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Abstract
The goal of an offline reinforcement learning (RL)
algorithm is to learn the optimal policy using of-
fline data, without access to the environment for
online exploration. One of the main challenges in
offline RL is the distribution shift which refers to
the difference between the state-action visitation
distribution of the data generating policy and the
learning policy. Many recent works have used the
idea of pessimism for developing offline RL algo-
rithms and characterizing their sample complexity
under a relatively weak assumption of single pol-
icy concentrability. Different from the offline RL
literature, the area of distributionally robust learn-
ing (DRL) offers a principled framework that uses
a minimax formulation to tackle model mismatch
between training and testing environments. In
this work, we aim to bridge these two areas by
showing that the DRL approach can tackle the
distributional shift problem in offline RL. In par-
ticular, we propose two offline RL algorithms us-
ing the DRL framework, for the tabular and linear
function approximation settings, and characterize
their sample complexity under the single policy
concentrability assumption. We also demonstrate
the performance of our algorithm through simula-
tion experiments and by comparing it with other
state-of-the-art tabular offline RL algorithms.

1. Introduction
The goal of an offline RL algorithm is to learn an approxi-
mately optimal policy using minimal amount of offline data
collected according to a behavior policy (Lange et al., 2012;
Levine et al., 2020). The lack of online exploration makes
the offline RL problem particularly challenging due to dis-

1California Institute of Technology 2Texas A&M Uni-
versity 3Amazon. Correspondence to: Kishan Panaganti
<kpb@caltech.edu>.

Workshop on Foundations of Reinforcement Learning and Con-
trol at the 41 st International Conference on Machine Learning,
Vienna, Austria. Copyright 2024 by the author(s).

tribution shift and partial data coverage. Distribution shift
refers to the difference between the state-action visitation
distribution of the behavior policy and that of the learned
policy. Partial data coverage refers to the fact that the data
generated according to the behavior policy may only con-
tain samples from parts of the state-action spaces. While
these two issues are not the same, in effect, they both cause
the problem of out-of-distribution (OOD) data (Yang et al.,
2021; Robey et al., 2020), i.e., distributions of training and
testing data being different.

In the past few years, many works have developed deep of-
fline RL algorithms mitigating distribution shift and partial
data coverage, but have been mainly focused on the algo-
rithmic and empirical aspects (Fujimoto et al., 2019; Kumar
et al., 2019; 2020; Fujimoto & Gu, 2021; Kostrikov et al.,
2021). Most of the early theoretical works on offline RL,
however, analyzed the performance of their algorithms by
making the strong assumption of uniformly bounded con-
centrability which requires that the ratio of the state-action
occupancy distribution induced by any policy and the data
generating distribution being bounded uniformly over all
states and actions (Munos, 2007; Antos et al., 2008; Munos
& Szepesvári, 2008; Farahmand et al., 2010; Chen & Jiang,
2019; Liao et al., 2022). The more recent theoretical results
have used the principle of pessimism or conservatism (Yu
et al., 2020; Buckman et al., 2021; Jin et al., 2021) and
addressed some of the issues in offline RL, including replac-
ing uniform concentrability with the more relaxed single
policy concentrability assumption (Uehara & Sun, 2021;
Rashidinejad et al., 2022; Li et al., 2022a).

1.1. Motivation: Why Distributionally Robust Learning
for Offline RL?

Classical supervised learning is based on empirical risk min-
imization (ERM), which assumes that the train and test data
are drawn from the same distribution (Shalev-Shwartz &
Ben-David, 2014). However, this assumption is hardly satis-
fied in many real-world applications (Quinonero-Candela
et al., 2022), and the performance of supervised learning
algorithms degrade significantly in the out-of-distribution
setting (Taori et al., 2020; Koh et al., 2021). A large body of
work has been recently developed that uses the distribution-
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ally robust learning (DRL) framework to address the issue
of distribution shift in various settings (Duchi & Namkoong,
2021; Kuhn et al., 2019; Chen et al., 2020). The DRL
framework considers an uncertainty set of data distributions
around a nominal distribution (typically the training data
distribution), and solves a minimax optimization problem
to find a function that minimizes the expected loss, where
the expectation is taken w.r.t. the distribution in the uncer-
tainty set that maximizes the loss. DRL is a principled
framework that provides generalization guarantees, accom-
modates ways of constructing domain-specific uncertainty
sets (e.g., using f -divergence and Wasserstein distance), and
offers practical and scalable algorithms (Chen et al., 2020;
Levy et al., 2020; Mohajerin Esfahani & Kuhn, 2018).

The issue of out-of-distribution data arises in real-world RL
applications because of the mismatch between the train and
test environments (MDP models). This issue is also known
as the simulation-to-reality (sim-to-real) gap (Tobin et al.,
2017). Modeling errors and changes in the real-world sys-
tem parameters are inevitable in RL applications, and stan-
dard RL policies can fail dramatically even when they face
a mild mismatch between the train and test environments
(Tobin et al., 2017; Peng et al., 2018). Many works have
used the heuristic of domain randomization (Weng, 2019)
to make the learned RL policy robust against the sim-to-real
gap. More recently, several works have proposed to use
the DRL framework in RL to mitigate the sim-to-real gap
problem (Tamar et al., 2014; Roy et al., 2017; Panaganti &
Kalathil, 2021; Panaganti et al., 2022; Panaganti & Kalathil,
2022; Xu∗ et al., 2023; Shi & Chi, 2022; Ma et al., 2022;
Wang & Zou, 2022; Kumar et al., 2023; Li et al., 2022b;
Wang et al., 2023a), building on the formalism of robust
Markov decision processes (RMDPs) (Iyengar, 2005; Nilim
& El Ghaoui, 2005). However, these works do not consider
the offline RL setting in which the out-of-distribution issues
are due to the distribution shift and partial data coverage.

Offline RL closely resembles supervised learning because
its goal is to learn a policy from an offline dataset, as op-
posed to the conventional RL goal of learning through online
exploration. So, offline RL faces similar out-of-distribution
issues as in supervised learning. As mentioned above, DRL
has shown to be an attractive framework to address the
out-of-distribution issues arising in supervised learning, of-
fering practical algorithms with provable guarantees. These
observations motivate us to ask the following questions:

Can we address the distributional shift issues in
offline RL using distributionally robust learning
as a principled approach? What kind of theoreti-
cal performance guarantees can we provide and
under what kind of assumptions?

In this work, we answer these questions affirmatively. In
particular, we propose offline RL algorithms using the frame-
work of DRL for the tabular and linear MDP settings, and

characterize their sample complexity. Moreover, we show
that our approach enables the relaxation of the strong as-
sumption of uniform concentrability to single policy concen-
trability. Apart from the technical contributions, we believe
that establishing this connection, the proverbial bridge, be-
tween the DRL literature and offline RL literature is an
interesting contribution itself, as it will enable door to bring
the state-of-the-art algorithms from the active area of DRL
to the offline RL, especially for problems with large state
and action spaces.

1.2. Comparisons and Contributions

We outline our contributions and compare our theoretical
results with several recent works that, similar to ours, only
use the single concentrability assumption.

Uehara & Sun (2021) propose a pessimistic model-based
offline RL algorithm, which we refer to as oracle model
pessimism in Table 1 and Table 2. While their proposed
algorithm is similar to the max-min formulation of DRL,
they do not offer a computationally tractable implementa-
tion for it. It is known in the RMDP literature (Iyengar,
2005; Nilim & El Ghaoui, 2005; Wiesemann et al., 2013)
that solving the max-min objective (Eq. (4)) can be NP-hard
without additional structural assumptions, such as rectan-
gularity. Rashidinejad et al. (2022) propose a lower con-
fidence bound algorithm based on the idea of pessimism
in the face of uncertainty. The algorithm subtracts a pes-
simistic term from the reward estimate, and hence we call
it reward pessimism in Table 1. They also provide a lower
bound on the sample complexity of offline RL algorithms.
Li et al. (2022a) also propose a reward pessimism-based
offline RL algorithm. They are also able to use an improved
clipped concentrability coefficient which is less than the sin-
gle policy concentrability used in other works. We note that
Rashidinejad et al. (2022) and Li et al. (2022a) only study
the tabular setting. In the linear function approximation
setting, the state-of-the-art algorithms are based on reward
pessimism, and their sample complexity guarantees depend
on the linear feature dimension (Jin et al., 2021; Yin et al.,
2022; Xiong et al., 2022).

Our Contributions: (i) We propose a novel offline RL
algorithm using the DRL framework, called Distributionally
Robust Q-Iteration (DRQI), for the tabular setting. We show
that our approach is able to relax the strong assumption of
uniform concentrability to a weaker single policy concen-
trability assumption. We also provide detailed analysis and
sample complexity results for DRQI with four commonly
used uncertainty sets in DRL: total variation, Wasserstein,
Kullback-Leibler, and chi-square uncertainty sets. The com-
parison with the relevant works is given in Table 1.

(ii) We extend our distributionally robust approach for of-
fline RL to the linear MDP setting and propose the Linear
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Algorithm Algorithm-type Data coverage assumption Suboptimality
Lower bound

(Rashidinejad et al., 2022, Th.7) - single-policy Õ
(√

|S|(Cπ∗−1)

(1−γ)3N

)
(Rashidinejad et al., 2022, Th.6) reward pessimism single-policy Õ

(√
|S|Cπ∗

(1−γ)5N

)
(Li et al., 2022a, Th.1) reward pessimism single-policy, clipped Õ

(√
|S|Cπ∗,clip
(1−γ)3N

)
(Uehara & Sun, 2021, Cor.1) oracle model pessimism single-policy Õ

(√
|S|2|A|Cπ∗
(1−γ)4N

)
DRQI (this work, Th.1) distributionally robust single-policy Õ

(√
|S|2Cπ∗
(1−γ)4N

)
Table 1: Comparison of the offline RL algorithms in the tabular setting. The data coverage assumption is
based on the single-policy concentrability Cπ∗ = maxs,a(d

π∗
(s, a)/µ(s, a)) and its clipped version Cπ∗,clip =

maxs,a(min{dπ∗
(s, a), 1/|S|}/µ(s, a)), where dπ

∗
is the discounted occupancy measure of the optimal policy π∗ and µ is

the state-action visitation distribution of the data generating policy. The suboptimality column is the statistical bounds for
the offline RL objective (Eq. (1)), where |S| and |A| are the number of states and actions, γ is the discount factor, and N is
the size of the offline data.

Algorithm Algorithm-type Data coverage assumption Suboptimality

(Jin et al., 2021, Cor.4.5) reward pessimism w.h.p ΛN ≥ I/N + Csc · Σdπ
∗

d
√

rank(Σ
dπ

∗ )√
Csc(1−γ)4N

(Uehara & Sun, 2021, Th.6) oracle model pessimism Cπ∗,ϕ < ∞
√

rank(Λ)2dCπ∗,ϕ

(1−γ)4N

LM-DRQI (this work, Th.2) distributionally robust ∀i ∈ [d] w.h.p ΛN ≥ I/N + C†
scd · Σi

dπ
∗

√
rank(Σ

dπ
∗ )d√

C
†
sc(1−γ)4N

Table 2: Comparison of the offline RL algorithms in the linear MDP setting. Here, Σdπ∗ = Es,a∼dπ∗ [ϕ(s, a)ϕ(s, a)⊤],
Λ = Es,a∼µ[ϕ(s, a)ϕ(s, a)

⊤], ΛN is an estimate of Λ, Cπ∗,ϕ = maxx∈Rd (x⊤Σdπ∗x)/(x⊤Λx), Σi
dπ∗ =

Es,a∼dπ∗ [(ϕi(s, a)1i)(ϕi(s, a)1i)
⊤], 1i is the unit vector in ith dimension, ϕ(s, a) ∈ Rd is d-dimensional feature vector,

and Csc and C†
sc are the sufficient coverage constants satisfying corresponding random events.

MDP DRQI (LM-DRQI) algorithm. We characterize its
sample complexity using only the sufficient coverage as-
sumption (Jin et al., 2021) which only requires that the tra-
jectory induced by the optimal policy π∗ is covered by the
offline data sufficiently well. In particular, we do not require
the uniform concentrability assumption. The comparison
with the relevant works is given in Table 2.

(iii) We demonstrate the superior performance of our DRQI
algorithm through simulation experiments and by compar-
ing it with other state-of-the-art tabular offline RL algo-
rithms. In the partial data coverage setting, DRQI algorithm
performs better than the standard dynamic programming
approach and performs at par with the state-of-the-art re-
ward pessimism-based offline RL algorithms. In the full
coverage setting, DRQI algorithm outperforms the reward
pessimism-based offline RL algorithms.

(iv) We believe that establishing a connection between the
DRL and offline RL literature is also a contribution of this
work. It provides the opportunity to bring the ideas and
algorithms from the DRL to solve the offline RL problem.
In particular, we expect that the offline RL problems with
large state and action spaces could greatly benefit from this.

We note that our sample complexity result is
O(
√
|S|/(1− γ)) away from the state-of-the-art

lower-bound (and the matching upper-bound) in the
tabular setting (c.f. Table 1). In the linear MDP setting,
our result is comparable to Jin et al. (2021) as long as
Csc ≤ dC†

sc. However, for a certain class of linear MDPs
Jin et al. (2021)’s data coverage assumption implies ours
(c.f.Lemma 11) and hence Csc = C†

sc, our result improves
over Jin et al. (2021) by

√
d. Our result is not directly

comparable with that of Uehara & Sun (2021). We also
want to emphasize that Uehara & Sun (2021) do not provide
a tractable implementation. However, our LM-DRQI
algorithm can use the least squares regression approach
(Ma et al., 2022) for implementation.

Comparison with Wang et al. (2023b): In the final stages
of working on this manuscript we came across the work
by Wang et al. (2023b), who propose a similar offline RL
algorithm as ours (Algorithm 1). Wang et al. (2023b) only
consider the tabular setting, whereas we provide offline RL
algorithms for both the tabular and linear MDP settings.
Wang et al. (2023b) consider a total variation uncertainty set
whereas we consider four commonly used uncertainty sets
in DRL. In terms of the sample complexity guarantees, they

provide a Õ(
√
(|S|C−

π∗)/((1− γ)4N)) bound. However,
we want to point out that there is a technical error in their
application of Hoeffding’s inequality to L1-norm (Wang
et al., 2023b, Eq.(10)). To emphasize, Hoeffding’s inequal-
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ity (Lemma 2) gives a concentration result for single-valued
random variables, hence we incur an additional |S| factor
in the concentration of total variation distance (equivalently
for L1-norm) between two random vectors. This observa-
tion matches the tightness of concentration of empirical
distributions under total variation distance (Canonne, 2020,
Theorem 1). This technical error makes their bound appear√

|S| better than it should be. If this error is fixed, then
their sample complexity results will match ours. Wang et al.
(2023b) also derive an improved bound using the Bernstein-
based analysis techniques (Li et al., 2022a). Although this
bound is optimal, it is only when the sample size N exceeds
Õ(1/((1− γ)µ2

min)), where µ is the data generating distri-
bution and µmin is its minimal positive value. Hence they
get quadratic dependence on |S| and |A| for sample com-
plexity when µ is a uniform distribution. Nonetheless, we
want to emphasize that the analysis in Wang et al. (2023b)
are sophisticated and insightful. We believe both works
make interesting contributions to offline RL literature.

2. Preliminaries
Notations: For a set X , we denote its cardinality as |X |.
The set of probability distributions over X is denoted as
∆(X ). For any vector x and positive semidefinite matrix
A, ∥x∥A =

√
x⊤Ax. Let Tr(·) denote the trace operator.

Denote 1i ∈ {0, 1}d×1 as a zero-vector but with value 1
at index i. We use f ≤ O(g) to denote f ≤ c · g for
some universal constants less than 100, and likewise use
f ≤ Õ(g) to absorb all the universal constants less than 100
and the polylog terms depending on d,N and 1/(1− γ).

Markov Decision Process (MDP): An MDP is a tuple
(S,A, r, P o, γ, d0), where S is the state space, A the ac-
tion space, r : S × A → [0, 1] is the reward function,
P o : S ×A → ∆(S) is the probability transition function
(model), γ is the discount factor, and d0 is the initial state
distribution. A stationary (stochastic) policy π : S → ∆(A)
specifies a distribution over actions for each state. Each
policy π ∈ Π induces a discounted occupancy distribution
over state-action pairs, denoted as dπ : S × A → [0, 1],
where dπ(s, a) = (1 − γ)

∑∞
t=0 γ

tPt(st = s, at = a;π),
and Pt(st = s, at = a;π) denotes the visitation prob-
ability of state-action pair (s, a) at time step t, starting
at s0 ∼ d0(·) and following π on the model P o. For
simplicity, we denote Pt(st = s, at = a;π) by dπt (s, a).
The value of a policy π at state s ∈ S is V π

P o(s) =
Eπ,P o [

∑∞
t=0 γ

tr(st, at) | s0 = s], where at ∼ π(·|st) and
st+1 ∼ P o

st,at
. Similarly, we define the Q-value of a policy

as Qπ
P o(s, a) = Eπ,P o [

∑∞
t=0 γ

trt | s0 = s, a0 = a] . We
sometimes denote dπ as dπP o making its dependence on the
model P o clearer.

Offline RL: In offline RL, we only have access to a pre-
collected offline dataset consisting of N samples: D =

{(si, ai, ri, s′i)}Ni=1, where ri = r(si, ai) and s′i ∼ P o
si,ai

.
We assume that (si, ai) pairs are generated i.i.d. by follow-
ing a data generating (behavior) distribution µ ∈ ∆(S ×A).
The goal of offline RL is to learn a good policy π̂ close to an
optimal policy π∗ of MDP Mo based on the offline data D.
More formally, for a prescribed accuracy level ϵ, we seek to
find an ϵ-optimal policy π̂ satisfying

Es0∼d0
[V π∗

(s0)− ED[V
π̂(s0)]] ≤ ϵ, (1)

with high probability using an offline dataset D containing
as few samples as possible.

Analysis of offline RL algorithm crucially depends on
the data coverage assumption, which is quantified us-
ing the concentrability coefficient. For a given policy
π, the concentrability coefficient Cπ is defined as Cπ =
max(s,a)∈S×A dπ(s, a)/ µ(s, a). Most of the past theoret-
ical works on offline RL use the strong assumption of
bounded uniform concentrability (Munos & Szepesvári,
2008), defined as Cu = supπ Cπ. Munos & Szepesvári
(2008) proposed the fitted Q-iteration algorithm and gave of-
fline RL guarantees under uniform concentrability. Recently,
some works have proposed offline RL algorithms using the
idea of pessimism and showed that the uniform concentra-
bility can be relaxed to a single concentrability assumption,
i.e., Cπ∗ is bounded (Uehara & Sun, 2021; Rashidinejad
et al., 2022; Li et al., 2022a). We also make only the same
single concentrability assumption in this work.

Robust Markov Decision Process (RMDP): The RMDP
formulation considers a set of models called uncertainty
set, denoted as P . We assume that P satisfies the standard
(s, a)-rectangularity condition (Iyengar, 2005). An RMDP
can be specified as (S,A, r,P, γ, d0) in which

P = ⊗(s,a)∈S×A Ps,a, (2)
Ps,a = {Ps,a ∈ ∆(S) : D(Ps,a, P

o
s,a) ≤ ρs,a}, (3)

where D(·, ·) is a distance metric between two probability
distributions and ρs,a > 0 is the radius of the uncertainty
set. In other words, P is the set of all models around P o

within a particular distance.

The robust value function V π
P corresponding to a policy π

and the optimal robust value function V ∗
P are defined as

(Iyengar, 2005; Nilim & El Ghaoui, 2005)

V π
P = inf

P∈P
V π
P , V ∗

P = sup
π

inf
P∈P

V π
P . (4)

An optimal robust policy π∗
P is such that V π∗

P = V ∗
P . It is

known that there exists a stationary and deterministic opti-
mal policy (Iyengar, 2005) for the RMDP. The robust Bell-
man operator T is defined as (Iyengar, 2005) (TQ)(s, a) =

r(s, a) + γ inf
Ps,a∈Ps,a

Es′∼Ps,a
[max

b
Q(s′, b)]. (5)
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It is known that T is a contraction mapping in the infin-
ity norm and hence it has a unique fixed point Q∗

P with
V ∗
P(s) = maxa Q

∗
P(s, a) and π∗

P(s) = argmaxa Q
∗
P(s, a)

(Iyengar, 2005). The robust Q-Iteration can now be defined
using the robust Bellman operator as Qk+1 = TQk. Since
T is a contraction, it follows that Qk → Q∗

P . So, robust Q-
Iteration can be used to compute Q∗

P and π∗
P in the tabular

setting with a known uncertainty set P .

Recently, many works have proposed robust RL algorithms
for solving the RMDP problem using only the data from
the nominal model P o around which P is defined (Tamar
et al., 2014; Roy et al., 2017; Panaganti & Kalathil, 2021;
Panaganti et al., 2022; Panaganti & Kalathil, 2022; Xu∗

et al., 2023; Shi & Chi, 2022; Wang & Zou, 2021; Ma et al.,
2022; Wang & Zou, 2022; Kumar et al., 2023; Li et al.,
2022b; Wang et al., 2023a; Grand-Clément & Kroer, 2021).
Remark 1 (Difference between the offline RL objective
and robust RL objective). We want to emphasize that the
mathematical objectives of offline RL and robust RL are
fundamentally different. More precisely, the goal of offline
RL is to learn the optimal value/policy for the model P o,
i.e. maxπ V

π
P o . In contrast, the goal of the robust RL is to

learn the optimal robust policy as a max-min solution w.r.t.
uncertainty set P , i.e., maxπ minP∈P V π

P o . Since the goal
of this work is to develop an offline RL algorithm with prov-
able guarantees, we compare our theoretical and empirical
results only with the state-of-the-art offline RL algorithms,
not with the robust RL algorithms works mentioned above.

3. Distributionally Robust Q-Iteration (DRQI)
Algorithm

In this section, we propose our DRQI algorithm to solve
the offline RL problem in the tabular setting and provide its
theoretical guarantees.

First denote N(s, a) =
∑N

i=1 1{(si, ai) = (s, a)} and
N(s, a, s′) =

∑N
i=1 1{(si, ai, s′i) = (s, a, s′)} . We then

construct an empirical estimate of P o as

P̂ o
s,a(s

′) =
N(s, a, s′)1{N(s, a) ≥ 1}

N(s, a)
+
1{N(s, a) = 0}

|S| . (6)

We also consider the add-L estimate (Bhattacharyya et al.,
2021; Arora et al., 2023) of P o given by P̃ o

s,a(s
′) =

(N(s, a, s′) + L)/(N(s, a) + L|S|), where the value of L
is defined later. Following the uncertainty set definition (c.f.
Eq. (2)-Eq. (3)), we construct the empirical uncertainty set
P̂ around P̂ o or P̃ o as, P̂ =

⊗
s,a P̂s,a, where

P̂s,a = {P ∈ ∆(S) : D(P, P̂ o
s,a or P̃ o

s,a) ≤ ρs,a}. (7)

Similarly (c.f. Eq. (5)), we can define the empirical robust
Bellman operator T̂ as (T̂Q)(s, a) =

r(s, a) + γ inf
Ps,a∈P̂s,a

Es′∼Ps,a
[max

b
Q(s′, b)]. (8)

Note that for ρs,a = 0, T̂ is the same as the standard (non-
robust) empirical Bellman operator. Thus, the empirical Q-
value iteration Qk+1 = T̂Qk will give an approximately op-
timal Q-value function under the standard generative model
assumption where there are N(s, a) = N next-state sam-
ples from each (s, a) pairs (Haskell et al., 2016; Kalathil
et al., 2021; Sidford et al., 2018). However, since the data is
generated according to a behavior policy in the offline RL,
the generative model assumption is not valid here. On the
other hand, for a fixed ρs,a > 0, the update Qk+1 = T̂Qk

is exactly equal to empirical robust Q-iteration, and it will
converge to an approximately optimal robust Q-function
corresponding to the RMDP uncertainty set specified by the
ρs,a values (Xu∗ et al., 2023; Shi & Chi, 2022).

The key idea behind our algorithm is to use the up-
date Qk+1 = T̂Qk as a DRL style approximate Q-
iteration. To see this, recall the standard DRL prob-
lem (Duchi & Namkoong, 2021; Chen et al., 2020):
maxθ minq∈Q Ex∼q[f(x; θ)], where f is a function to
be maximized w.r.t. a parameter θ and Q is an uncertainty
set for the probability distribution. The nomenclature ‘dis-
tributionally robust’ is due to the term minq∈Q in the ob-
jective. Now, in our case, the minimization over the un-
certainty set P̂ in the definition of T̂ , i.e., infPs,a∈P̂s,a

,
also represents this distributionally robust objective. Ob-
serving that the degree of the robustness depends on the
radius of the uncertainty set ρs,a, we propose to control
this robustness by choosing an appropriate value for ρs,a
depending on the offline data D. In particular, we will
choose ρs,a = min

(
c1, c2/

√
N(s, a)

)
(where c1 and c2

are problem-dependent constants to be specified later) that
quantify the radius of the uncertainty set caused by the in-
sufficiency in samples. Moreover, this idea also allows us
to bring algorithms from the DRL and robust RL literature
to solve offline RL problems, hence bridging these areas.

In this work, we consider four uncertainty sets correspond-
ing to four different distance metrics D(·, ·). We also fix a
confidence level δ ∈ (0, 1) in the following.

1. Total variation (TV) uncertainty set (P̂tv): We define
P̂tv = ⊗P̂tv

s,a, where P̂tv
s,a is as in (7) with the empirical

estimator P̂ o
s,a, the total variation distance DTV(P, P̂

o
s,a) =

(1/2)∥P − P̂ o
s,a∥1, and radius

ρs,a = 1∧

√
max{|S|, 2 log(2|S||A|/δ)}

N(s, a)
1{N(s, a) ≥ 1}. (9)

For the remaining uncertainty sets, the specific value of ρs,a
is given in appendix due to page limit.

2. Wasserstein uncertainty set (P̂w): We define P̂w =
⊗P̂w

s,a, where P̂w
s,a is as in (7) with the empirical estima-

tor P̂ o
s,a, and with the Wasserstein distance Dw(P, P̂

o
s,a) =

infν∈m(P,P̂ o
s,a)

∫
ℓ(x, y)d ν(dx, dy), where the integration
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Algorithm 1 Distributionally Robust Q-Iteration (DRQI)
Algorithm

1: Input: Offline data D = (si, ai, ri, s
′
i)

N
i=1, Confidence

level δ ∈ (0, 1)
2: Initialize: Q0 ≡ 0
3: Construct the empirical estimate P̂ o as in Eq. (6)
4: for k = 0, · · · ,K − 1 do
5: Compute Qk+1 = T̂Qk from Eq. (8)
6: end for
7: Output: πK = argmaxa QK(s, a)

is over (x, y) ∈ S × S, m(P, P̂ o
s,a) denotes all probability

measures on S × S with marginals P and P̂ o
s,a, and ℓ(·, ·)

is the discrete metric, ℓ(s, s′) = 1{s ̸= s′}.
3. Kullback-Leibler (KL) uncertainty set (P̂kl): We
define P̂kl = ⊗P̂kl

s,a, where P̂kl
s,a is as in (7) with the

add-L(= 1) estimator P̃ o
s,a, and with the KL distance

DKL(P, P̃
o
s,a) =

∑
s′ P (s′) log(P (s′)/P̃ o

s,a(s
′)).

4. Chi-square uncertainty set (P̂c): We define P̂c =
⊗P̂c

s,a, where P̂c
s,a is as in (7) with the add-L(=

log(1/δ)) estimator P̃ o
s,a, and with the chi-square distance

Dc(P, P̃
o
s,a) =

∑
s′ (P (s′)− P̃ o

s,a(s
′))2/P̃ o

s,a(s
′).

We assume that the reward function is known, to focus on the
key idea of distributional robustness. This simplification is
made without loss of generality since we can model similar
uncertainty sets P or P̂ for the reward also (Si et al., 2020;
Zhou et al., 2021).

Our DRQI algorithm is summarized in Algorithm 1.

Practical Solution to Eq. (8): The key step of our DRQI
algorithm is the update Qk+1 = T̂Qk in line 5 of Algo-
rithm 1. Computing this empirical robust Bellman update
may seem daunting at first look: it not only involves con-
structing the uncertainty set P̂ (c.f. Eq. (7) but also involves
evaluating the expectation w.r.t. all models in the uncer-
tainty set P̂ (c.f. Eq. (8)). The DRL algorithms overcome
this challenge in two different ways.

The first approach is by a dual reformulation of Eq. (8)
which has been successfully applied in many works on distri-
butionally robust supervised learning (Blanchet et al., 2019;
Farnia & Tse, 2016; Duchi et al., 2022) and on distribution-
ally robust RL(Panaganti et al., 2022; Xu∗ et al., 2023). For
example, for the total variation uncertainty set, Eq. (8) can
be rewritten as (Panaganti & Kalathil, 2022, Proposition 1)

(T̂Q)(s, a) = r(s, a)− γ inf
η∈[0, 2

ρ(1−γ)
]
{Es′∼P̂o

s,a
[(η − V (s′))+]

− η + ρ(η − inf
s′′

V (s′′))+}, (10)

where V (s) = maxb Q(s, b). Note that the expectation in
Eq. (10) above is only w.r.t. the empirical estimate P̂ o which

eliminates the need for constructing the uncertainty set P̂ .
Moreover, the remaining optimization, infη, in Eq. (10) is
a scalar concave optimization over a compact real interval
which makes it computationally tractable.

The second approach is to directly solve the optimization in
Eq. (8) in the primal form by considering Ps,a as an element
in the |S|-dimensional simplex. In particular, for uncertainty
sets with specific structures, including the four different
uncertainty sets specified before, the primal problem can be
directly solved using standard convex optimization solvers
such as CVXPY (Diamond & Boyd, 2016). This approach
is particularly attractive for tabular settings, and hence we
use this primal approach for our simulation experiments.

We now present the sample complexity of DRQI with TV
uncertainty set, and a proof sketch. Please note that we
do obtain sample complexities of the same order for all
other uncertainty sets (see Theorems 3 to 6). We defer
the corresponding theorem statements and proofs to the
appendix due to the page limit.

Theorem 1. Let πK be the DRQI policy after K
iterations under the TV uncertainty set P̂tv. If the
total number of samples N ≥ Ntv, where Ntv =

O
(
Cπ∗ max{|S|2, 2 log(2|S|2|A|/δ)}/(ϵ2(1− γ)4)

)
,

then Es0∼d0
[V π∗

(s0)−ED[V
πK (s0)]] ≤ ϵ with probability

at least 1− δ and a sufficiently large K.

Proof Sketch. Denoting P̂tv simply as P̂ , we first write
V π∗

P o (s0) − V πK

P o (s0) = (V π∗

P o (s0) − V πK

P̂
(s0)) +

(V πK

P̂
(s0) − V πK

P o (s0)), where V πK

P̂
= infP∈P̂ V πK

P is
the robust value of policy πK corresponding to the uncer-
tainty set P̂ . In Proposition 1 we show that, with the ρs,a as
specified above, P o ∈ P̂tv with probability at least 1 − δ.
So, by definition of the robust value function, the second
term (V πK

P̂
(s0)− V πK

P o (s0)) is negative.

To bound the first term, we decompose it as (V π∗

P o (s0) −
V πK

P̂
(s0)) = (V π∗

P o (s0)−V π̂∗

P̂
(s0))+(V π̂∗

P̂
(s0)−V πK

P̂
(s0)),

where π̂∗ = argmaxπ V
π
P̂

is the optimal robust policy w.r.t.

P̂ . Then, due to the contraction propetry of the robust
Bellman operator, (V π̂∗

P̂
(s0)− V πK

P̂
(s0)) will converge to

zero exponentially in K.

Bounding (V π∗

P o (s0)−V π̂∗

P̂
(s0)) is more technical. The key

idea is to first note that DTV(Ps,π∗(s), P
o
s,π∗(s)) ≤ 2ρs,a

for any P ∈ P̂ , by Proposition 1 and definition of P̂ .
Now, unrolling along the trajectory generated by π∗ on
P o and using the form of ρs,a, we can get an upper bound in
terms of Es∼dπ∗ [1/

√
N(s, π∗(s))]. We will then express

N(s, π∗(s)) in terms of Nµ(s, π∗(s)) using Lemma 1, and
then use a change of measure argument to get the final bound
in terms of single concentrability coefficient Cπ∗ .
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4. Linear-MDP Distributionally Robust
Q-Iteration (LM-DRQI) Algorithm

In this section, we propose our LM-DRQI algorithm to solve
the offline RL problem in the linear MDP setting, and give
its sample complexity guarantees.
Definition 1 (Linear MDP (Jin et al., 2020)). We say an
MDP M = (S,A, r, P, γ) is a linear MDP with a known
feature map ϕ : S × A → Rd, if there exists d unknown
probability measures ν = (ν1(·), . . . , νd(·)) over S and an
unknown vector θ ∈ Rd, such that for any (s, a) ∈ S ×A,
we have Ps,a = ⟨ϕ(s, a), ν(·)⟩, r(s, a) = ⟨ϕ(s, a), θ⟩.

Similar to the tabular setting, here also we assume that the
reward function (equivalently θ) is known. We make the
following assumption.
Assumption 1. Let M = (S,A, r, P o, γ) be a linear
MDP with a known feature map ϕ and unknown measure
νo. We assume that ϕi(s, a) ≥ 0 and ∥ϕ(s, a)∥2 ≤ 1
for all (s, a) ∈ S × A and i ∈ [d]. We also as-
sume that Λ = Es,a∼µ[ϕ(s, a)ϕ(s, a)

⊤] and Σ
(i,j)

dπ∗ =

Es,a∼dπ∗ [(ϕi(s, a)1i)(ϕj(s, a)1j)
⊤] for all i, j ∈ [d] are

positive semi-definite matrices.

We use the d-rectangularity uncertainty set construction
which exploits the linear structure (Ma et al., 2022). Instead
of focusing on the set of all models around P o, we consider
only the set of linear models around P o. This is achieved
indirectly by considering an uncertainty set around νo using
the integral probability metric (IPM) (Müller, 1997) and
translating that to an uncertainty set around P o through the
known feature vector ϕ. More precisely, the d-rectangularity
uncertainty set P is defined as

P = {P : Ps,a(s
′) =

∑
i∈[d]

ϕi(s, a)νi(s
′), νi ∈ Mi,∀i ∈ [d]},

Mi = {νi : DIPM(νi, ν
o
i ) ≤ ρi}, where, (11)

DIPM(p, q) = supV ∈V |
∫
s
(p(s)− q(s))V (s)d s|, and V =

{V (·) = maxa ϕ
⊤(·, a)w : w ∈ Rd, ∥w∥2 ≤ 1/(1− γ)}.

It is straight forward to show that the optimal robust value
function is linear w.r.t. ϕ under the d-rectangularity un-
certainty set. Moreover, we can also show that the robust
Bellman operator (Eq. (5)) can be written as

TQ(s, a) = r(s, a) + γ
∑
i∈[d]

ϕi(s, a) min
νi∈Mi

Es′∼νi(max
b

Q(s′, b)).

(12)
We can get an empirical estimate P̂ o of P o with ridge
linear regression using the offline data (Agarwal et al.,
2019, Section 8.3) as P̂ o

s,a(s
′) = ϕ(s, a)⊤ν̂o(s′), where

ν̂o(s′) = 1
N

∑N
i=1 Λ

−1
N ϕ(si, ai)1{s′ = s′i}, ΛN = λ

N I +
1
N

∑N
i=1 ϕ(si, ai)ϕ(si, ai)

⊤ and λ is a constant. We con-
struct an estimate M̂i of Mi by replacing unknown νoi

with its estimate ν̂oi . Similarly, we construct the empirical
uncertainty set P̂ by replacing Mi by M̂i. We fix the radius

ρi =
c1 log(Nd/((1− γ)δ))

1− γ

√
d

N

√
Λ−1
N (i, i). (13)

We can now define the empirical robust Bellman operator
T̂ exactly as in Eq. (12), but by replacing Mi by its esti-
mate M̂i. Our LM-DRQI algorithm then follows the same
procedure as our DRQI algorithm using this T̂ . We omit
rewriting the algorithm procedure due to page limitation.

We make the following assumption that specifies coverage
requirements to provide offline RL guarantees.
Assumption 2 (Sufficient coverage assumption). For
all i ∈ [d], with probability 1 − δ, it holds
ΛN ≥ (1/N)I + C†

sc · d · Σi
dπ∗
Po

, where Σi
dπ∗
Po

=

Es,a∼dπ∗ [(ϕi(s, a)1i)(ϕi(s, a)1i)
⊤].

The sufficient coverage assumption was originally used by
Jin et al. (2021) for showing that pessimism-based offline
RL algorithms can learn optimal policy without assuming
the uniform concentrability (rank(Λ) = d (Wang et al.,
2021) in linear MDPs). The sufficient coverage assumption
only requires that the trajectory induced by the optimal
policy π∗ is covered by the offline data sufficiently well.
The assumption we use is from Ma et al. (2022), which
addressed the robust RL problem using offline data. This
assumption stipulate sufficient coverage in each dimension
i ∈ [d]. We now give the sample complexity of our LM-
DRQI algorithm.
Theorem 2. Let πK be the LM-DRQI policy after K
iterations. Let Assumption 2 hold. If the total num-
ber of samples N ≥ NIPM, where NIPM = Õ(d ·
rank(Σdπ∗

Po
)/(C†

sc(1− γ)4ϵ2)), then Es0∼d0
[V π∗

(s0) −
ED[V

πK (s0)]] ≤ ϵ with probability at least 1− δ.

More detailed theorem statement and proofs are in the ap-
pendix due to the page limit.

5. Experiments
We evaluate the performance of our DRQI algorithm on
the FrozenLake-v1 environment (|S| = 16, |A| = 4)
from OpenAI Gym (Brockman et al., 2016). The goal
is to cross a frozen lake without falling into holes.
Since the frozen lake is slippery, rather than always
going in the intended direction, the agent can slip into
the other directions. We implement DRQI algorithm
with total variation uncertainty set using the CVXPY
library (Diamond & Boyd, 2016) for the experiments.
We submit our code in an anonymous Github repository:
https://github.com/aspiring-giraffe/DRQI.

Offline Data Collection: We evaluate the algorithms us-
ing two kinds of offline datasets, full-coverage and partial-
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Figure 1: Convergence of DRQI algorithm under partial
coverage in FrozenLake-v1.
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Figure 2: Convergence of DRQI algorithm under full
coverage in FrozenLake-v1.

coverage. Full-coverage dataset is collected by using a
generative model where we collect equal number of next-
state samples from every (s, a) pairs. The partial-coverage
dataset is generated according to the behavior policy µ,
where µ(a | s) = (12 + 1

2|A| )1{a=π∗(s)} +
1

2|A|1{a ̸=π∗(s)},
π∗ is the optimal policy for the FrozenLake-v1 envi-
ronment. It is easy to check that the single-policy concen-
trability coefficient Cπ∗ is bounded. Note that most of the
(s, a)-pairs are un-sampled or under-sampled in the partial-
coverage data set.

We compare our DRQI with three algorithms: (1) empiri-
cal value iteration (EVI) which essentially performs value
iteration using the empirical model P̂ o, (2) VI-LCB algo-
rithm (Rashidinejad et al., 2022), a reward pessimism-based
offline RL algorithm, (3) VI-LCB-Bernstein algorithm (Li
et al., 2022a), a Bernstein type reward pessimism-based
offline RL algorithm. The performance metric is the value
sub-optimality with respect to the optimal policy.

In the partial data coverage setting (Fig. 1), we see that the
EVI algorithm does not converge even with 105 samples,
clearly showing the inability of standard dynamic program-
ming approaches to obtain an approximately optimal policy
in such settings. On the other hand, our DRQI algorithm
learns the optimal policy with roughly 4 × 103 samples.
Moreover, the performance of our DRQI algorithm is on par
with the state-of-the-art VI-LCB and VI-LCB-Bernstein of-
fline RL algorithms (in fact performing better than VI-LCB
but only slightly worse than VI-LCB-Bernstein). We also
would like to note that both VI-LCB and VI-LCB-Bernstein
algorithms require some hyperparameter tuning regarding
the “universal constants” that appear in their proofs of high-
probability bounds. Our DRQI algorithm, on the other hand,
does not require any hyperparameter tuning and use the ρs,a
exactly as defined in Eq. (9).

In the full data coverage setting (Fig. 2), EVI is able to
find the optimal policy since the concentration of P̂ o to

the true model P o is straightforward. Our DRQI algorithm
is also able to learn the optimal policy, albeit with more
samples. Notably, our DRQI algorithm outperforms the two
LCB-style algorithms in this setting.

Remark 2 (On the choice of the simulation settings). Our
work is mainly theoretical in nature and considers the tab-
ular and linear MDPs. We would like to emphasize that
we have included the simulations for this setting, following
similar theoretical works on offline RL (Li et al., 2022a).
Many notable theoretical works on the sample complexity
of offline RL and distributionally robust RL either do not
include any simulations or consider only the tabular case as
we did (Rashidinejad et al., 2022; Ma et al., 2022; Shi et al.,
2022; Yin et al., 2022). Since the theory and algorithms of
this paper focus on tabular and linear MDP settings, simu-
lations in continuous state/action settings such as MuJoCo
control tasks are out of the scope of the problem we address.

6. Conclusion
In this work, we presented offline RL algorithms for the tab-
ular and linear MDP setting using the framework of DRL.
We characterized the sample complexity of these algorithms
only using the single policy concentrability assumption. We
also demonstrated the superior performance of our proposed
algorithm through simulation experiments. In the future,
we plan to extend these results to general function approxi-
mation settings to handle large and continuous state-action
space problems.

Societal Impact Statement
This paper is mainly of theoretical nature. In particular,
we aim to rigorously bridge offline reinforcement learning
and distributionally robust optimization framework. We
hope that our work can expand the literature of theoretical
offline RL. At this moment, we find no particular need for
highlighting any societal consequence of our work.
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K Supplementary Materials K

A. Useful Technical Results
Lemma 1 (Bound on binomial inverse moments (Rashidinejad et al., 2022, Lemma 14)). Let n ∼ Binomial(N, p). For
any k ≥ 0, there exists a constant ck depending only on k such that

E
[

1

(n ∨ 1)k

]
≤ ck

(Np)k
,

where ck = 1 + k2k+1 + kk+1 + k
( 16(k+1)

e

)k+1
.

Lemma 2 (Hoeffding’s inequality (Boucheron et al., 2013, see Theorem 2.8)). Let X1, . . . , Xn be independent random
variables such that Xi takes its values in [ai, bi] almost surely for all i ≤ n. Let

S =

n∑
i=1

(Xi − E [Xi]).

Then for every t > 0,

P (S ≥ t) ≤ exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

Furthermore, if X1, . . . , Xn are a sequence of independent, identically distributed random variables with mean µ. Let
Xn = 1

n

∑n
i=1 Xi. Suppose that Xi ∈ [a, b], ∀i. Then for all t > 0

P
(∣∣Xn − µ

∣∣ ≥ t
)
≤ 2exp

(
− 2nt2

(b− a)2

)
.

The following lemmas characterize the sample complexity of learning discrete distributions when the accuracy is measured
under four different distances, i.e., total variation, KL, chi-square, and Wasserstein.

Lemma 3 (Canonne, 2020, Theorem 1). Fix any δ ∈ (0, 1]. Let P̂ be the empirical distribution constructed from N i.i.d.
samples from an unknown distribution P over a finite set {1, . . . , k}. Then if the number of samples

N ≥ max{k, 2 log(2/δ)}
ϵ2

,

then DTV(P, P̂ ) ≤ ϵ with probability at least 1− δ. Moreover, this result is tight.

Lemma 4 (Bhattacharyya et al., 2021, Theorem 6.1). Fix any δ ∈ (0, 1]. Let P̃ be the empirical add-1 estimator obtained
from N i.i.d. samples from an unknown distribution P over a finite set {1, . . . , k}. There exists a universal constant C such
that, with probability at least 1− δ,

DKL(P, P̃ ) ≤ Ck log(k/δ) logN

N
.

Lemma 5 (Arora et al., 2023, Proposition 4.1). Fix any δ ∈ (0, 1] and let L = Θ(log(1/δ)). Let P̃ be the empirical add-L
estimator obtained from N i.i.d. samples from an unknown distribution P over a finite set {1, . . . , k}. There exists a
universal constant C such that, with probability at least 1− δ,

Dc(P, P̃ ) ≤ Ck log(k/δ)

N
.

Lemma 6 (Lei, 2020, Corollary 5.2). Let p ∈ P(Rd) be a distribution such that b = EX∼p[exp(a∥X∥2)] < ∞ for some
a > 0. Fix δ ∈ (0, 1). Denote the empirical distribution from N samples of p as p̂. Then there exists some constant c1 only
depending on a, b such that Dw(p, p̂) ≤

√
c1d log(1/δ)/N holds at least with probability 1− δ.

Here we mention a uniform concentration result from Agarwal et al. (2019) corresponding to linear MDP transition model
P o. From Section 4, recall ΛN and the model estimate of P o denoted by P̂ o. We note that O notation in this result only
removes dependence on universal constants.
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Lemma 7 (Linear MDP Uniform Concentration Bound (Agarwal et al., 2019, Lemma 8.7)). Fix δ ∈ (0, 1) and let λ = 1.
Consider V = {V (·) = maxa ϕ

⊤(·, a)w : w ∈ Rd, ∥w∥2 ≤ 1/(1 − γ)}. We have (1) ∥
∑N

t=1 ϕ(st, at)ϵ
⊤
t V ∥Λ−1

N
≤

O(
√
dN log(N/((1− γ)δ))/1− γ) with probability at least 1 − δ for any V ∈ V uniformly, and it also holds (2)

supV ∈V |
∫
S(P

o
s,a − P̂ o

s,a)V (ds′)| ≤ ∥ϕ(s, a)∥Λ−1
N
O
(√

d log(N/δ)/((1− γ)
√
N)
)

with probability at least 1− δ for any
s, a.

Here is a useful result from (Chang et al., 2021, Theorem 21).

Lemma 8. Let λ = 1 and c > 0 be some universal constant. For all s, a simultaneously, with probability at least 1− δ we
have Es,a∼µ[ϕ(s, a)

⊤Λ−1
N ϕ(s, a)] ≤ c2 · rank(Λ)(rank(Λ) + log(c/δ)) where ΛN = λ

N I + 1
N

∑N
t=1 ϕ(st, at)ϕ(st, at)

⊤,
Λ = Es,a∼µϕ(s, a)ϕ(s, a)

⊤.

B. Proofs of Distributionally Robust Q-Iteration (DRQI)

We first make the observation that the true model P o lies in the uncertainty set P̂ with high probability. Intuitively, the
empirical estimator P̂ o of P o are statistically closer which is dependent on the number of samples. We first make this
observation and intuition formal in the proposition below for the TV uncertainty set.

Proposition 1. We have P o ∈ P̂tv with probability at least 1− δ.

Proof. We start with the fact that DTV(p, q) ≤ 1 for any distributions p, q. For the case N(s, a) < 1, i.e., N(s, a) = 0, it is
trivial that P o

s,a ∈ P̂tv
s,a, almost surely, since P̂tv

s,a = ∆(S).

From Lemma 3, we have DTV(P
o
s,a, P̂

o
s,a) ≤

√
max{|S|, 2 log(2/δ)}/N(s, a) for any s, a pair with probability at least

1− δ/(|S||A|). Thus ⊗s,aP
o
s,a ∈ ⊗s,aP̂tv

s,a holds with probability at least 1− δ.

We now provide a similar guarantee like Proposition 1 for the Wasserstein uncertainty set.

Proposition 2. We have P o ∈ P̂w with probability at least 1− δ.

Proof. From Proposition 1 and Villani et al. (2009, Theorem 6.15), it follows that Dw(p, U) ≤ B for any distribution p and
uniform distribution U , i.e., U(s) = 1/|S| for all s ∈ S. For the case N(s, a) < 1, i.e., N(s, a) = 0, it now follows that
P o
s,a ∈ P̂w

s,a, almost surely, since P̂ o
s,a = 1/|S|.

From Lemma 6, we have Dw(P
o
s,a, P̂

o
s,a) ≤

√
Cs,a|S| log(1/δ)/N(s, a) for any s, a pair with probability at least 1 −

δ/(|S||A|), where Cs,a > 0 is some universal constant depending only on the distribution P o
s,a. By setting C = maxs,a Cs,a,

⊗s,aP
o
s,a ∈ ⊗s,aP̂w

s,a holds with probability at least 1− δ.

We now provide a similar guarantee for the KL uncertainty set.

Proposition 3. We have P o ∈ P̂kl with probability at least 1− δ.

Proof. We start with the fact that DKL(p, U) ≤ log(|S|) for any distribution p and uniform distribution U , i.e., U(s) = 1/|S|
for all s ∈ S . For the case N(s, a) < 1, i.e., N(s, a) = 0, it now follows that P o

s,a ∈ P̂kl
s,a, almost surely, since P̃ o

s,a = 1/|S|.

From Lemma 4, we have DKL(P
o
s,a, P̃

o
s,a) ≤ C|S| log(|S|/δ) log(N(s, a))/N(s, a) for any s, a pair with probability

at least 1 − δ/(|S||A|), where C > 0 is some universal constant. We also know that log(N(s, a)) ≤ log(N). Thus
⊗s,aP

o
s,a ∈ ⊗s,aP̂kl

s,a holds with probability at least 1− δ.

We now provide a similar guarantee for the chi-square uncertainty set.

Proposition 4. We have P o ∈ P̂c with probability at least 1− δ.

Proof. We start with the fact that Dc(p, U) ≤ |S|+1 for any distribution p and uniform distribution U , i.e., U(s) = 1/|S| for
all s ∈ S. For the case N(s, a) < 1, i.e., N(s, a) = 0, it now follows that P o

s,a ∈ P̂c
s,a, almost surely, since P̃ o

s,a = 1/|S|.
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From Lemma 5, we have Dc(P
o
s,a, P̃

o
s,a) ≤ C|S| log(|S|/δ)/N(s, a) for any s, a pair with probability at least 1−δ/(|S||A|),

where C > 0 is some universal constant. Thus ⊗s,aP
o
s,a ∈ ⊗s,aP̂c

s,a holds with probability at least 1− δ.

We are now ready to present our main results of Section 3. With the above result (Proposition 1), we now provide the offline
RL suboptimality guarantee below for the TV uncertainty set.

Theorem 3. Let πK be the DRQI policy after K iterations under the TV uncertainty set P̂tv. With probability at least 1− δ
it holds that

Es0∼d0
[V π∗

(s0)− ED[V
πK (s0)]] ≤

64γ
√

Cπ∗ |S|
(1− γ)2

√
max{|S|, 2 log(2|S||A|/δ)}

N
+

2γK+1

(1− γ)2
.

Proof. We first make important definitions that will be useful for our analyses. We denote the value function of policy
π for the transition dynamics model P as V π

P . We now denote the robust value function (Panaganti & Kalathil, 2022;
Xu∗ et al., 2023; Panaganti et al., 2022) for uncertainty set P̂tv as V π

P̂
= minP∈P̂ V π

P and its optimal robust policy
as π̂∗ = argmaxπ V

π
P̂

. We note that for the sake of notational simplicity we drop the superscript tv going forward,

that is, we denote P̂tv simply as P̂ . We let Qπ
P̂

be its corresponding robust Q-function. From robust RL (Panaganti &
Kalathil, 2022; Xu∗ et al., 2023; Panaganti et al., 2022) we can write the following robust Bellman equation: Qπ

P̂
(s, a) =

r(s, a) + γminPs,a∈P̂s,a
Es′∼Ps,a

(V π
P̂
(s′)). To make it notationally easy, we write V π∗

(dπ) as V π∗

P o (dπP o) making the
dependence on the model P o explicit.

We now start analyzing offline RL suboptimality as:

Es0∼d0 [V
π∗

P o (s0)− V πK

P o (s0)] = Es0∼d0 [V
π∗

P o (s0)− V πK

P̂
(s0) + V πK

P̂
(s0)− V πK

P o (s0)]

(a)

≤ Es0∼d0 [V
π∗

P o (s0)− V πK

P̂
(s0)]

= Es0∼d0
[V π∗

P o (s0)− V π̂∗

P̂ (s0) + V π̂∗

P̂ (s0)− V πK

P̂
(s0)]

≤ Es0∼d0
[V π∗

P o (s0)− V π̂∗

P̂ (s0)] +
∥∥∥V π̂∗

P̂ − V πK

P̂

∥∥∥
∞

(b)

≤ Es0∼d0
[V π∗

P o (s0)− V π̂∗

P̂ (s0)] +
2γK+1

(1− γ)2
, (14)

where (a) follows from Proposition 1 and definition of robust value function V πK

P̂
(s0) and (b) follows from robust

amplification lemma (Panaganti & Kalathil, 2022, Lemma 10, eq.(28)). For the rest of the analysis, we focus on analyzing
Es0∼d0

[V π∗

P o (s0)− V π̂∗

P̂
(s0)].

Observe that,

Es0∼d0 [V
π∗

P o (s0)− V π̂∗

P̂ (s0)] = Es0∼d0 [Q
π∗

P o(s0, π
∗(s0))−Qπ̂∗

P̂ (s0, π̂
∗(s0))]

(c)

≤ Es0∼d0 [Q
π∗

P o(s0, π
∗(s0))−Qπ̂∗

P̂ (s0, π
∗(s0))]

(d)
= Es0∼d0 [r(s0, π

∗(s0)) + γEs′∼P o
s0,π∗(s0)

(V π∗

P o (s′))

− r(s0, π
∗(s0))− γ min

Ps0,π∗(s0)∈P̂s0,π∗(s0)

Es′∼Ps0,π∗(s0)
(V π̂∗

P̂ (s′))]

= Es0∼d0
[γEs′∼P o

s0,π∗(s0)
(V π∗

P o (s′))− γEs′∼P o
s0,π∗(s0)

(V π̂∗

P̂ (s′))]

+ Es0∼d0
[γEs′∼P o

s0,π∗(s0)
(V π̂∗

P̂ (s′))− γ min
Ps0,π∗(s0)∈P̂s0,π∗(s0)

Es′∼Ps0,π∗(s0)
(V π̂∗

P̂ (s′))]

= Es0∼d0 [γEs′∼P o
s0,π∗(s0)

(V π∗

P o (s′)− V π̂∗

P̂ (s′))]

+ Es0∼d0
[γEs′∼P o

s0,π∗(s0)
(V π̂∗

P̂ (s′))− γ min
Ps0,π∗(s0)∈P̂s0,π∗(s0)

Es′∼Ps0,π∗(s0)
(V π̂∗

P̂ (s′))]︸ ︷︷ ︸
(I)

, (15)
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where (c) follows since π̂∗ is optimal robust policy of V π
P̂

and (d) follows from classical and robust Bellman equations.

Analyzing (I) in Eq. (15) but for any Ps0,π∗(s0) ∈ P̂s0,π∗(s0) gives us:

Es0∼d0
[γEs′∼P o

s0,π∗(s0)
(V π̂∗

P̂ (s′))− γEs′∼Ps0,π∗(s0)
(V π̂∗

P̂ (s′))] (16)

= Es0∼d0 [γEs′∼P o
s0,π∗(s0)

(V π̂∗

P̂ (s′))− γEs′∼P̂ o
s0,π∗(s0)

(V π̂∗

P̂ (s′))

+ γEs′∼P̂ o
s0,π∗(s0)

(V π̂∗

P̂ (s′))− γEs′∼Ps0,π∗(s0)
(V π̂∗

P̂ (s′))]

(g)

≤ 2γ

1− γ
Es0∼d0

[
min

{
1,

√
max{|S|, 2 log(2|S||A|/δ)}

N(s0, π∗(s0))
1{N(s0, π

∗(s0)) ≥ 1}
}]

+ γEs0∼d0
[Es′∼P̂ o

s0,π∗(s0)
(V π̂∗

P̂ (s′))− Es′∼Ps0,π∗(s0)
(V π̂∗

P̂ (s′))]

(h)

≤ 4γ

1− γ
Es0∼d0

[√
max{|S|, 2 log(2|S||A|/δ)}

N(s0, π∗(s0))
1{N(s0, π

∗(s0)) ≥ 1}
]
, (17)

where (g), holds with probability at least 1− δ, follows from Hölder’s inequality and by Proposition 1, and (h) by Hölder’s
inequality and the definition of uncertainty set P̂ .

Substituting Eq. (17) back in Eq. (15), we get the following recursion

Es0∼d0
[V π∗

P o (s0)− V π̂∗

P̂ (s0)] ≤ γEs0∼d0
[Es′∼P o

s0,π∗(s0)
(V π∗

P o (s′)− V π̂∗

P̂ (s′))]

+
4γ

1− γ
Es0∼d0

[√
max{|S|, 2 log(2|S||A|/δ)}

N(s0, π∗(s0))
1{N(s0, π

∗(s0)) ≥ 1}
]

= γEs1∼dπ∗
Po,1

[V π∗

P o (s1)− V π̂∗

P̂ (s1)]

+
4γ

1− γ
Es0∼d0

[√
max{|S|, 2 log(2|S||A|/δ)}

N(s0, π∗(s0))
1{N(s0, π

∗(s0)) ≥ 1}
]

≤ γ2Es2∼dπ∗
Po,2

[V π∗

P o (s2)− V π̂∗

P̂ (s2)]

+ γ
4γ

1− γ
Es1∼dπ∗

Po,1

[√
max{|S|, 2 log(2|S||A|/δ)}

N(s1, π∗(s1))
1{N(s1, π

∗(s1)) ≥ 1}
]

+
4γ

1− γ
Es0∼d0

[√
max{|S|, 2 log(2|S||A|/δ)}

N(s0, π∗(s0))
1{N(s0, π

∗(s0)) ≥ 1}
]

≤ 4γ

1− γ

∞∑
t=0

γtEst∼dπ∗
Po,t

[√
max{|S|, 2 log(2|S||A|/δ)}

N(st, π∗(st))
1{N(st, π

∗(st)) ≥ 1}
]

=
4γ

(1− γ)2
Es∼dπ∗

Po

[√
max{|S|, 2 log(2|S||A|/δ)}

N(s, π∗(s))
1{N(s, π∗(s)) ≥ 1}

]
,

where last equality follows by the definition of state-distribution dπ
∗

P o = (1− γ)
∑∞

t=0 γ
tdπ

∗

P o,t. Now, putting this back in
Eq. (14), we see that the offline RL guarantee becomes:

ED[Es0∼d0
[V π∗

P o (s0)− V πK

P o (s0)]]

≤ 2γK+1

(1− γ)2
+

4γ

(1− γ)2
Es∼dπ∗

Po
ED

[√
max{|S|, 2 log(2|S||A|/δ)}

N(s, π∗(s))
1{N(s, π∗(s)) ≥ 1}

]

≤ 2γK+1

(1− γ)2
+

4γ

(1− γ)2
Es∼dπ∗

Po
ED

[√
max{|S|, 2 log(2|S||A|/δ)}

N(s, π∗(s)) ∨ 1

]
(i)

≤ 2γK+1

(1− γ)2
+

4γ

(1− γ)2
Es∼dπ∗

Po

[√
max{|S|, 2 log(2|S||A|/δ)} 16√

Nµ(s, π∗(s))

]
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(j)

≤ 2γK+1

(1− γ)2
+

64γ

(1− γ)2
Es∼dπ∗

Po

[√
Cπ∗ max{|S|, 2 log(2|S||A|/δ)}

Ndπ
∗

P o(s, π∗(s))

]

=
2γK+1

(1− γ)2
+

64γ
√
Cπ∗

(1− γ)2

√
max{|S|, 2 log(2|S||A|/δ)}

N

∑
s

√
dπ

∗
P o(s, π∗(s))

(k)

≤ 2γK+1

(1− γ)2
+

64γ
√
Cπ∗

(1− γ)2

√
max{|S|, 2 log(2|S||A|/δ)}

N

√
|S|. (18)

Recall that (si, ai)-pairs in D are i.i.d. and follow the data generating policy µ. That is, for any (s, a), N(s, a) follows
Binomial(N,µ(s, a)). Then (i) follows from Lemma 1 with k = 1/2. We note here that this technique of bridging
two visitation distributions, µ and dπ

∗

P o , is critical and original in our paper. We have (j) by recalling the definition of
single-policy concentrability with comparator policy π∗, that is,

Cπ∗ = max
s,a

dπ
∗

P o(s, a)

µ(s, a)
.

(k) is due to Cauchy-Schwarz inequality and by recognizing dπ
∗

P o(·, π∗(·)) as a probability distribution. This completes the
proof of this main theorem.

We now provide a similar offline RL suboptimality guarantee below for the Wasserstein uncertainty set using Proposition 2.

Theorem 4. Let πK be the DRQI policy after K iterations under the Wasserstein uncertainty set P̂w. With probability at
least 1− δ it holds that

Es0∼d0
[V π∗

(s0)− ED[V
πK (s0)]] ≤

64γ
√
Cπ∗

(1− γ)2

√
C|S|2 log(|S||A|/δ)

N
+

2γK+1

(1− γ)2
.

Proof. The proof follows exactly as in the proof of Theorem 3. We replace the dependence on Proposition 1 with
Proposition 2. We then only have to take care of step (g) in Eq. (17). We start from analyzing (I) as in Eq. (16):

Es0∼d0
[γEs′∼P o

s0,π∗(s0)
(V π̂∗

P̂ (s′))− γEs′∼Ps0,π∗(s0)
(V π̂∗

P̂ (s′))]

= Es0∼d0 [γEs′∼P o
s0,π∗(s0)

(V π̂∗

P̂ (s′))− γEs′∼P̂ o
s0,π∗(s0)

(V π̂∗

P̂ (s′))

+ γEs′∼P̂ o
s0,π∗(s0)

(V π̂∗

P̂ (s′))− γEs′∼Ps0,π∗(s0)
(V π̂∗

P̂ (s′))]

(a)

≤ Es0∼d0

[
2γ

1− γ
Dw(P

o
s0,π∗(s0)

, P̂ o
s0,π∗(s0)

)

+ γEs′∼P̂ o
s0,π∗(s0)

(V π̂∗

P̂ (s′))− γEs′∼Ps0,π∗(s0)
(V π̂∗

P̂ (s′))

]
(b)

≤ 2γ

1− γ
Es0∼d0

[√
C|S| log(|S||A|/δ)

N(s0, π∗(s0))
1{N(s0, π

∗(s0)) ≥ 1}
]

+ γEs0∼d0
[Es′∼P̂ o

s0,π∗(s0)
(V π̂∗

P̂ (s′))− γEs′∼Ps0,π∗(s0)
(V π̂∗

P̂ (s′))]

(c)

≤ 4γ

1− γ
Es0∼d0

[√
C|S| log(|S||A|/δ)

N(s0, π∗(s0))
1{N(s0, π

∗(s0)) ≥ 1}
]
,

where (a) follows by applying the Kantorovich-Rubinstein theorem (Dudley, 2002, Theorem 11.8.2) and noting the fact
that the value functions are 2/(1− γ)-Lipschitz in their state dimension under the discrete metric ℓ(·, ·) since

∥∥∥V π̂∗

P̂

∥∥∥
∞

≤
1/(1− γ), (b) holds with probability at least 1− δ by Proposition 2, and (c) is again by the Kantorovich-Rubinstein theorem
and the definition of uncertainty set P̂ . Now combining and analyzing the rest of the steps as in the proof of Theorem 3
completes the proof.
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We now provide a similar offline RL suboptimality guarantee below for the KL uncertainty set using Proposition 3.

Theorem 5. Let πK be the DRQI policy after K iterations under the KL uncertainty set P̂kl (under add-1 estimator). With
probability at least 1− δ it holds that

Es0∼d0
[V π∗

(s0)− ED[V
πK (s0)]] ≤

64γ
√
Cπ∗

(1− γ)2

√
C|S|2 log(|S|2|A|/δ) log(N)

N
+

2γK+1

(1− γ)2
.

Proof. The proof again follows exactly as in the proof of Theorem 3. We replace the dependence on Proposition 1 with
Proposition 3. We then only have to take care of step (g) in Eq. (17). We start from analyzing (I) as in Eq. (16):

Es0∼d0
[γEs′∼P o

s0,π∗(s0)
(V π̂∗

P̂ (s′))− γEs′∼Ps0,π∗(s0)
(V π̂∗

P̂ (s′))]

= Es0∼d0 [γEs′∼P o
s0,π∗(s0)

(V π̂∗

P̂ (s′))− γEs′∼P̃ o
s0,π∗(s0)

(V π̂∗

P̂ (s′))

+ γEs′∼P̃ o
s0,π∗(s0)

(V π̂∗

P̂ (s′))− γEs′∼Ps0,π∗(s0)
(V π̂∗

P̂ (s′))]

(a)

≤ Es0∼d0 [γ
√
2 ln(2)DKL(P o

s0,π∗(s0)
, P̃ o

s0,π∗(s0)
)∥V π̂∗

P̂ (s′)∥∞]

+ γEs′∼P̃ o
s0,π∗(s0)

(V π̂∗

P̂ (s′))− γEs′∼Ps0,π∗(s0)
(V π̂∗

P̂ (s′))]

(b)

≤ 2γ

1− γ
Es0∼d0

[√
C|S| log(|S|2|A|/δ) log(N)

N(s0, π∗(s0))
1{N(s0, π

∗(s0)) ≥ 1}
]

+ γEs0∼d0 [Es′∼P̃ o
s0,π∗(s0)

(V π̂∗

P̂ (s′))− γEs′∼Ps0,π∗(s0)
(V π̂∗

P̂ (s′))]

(c)

≤ 4γ

1− γ
Es0∼d0

[√
C|S| log(|S|2|A|/δ) log(N)

N(s0, π∗(s0))
1{N(s0, π

∗(s0)) ≥ 1}
]
,

where (a) follows from Hölder’s inequality and Pinsker’s inequality (Cover & Thomas, 1991, Lemma 12.6.1), (b) holds
with probability at least 1− δ by Proposition 3, and (c) again follows from Hölder’s inequality and Pinsker’s inequality
under the definition of uncertainty set P̂ . Now combining and analyzing the rest of the steps as in the proof of Theorem 3
completes the proof.

We also provide a similar offline RL suboptimality guarantee below for the chi-square uncertainty set using Proposition 4.

Theorem 6. Let πK be the DRQI policy after K iterations under the chi-square uncertainty set P̂c (under add-log(1/δ)
estimator). With probability at least 1− δ it holds that

Es0∼d0
[V π∗

(s0)− ED[V
πK (s0)]] ≤

64γ
√
Cπ∗

(1− γ)2

√
C|S|2 log(|S|2|A|/δ)

N
+

2γK+1

(1− γ)2
.

Proof. The proof again follows exactly as in the proof of Theorem 3. We replace the dependence on Proposition 1 with
Proposition 4. We again only have to take care of step (g) in Eq. (17). We start from analyzing (I) as in Eq. (16):

Es0∼d0
[γEs′∼P o

s0,π∗(s0)
(V π̂∗

P̂ (s′))− γEs′∼Ps0,π∗(s0)
(V π̂∗

P̂ (s′))]

= Es0∼d0
[γEs′∼P o

s0,π∗(s0)
(V π̂∗

P̂ (s′))− γEs′∼P̃ o
s0,π∗(s0)

(V π̂∗

P̂ (s′))

+ γEs′∼P̃ o
s0,π∗(s0)

(V π̂∗

P̂ (s′))− γEs′∼Ps0,π∗(s0)
(V π̂∗

P̂ (s′))]

(a)

≤ Es0∼d0

[
2γ
√
Dc(P o

s0,π∗(s0)
, P̃ o

s0,π∗(s0)
)∥V π̂∗

P̂ ∥∞
]

+ γ[Es′∼P̃ o
s0,π∗(s0)

(V π̂∗

P̂ (s′))− γEs′∼Ps0,π∗(s0)
(V π̂∗

P̂ (s′))]

(b)

≤ 2γ

1− γ
Es0∼d0

[√
C|S| log(|S|2|A|/δ)

N(s0, π∗(s0))
1{N(s0, π

∗(s0)) ≥ 1}
]
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+ γEs0∼d0
[Es′∼P̃ o

s0,π∗(s0)
(V π̂∗

P̂ (s′))− γEs′∼Ps0,π∗(s0)
(V π̂∗

P̂ (s′))]

(c)

≤ 4γ

1− γ
Es0∼d0

[√
C|S| log(|S|2|A|/δ)

N(s0, π∗(s0))
1{N(s0, π

∗(s0)) ≥ 1}
]
,

where (a) follows from Hölder’s inequality, and from Pinsker’s inequality (Cover & Thomas, 1991, Lemma 12.6.1) and
(Basu et al., 2011, Lemma 11.1) we have DTV(p, q) ≤ 2

√
Dc(p, q) for any two distributions, (b) holds with probability at

least 1− δ by Proposition 4, and (c) follows same as (a) but under the definition of uncertainty set P̂ . Now combining and
analyzing the rest of the steps as in the proof of Theorem 3 completes the proof.

C. Results and Proofs of LM-DRQI
In the following, we always use c > 0 for a small universal constant whose exact value might be changing. We allow
λ = Ω(1) but set λ = 1 for simplicity. In what follows, we use 1i ∈ Rd×1 to denote vector with values 0 except 1 at
position i. We first make a similar observation as in Proposition 1-Proposition 4 that the true model P o lies in the uncertainty
set P̂ with high probability. We make this formal in the proposition below.

Proposition 5. We have νo ∈ M̂ with probability at least 1− δ. Furthermore, P o ∈ P̂ also holds with probability at least
1− δ.

Proof. Let 1i ∈ Rd×1 denote vector with values 0 except 1 at position i and 1(s′t) ∈ R|S|×1 denote vector with values 0
except 1 at position s′t. Fixing an i ∈ [d] and V ∈ V , we have the following:

Eνo
i
[V ]−Eν̂i

[V ] = (νoi )
⊤V − (ν̂i)

⊤V = 1⊤
i (ν

o)⊤V − 1⊤
i (ν̂)

⊤V

(a)
= 1⊤

i Λ
−1
N (

λ

N
I +

1

N

N∑
t=1

ϕ(st, at)ϕ(st, at)
⊤)(νo)⊤V − 1⊤

i (ν̂)
⊤V

(b)
=

λ

N
1⊤
i Λ

−1
N (νo)⊤V +

1

N
1⊤
i Λ

−1
N

N∑
t=1

ϕ(st, at)(P
o
st,at

)⊤V − 1⊤
i (ν̂)

⊤V

(c)
=

λ

N
1⊤
i Λ

−1
N (νo)⊤V +

1

N
1⊤
i Λ

−1
N

N∑
t=1

ϕ(st, at)(P
o
st,at

)⊤V − 1

N
1⊤
i Λ

−1
N

N∑
t=1

ϕ(st, at)1(s
′
t)

⊤V

(d)
=

λ

N
1⊤
i Λ

−1
N (νo)⊤V +

1

N
1⊤
i Λ

−1
N

N∑
t=1

ϕ(st, at)ϵ
⊤
t V, (19)

where (a) is by ΛN = λ
N I + 1

N

∑N
t=1 ϕ(st, at)ϕ(st, at)

⊤, (b) by ϕ(st, at)
⊤)(νo)⊤ = P o

st,at
(·), (c) by ν̂(s′) =

1
NΛ−1

N

∑N
t=1 ϕ(st, at)1{s′ = s′t}, and (d) by setting ϵt = (P o

st,at
− 1(s′t)).

Before proceeding, here is a consequence of Assumption 1. Consider any (s, a) ∈ S ×A. For any linear MDP Ps,a(s
′) =

ϕ(s, a)⊤ν(s′), summing both sides across s′, we get

1 =
∑
s′

Ps,a(s
′) = ϕ(s, a)⊤

∑
s′

ν(s′) =
∑
i∈[d]

ϕi(s, a).

Since ϕi(s, a) ≥ 0 and ∥x∥2 ≤ ∥x∥1 for x ∈ Rd, ∥ϕ(s, a)∥2 ≤ 1 follows. Now we analyze the two terms in Eq. (19). First,

| λ
N
1⊤
i Λ

−1
N (νo)⊤V | ≤ λ

N

∥∥1⊤
i Λ

−1
N

∥∥
1

∥∥(νo)⊤V ∥∥∞
(e)

≤ 1

1− γ

λ

N

∥∥1⊤
i Λ

−1
N

∥∥
1

(f)

≤
√
d

1− γ

λ

N

∥∥1⊤
i Λ

−1
N

∥∥
2

=

√
d

1− γ

λ

N

√
1⊤
i Λ

−1
N Λ−1

N 1i
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(g)

≤
√
d

1− γ

λ

N

√∥∥Λ−1
N

∥∥
op

√
1⊤
i Λ

−1
N 1i

=

√
d

1− γ

λ

N

∥∥∥Λ−1/2
N

∥∥∥
op

∥1i∥Λ−1
N

(h)

≤ 1

1− γ

√
dλ

N

√
Λ−1
N (i, i),

where (e) follows since V ∈ V = {V (·) = maxa ϕ
⊤(·, a)w : w ∈ Rd, ∥w∥2 ≤ 1/(1 − γ)} satisfies |V (s)| ≤∥∥maxa ϕ

⊤(s, a)
∥∥
2
∥w∥2 ≤ 1/(1 − γ) for any s ∈ S and νo is a probability distribution, (f) by ∥x∥1 ≤

√
d∥x∥2 for

x ∈ Rd, (g) by x⊤Ay ≤ ∥A∥opx⊤y for positive definite matrix A with maximum eigenvalue ∥A∥op and for x, y ∈ Rd, and
(h) follows since ΛN ’s minimal absolute value is λ/N in its diagonal entries.

Second, by Cauchy-Schwarz on Λ−1
N -norm,

| 1
N
1⊤
i Λ

−1
N

N∑
t=1

ϕ(st, at)ϵ
⊤
t V | ≤ 1

N

∥∥1⊤
i

∥∥
Λ−1

N

∥∥∥∥∥
N∑
t=1

ϕ(st, at)ϵ
⊤
t V

∥∥∥∥∥
Λ−1

N

=
1

N

√
Λ−1
N (i, i)

∥∥∥∥∥
N∑
t=1

ϕ(st, at)ϵ
⊤
t V

∥∥∥∥∥
Λ−1

N

.

We now get back to analyzing Eq. (19) using these intermediate steps. Fix i ∈ [d]. For all V ∈ V , we have the following
uniform bound:

|Eνo
i
[V ]− Eν̂i

[V ]| ≤ 1

1− γ

√
dλ

N

√
Λ−1
N (i, i) +

1

N

√
Λ−1
N (i, i)

∥∥∥∥∥
N∑
t=1

ϕ(st, at)ϵ
⊤
t V

∥∥∥∥∥
Λ−1

N

(i)

≤ 1

1− γ

√
dλ

N

√
Λ−1
N (i, i) +

1

N

√
Λ−1
N (i, i)O

(√
dN log(N/((1− γ)δ))

1− γ

)

≤ O(log(N/((1− γ)δ)))

1− γ

√
d

N

√
Λ−1
N (i, i),

where (i) holds with probability 1− δ by Lemma 7.

Let c1 > 0 be some universal constant. Furthermore, with an additional uniform bound, the following holds for all i ∈ [d]
with probability at least 1− δ:

dV(ν
o
i , ν̂i) ≤

c1 log(Nd/((1− γ)δ))

1− γ

√
d

N

√
Λ−1
N (i, i). (20)

It is now straightforward to see νo ∈ M̂ holds with probability at least 1− δ by recalling:

M̂ =
⊗
i∈[d]

M̂i where M̂i =

{
νi ∈ ∆(S) : dV(νi, ν̂i) ≤

c1 log(Nd/((1− γ)δ))

1− γ

√
d

N

√
Λ−1
N (i, i)

}
.

Furthermore, recall P o
s,a(s

′) =
∑

i∈[d] ϕi(s, a)ν
o
i (s

′) and P̂ o
s,a(s

′) =
∑

i∈[d] ϕi(s, a)ν̂i(s
′). We now have the following

equations:

sup
V ∈V

∣∣∣∣ ∫
S
(P o

s,a − P̂s,a)V (ds′)

∣∣∣∣ = sup
V ∈V

∣∣∣∣ ∫
S

d∑
i=1

ϕi(s, a)(ν
o
i (s

′)− ν̂i(s
′))V (ds′)

∣∣∣∣
= sup

V ∈V

∣∣∣∣ d∑
i=1

ϕi(s, a)

∫
S
(νoi (s

′)− ν̂i(s
′))V (ds′)

∣∣∣∣ ≤ sup
V ∈V

d∑
i=1

|ϕi(s, a)||
∫
S
(νoi (s

′)− ν̂i(s
′))V (ds′)|

≤
d∑

i=1

|ϕi(s, a)| sup
V ∈V

|
∫
S
(νoi (s

′)− ν̂i(s
′))V (ds′)|
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=

d∑
i=1

|ϕi(s, a)| · dV(νoi , ν̂i) ≤
c1 log(Nd/((1− γ)δ))

1− γ

√
d

N

d∑
i=1

∥ϕi(s, a)1i∥Λ−1
N

, (21)

where the last inequality follows by Eq. (20). This holds with probability at least 1− δ for all s, a together. Thus we have a
high probability event that P o ∈ P̂ with probability at least 1− δ.

Before presenting our main result we adapt (Jin et al., 2021, Corollary 4.5) to present a high probability result adhering to
the sufficient coverage assumption (Assumption 2).
Lemma 9. For any s, a, we have with probability at least 1 − δ that

∑
i∈[d] Es,a∼dπ∗

Po
[∥ϕi(s, a)1

⊤
i ∥Λ−1

N
] ≤√

rank(Σdπ∗
Po

)/C†
sc where ΛN = λ

N I + 1
N

∑N
t=1 ϕ(st, at)ϕ(st, at)

⊤, Σdπ∗
Po

= Es,a∼dπ∗
Po

ϕ(s, a)ϕ(s, a)⊤.

Proof. This proof follows similar steps in the proof of (Jin et al., 2021, Corollary 4.5). Firstly notice,∑
i∈[d]

Es,a∼dπ∗
Po

[∥ϕi(s, a)1i∥Λ−1
N
] =

∑
i∈[d]

Es,a∼dπ∗
Po

[
√

(ϕi(s, a)1i)⊤Λ
−1
N (ϕi(s, a)1i)]

=
∑
i∈[d]

Es,a∼dπ∗
Po

[
√

Tr((ϕi(s, a)1i)(ϕi(s, a)1i)⊤Λ
−1
N )]

(a)

≤
√
d

√∑
i∈[d]

Tr(Es,a∼dπ∗
Po

[(ϕi(s, a)1i)(ϕi(s, a)1i)⊤]Λ
−1
N )

(b)

≤
√
d

√∑
i∈[d]

Tr(Σi
dπ∗
Po

· ((1/N)I + C†
sc · d · Σi

dπ∗
Po

)−1)

(c)
=

√
d

√√√√√∑
i∈[d]

λi
dπ∗
Po

(1/N) + C†
sc · d · λi

dπ∗
Po

(d)

≤
√
d

√√√√ rank(Σdπ∗
Po

)

(1/(N ·maxi∈[d] λ
i
dπ∗
Po

)) + C†
sc · d

≤

√
rank(Σdπ∗

Po
)

C†
sc

,

where (a) follows by ∥x∥1 ≤
√
d∥x∥2 for x ∈ Rd and Jensen’s inequality, (b) holds with probability at least 1− δ by the

sufficient coverage assumption (Assumption 2), (c) follows by denoting eigenvalues λi
dπ∗
Po

of rank-1 matrices Σi
dπ∗
Po

. For (d),
we first notice

Σdπ∗
Po

= Es,a∼dπ∗
Po

ϕ(s, a)ϕ(s, a)⊤ = Es,a∼dπ∗
Po

[
∑

i,j∈[d]

(ϕi(s, a)1i)(ϕj(s, a)1j)
⊤]

=
∑
i∈[d]

Σi
dπ∗
Po

+
∑

i,j∈[d]:i ̸=j

Es,a∼dπ∗
Po

[(ϕi(s, a)1i)(ϕj(s, a)1j)
⊤].

For any k ∈ [d], let λk denote kth smallest eigenvalue of Σdπ∗
Po

. For any k ∈ [d], we know from a fact of positive semidefinite
matrices that λk is at least as any kth smallest eigenvalue of any matrix summand. Moreover, since ∥ϕ(s, a)∥2 ≤ 1, it
follows by Jensen’s inequality λ1 = ∥Σdπ∗

Po
∥op ≤ Es,a∼dπ∗

Po
∥ϕ(s, a)ϕ(s, a)⊤∥op ≤ 1. Since Σdπ∗

Po
is positive semidefinite,

we have all λk ∈ [0, 1]. Finally, step (d) is concluded by the fact that the number of non-zero eigenvalues is equal to the
rank of a positive semidefinite matrix. This completes the proof.

We are now ready to present our main result of this linear MDP problem setting. With the above result, we now provide the
offline RL suboptimality guarantee below.
Theorem 7. Let Assumption 1 hold. Let πK be the LM-DRQI algorithm policy after K iterations. Then, under Assumption 2,
the following holds with probability at least 1− δ

Es0∼d0
[V π∗

(s0)− ED[V
πK (s0)]] ≤

2γK+1

(1− γ)2
+

c1 log(Nd/((1− γ)δ))

(1− γ)2

√
d · rank(Σdπ∗

Po
)

C†
scN

.
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Proof. We first recall our analyses of Theorem 3. We denote the value function of policy π for the transition dynamics
model P as V π

P . We now denote the robust value function (Panaganti & Kalathil, 2022; Xu∗ et al., 2023; Panaganti et al.,
2022) for uncertainty set P̂ as V π

P̂
= minP∈P̂ V π

P and its optimal robust policy as π̂∗ = argmaxπ V
π
P̂

. We let Qπ
P̂

be its
corresponding robust Q-function. From robust RL (Panaganti & Kalathil, 2022; Xu∗ et al., 2023; Panaganti et al., 2022)
we can write the following robust Bellman equation: Qπ

P̂
(s, a) = r(s, a) + γminPs,a∈P̂s,a

Es′∼Ps,a(V
π
P̂
(s′)). To make it

notationally easy, we write V π∗
(dπ) as V π∗

P o (dπP o ) making the dependence on the model P o explicit.

We again recall Eq. (14) in tandem with Proposition 5:

Es0∼d0
[V π∗

P o (s0)− V πK

P o (s0)] ≤ Es0∼d0
[V π∗

P o (s0)− V π̂∗

P̂ (s0)] +
2γK+1

(1− γ)2
. (22)

Further recalling Eq. (15) we know,

Es0∼d0
[V π∗

P o (s0)− V π̂∗

P̂ (s0)] ≤ Es0∼d0
[γEs′∼P o

s0,π∗(s0)
(V π∗

P o (s′)− V π̂∗

P̂ (s′))]

+ Es0∼d0 [γEs′∼P o
s0,π∗(s0)

(V π̂∗

P̂ (s′))]− γ min
Ps0,π∗(s0)∈P̂s0,π∗(s0)

Es′∼Ps0,π∗(s0)
(V π̂∗

P̂ (s′))︸ ︷︷ ︸
(I)

]. (23)

Analyzing (I) in Eq. (23) for any P ∈ P̂:

(I) = Es0∼d0
[γEs′∼P o

s0,π∗(s0)
(V π̂∗

P̂ (s′))− γEs′∼P̂ o
s0,π∗(s0)

(V π̂∗

P̂ (s′))

+ γEs′∼P̂ o
s0,π∗(s0)

(V π̂∗

P̂ (s′))− γEs′∼Ps0,π∗(s0)
(V π̂∗

P̂ (s′))]

(g)

≤ c1 log(Nd/((1− γ)δ))

1− γ

√
d

N

d∑
i=1

∥ϕi(s0, π
∗(s0))1i∥Λ−1

N

+ γEs0∼d0
[Es′∼P̂ o

s0,π∗(s0)
(V̂ π̂∗

(s′))− Es′∼Ps0,π∗(s0)
(V̂ π̂∗

(s′))]

(h)

≤ 2c1 log(Nd/((1− γ)δ))

1− γ

√
d

N

d∑
i=1

∥ϕi(s0, π
∗(s0))1i∥Λ−1

N
, (24)

where (g) holds with probability at least 1− δ, which follows from Lemma 7, and (h) follows by the definition of set P̂ .

Substituting Eq. (24) back in Eq. (23) and via recursion we get,

Es0∼d0
[V π∗

P o (s0)− V π̂∗

P̂ (s0)]

≤
∞∑
t=0

γtEs∼dπ∗
Po,t

[
c1 log(Nd/((1− γ)δ))

1− γ

√
d

N

d∑
i=1

∥ϕi(s0, π
∗(s0))1i∥Λ−1

N
]

=
c1 log(Nd/((1− γ)δ))

(1− γ)2

√
d

N

d∑
i=1

Es∼dπ∗
Po

[∥ϕi(s0, π
∗(s0))1i∥Λ−1

N
],

where last equality follows by the definition of state-distribution dπ
∗

P o = (1− γ)
∑∞

t=0 γ
tdπ

∗

P o,t. Now, putting this back in
Eq. (22), the offline RL guarantee becomes:

ED[Es0∼d0
[V π∗

P o (s0)− V πK

P o (s0)]] ≤
2γK+1

(1− γ)2

+
c1 log(Nd/((1− γ)δ))

(1− γ)2

√
d

N

d∑
i=1

ED[Es∼dπ∗
Po

[∥ϕi(s0, π
∗(s0))1i∥Λ−1

N
]]. (25)

We now assume we have sufficient coverage Assumption 2 of linear MDP P o. Now under Lemma 9, with probability at
least 1− δ, from Eq. (25) we have

ED[Es0∼d0
[V π∗

P o (s0)− V πK

P o (s0)]] ≤
2γK+1

(1− γ)2
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+
c1 log(Nd/((1− γ)δ))

(1− γ)2

√
d

N

d∑
i=1

ED[Es∼dπ∗
Po

[∥ϕi(s0, π
∗(s0))1i∥Λ−1

N
]]

≤ 2γK+1

(1− γ)2
+

c1 log(Nd/((1− γ)δ))

(1− γ)2

√
d · rank(Σdπ∗

Po
)

C†
scN

.

This proves this result.

Different from above, we now provide the offline RL suboptimality guarantee relying on the finite relative condition instead
of the sufficient coverage assumption Assumption 2. Before presenting the result, here is another high probability result
similar to Lemma 9 but now relies on the finite relative condition.

Lemma 10. Let λ = 1. For any s, a, with probability at least 1 − δ we have
∑

i∈[d] Es,a∼dπ∗
Po

[∥ϕi(s, a)1i∥Λ−1
N

≤

c
√
C†

π∗,ϕrank(Λ)(rank(Λ) + log(c/δ)) where ΛN = λ
N I + 1

N

∑N
t=1 ϕ(st, at)ϕ(st, at)

⊤, Λ = Es,a∼µϕ(s, a)ϕ(s, a)
⊤,

C†
π∗,ϕ = maxx∈Rd

∑
i∈[d] d(x

⊤Σi
dπ∗x)/(x⊤Λx).

Proof. We follow the proof in Lemma 9 but use the relative condition number to get the required bound. Firstly notice,∑
i∈[d]

Es,a∼dπ∗
Po

[∥ϕi(s, a)1i∥Λ−1
N
] =

∑
i∈[d]

Es,a∼dπ∗
Po

[
√
(ϕi(s, a)1i)⊤Λ

−1
N (ϕi(s, a)1i)]

=
∑
i∈[d]

Es,a∼dπ∗
Po

[
√
Tr((ϕi(s, a)1i)(ϕi(s, a)1i)⊤Λ

−1
N )]

(a)

≤
√
d

√∑
i∈[d]

Tr(Es,a∼dπ∗
Po

[(ϕi(s, a)1i)(ϕi(s, a)1i)⊤]Λ
−1
N )

=
√
d

√∑
i∈[d]

Tr(Σi
dπ∗
Po

Λ−1
N )

(b)

≤
√
d

√
C†

π∗,ϕ

d
Tr(ΛΛ−1

N )

=
√
C†

π∗,ϕEs,a∼µ[ϕ(s, a)⊤Λ
−1
N ϕ(s, a)]

(c)

≤ c
√
C†

π∗,ϕrank(Λ)(rank(Λ) + log(c/δ)),

where (a) follows by ∥x∥1 ≤
√
d∥x∥2 for x ∈ Rd and Jensen’s inequality, (b) follows by C†

π∗,ϕ definition, and (c) holds by
Lemma 8 with probability at least 1− δ.

Corollary 1. Let Assumption 1 hold. Let πK be the LM-DRQI algorithm policy after K iterations. Then, with C†
π∗,ϕ < ∞,

the following holds with probability at least 1− δ

Es0∼d0
[V π∗

(s0)− ED[V
πK (s0)]] ≤

2γK+1

(1− γ)2
+

c1 log(Nd/((1− γ)δ))

(1− γ)2

√
dC†

π∗,ϕrank(Λ)
2 log(c/δ)

N
.

Proof. The proof follows from Theorem 7. In this corollary, we assume finite relative condition number C†
π∗,ϕ < ∞ for

linear MDP P o instead of assuming Assumption 2. We also emphasize that in this result we only need to assume Σi
dπ∗

for all i ∈ [d], due to Lemma 10, instead for all Σ(i,j)

dπ∗ , i, j ∈ [d] in Assumption 1. Thus this result is more general than
Theorem 7. Now under Lemma 10, with probability at least 1− δ, from Eq. (25) we have

ED[Es0∼d0
[V π∗

P o (s0)− V πK

P o (s0)]] ≤
2γK+1

(1− γ)2
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+
c1 log(Nd/((1− γ)δ))

(1− γ)2

√
d

N

d∑
i=1

ED[Es∼dπ∗
Po

[∥ϕi(s0, π
∗(s0))1i∥Λ−1

N
]]

≤ 2γK+1

(1− γ)2
+

c2 log(Nd/((1− γ)δ))

(1− γ)2

√
dC†

π∗,ϕrank(Λ)
2 log(c/δ)

N
,

where c2 is a universal constant that only depends on c1 and c (c is from Lemma 10). This completes the proof.

In the following, we show that for a class of linear MDPs, the sufficient coverage assumption in Jin et al. (2021) implies our
sufficient coverage assumption (Assumption 2) adapted from Ma et al. (2022).

Lemma 11. Consider a class of linear MDPs where Σi
dπ∗ = Σj

dπ∗ for all i, j ∈ [d]. Define the random events E1 = {ω :

ΛN (ω) ≥ I/N + Csc · Σdπ∗} and E2 = {ω : ΛN (ω) ≥ I/N + Csc · dΣi
dπ∗}. Then we have E1 ⊆ E2.

Proof. We know

Σdπ∗ = Es,a∼dπ∗ϕ(s, a)ϕ(s, a)⊤ = Es,a∼dπ∗ [
∑

i,j∈[d]

(ϕi(s, a)1i)(ϕj(s, a)1j)
⊤] =

∑
i∈[d]

Σi
dπ∗ +

∑
i,j∈[d]:i̸=j

Σ
(i,j)

dπ∗ .

Consider some non-zero x ∈ Rd×1. Since Σ
(i,j)

dπ∗ are all positive semidefinite, we have

x⊤Σdπ∗x ≥
∑
i∈[d]

x⊤Σi
dπ∗x = d(x⊤Σi

dπ∗x).

Noting that E1 = {ω : x⊤ΛN (ω)x ≥ ∥x∥22/N+Csc ·x⊤Σdπ∗x} and E2 = {ω : x⊤ΛN (ω)x ≥ ∥x∥22/N+Csc ·dx⊤Σi
dπ∗x}

finishes the proof.

For a different class of linear MDPs we have the following.

Lemma 12. Consider a class of linear MDPs where Σi
dπ∗ = Σ

(i,j)

dπ∗ for all i, j ∈ [d]. Let Cπ∗,ϕ =

maxx∈Rd (x⊤Σdπ∗x)/(x⊤Λx) and C†
π∗,ϕ = maxx∈Rd

∑
i∈[d] d(x

⊤Σi
dπ∗x)/(x⊤Λx). Then we have C†

π∗,ϕ = Cπ∗,ϕ.

Proof. From Lemma 11, we already know Σdπ∗ =
∑

i,j∈[d] Σ
(i,j)

dπ∗ . Consider any non-zero x ∈ Rd×1. From the class of
linear MDPs, we further have

x⊤Σdπ∗x =
∑
i∈[d]

d(x⊤Σi
dπ∗x).

Now the statement directly follows.

From Corollary 1, we get the offline suboptimality guarantee of the order

√
dC†

π∗,ϕ
rank(Λ)2√

(1−γ)4N
for LM-DRQI algorithm.

Furthermore, under Lemma 12, it is comparable with Uehara & Sun (2021) in Table 2.
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