL-T RANSFORMERs perform on short sequence tasks?

We compare theKL-T RANSFORMERs and Softmax Transformer in a common transfer learning setting. We adopt the
setting of BERT-like models (Devlin et al., 2019; Liu et al., 2019), except that we have fewer layers and heads (see
Table 8 for details) and pre-train all models (including Softmax Transformer) on the WikiText-103 dataset (Merity et al.,
2016) using non-contextual WordPiece embeddings (Wu et al., 2016). Pre-trained models are then �ne-tuned on the
General Language Understanding Evaluation (GLUE) benchmark (Wang et al., 2019), a collection of resources for
training and evaluating language understanding systems. All tasks inGLUE consist of either one or two sentences
as input and can therefore be easily captured with a context of size512. Since the context length is rather short, the
difference between training and inference time across the various models is minimal. Instead, the main goal of this task
is to assess how doKL-T RANSFORMERs compare against Softmax Transformers on a set of tasks where the later have
been established as thede-factoarchitecture.

The results on all downstreamGLUE tasks are shown in Table 3. Crucially, we demonstrate that there is no signi�cant
loss in performance compared to Softmax Transformers when kernelized variants are used on short language modelling
tasks. As illustrated in Table 3, KL-TRANSFORMERs perform on par with the Softmax Transformer.

8

Published in Transactions on Machine Learning Research (07/2022)

Model SST2
(acc)

MRPC
(acc/f1)

QQP
(acc/f1)

MNLI-
m/mm
(acc/acc)

QNLI
(acc)

WNLI
(acc)

RTE
(acc)

CoLA
(MCor)

Softmax Trans. 0.81 0.70/0.82 0.83/0.76 0.64/0.640.68 0.56 0.6 0.18

FASTFOOD-RKS 0.83 0.71/0.82 0.81/0.74 0.57/0.570.64 0.59 0.56 0.13
GMM-RKS 0.80 0.70/0.82 0.77/0.69 0.47/0.480.60 0.61 0.57 0.07
GENERATIVE-RKS 0.81 0.70/0.82 0.81/0.73 0.59/0.580.63 0.62 0.58 0.16
FASTFOOD-PRF 0.81 0.71/0.82 0.81/0.74 0.56/0.570.64 0.59 0.58 0.12
GENERATIVE-PRF 0.80 0.71/0.82 0.80/0.74 0.56/0.560.61 0.60 0.55 0.10
GMM-PRF 0.82 0.71/0.82 0.81/0.74 0.56/0.560.64 0.59 0.59 0.21

Table 3: Results on the GLUE benchmark after �ne-tuning on respective tasks.KL-T RANSFORMERs continue to be
competitive to Transformers even in short context problems.

Task Model Max Egv. Mean Egv. Task Model Max Egv. Mean Egv.

Text
GMM-RKS 0.486 0.031

Retrieval
GMM-RKS 0.499 0.053

GMM-PRF 0.096 0.025 GMM-PRF 0.186 0.042

Table 4: Distribution of Eigenvalues forGMM-RKS andGMM-PRFmodels for theTextandRetrievaltasks. For a
head by head distribution see Tables 9, 10, 11 and 12

4 Empirical Analysis

In section 3, we observed that our models compare favourably with other linear models, with Positive Random Features
(PRF) based models usually doing better that the ones based on Random Kitchen Sinks (RKS) (although RKS does
better on theTexttask). In this section, we want to compare these linear kernels in terms of their empirical variance and
how well they deal with sparsity. In Theorem3, we already noted that the MSE for bothGMM-RKS andGMM-PRF
models decreases with decrease in eigenvalues of the covariance matrices, making it useful to learn such a matrix. We
also noted that the variance in the output ofGMM-RKS is bounded, and thus it should not face issues with sparse
datasets when approximating the softmax kernel as show in Choromanski et al. (2021b)). We test for these results
empirically in subsections 4.1 and 4.2 respectively. We then conclude in 4.3 with a discussion on which of our proposed
models is best to use in a given scenario.

4.1 Comparison of variance

Looking at the eigenvalues of the covariance matrices of our �nal trained models4 in Table 4, we �nd thatGMM-RKS
andGMM-PRFmodels trained on theTextandRetrievaltasks indeed learn to have eigenvalues signi�cantly smaller
than1 (which would be the case for non-learnable co-variances).

While lower eigenvalues reduce the variance in our models signi�cantly, it does not get completely nulli�ed. To
understand how much stochastic remains in our models, and also to compare RKS with PRF in regards to their variance,
we look at the �nal outputs5 the models produce when repeatedly run on the same example. We record the output
produced by the model for100runs on each datapoint, and calculate the following3 metrics to quantify the variance:

1. Relative Standard Deviation (RSD):RSD is a standardised measure of dispersion (see Currie & Svehla
(1994), def 3.9), de�ned as the ratio of the standard deviation of a set of observations to the absolute value of
their mean. The ratio ensures that the measure is invariant to scaling (eg. multiplying the penultimate layer
of the model by a constant factor does not affect RSD) while the absolute of the mean ensures that opposing
classes don't cancel each other out.

4We only report eigenvalues for the GMM models since covariance matrices are not well de�ned in the Generator and FastFood. Also, theListOps
task is left out of the entire analysis because its multi-class nature makes the analysis complex

5While the theory makes a claim about the output of each attention head, evaluating every head at every layer would give us a large number of
values to analyse. The output is considered before aplying the �nal sigmoid

9

	Introduction
	Kernel Learning in Transformers
	Learning Kernels in Spectral Domain
	Analysis

	Experiments
	Does kernel learning improve performance of fixed kernel methods on longer sequences?
	Trade-off between Accuracy and Efficiency
	How do blackKL-Transformers perform on short sequence tasks?

	Empirical Analysis
	Comparison of variance
	Effectiveness on Sparse Datasets
	Which Model to Use?

	Related Work
	Efficient Transformers
	Kernel Learning

	Conclusion
	Detailed proof of Theorems
	Definitions
	The Proof
	The Attention Mechanism
	Lemma S.1
	Statement
	Proof

	Lemma S.2
	Statement
	Proof

	Lemma S.3
	Statement
	Proof

	Mean Square Error of Linear Approximations
	Random Kitchen Sinks
	Statement
	Proof

	Positive Random Features
	Proof

	Experimental Details
	Source Code
	LRA image dataset results
	Hyperparameters for LRA Tasks
	Hyperparameters for GLUE Tasks
	Further Results on Efficiency Benchmarks
	Correlation of Variance Metrics
	Eigenvalues of Trained Models

	Ablation Studies
	FastFood Attention

	Sparsity Synthetic Experiment
	Task Description
	Model Description
	Gradients

