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ABSTRACT

We present a method for making predictions using neural networks that, at the
test time, is robust against shifts from the training data distribution. The proposed
method is based on making one prediction via different cues (called middle do-
mains) and ensembling their outputs into one strong prediction. The premise of the
idea is that predictions via different cues respond differently to distribution shifts,
hence one can merge them into one robust final prediction, if ensembling can be
done successfully. We perform the ensembling in a straightforward but principled
probabilistic manner. The evaluations are performed using multiple vision dataset
under a range of natural and synthetic distribution shifts which demonstrate the
proposed method is considerably more robust compared to its standard learning
counterpart, conventional ensembles, and several other baselines.

1 INTRODUCTION

Neural networks deployed in the real-world will encounter data with naturally occurring distortions,
e.g. blur, brightness changes, etc. Such changes make up shifts from the training data distribu-
tion. While neural networks are able to learn complex functions in-distribution, their predictions are
deemed unreliable under such shifts (Dodge & Karam (2017); Hendrycks & Dietterich (2019)). This
presents a core challenge that needs to be solved for these models to be reliable in the real-world.

Suppose we want to learn a mapping from an input domain, e.g. RGB images, to a target domain,
e.g. surface normals (see Figure 1). A common approach is to learn this mapping with a direct
path, i.e. RGB → surface normals. Since this path directly operates on the input domain, it is
prone to being affected by any modest alterations in the RGB image, e.g. brightness changes. An
alternative can be to go through a middle domain (or middle “task”) that is invariant to that change.
For example, an RGB → 2D edges → surface normals path will be resilient to the brightness and
color changes in the input. By creating an ensemble of prediction made via a diverse set of such
middle domains, we can be robust against a wide range of distribution shifts.

This paper presents a general approach for obtaining a single robust prediction from multiple paths.
We first use a set of middle domains from which we learn to predict the final domain. Each path re-
acts differently to a particular distribution shift, thus its prediction may or may not degrade severely.
We further estimate the uncertainty of each path’s prediction which allows us to adopt a principled
way of combining these predictions into the one final prediction. Prior knowledge of the relation-
ship between middle domains is not needed as their contribution to the final prediction are guided
by their predicted uncertainties. Moreover, the middle domains we adopt are all self-supervised (as
they can be programmatically extracted), thus this framework does not require any additional su-
pervision/labeling than what a dataset already comes with. We demonstrate improved robustness to
both natural and synthetic shifts on standard benchmark datasets compared to several baselines.

2 RELATED WORK

This work has connections to a number of topics, including ensembling, uncertainty estimation and
calibration, enforcing consistency constraints, and adversarial attacks. We overview some of them
within the constraints of space.

Ensembling combines multiple weak learners into a single strong learner e.g. boosting and bag-
ging (Dietterich (2000)). A deep ensemble (Lakshminarayanan et al. (2017)) produces multiple
hypotheses by training the same network with different initializations. This reliance on the network
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initialization or such stochasticities does not necessarily result in effectively diverse predictions to
lead to a robust final prediction. In contrast, our method forces the predictions to use a diverse
set of cues. This provides a more diverse ensemble by design, providing a better opportunity for
assmebling a final robust prediction in presense of a distribution shift (see Figure 1).

Estimating uncertainty: Uncertainty in a model’s prediction can be decomposed into two
sources (Der Kiureghian & Ditlevsen (2009); Kendall & Gal (2017)). Epistemic uncertainty ac-
counts for uncertainty in the model’s parameters, while aleatoric uncertainty models the noise in-
herent in the data. While there are many proposed methods to estimate the former, such as using
dropout as approximate Bayesian inference (Gal & Ghahramani (2016)) and ensembling (Lakshmi-
narayanan et al. (2017)), consistency energy (Zamir et al. (2020)) is the most relevant one, where a
single uncertainty estimate is predicted from different paths based on their cross-task consistency.
Here, we estimate the uncertainty for each path and use it to produce a single strong estimator.

Calibration: Neural networks tend to produce outputs that are miscalibrated i.e. their predictions
do not reflect the true likelihood of being correct (Guo et al. (2017); Kuleshov et al. (2018)). In
particular, their predictions tend to be overconfident for unfamiliar examples. Similar to (Hafner
et al. (2020)), we perform data augmentation to train the model (in two stages) to output high uncer-
tainty outside of the training distribution, with the difference that we do not need to assume a prior
distribution for the out of distribution data, but train sigmas (uncertainty estimates) in a supervised
way ( Sec. 3.1).

Enforcing consistency constraints in the context of multiple paths predictions involves ensuring that
the output predictions remains the same regardless of the intermediate domain. It has been shown
to lead to a better generalization, transfer performance, and may prevent overfitting to superficial
cues (Szegedy et al. (2013); Jo & Bengio (2017)) in the training data (Zamir et al. (2020); Zhu
et al. (2017)). In comparison to (Zamir et al. (2020)), we cast the consistency framework into
a probabilistic one by modelling input and path dependent uncertainty which allows for a more
principled way of composing individual path estimates. Also, unlike (Zamir et al. (2020)), our goal
is to robustify the final prediction by merging the output of multiple prediction paths at the test time.

Adversarial attacks adds imperceptible worst case shifts to the input to fool a model (Szegedy et al.
(2013); Madry et al. (2017)). While our framework is applicable to any type of distribution shifts,
we focus on natural shifts and commonly occurring distortions within the scope of this work.

Robustness via data augmentation: One approach to address robustness involves the use of
data augmentation during training. However, performance gains are non-uniform across corrup-
tions (Ford et al. (2019)). While these methods usually involve training with a set of corruptions to
generalize to the unseen ones, here we use middle domains to be resistant to different corruptions.

3 METHOD

X pixelated

Prediction Uncertainty WeightsMid. domains

Final prediction

ZY

{wi}Ki=1{yi}Ki=1 {ẑi}Ki=1 {exp(ŝi)}Ki=1

Input
x

Figure 1: An overview of our method for creating an ensemble of diverse prediction paths.
A network is trained to go from a pixelated (low resolution) RGB image to a target domain, e.g. surface
normals, via several middle domains, e.g. wavelet, 2D edges, greyscale, and emboss. We then compute the
corresponding weights of these predictions based on their uncertainties. The final prediction is obtained by a
weighted average. Solid arrows represent learned mappings and dashed ones represent analytical mappings.
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Figure 1 shows an overview of our method with an example on learning a mapping from RGB to
surface normals. We obtain surface normals predictions and their corresponding uncertainty esti-
mates for a given input image via several middle domains. These predictions are then combined
to obtain the final prediction. Each middle domain reacts differently to distribution shifts, thus the
performance of the method can be expected to increase by combining predictions from a diverse set
of these domains. For example, greyscale of the input can be used to bring robustness against color
changes in the input. While these domains can also be obtained using a learning based approach,
e.g. predicting surface normals from the output of another network such as reshading estimator, here
we choose to use analytical (non-learning based) ones for simplicity.

In the rest of this section, we elaborate on the technical details of our method.

Notations: Define X as the RGB domain, Y = {Yi}Ki=1 as the intermediate domains, Z as the
desired prediction domain, where Z ∩ Y 6= ∅. A single datapoint from these domains is denoted
as (x, y1, . . . , yK , z). FXY is the set of functions that maps the RGB images to their intermediate
domains, FXY = {fi : X → Yi}Ki=1, and FYZ from the intermediate to the prediction domain,
FYZ = {gi : Yi → Z}Ki=1. Given K predictions of domain Z , they are merged using the function
m to get a final single prediction, m : ZK → Z .

3.1 MODELLING PREDICTION NOISE

We model the noise in the predictions with a Laplace distribution. This results in an `1-norm loss
on the errors as opposed to an `2-norm loss with a Gaussian distribution, as it has been shown to
improve prediction quality (Kendall & Gal (2017)). For a mapping function gj , this leads to the
following negative log-likelihood (NLL) formulation:

Lgj ,NLL =
1

N

N∑
n=1

exp (−ŝn)‖ẑn − zn‖1 + ŝn (1)

where N is the number of samples, zn is the label for the nth sample, and [ẑn, ŝn] = gj(yn) are the
model outputs given the input yn. We predict ŝn = log b̂n for numerical stability where b̂n is the
scale parameter of the Laplace distribution. The sigma is obtained by scaling this parameter with√
2 and it captures the per-pixel uncertainty in predictions.
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Figure 2: Overconfident predictions under high distortions. (Left) Qualitative prediction results of
image reshading and uncertainty estimates under speckle noise distortion, for deep ensembles and a single
UNet model before and after sigma training. Darker sigma denotes lower uncertainty. (Right) Scatter plot
of `1 error versus average sigma. Each point represents one of the unseen distortions and one of 5 levels of
shift intensity. Notice (qualitatively and quantitatively) that the models without sigma training produce poorer
results under the larger shift, while their uncertainty does not correspondingly increase. Our proposed method
of training sigmas generalize the model to have a stronger correlation with the error compared to the baselines.
This indicates that sigma (after sigma training) can be an effective signal for merging multiple predictions.

Sigma training: Uncertainty estimates under distribution shifts are poorly calibrated (Ovadia et al.
(2019)), i.e. there is a tendency to output a poor prediction with high confidence. This can be seen in
Figure 2, in the columns corresponding to “Before sigma training”. With a higher noise distortion,
the prediction clearly degraded, however, the uncertainty estimate did not increase correspondingly.
This issue persists even with methods that estimate epistemic uncertainty, which are meant to detect
these shifts (see Figure 2, “Deep Ensembles” columns).

To mitigate this, we adopt a two-stage training setup where the network trained on in-distribution
data is further trained to output high uncertainty outside the training distribution caused by a few
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distortions from the set of common corruptions (Hendrycks & Dietterich (2019)). We denote this
step as sigma training (ST). As the goal of this step is to train ŝi, as opposed to ẑi, to generalize
under distortions (dist), we have a loss term to ensure that ẑn does not deviate from its predictions
at the start of training, ẑn,0, which we denote as mean grounding (MG). In addition, ŝn is trained
in a supervised way to learn its maximum likelihood estimator, with the loss denoted as sigma
calibration (SC). Finally, we include the original NLL term from Equation 1 on undistorted data
(undist) to prevent forgetting. This results in the following loss formulation:

Lfj ,ST = Lundist
fj ,NLL + α1Ldist

fj ,MG + α2Ldist
fj ,SC , (2)

where α1, α2 controls the weighting between the loss terms. For a given ẑn,0, the MG loss is
defined as the `1-norm distance between the current prediction and the one at the start of training,
i.e. Ldist

gj ,MG = ‖ẑn,0−ẑn‖1. The SC loss guides the scale parameter towards its maximum likelihood
estimate, i.e. Ldist

gj ,SC = ‖ exp (ŝn)− argminŝn Ldist
gj ,NLL‖1 = ‖ exp (ŝn)− |zn − ẑn,0|‖1.

Following sigma training, the network outputs sigmas that are highly correlated with error (Figure 2,
rightmost plot). Given multiple predictions of the same target domain and their sigma estimates, this
allows us to use the latter as a signal for merging to get a single strong prediction.

3.2 MERGING PREDICTIONS OF MULTIPLE PATHS

After training the set of mappings FXY and FYZ with the proposed methods described above, it
remains to combine these predictions ZK obtained via multiple paths using a merging function
m. We consider both analytical and learned models for m. The former can be a straightforward
weighting of each pixel in each path by the inverse of its variance (Hartung et al. (2011)). This is
denoted as Inverse variance merging, and it can be done with negligible computational cost. The
latter can be a stacking model (Wolpert (1992)) that learns the final predictions given the outputs of
each path. It has the advantage that the loss is over the entire image, thus, taking into account its
spatial structure. In what follows, we further discuss our approach for this case, denoted as Network
merging. We observe that both methods perform comparably well, thus we primarily suggest the
analytical method due to being simpler, more lightweight, and interpretable.

Multi-modal predictions: Mixture models can capture inherent ambiguity in the data by assuming
that there are several possible distributions that could have generated the observed data. Thus, they
are essential for ill-posed problems such as ours, e.g. there can be several depth estimates that
corresponds to a given RGB image. Given K random variables, their mixing weights {ŵi}Ki=1
reflect the uncertainty over which of the K variables generated the observed data. From Sec. 3.1 we
estimate the parameters of these K distributions, {ẑi, ŝi}Ki=1, then function m learns to outputs the
mixing weights given these set of parameters. Our final distribution is a mixture of Laplacians,

hMix(z) =
∑
i

ŵih(z|ẑi, ŝi) (3)

where h(z|ẑi, ŝi) is the probability density function of a Laplace distribution with mean ẑi and scale
exp(ŝi). The final loss is the NLL of the multi-modal prediction Lm = 1

N

∑N
n=1− log hMix(zn).

Mean approximation: The mean of a multi-modal distribution is in general not representative of the
overall distribution. Instead of directly using the weights predicted by the network to compute the
mean, we approximate the weights for a path to be proportional to its mixture probability distribution
function evaluated at itself, i.e. wi ∝ hMix(ẑi).

3.3 TRAINING WITH CROSS-TASK CONSISTENCY LOSS

The above framework can be further augmented with “cross-task consistency constraints”Zamir
et al. (2020), to ensure that predictions from the different paths are in cross-task agreement. While
this is not a fundamentally required step for the proposed method, it yields better accuracy especially
in fine-grained regions as demonstrated in the Experiments section. Following (Zamir et al. (2020)),
we consider a set of perceptual loss networks on the outputs of gj . This corresponds to minimizing
an `1 error between the predictions obtained by the model and those from the ground truth in the
perceptual domain. In a probabilistic setting, such as ours, consistency training can be done by
minimizing the symmetric KL divergence between the predicted distribution and the distribution
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obtained from the ground truth in the perceptual domain:

Lgj ,consistency = KL(h(z|gjk(ẑj , ŝj)||h(z|gjk(zj ,−∞)))

+KL(h(z|gjk(zj ,−∞))||h(z|gjk(ẑj , ŝj)),
(4)

where [ẑjk, ŝjk] = gjk(ẑj , ŝj) is the mapped output of gj , i.e. [ẑj , ŝj ], to a perceptual domain Pk.
This can be performed for several perceptual domains for more effective cross-task consistency.

As consistency training in our setting requires a mapping of probabilistic input onto perceptual
domains, this may limit the usage of existing pre-trained networks with point estimates trained on
large datasets, e.g. ResNet (He et al. (2016)) model trained on ImageNet (Deng et al. (2009)). Hence
an alternative approach would be to pass only the predicted mean, i.e. ẑj , to the perceptual domain
with a point estimate network penalizing `1 error, while keeping the NLL loss for the direct path gj
to supervise predicted uncertainty.

4 EXPERIMENTS
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X → Yemboss → ZnormalX → Znormal X → Ywav → ZnormalX → Yedge2d → ZnormalX → Ygrey → Znormal X → Z(re)shading X → Yedge2d → Z(re)shadingX → Ygrey → Z(re)shadingX → Yemboss → Z(re)shading X → Ywav → Z(re)shading

X defocused X glass blur

Figure 3: How does our method work? Each network receives different information for making a pre-
diction, due to going through different middle domains. Given a defocused image (left), the 2D edges extracted
from it was the least affected by the distortion, and returned a prediction with the lowest overall uncertainty,
which is reflected in the weights. Similarly, for an image with glass blur (right), the method successfully dis-
regards the degraded output from the emboss path for the final prediction. The quality of the final prediction
depends on the following elements: 1. At least one middle domain is robust against the encountered distortion
- the proposed inverse variance merging obtains significantly better results than learning from the RGB directly
(leftmost column of each example). 2. The uncertainty estimates are well correlated with error, allowing us to
select regions from the best performing path - a uniform average (first row) of path predictions does not take
into account the uncertainties and results in worse predictions.

We demonstrate here that our method is robust to natural and synthetic distribution shifts compared
to several baselines over different datasets and target domains.

Training dataset: We use Taskonomy (Zamir et al. (2018)) as our training dataset which includes 4
million real images of indoor scenes with multiple annotations for each image. For the experiments,
we employed the RGB and the following target domains from the dataset: surface normals, depth
(zbuffer), and reshading. From the RGB images we extracted 2D edges, greyscale, embossed, and
wavelet images as middle domains. All these middle domains are self-supervised as they need no
supervision and can be computed programmatically extracted. All the results are reported on the test
set.

Evaluation datasets: Our goal is to have test data that has a distribution shift from the training data
to evaluate the robustness of our setup. Thus, the following datasets are used:

Common corruptions (Hendrycks & Dietterich (2019)): We apply the most relevant set of corrup-
tions on the test set of Taskonomy. They include all corruptions with the exception of weather,
and elastic transform, motion and zoom blur, as they change the geometry of the scene, and the
two corruptions that were used for sigma training (Gaussian noise and blur). Visualizations of the
distortions used, for all levels of severity are shown in Fig. 7 in the Appendix for a sample test
image.
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Figure 4: Qualitative results under synthetic and natural distribution shifts for normal, reshading,
and depth. The first four rows show the predictions from a query image from the Taskonomy test set under
no distortion and increasing speckle noise. Our method degrades less than the other baselines, demonstrating
the effectiveness of using different cues to obtain a robust prediction. The last three rows shows the results
from external queries (Zamir et al. (2020)). Again, our method demonstrates better generalization to images
considerably different from the training dataset. Notable improvements in the accuracy can be seen especially
in fine-grained regions.

Replica (Straub et al. (2019) consists of images from high quality 3D reconstructions of indoor
scenes. We test on 1227 images (no training).

Training details All networks use a UNet architecture (Ronneberger et al. (2015)) and were trained
with AMSGrad (Reddi et al. (2019)). Networks in FYZ used a learning rate of 5× 10−4 and batch
size of 64. For the merging network, a learning rate of 3× 10−5 and batch size of 32 are used. The
upsampling blocks of all networks resizes the activation maps using bilinear interpolation.

For each target domain, we have five paths: one that learns the target domain without going through
an intermediate domain (i.e. direct) and the other four with intermediate domains: greyscale, em-
bossed, wavelet, and 2D edges. Each path has either no or one intermediate domain. Gaussian noise
and Gaussian blur distortions were used for the sigma and merging training.

Baselines We evaluate the following baselines.

Baseline UNet: It is a single model that maps from RGB to the target domain, trained with NLL
loss (see equation 1), i.e. it outputs both mean and standard deviation, without going through an
intermediate domain. This is the main baseline.
Multi-domain baseline UNet: It is a single model with RGB image and its middle domains as
inputs, trained with an NLL loss. Since this model is not forced to use different middle domains
as opposed to the proposed method, it would reveal if improvements were be attributed to learning
from multiple middle domains.
Blind guess is a single prediction that captures the overall statistics of the domain, i.e. it returns the
best guess of what the prediction should be independent of the input. Hence it shows what can be
learned from general dataset regularities (Further details are shown in the Appendix A.2).
Deep ensembles (Lakshminarayanan et al. (2017)) trains the same exact networks just with different
initializations. We use the same number of paths, i.e. ensemble components, here as in our setup.
Each path is weighted equally. This baseline would show if learning from different cues yields
diverse predictions that result in a stronger final estimator.
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Cross-task ensemble setups evaluated: We evaluate several variants of our method. In all the
variants, each path goes through a different middle domain to get the final prediction, with one path
being a direct prediction:

Uniform merging: Each path is weighted equally.
Inverse variance merging: Each path’s prediction is weighted inversely proportional to its variance.
Network merging: Each path’s prediction is weighted inversely proportional to its mixture proba-
bility density function as described in Sec 3.2.

We refer to Figure 3 to demonstrate how our method works. For a single distortion, we show each
path’s prediction, uncertainty, and the corresponding weights. For the defocused image in the left,
the X → Yemboss → Znormal path returned a degraded prediction, which is reflected in its high
uncertainty estimates. Similarly, X → Yedge2d → Znormal is less affected by the distortion and
have a lower uncertainty. As a result, the final prediction is weighted more towards it. We also show
the final prediction from a uniform average of each path. While it is better than learning from the
input image directly, i.e. X → Znormal, using the uncertainty estimates as weights result in a more
accurate prediction. Similar observations can be made for the glass blurred image in the right, where
the method learned weights in a way that the degraded path is not used in the final prediction.

There are two key elements to the effectiveness of our method, the first being that with a diverse
set of middle domains, it is more likely that one of them is less affected by distortions, and returns
an accurate prediction. The second is that the error of the prediction well correlates with its cor-
responding uncertainty estimates, i.e. the uncertainty is low in the region of the image where the
prediction is accurate. This allows us to use these uncertainty estimates as a signal to have a final
prediction with parts of the image taken from different paths.
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Figure 5: Benefits of ensembling with multiple middle domains shown on a sample image from the
Replica dataset for 10 distortions, shift intensity 3. Our method is resistant to distortions compared to the
baselines and provides better accuracy especially in the fine-grained regions. Best seen on screen.
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Figure 6: Quantitative results: Average `1 loss over 11 unseen distortions. This does not include
the 2 distortions used during training and shows the performance for unseen distortions. Error bars correspond
to the bootstrapped standard error. The losses are computed over two buildings of the Taskonomy test set.
The proposed ensembling approaches are more robust against shifts with increasing intensities compared to the
baselines.

Figures 4 and 5 show the qualitative results of our method against the baselines. Our method gen-
eralizes better to unseen distortion and query images markedly different from those seen during
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training. Performance in various distortions is demonstrated further in Figure 5 for the surface nor-
mals predictions of a sample image from Replica dataset. It can be seen that the proposed method
consistently outperforms the baselines and provides more accurate predictions especially in fine-
grained regions. This is further supported by quantitative results in Figure 6 where the `1 error over
these distortions are lower for the proposed ensembles compared to the baselines in all three target
domains and shift intensities. Losses for individual distortions are shown in Appendix A.1.

Taskonomy Replica
Depth Reshade Normal Depth Reshade Normal

Method Perceptual err. Perceptual err. Perceptual err. Perceptual err. Perceptual err. Perceptual err.
Reshade Normal Direct Depth Normal Direct Reshade Depth Direct Reshade Normal Direct Depth Normal Direct Reshade Depth Direct

Blind guess 25.517 21.232 7.951 9.068 19.939 21.639 31.529 5.123 16.169 21.001 22.397 5.307 4.778 16.460 16.986 28.424 3.390 15.012
Baseline UNet 9.227 8.933 2.187 2.829 6.379 6.807 19.376 4.587 4.590 11.133 7.608 2.517 2.252 5.731 8.867 18.211 3.298 4.413
Multi-domain 10.114 9.708 2.390 2.938 6.373 7.067 18.915 4.498 4.685 11.174 8.798 2.089 2.351 5.792 9.201 17.316 3.023 4.727

Deep ensembles 8.941 8.267 2.209 2.773 6.009 6.459 20.141 4.807 4.463 9.690 7.080 1.921 2.041 5.557 8.558 20.015 3.765 4.353
Uniform merging 8.342 7.294 2.398 2.583 5.658 6.776 8.535 2.334 4.799 8.718 5.796 2.034 2.092 5.224 8.825 9.383 2.183 4.436

Ours (Inv. var. merging) 8.453 7.775 2.321 2.487 5.649 6.650 8.370 1.982 4.711 9.494 6.710 2.054 2.209 5.225 8.718 8.768 1.597 4.227
Ours (Network merging) 8.247 7.451 2.222 2.535 5.660 6.716 8.233 1.860 4.699 9.078 6.286 2.015 2.150 5.221 8.782 8.566 1.369 4.199

Table 1: Quantitative evaluation on undistorted Taskonomy and Replica datasets. Results are
reported for depth, reshading, and normal using direct and perceptual error metrics. The perceptual metrics
evaluate the target prediction in another domain. `1 losses are reported, multiplied by 100 for readability. Our
proposed method outperforms on the perceptual metrics while being comparable in the direct metrics, showing
that the performance does not decrease on undistorted data while being robust against distribution shifts.

In Table 1, we report quantitative evaluations on the undistorted Taskonomy and Replica datasets
for the target domains depth, reshading, and surface normals. The proposed inverse variance and
network merging methods yield similar performance in the direct `1 error with other baselines,
while also being more robust against distribution shifts as shown in Fig. 6. This demonstrates the
robustness on out-of-distribution data did not come at the cost of degraded performance for in-
distribution data. Besides the direct metric, we also report perceptual errors to evaluate the same
prediction in a different representation space (e.g. depth→ normal) to give a non-uniform attention
to pixel properties (Zamir et al. (2020)). Our cross-task consistent ensembles yield significantly
lower perceptual errors compared to the baselines. Note that the network merging results is slightly
better than that of inverse variance merging (see Table 1 and Figure 6). As the latter does not require
a network to attain the weights, thus, it can be used if there are computational constraints.

5 CONCLUSION

We presented a general framework for making predictions robust against distribution shifts, based
on creating a diverse ensemble of predictions via various (self-supervised) middle domains. Experi-
ments demonstrated that this approach indeed leads to more robust predictions compared to standard
learning as well as conventional ensembles. We briefly discuss some of the limitations:

Uncertainty under distribution shift: Our method relies on having reasonable uncertainty estimates
in presense of distribution shifts. While we observe sigma training to be helpful for this purpose,
the effectiveness of our method expands with better uncertainty estimation techniques.
Multi-modal distributions: We modeled our individual path outputs with single-modal distributions
and considered multi-modal distributions only at the merging step. Allowing for multi-modality in
each path’s output may further help with ambiguous data points.
Independent channels: Another assumption made for convenience was that the channels of the
multi-channel outputs, e.g. surface normals, are independent. Modelling such covariances may
return better uncertainty estimates.
Fixed set of middle domains and sigma training corruptions: In our experiments, we adopted a
fixed set of (self-supervised) middle domains. The final performance is expected to improve with
including more middle domains, as that makes it more likely to have an invariance that holds up for
an unknown distribution shift. Similarly, learning such middle domains with the downstream ob-
jective of robustness appears to be a worthwhile future direction. Also, the selection of corruptions
for sigma training was not optimized. Finding/learning corruptions that transfers better to other
unseen corruptions can provide uncertainties with better generalization.
Low-dimensional task: Our experiments are on pixel-wise prediction tasks. Investigation of ro-
bustness for categorical tasks, such as classification, requires further studies.
Adversarial robustness: We focused on corruptions with a non-adversarial nature in our experi-
ments. Also, the proposed multiple domain ensembling approach, in theory, could prevent learning
surface statistics of the data (Jo & Bengio (2017)) compared to the methods using the input domain
only and entirely. These angles require further investigations.
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Amir Zamir, Alexander Sax, Teresa Yeo, Oğuzhan Kar, Nikhil Cheerla, Rohan Suri, Zhangjie Cao,
Jitendra Malik, and Leonidas Guibas. Robust learning through cross-task consistency. arXiv
preprint arXiv:2006.04096, 2020.

Amir R Zamir, Alexander Sax, William Shen, Leonidas J Guibas, Jitendra Malik, and Silvio
Savarese. Taskonomy: Disentangling task transfer learning. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 3712–3722, 2018.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference
on Computer Vision, pp. 2223–2232, 2017.

A APPENDIX

A.1 LOSS CURVES FOR DISTORTIONS

Figures 8 show the `1 errors of our method and several baselines for each distortion, for normal,
reshading and depth targets. The proposed inverse variance and network merging approaches con-
sistently outperform baselines.

A.2 BLIND GUESS

This output is computed using the following formula:

g∗ = min
g
LNLL (5)

The resulting “blind guess” minimizes expected NLL loss on the training dataset. Hence it is a
statistically informed guess which does not look at the input for predicting the label. A visualization
of these guesses for depth, normal, and reshading are provided in Figure 9.
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Figure 7: Visuals of common corruptions used for a single image sample.
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Figure 8: Loss for each distortion for our method against several baselines.
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(a) Depth µ (b) Normals µ (c) Reshading µ

(d) Depth σ (e) Normals σ (f) Reshading σ

Figure 9: Statistically informed guesses (“Blind Guess”) on the Taskonomy dataset for depth, nor-
mal, and reshading tasks. Top row shows the predicted mean, µ, while the bottom row corresponds
to the predicted standard deviation, σ, for these tasks. The blind guess predictions minimize the
expected NLL loss on the training dataset.
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