
Published as a conference paper at ICLR 2023

FINDE: NEURAL DIFFERENTIAL EQUATIONS FOR
FINDING AND PRESERVING INVARIANT QUANTITIES

Takashi Matsubara
Osaka University
Toyonaka, Osaka, 560–8531 Japan
matsubara@sys.es.osaka-u.ac.jp

Takaharu Yaguchi
Kobe University
Kobe, Hyogo, 657–8501 Japan
yaguchi@pearl.kobe-u.ac.jp

ABSTRACT

Many real-world dynamical systems are associated with first integrals (a.k.a. in-
variant quantities), which are quantities that remain unchanged over time. The
discovery and understanding of first integrals are fundamental and important top-
ics both in the natural sciences and in industrial applications. First integrals arise
from the conservation laws of system energy, momentum, and mass, and from
constraints on states; these are typically related to specific geometric structures of
the governing equations. Existing neural networks designed to ensure such first
integrals have shown excellent accuracy in modeling from data. However, these
models incorporate the underlying structures, and in most situations where neural
networks learn unknown systems, these structures are also unknown. This limita-
tion needs to be overcome for scientific discovery and modeling of unknown sys-
tems. To this end, we propose first integral-preserving neural differential equation
(FINDE). By leveraging the projection method and the discrete gradient method,
FINDE finds and preserves first integrals from data, even in the absence of prior
knowledge about underlying structures. Experimental results demonstrate that
FINDE can predict future states of target systems much longer and find various
quantities consistent with well-known first integrals in a unified manner.

1 INTRODUCTION

Modeling and predicting real-world systems are fundamental aspects of understanding the world in
natural science and improving computer simulations in industry. Target systems include chemical
dynamics for discovering new drugs (Raff et al., 2012), climate dynamics for climate change predic-
tion and weather forecasting (Rasp et al., 2020; Trigo & Palutikof, 1999), and physical dynamics of
vehicles and robots for optimal control (Nelles, 2001). In addition to image processing and natural
language processing (Devlin et al., 2018; He et al., 2016), neural networks have been actively stud-
ied for modeling dynamical systems (Nelles, 2001). Their history dates back to at least the 1990s
(see Chen et al. (1990); Clouse et al. (1997); Levin & Narendra (1995); Narendra & Parthasarathy
(1990); Sjöberg et al. (1994); Wang & Lin (1998) for examples). Recently, two notable but dis-
tinct families have been proposed. Physics-informed neural networks (PINNs) directly solve partial
differential equations (PDEs) given as symbolic equations (Raissi et al., 2019). Neural ordinary dif-
ferential equations (NODEs) learn ordinary differential equations (ODEs) from observed data and
solve them using numerical integrators (Chen et al., 2018). Our focus this time is on NODEs.

Most real-world systems are associated with first integrals (a.k.a. invariant quantities), which are
quantities that remain unchanged over time (Hairer et al., 2006). First integrals arise from intrinsic
geometric structures of systems and are sometimes more important than superficial dynamics in
understanding systems (see Appendix A for details). Many previous studies have extended NODEs
by incorporating prior knowledge about first integrals and attempted to accurately learn a target
system. Greydanus et al. (2019) proposed the Hamiltonian neural network (HNN), which employs
a neural network to approximate Hamilton’s equation, thereby conserving the system energy called
the Hamiltonian. Finzi et al. (2020a) proposed neural network architectures that conserve linear
and angular momenta by utilizing the graph structure. Finzi et al. (2020b) also extended an HNN
to a system with holonomic constraints, which led to first integrals such as a pendulum length.

1

Published as a conference paper at ICLR 2023

Table 1: Comparison of Related Studies on Preservation of First Integrals.

Energy Monentum
Mass Constraint

Learning invariants

Exact conservation

NODE (Chen et al., 2018)
HNN (Greydanus et al., 2019) ✓
LieConv (Finzi et al., 2020a) ✓ ✓
DGNet (Matsubara et al., 2020) ✓ ✓ ✓
CHNN (Finzi et al., 2020b) ✓ ✓
NPM (Yang et al., 2020) ✓ ✓ ✓

Continuous FINDE (proposed) ✓ ✓ ✓ ✓ ✓
Discrete FINDE (proposed) ✓ ✓ ✓ ✓ ✓ ✓

Matsubara et al. (2020) proposed a model that preserves the total mass of a discretized PDE. These
studies have demonstrated that the more prior knowledge a neural network has about first integrals,
the more accurate their dynamics prediction. See Table 1 for comparisons.

Previous studies have mainly attempted to preserve known first integrals for better computer simula-
tions. However, in situations where a neural network learns a target system, it is naturally expected
that first integrals associated with the target system are unknown, and it is not clear which of the
above methods are available. Therefore, this study proposes first integral-preserving neural differ-
ential equation (FINDE) to find and preserve unknown first integrals from data in a unified manner.
FINDE has two versions for continuous and discrete time; these have the following advantages.

Finding First Integrals Many studies have designed architectures or operations of neural net-
works to model continuous-time dynamics with known types of first integrals. However, the under-
lying geometric structures of a target system are generally unknown in practice. In contrast, FINDE
finds various types of first integrals from data in a unified manner and preserves them in predictions.
For example, from an energy-dissipating system, FINDE can find first integrals other than energy.
FINDE can find not only known first integrals, but also unknown ones. Hence, FINDE can lead to
scientific discoveries.

Combination with Known First Integrals FINDE can be combined with previously proposed
neural networks designed to preserve known first integrals, such as HNNs. In addition, when some
first integrals are known in advance, they can also be incorporated into FINDE to avoid rediscovery.
Therefore, FINDE is available in various situations.

Exact Preservation of First Integrals The first integral associated with a continuous-time system
is destroyed after the dynamics is temporally discretized for computer simulations. By leveraging
the discrete gradient, the discrete-time version of FINDE preserves first integrals exactly (up to
rounding errors) in discrete time and further improves the prediction performance.

2 BACKGROUND AND RELATED WORK

First Integrals Let us consider a time-invariant differential system d
dtu = f(u) on an N -

dimensional manifold M, where u denotes the system state and f : M → TuM represents a
vector field on M. For simplicity, we suppose the manifold M to be a Euclidean space RN .
Definition 1 (first integral). A quantity V : M → R is referred to as a first integral of a system
d
dtu = f(u) if it remains constant along with any solution u(t), i.e., d

dtV (u) = 0.

If a differential system d
dtu = f(u) has K functionally independent first integrals V1, . . . , VK , the

solution u(t) given an initial value u0 stays at the (N −K)-dimensional submanifold
M′ = {u ∈ M : V1(u) = V1(u0), . . . , VK(u) = VK(u0)}. (1)

The tangent space TuM′ ⊂ TuM of the submanifold M′ ⊂ M at a point u is the orthogonal
complement to the space spanned by the gradients ∇Vk(u) of the first integrals Vk for k = 1, . . . ,K;

TuM′ = {w ∈ TuM : ∇Vk(u)⊤w = 0 for k = 1, . . . ,K}. (2)
Conversely, if the time-derivative f at point u is on the tangent space TuM′ for certain functions
Vk’s, the quantities Vk’s are first integrals of the system d

dtu = f(u); it holds that d
dtVk(u) =

∇Vk(u)⊤ d
dtu = ∇Vk(u)⊤f(u) = 0.

2

Published as a conference paper at ICLR 2023

One of the most well-known first integrals is the Hamiltonian H , which represents the system en-
ergy of a Hamiltonian system. Noether’s theorem states that a continuous symmetry of a system
leads to a conservation law (and hence a first integral) (Hairer et al., 2006). A Hamiltonian system
is symmetric to translation in time, and the corresponding first integral is the Hamiltonian. Sym-
metries to translation and rotation in space lead to the conservation of linear and angular momenta.
However, not all first integrals are related to symmetries. A pendulum can be expressed in Cartesian
coordinates, and then the rod length constrains the mass position. This type of constraint is called a
holonomic constraint and leads to first integrals. Models of disease spreads and chemical reactions
have the total mass (population) as the first integral. Also for a system described by a PDE, the total
mass is sometimes a first integral (Furihata & Matsuo, 2010). See Appendix A for the classes of
dynamics, their geometric structures, and related studies to find or preserve first integrals.

First Integrals in Numerical Analysis For computer simulations, differential systems are dis-
cretized in time and solved by numerical integration, causing numerical errors (which is composed
of temporal discretization errors and rounding errors). Moreover, the geometric structures of the
system are often destroyed, and the corresponding first integrals are no longer preserved. A com-
mon remedy is a symplectic integrator, which preserves the symplectic structure and accurately
integrates Hamiltonian systems (Hairer et al., 2006). However, the Ge–Marsden theorem states that
a symplectic integrator only approximately conserves the Hamiltonian (Zhong & Marsden, 1988).
Hence, many numerical schemes have also been investigated to preserve first integrals exactly, while
these schemes cannot preserve the symplectic structure. Some examples are shown below.

Let the superscript s ∈ {0, 1, . . . , S} denote the state us or time ts at the s-th time step, and
∆ts = ts+1− ts denote a time-step size. A projection method uses a numerical integrator to predict
the next state ũs+1 from the current state us and then projects the state ũs+1 onto the submanifold
M′ (Gear, 1986; Hairer et al., 2006, Section IV.4). The projected state us+1 preserves the first
integrals Vk. In particular, the projected state us+1 is obtained by solving the optimization problem

arg min
us+1

∥us+1 − ũs+1∥ subject to Vk(us+1)− Vk(u
s) = 0 for k = 1, . . . ,K. (3)

The local coordinate method defines a coordinate system on the neighborhood of the current state
us and integrates a differential equation on it (Potra & Yen, 1991; Hairer et al., 2006, Section IV.5).
The discrete gradient method defines a discrete analogue to a differential system and integrates
it in discrete time, thereby preserving the Hamiltonian exactly (up to rounding errors) in discrete
time (Furihata & Matsuo, 2010; Gonzalez, 1996; Hong et al., 2011).

Neural Networks to Preserve First Integrals NODE defines the right-hand side f of a differen-
tial system d

dtu = f(u) using a neural network in the most general way with no associated first
integrals (Chen et al., 2018). NODE is a universal approximator to ODEs and can approximate any
ODE with arbitrary accuracy if there is an infinite amount of training data (Teshima et al., 2020). In
practice, the amount of training data is limited, and prior knowledge about the target system is help-
ful for learning (see Sannai et al. (2021) for the case with convolutional neural networks (CNNs)).
HNN (Greydanus et al., 2019) assumes the target system to be a Hamiltonian system in the canon-
ical form, thereby guaranteeing various properties of Hamiltonian systems by definition, including
the conservation of energy and preservation of the symplectic structure in continuous time (Hairer
et al., 2006). Some studies have employed a symplectic integrator for HNN to preserve the energy
and symplectic structure with smaller numerical errors (Chen et al., 2020). LieConv and EMLP-
HNN employ neural network architectures with translational and rotational symmetries to preserve
momenta (Finzi et al., 2020a; 2021). CHNN incorporates a known holonomic constraint in the
dynamics (Finzi et al., 2020b). Deep conservation extracts latent dynamics of a PDE system and
preserves a quantity of interest by forcing its flux to be zero (Lee & Carlberg, 2021). HNN++ also
guarantees the conservation of mass in PDE systems by using a coefficient matrix derived from dif-
ferential operators (Matsubara et al., 2020). These methods preserve known types of first integrals
and suffer from temporal discretization errors. In contrast, FINDE learns any types of first integrals
from data and preserves them even after temporal discretization.

The neural projection method (NPM) learns fixed holonomic constraints using the projection (and
inequality constraints) (Yang et al., 2020). DGNet employed discrete gradient methods to guar-
antee the energy conservation in Hamiltonian systems (and the energy dissipation in friction sys-
tems) (Matsubara et al., 2020). While these methods preserve the aforementioned first integrals
exactly in discrete time, their formulations are not available for other first integrals.

3

Published as a conference paper at ICLR 2023

Several studies have proposed neural networks to learn Lyapunov functions, which are expected
to be non-increasing over time, in contrast to first integrals (Manek & Kolter, 2019; Takeishi &
Kawahara, 2020). If the state moves in the direction of increasing the function, it is projected onto
or moved inside the contour line of the Lyapunov function. This concept is similar to that of the
continuous-time version of FINDE but focuses on a single non-increasing quantity in continuous
time; FINDE preserves multiple quantities in both continuous and discrete time.

3 FIRST INTEGRAL-PRESERVING NEURAL DIFFERENTIAL EQUATION

We suppose that a target system has at least K unknown functionally independent first integrals.
When a neural network learns the dynamics of the target system, it is not guaranteed to learn these
first integrals. We suppose that a certain neural network f̂ for modeling the target dynamics is given,
and in addition to this model f̂ , we introduce a neural network that outputs a K-dimensional vector
V (u) = (V1(u) V2(u) . . . VK(u))⊤. Each element is expected to learn one of the first integrals as
Vk : RN → R for k = 1, . . . ,K. Then, the submanifold M′ is defined as in Eq. (1).

3.1 CONTINUOUS FINDE: TIME-DERIVATIVE PROJECTION METHOD

We propose a time-derivative projection method called continuous FINDE (cFINDE). The cFINDE
projects the time-derivative onto the tangent space TuM′. Roughly speaking, the cFINDE projects
the dynamics on the space of the directions in which the first integrals do not change. In this way,
the method can learn dynamics while preserving first integrals V , thereby finding unknown first
integrals from data.

We refer to the neural network that defines the time-derivative f̂ : RN → RN as the base model.
Applying the method of Lagrange multipliers to the projection method in Eq. (3), and taking the
limit as the time-step size approaches zero, we have

d
dtu = f(u), f(u) = f̂(u)−M(u)⊤λ(u), d

dtV (u) = 0, (4)

where M = ∂V
∂u and λ ∈ RN is the Lagrange multiplier (see Appendix B.1 for detailed derivation).

We transform the second equation to obtain

0 = d
dtV (u(t)) = ∂V

∂u
d
dtu =M(u)f(u) =M(u)(f̂(u)−M(u)⊤λ(u)), (5)

from which we obtain the Lagrange multiplier λ(u) = (M(u)M(u)⊤)−1M(u)f̂(u). By elimi-
nating λ(u), we define the cFINDE as

d
dtu = f(u) = (I − Y (u))f̂(u) for Y (u) =M(u)⊤(M(u)M(u)⊤)−1M(u). (6)

Theorem 1 (continuous-time first integral preservation). The cFINDE d
dtu = f(u) preserves all

first integrals Vk for k = 1, . . . ,K in continuous time, that is, d
dtVk = 0.

See Appendix B.1 for proof. The base model f̂ can be a NODE, an HNN, or any other model
depending on the available prior knowledge. Additionally, if a first integral is already known, it can
be directly used as one of the first integrals Vk instead of being found by the neural network. Note
that even though the base model f̂ is an HNN, due to the projection, the cFINDE f is no longer a
Hamiltonian system in the strict sense.

Compared to the base model f̂ , the cFINDE requires the additional computation of the neural net-
work V , several matrix multiplications, and an inverse operation. The inverse operation has a com-
putational cost of O(K3), which is not costly if the number K of first integrals is small. Many
previous models also need the inverse operation to satisfy the constraints and geometric structures,
such as Lagrangian neural network (LNN) (Cranmer et al., 2020), neural symplectic form (Chen
et al., 2021), and CHNN (Finzi et al., 2020b).

3.2 DISCRETE FINDE: DISCRETE-TIME DERIVATIVE PROJECTION METHOD

The cFINDE is still an ODE and hence needs to be solved using a numerical integrator, which causes
the temporal discretization errors in the first integrals. In order to eliminate these errors, it is neces-
sary to constrain the destination (i.e., finite difference) rather than the direction (i.e., time-derivative).

4

Published as a conference paper at ICLR 2023

For this purpose, we propose discrete FINDE (dFINDE) by employing discrete gradients to define
discrete tangent spaces, which are needed to constraint the state variables on the submanifold M′.

A discrete gradient ∇V is a discrete analogue to a gradient ∇V (Furihata & Matsuo, 2010; Gonza-
lez, 1996; Hong et al., 2011). Recall that a gradient ∇V of a function V : RN → R can be regarded
as a function RN → RN that satisfies the chain rule d

dtV (u) = ∇V (u)⊤ d
dtu. Analogously, a

discrete gradient ∇ is defined as follows:
Definition 2 (discrete gradient). A discrete gradient ∇V of a function V : RN → R is a function
RN × RN → RN that satisfies V (v)− V (u) = ∇V (v,u)⊤(v − u) and ∇V (u,u) = ∇V (u).

The first condition is a discrete analogue to the chain rule when replacing the time-derivatives d
dtV

and d
dtu with finite differences (V (v)− V (u)) and (v−u), respectively, and the second condition

ensures consistency with the ordinary gradient ∇V . A discrete gradient ∇V is not uniquely deter-
mined and has been obtained manually. Recently, the automatic discrete differentiation algorithm
(ADDA) has been proposed by Matsubara et al. (2020), which obtains a discrete gradient of a neural
network in a manner similar to the automatic differentiation algorithm (Abadi et al., 2016; Paszke
et al., 2017). The discrete gradient is defined in discrete time; hence, the prediction using the discrete
gradient is free from temporal discretization errors. See Appendix B.2 and the references Furihata
& Matsuo (2010); Matsubara et al. (2020) for more details.

Following Christiansen et al. (2011); Dahlby et al. (2011), we introduce a discrete analogue to the
tangent space TuM′ called the discrete tangent space T(v,u)M′. In particular, for a pair of points
(v,u) ∈ M′, the discrete tangent space is defined as

T(v,u)M′ = {w ∈ RN : ∇Vk(v,u)⊤w = 0 for k = 1, . . . ,K}. (7)

If the finite difference (us+1 − us) between the predicted and current states is on the discrete
tangent space T(us+1,us)M′, the first integrals Vk are preserved because Vk(us+1) − Vk(u

s) =

∇Vk(us+1,us)⊤(us+1 − us) = 0. Note that similar concepts defined in different ways are also
referred to as discrete tangent spaces (Cuell & Patrick, 2009; Dehmamy et al., 2021).

We suppose that a neural network (e.g., NODE) f̂ defines an ODE and a numerical integrator pre-
dicts the next state ũs+1 from a given state us. We call this process a discrete-time base model ψ̂,
which satisfies ũs+1−us

∆ts = ψ̂(us; ∆ts). Subsequently, we consider the model
us+1−us

∆ts = ψ(us+1,us; ∆ts),

ψ(us+1,us; ∆ts) = ψ̂(us; ∆ts)−M(us+1,us)⊤λ(us+1,us), V (us+1)− V (us) = 0,
(8)

where M(us+1,us) = (∇V1(us+1,us) . . . ∇VK(us+1,us))⊤. As shown in Appendix B.1, this
formulation is also derived from the projection method in Eq. (3). Using the chain rule of the discrete
gradient,

0 = V (us+1)−V (us)
∆ts =M(us+1,us)u

s+1−us

∆ts =M(us+1,us)ψ(us+1,us; ∆ts), (9)
Substituting this into Eq. (8) and eliminating the Lagrange multiplier λ, we define the dFINDE as
us+1−us

∆ts = ψ(us+1,us; ∆ts) = (I−Y (us+1,us))ψ̂(us; ∆ts) for Y =M
⊤
(M M

⊤
)−1M, (10)

where we have abbreviated M(us+1,us) and Y (us+1,us) to M and Y , respectively.

Theorem 2 (discrete-time first integral preservation). The dFINDE us+1−us

∆ts = ψ(us+1,us; ∆ts)

preserves all first integrals Vk for k = 1, . . . ,K in discrete time, that is, Vk(us+1)− Vk(u
s) = 0.

See Appendix B.1 for proof. Intuitively, dFINDE projects the finite difference (discrete-time deriva-
tive) ψ̂ onto the discrete tangent space T(us+1,us)M′ after the numerical integration for each step,
whereas cFINDE projects the time-derivative f̂ onto the tangent space TuM′ at every substep inside
a numerical integrator. In the discrete-time base model ψ̂, the ODE f̂ can be defined by any model,
such as NODE or HNN, and the numerical integrator can be implemented by any method, such as
the Runge–Kutta method or the leapfrog integrator. The projection method in Eq. (3), the method
in Eq. (8), and the dFINDE in Eq (10) are implicit methods and hence relatively computationally
expensive. However, only the dFINDE can be trained non-iteratively by standard backpropagation
algorithms. As explained in Appendix B.3, this is because the next state us+1 is given during train-
ing and the ADDA can explicitly obtain the discrete gradient and its computational graph.

5

Published as a conference paper at ICLR 2023

Table 2: Datasets, Dynamics, and First Integrals.

First Integrals

Dataset Dynamics (Structure) N Energy Momentum Mass Constraint

Two-body problem Canonical Hamiltonian 8 ✓ ✓
Discretized KdV equation Non-canonical Hamiltonian 50 ✓ ✓
Double pendulum Poisson 8 ✓ ✓
FitzHugh–Nagumo model Dirac 4 ✓

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Target Systems We evaluated FINDE and base models using datasets associated with first in-
tegrals; these are summarized in Table 2. A gravitational two-body problem (2-body) on a 2-
dimensional configuration space is a typical Hamiltonian system in the canonical form. In addition
to the total energy, the system has first integrals related to symmetries in space, namely, the linear
and angular momenta. The Korteweg–De Vries (KdV) equation is a PDE model of shallow water
waves. This equation is a Hamiltonian system in a non-canonical form and has the Hamiltonian,
total mass, and many other quantities as first integrals. We discretized the KdV equation in space,
obtaining a fifty-dimensional state u. A double pendulum (2-pend) is a Hamiltonian system in po-
lar coordinates. However, we transformed it to Cartesian coordinates; hence, it became a Poisson
system. The lengths of the two rods work as holonomic constraints and lead to four first integrals
in addition to the Hamiltonian. The FitzHugh–Nagumo model is a biological neuron model as an
electric circuit, which exhibits a rapid and transient change of voltage called a spike. As an electric
circuit, the currents through and voltages applied to the inductor and capacitor can be regarded as
system states, which are constrained by the circuit topology and Kirchhoff’s current and voltage
laws. Then, this system has a state of four elements and two first integrals. Because the resistor
dissipates the energy, the system is not a Poisson system, but a Dirac structure can be found (van
der Schaft & Jeltsema, 2014). We generated a time-series set of each dataset with different initial
conditions (hence, different values of first integrals). See Appendix C for more details.

Implementation We implemented the proposed FINDE and evaluated it under the following set-
tings. We implemented all codes by modifying the officially released codes of HNN (Greydanus
et al., 2019) 1 and DGNet (Matsubara et al., 2020)2. We used Python v. 3.8.12 with packages scipy
v. 1.7.3, pytorch v. 1.10.2, torchdiffeq v. 0.1.1, functorch v. 1.10 preview, and gplearn v. 0.4.2. We
used the Dormand–Prince method (dopri5) (Dormand & Prince, 1986) as the numerical integrator,
except in Section 4.2. All experiments were performed on a single NVIDIA A100.

Following HNN (Greydanus et al., 2019) and DGNet (Matsubara et al., 2020), we used fully-
connected neural networks with two hidden layers. The input was the state u, and the output repre-
sented the first integrals V for FINDE, time-derivative f̂ for NODE, or the HamiltonianH for HNN.
Each hidden layer had 200 units and preceded a hyperbolic tangent activation function. Each weight
matrix was initialized as an orthogonal matrix. For the KdV dataset, we used a 1-dimensional CNN,
wherein the kernel size of each layer was 3. The double pendulum is a second–order system, imply-
ing that the time-derivative d

dtq of the position q is known to be the velocity v. Hence, we treated
only the acceleration d

dtv as the output to learn in the 2-pend dataset. This assumption slightly
improved the absolute performances but did not change the relative trends.

As the loss function for the cFINDE, we used the mean squared error (MSE) between the ground
truth future state us+1

GT and the future state us+1
pred. predicted from the current step us

GT normalized
by the time-step size ∆ts; we named this the 1-step error. For the dFINDE, we used the MSE
between the left- and right-hand sides of Eq. (10) because the ground truth states us

GT and us+1
GT are

available during the training phase. The base model and FINDE were jointly trained using the Adam
optimizer (Kingma & Ba, 2015) with the parameters (β1, β2) = (0.9, 0.999) and a batch size of 200.

1https://github.com/greydanus/hamiltonian-nn
2https://github.com/tksmatsubara/discrete-autograd

6

https://github.com/greydanus/hamiltonian-nn
https://github.com/tksmatsubara/discrete-autograd

Published as a conference paper at ICLR 2023

The learning rate was initialized to 10−3 and decayed to zero with cosine annealing (Loshchilov &
Hutter, 2017). See Appendix B.3 and the enclosed source code for details about implementations.

Evaluation Metric We used the 1-step error as an evaluation metric, which is identical to the loss
function for the cFINDE, and displayed it in the scale ×10−9. The lower this indicator, the better, as
indicated by ↓. The MSEs of the state or system energy over a long period are misleading indicators,
as suggested in prior studies (Botev et al., 2021; Jin et al., 2020b; Vlachas et al., 2020). For example,
a periodic orbit that is correctly learned except for a slight difference in angular velocity would have
the same MSE as an orbit that never moves from its initial position. Instead, we used the valid
prediction time (VPT) (Botev et al., 2021; Jin et al., 2020b; Vlachas et al., 2020). VPT denotes the
time point s divided by the length S of the time-series at which the MSE of the predicted state us

pred.
first exceeds a given threshold θ in an initial value problem, that is,

V PT (upred.;uGT) =
1
S max{sf |MSE(us

pred.,u
s
GT) < θ for all s ≤ sf , 0 ≤ sf ≤ S}. (11)

The higher this indicator, the better, as indicated by ↑. To obtain VPTs, we normalized each element
of state to have the zero mean and unit variance in the training data and set θ to 0.01. For systems
with “spiking” behaviors, a small error in phase may be regarded as a significant error in the state;
for the FitzHugh–Nagumo model, we obtained the VPTs by allowing for a delay and advance of up
to 5 steps.

4.2 DEMONSTRATION OF FIRST INTEGRAL PRESERVATION

−1.0

0.0

1.0

st
a

te q

v

0 50step s

0.495

0.500

en
er

g
y

analytical

cFINDE

leapfrog

dFINDE

Figure 1: Integration of a
known mass-spring system by
the leapfrog integrator. (top)
States predicted by compari-
son methods. (bottom) Energy
calculated from the states pre-
dicted.

Before learning first integrals from data, we demonstrate that
dFINDE can preserve first integrals without temporal discretiza-
tion errors. We used a mass-spring system, which had the state
u = (q v)⊤, dynamics d

dtq = v and d
dtv = −q, and system energy

E(q, v) = 1
2 (q

2 + v2). Using an initial value of (1.0 0.0)⊤ and a
time-step size of ∆t = 0.2, we solved the initial value problem of
the true ODE using the leapfrog integrator with or without FINDE,
with the true system energy E as the first integral V . Notably, no
neural networks nor training were involved.

Figure 1 shows the results, along with the analytical solution. The
states predicted by comparison methods overlap and are apparently
identical. However, the energy obtained by the leapfrog integrator
fluctuates and the same is true for cFINDE. This is because the
leapfrog integrator and cFINDE suffer from temporal discretization errors in first integrals. In con-
trast, dFINDE preserves the energy accurately, the same as the analytical solution. This is because
dFINDE projects the state (q v)⊤ onto the discrete tangent space T(v,u)M′ at every step. Although a
smaller time-step size reduces temporal discretization errors, this result demonstrates the advantage
of dFINDE. See Appendix D.1 for the case with the Dormand-Prince integrator.

4.3 FINDING NON-HAMILTONIAN FIRST INTEGRALS OF HAMILTONIAN SYSTEMS

We evaluated cFINDE and dFINDE on learning from the 2-body dataset. We used HNN as the base
model f̂ . We found that cFINDE and dFINDE obtained better performances if it did not treat the
Hamiltonian H of the HNN as one of the first integrals Vk. The medians and standard deviations
of five trials are summarized in the leftmost column of Table 3. The cFINDE achieved better VPTs
than the original HNN with K = 1 to 2, and its performance was suddenly degraded with K = 3.
The dFINDE showed a similar trend with slightly better performances; there is a trade-off between
performance and computational cost. The HNN with either cFINDE or dFINDE found two first
integrals in addition to the Hamiltonian H of the HNN. Even though a two-body problem is a
Hamiltonian system that an HNN can learn, the prior knowledge that there exist first integrals other
than the Hamiltonian H can be a clue that enables better learning. Despite their better long-term
prediction performance, the HNN with either cFINDE or dFINDE yielded 1-step errors worse than
the HNN, indicating that the 1-step error is misleading as an evaluation criterion.

These example results are depicted in Fig. 2. In the absence of FINDE, the mass positions
(x1, y1) and (x2, y2) became inaccurate in a short time and the center-of-gravity position (xc, yc) =

7

Published as a conference paper at ICLR 2023

Table 3: Results of cFINDE and dFINDE.

2-body + HNN KdV 2-pend FitzHugh–Nagumo

Model K 1-step↓ VPT↑ 1-step↓ VPT↑ 1-step↓ VPT↑ 1-step↓ VPT↑

base model – 5.17 ±0.570 0.362 ±0.026 5.59 ±0.300 0.339 ±0.038 0.82 ±0.020 0.110 ±0.035 73.66 ±12.59 0.236 ±0.053

1 7.10 ±1.250 0.374 ±0.036 6.24 ±0.440 0.371 ±0.088 0.75 ±0.040 0.156 ±0.042 54.18 ±8.120 0.127 ±0.148
2 7.78 ±1.390 0.450 ±0.052 2.59 ±0.110 0.608 ±0.085 0.73 ±0.050 0.198 ±0.088 37.03 ±3.810 0.437 ±0.084

+ cFINDE 3 >103 0.147 ±0.146∗ 3.19 ±0.370 0.730 ±0.091 0.69 ±0.030 0.411 ±0.093 >106 0.007 ±0.007∗

4 >103 0.101 ±0.005 3.65 ±0.300 0.641 ±0.071 0.77 ±0.070 0.395 ±0.083 —
5 >103 0.080 ±0.014 4.68 ±0.430 0.601 ±0.069 0.80 ±0.070 0.585 ±0.097 —
6 >103 0.070 ±0.019 7.79 ±0.510 0.425 ±0.067 12.53 ±0.000 0.005 ±0.000∗ —

1 7.01 ±1.060 0.379 ±0.040 11.61 ±6.600 0.288 ±0.083 0.75 ±0.100 0.152 ±0.017 47.07 ±8.030 0.117 ±0.122
2 7.03 ±1.000 0.475 ±0.022 2.70 ±0.260 0.598 ±0.059 0.74 ±0.050 0.271 ±0.111 33.24 ±3.400 0.455 ±0.032

+ dFINDE 3 54.78 ±36.39 0.309 ±0.024 3.78 ±0.270 0.636 ±0.024 0.69 ±0.050 0.447 ±0.081 319.70 ±91.11 0.049 ±0.007

4 >103 0.102 ±0.015 3.48 ±0.320 0.780 ±0.059 0.71 ±0.030 0.454 ±0.060 —
5 >103 0.086 ±0.011∗ 5.26 ±0.150 0.718 ±0.038 0.86 ±0.090 0.591 ±0.087 —
6 >103 0.059 ±0.017 9.60 ±3.610 0.573 ±0.121 58.88 ±22.98 0.037 ±0.039 —

Notes: Standard deviation follows the ± symbol; underlined results are better than those of the base models;
bold font indicates best results; ∗ denotes trials that failed in training because of underflow of time-step size.

ground truth HNN +cFINDE

true (xc, yc)

(xc, yc)

(x1, y1)

(x2, y2)

Figure 2: Example results of 2-body dataset.
(left) Ground truth. (middle) HNN. (right) HNN
with cFINDE.

0 104
HNN

0

2

0 104
+cFINDE

0.0

0.5

x1, x2

y1, y2

xc

yc

Figure 3: Mean absolute errors for results of
2-body dataset. (left) HNN. (right) HNN with
cFINDE.

(x1+x2

2 , y1+y2

2) deviated rapidly. The HNN with cFINDE accurately predicted the state for a longer
period. Even after errors in the mass positions became non-negligible, errors in the center-of-gravity
position were still small. Figure 3 shows the absolute errors averaged over all trials, which demon-
strate how the trend changes with cFINDE. In both the x- and y-directions, the HNN without FINDE
produced errors in the center-of-gravity position xc (or yc), and those in the mass positions x1, x2
(or y1, y2) at a similar level. In contrast, with the cFINDE, errors in the center-of-gravity position
were much smaller than those in the mass positions, implying that errors in one mass position can-
celed out errors in the other. We performed a symbolic regression of first integrals V found by the
neural network. For K = 2, the found first integrals V were identical to the linear momenta in
the x- and y-directions up to affine transformation in most cases. See Appendix D.2 for detailed
results. Therefore, we conclude that FINDE not only had better prediction accuracy but also found
and preserved linear momenta (which are related to symmetries in space) more accurately despite
not having prior knowledge about symmetries.

4.4 FINDING FIRST INTEGRALS OF UNKNOWN SYSTEMS

It is often unclear whether a target system is a Hamiltonian system or not, but one can expect that it
has several first integrals. We evaluated cFINDE and dFINDE using NODE as the base model and
display the results in Table 3.

For the KdV dataset, the NODE with either cFINDE or dFINDE obtained improved VPTs for a wide
range of K. Figure 4 shows an example result. The prediction states were apparently similar. In the
absence of FINDE, the NODE increased all of its errors in proportion to time. With cFINDE, the
error in total mass increased at the point where the two solitons collided, but then returned to the
original level. Although the calculation is slightly inaccurate, the cFINDE learned to preserve the
total mass. The error in energy continued to increase for K = 2, but remained within a small range
for K = 3. These results suggest that the first or second quantity learned by the cFINDE was total

8

Published as a conference paper at ICLR 2023

Ground Truth
0

50

NODE
0

50

+cFINDEK=2
0

50

+cFINDEK=3
0

50

Truth

NODE

K= 2

K= 3

0 104
error in state

0

2

0 104
error in total mass

0.0

0.5

0 104
error in energy

0

5

10

−10

0

10

Figure 4: Example results of KdV dataset. (top) Predicted states. Red belts denote moving solitons.
(bottom) Mean absolute errors in states u, total mass

∑N
k=1 uk, and energy, from left to right.

Ground Truth NODE +cFINDE

Figure 5: Example results of 2-pend
dataset for 2,000 steps. (left) Ground
truth. (middle) NODE. (right) NODE
with cFINDE for K = 5.

−5

0

5

V
C

Truth NODE K = 1 K = 2

−2

0

2

V
L

0 2000

−1

0

1
I C

0 2000
−5

0

5

I L

Figure 6: Example results of FitzHugh–Nagumo
dataset. Each panel shows one of four states.

mass, the third quantity was system energy, and the remaining quantity may correspond to one of
the many first integrals of the KdV equation.

For the 2-pend dataset, the NODE with either cFINDE or dFINDE obtained improved VPTs with
K = 1 to 5. In addition to the system energy, the double pendulum has two holonomic constraints
on the position, which lead to two additional constraints involving the velocity (see Appendix C for
details). Thus, it is reasonable that the NODE with either cFINDE or dFINDE obtained the best VPT
forK = 5 first integrals and completely failed forK > 5 first integrals. As exemplified in Fig. 5, the
NODE without FINDE did not preserve the lengths of rods, making the states deviate gradually. See
Appendix D.3 for the case when actual constraints are known. For the FitzHugh–Nagumo dataset,
the NODE with either cFINDE or dFINDE obtained improved VPTs for K = 2. As exemplified in
Fig. 6, the ground truth state converged to a periodic orbit, and only the NODE with cFINDE for
K = 2 reproduced similar dynamics. Without FINDE, the state did not remain in a limited region.
For K = 1, the state converged to a wrong equilibrium; the sole quantity V1 may have attempted
and failed to learn both first integrals. We conclude that both cFINDE and dFINDE found all first
integrals of the 2-pend and FitzHugh–Nagumo datasets; K = 5 and K = 2, respectively.

5 CONCLUSION

This study proposed first integral-preserving neural differential equation (FINDE), which can find
and preserve any type of first integrals from data in a unified manner. FINDE projects the time
evolution onto the submanifold defined using the (discrete) gradients of first integrals represented by
a neural network. We experimentally demonstrated that FINDE found and preserved first integrals
that come from the energy and mass conservation laws, symmetries in space, and constraints, thereby
predicting the dynamics for far longer. FINDE is available even for an energy-dissipating system.
When FINDE obtains the best prediction accuracy with K = K ′, it suggests that the target system
has at least K ′ first integrals. Hence, FINDE has the potential to make scientific discoveries by
revealing geometric structures of dynamical systems. See Appendix D.4 for more discussions onK.

The numerical error tolerance 10−9 was negligible compared to the 1-step errors (which were 10−5

to 10−4 in absolute error). However, the dFINDE tended to obtain much better VPTs than the
cFINDE. This result suggests that a method leading to smaller numerical errors produces a model
with smaller modeling errors, as observed in previous works (Chen et al., 2020; Matsubara et al.,
2020). These results may form a new frontier for integrating numerical and modeling errors.

9

Published as a conference paper at ICLR 2023

REPRODUCIBILITY STATEMENT

See Section 4.1 for experimental settings. More detailed descriptions can be found in Appendix B.3
for training procedure and Appendix C for datasets. The authors have enclosed the source code for
generating the datasets and running the experiments as supplementary material.

ACKNOWLEDGEMENT

This study was partially supported by JST CREST (JPMJCR1914), JST PRESTO (JPMJPR21C7),
and JSPS KAKENHI (19K20344, 20K11693).

REFERENCES

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Rafal Jozefowicz, Yangqing Jia, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dan Mané, Mike Schuster, Rajat Monga, Sherry Moore, Derek Murray,
Chris Olah, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems. USENIX Symposium on Operating Systems Design and Implementation
(OSDI), 2016.

Ferran Alet, Dylan Doblar, Allan Zhou, Joshua Tenenbaum, Kenji Kawaguchi, and Chelsea Finn.
Noether Networks: Meta-Learning Useful Conserved Quantities. Advances in Neural Information
Processing Systems (NeurIPS), (NeurIPS):1–20, 2021.

David G. T. Barrett and Benoit Dherin. Implicit Gradient Regularization. In International Confer-
ence on Learning Representations (ICLR), 2021.

Aleksandar Botev, Andrew Jaegle, Peter Wirnsberger, Daniel Hennes, and Irina Higgins. Which
priors matter? Benchmarking models for learning latent dynamics. In Advances in Neural Infor-
mation Processing Systems (NeurIPS) Track on Datasets and Benchmarks, 2021.

Yuan Cao, Zhiying Fang, Yue Wu, Ding Xuan Zhou, and Quanquan Gu. Towards Understanding the
Spectral Bias of Deep Learning. International Joint Conference on Artificial Intelligence (IJCAI),
pp. 2205–2211, 2021.

Elena Celledoni, Andrea Leone, Davide Murari, and Brynjulf Owren. Learning Hamiltonians of
Constrained Mechanical Systems. arXiv, pp. 1–18, 2022.

S. Chen, S. A. Billings, and P. M. Grant. Non-linear system identification using neural networks.
International Journal of Control, 51(6):1191–1214, 1990.

Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, David Duvenaud, Ricky T. Q. Chen, Yulia
Rubanova, Jesse Bettencourt, and David Duvenaud. Neural Ordinary Differential Equations. In
Advances in Neural Information Processing Systems (NeurIPS), pp. 1–19, 2018.

Yuhan Chen, Takashi Matsubara, and Takaharu Yaguchi. Neural Symplectic Form : Learning Hamil-
tonian Equations on General Coordinate Systems. In Advances in Neural Information Processing
Systems (NeurIPS), 2021.

Zhengdao Chen, Jianyu Zhang, Martin Arjovsky, and Léon Bottou. Symplectic Recurrent Neural
Networks. In International Conference on Learning Representations (ICLR), pp. 1–23, 2020.

Snorre H. Christiansen, Hans Z. Munthe-Kaas, and Brynjulf Owren. Topics in structure-preserving
discretization. Acta Numerica, 20:1–119, 2011.

D S Clouse, C L Giles, B G Horne, and G W Cottrell. Time-delay neural networks: Representation
and induction of finite-state machines. IEEE Transactions on Neural Networks, 8(5):1065–70,
January 1997.

10

Published as a conference paper at ICLR 2023

Kevin L. Course, Trefor W. Evans, and Prasanth B. Nair. Weak form generalized Hamiltonian
learning. In Advances in Neural Information Processing Systems (NeurIPS), number NeurIPS,
2020.

Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter Battaglia, David Spergel, and Shirley Ho.
Lagrangian Neural Networks. In ICLR Deep Differential Equations Workshop, pp. 1–9, March
2020.

Charles Cuell and George W. Patrick. Geometric discrete analogues of tangent bundles and con-
strained Lagrangian systems. Journal of Geometry and Physics, 59(7):976–997, 2009.

Morten Dahlby, Brynjulf Owren, and Takaharu Yaguchi. Preserving multiple first integrals by dis-
crete gradients. Journal of Physics A: Mathematical and Theoretical, 44(30), 2011.

Nima Dehmamy, Robin Walters, Yanchen Liu, Dashun Wang, and Rose Yu. Automatic Symmetry
Discovery with Lie Algebra Convolutional Network. In Advances in Neural Information Process-
ing Systems (NeurIPS), number 2018, pp. 1–30, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. arXiv, pp. 1–15, October 2018.

J. R. Dormand and P. J. Prince. A reconsideration of some embedded Runge-Kutta formulae. Journal
of Computational and Applied Mathematics, 15(2):203–211, 1986.

Marc Finzi, Samuel Stanton, Pavel Izmailov, and Andrew Gordon Wilson. Generalizing Convolu-
tional Neural Networks for Equivariance to Lie Groups on Arbitrary Continuous Data. In Inter-
national Conference on Machine Learning (ICML), pp. 3146–3157, 2020a.

Marc Finzi, Ke Alexander Wang, and Andrew Gordon Wilson. Simplifying Hamiltonian and La-
grangian Neural Networks via Explicit Constraints. In Advances in Neural Information Process-
ing Systems (NeurIPS), 2020b.

Marc Finzi, Max Welling, and Andrew Gordon Wilson. A Practical Method for Constructing Equiv-
ariant Multilayer Perceptrons for Arbitrary Matrix Groups. In International Conference on Ma-
chine Learning (ICML), 2021.

K. Fukunaga and D.R. Olsen. An Algorithm for Finding Intrinsic Dimensionality of Data. IEEE
Transactions on Computers, C-20(2):176–183, February 1971.

Daisuke Furihata. A stable and conservative finite difference scheme for the Cahn-Hilliard equation.
Numerische Mathematik, 87(4):675–699, February 2001.

Daisuke Furihata and Takayasu Matsuo. Discrete Variational Derivative Method: A Structure-
Preserving Numerical Method for Partial Differential Equations. Chapman and Hall/CRC, De-
cember 2010.

C. W. Gear. Maintaining Solution Invariants in the Numerical Solution of ODE s. SIAM Journal on
Scientific and Statistical Computing, 7(3):734–743, 1986.

O. Gonzalez. Time integration and discrete Hamiltonian systems. Journal of Nonlinear Science, 6
(5):449–467, September 1996.

Sam Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian Neural Networks. In Advances
in Neural Information Processing Systems (NeurIPS), pp. 1–16, 2019.

Ernst Hairer, Christian Lubich, and Gerhard Wanner. Geometric Numerical Integration: Structure-
Preserving Algorithms for Ordinary Differential Equations, volume 31. Springer-Verlag,
Berlin/Heidelberg, 2006.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9,
December 2016.

Philipp Holl, Nils Thuerey, and Vladlen Koltun. Learning to Control PDEs with Differentiable
Physics. In International Conference on Learning Representations (ICLR), 2020.

11

Published as a conference paper at ICLR 2023

Jialin Hong, Shuxing Zhai, and Jingjing Zhang. Discrete Gradient Approach to Stochastic Dif-
ferential Equations with a Conserved Quantity. SIAM Journal on Numerical Analysis, 49(5):
2017–2038, January 2011.

Eugene M. Izhikevich and Richard FitzHugh. FitzHugh-Nagumo model.
http://scholarpedia.org/article/FitzHugh-Nagumo model, 2006.

Pengzhan Jin, Zhen Zhang, Ioannis G. Kevrekidis, and George Em Karniadakis. Learning Poisson
systems and trajectories of autonomous systems via Poisson neural networks. pp. 1–12, 2020a.

Pengzhan Jin, Aiqing Zhu, George Em Karniadakis, and Yifa Tang. Symplectic networks: Intrinsic
structure-preserving networks for identifying Hamiltonian systems. Neural Networks, 132:166–
179, 2020b.

Muhammad Firmansyah Kasim and Yi Heng Lim. Constants of motion network, August 2022.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In International
Conference on Learning Representations (ICLR), pp. 1–15, December 2015.

Kookjin Lee and Kevin Carlberg. Deep Conservation: A latent-dynamics model for exact satisfac-
tion of physical conservation laws. In AAAI Conference on Artificial Intelligence (AAAI), 2021.

Asriel U. Levin and Kumpati S. Narendra. Recursive identification using feedforward neural net-
works. International Journal of Control, 61(3):533–547, 1995.

Ziming Liu and Max Tegmark. Machine Learning Conservation Laws from Trajectories. Physical
Review Letters, 126(18):180604, May 2021.

Zichao Long, Yiping Lu, Xianzhong Ma, and Bin Dong. PDE-Net: Learning PDEs from Data. In
International Conference on Machine Learning (ICML), pp. 3208–3216. PMLR, July 2018.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. In Inter-
national Conference on Learning Representations (ICLR), pp. 1–16, 2017.

Gaurav Manek and J. Zico Kolter. Learning Stable Deep Dynamics Models. In Advances in Neural
Information Processing Systems (NeurIPS), pp. 1–9, 2019.

Takashi Matsubara, Ai Ishikawa, and Takaharu Yaguchi. Deep Energy-Based Modeling of Discrete-
Time Physics. In Advances in Neural Information Processing Systems (NeurIPS), 2020.

Robert M. Miura, Clifford S. Gardner, and Martin D. Kruskal. Korteweg-de Vries equation and gen-
eralizations. II. Existence of conservation laws and constants of motion. Journal of Mathematical
Physics, 9(8):1204–1209, 1968.

Kumpati S. Narendra and Kannan Parthasarathy. Identification and Control of Dynamical Systems
Using Neural Networks. IEEE Transactions on Neural Networks, 1(1):4–27, 1990.

Oliver Nelles. Nonlinear System Identification. Springer Berlin Heidelberg, Berlin, Heidelberg,
2001.

Adam Paszke, Gregory Chanan, Zeming Lin, Sam Gross, Edward Yang, Luca Antiga, and Zachary
Devito. Automatic differentiation in PyTorch. In Autodiff Workshop on Advances in Neural
Information Processing Systems, pp. 1–4, 2017.

Florian A. Potra and Jeng Yen. Implicit numerical integration for euler-lagrange equations via
tangent space parametrization. Mechanics of Structures and Machines, 19(1):77–98, 1991.

Lionel Raff, Ranga Komanduri, Martin Hagan, and Satish Bukkapatnam. Neural Networks in Chem-
ical Reaction Dynamics. 2012.

M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep learn-
ing framework for solving forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational Physics, 378:686–707, 2019.

12

Published as a conference paper at ICLR 2023

Stephan Rasp, Peter D. Dueben, Sebastian Scher, Jonathan A. Weyn, Soukayna Mouatadid, and Nils
Thuerey. WeatherBench: A Benchmark Data Set for Data-Driven Weather Forecasting. Journal
of Advances in Modeling Earth Systems, 12(11), 2020.

Akiyoshi Sannai, Masaaki Imaizumi, and Makoto Kawano. Improved Generalization Bounds of
Group Invariant / Equivariant Deep Networks via Quotient Feature Spaces. In Conference on
Uncertainty in Artificial Intelligence (UAI), October 2021.

Yujun Shen, Jinjin Gu, Xiaoou Tang, and Bolei Zhou. Interpreting the latent space of GANs for
semantic face editing. Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, pp. 9240–9249, 2020.

J. Sjöberg, H. Hjalmarsson, and L. Ljung. Neural Networks in System Identification. IFAC Pro-
ceedings Volumes, 27(8):359–382, 1994.

Yifan Sun, Linan Zhang, and Hayden Schaeffer. NeuPDE: Neural Network Based Ordinary and
Partial Differential Equations for Modeling Time-Dependent Data. In Mathematical and Scientific
Machine Learning Conference, pp. 352–372. PMLR, August 2020.

Naoya Takeishi and Yoshinobu Kawahara. Learning dynamics models with stable invariant sets. In
AAAI Conference on Artificial Intelligence (AAAI), 2020.

Takeshi Teshima, Koichi Tojo, Masahiro Ikeda, Isao Ishikawa, and Kenta Oono. Universal Approxi-
mation Property of Neural Ordinary Differential Equations. In NeurIPS Workshop on Differential
Geometry Meets Deep Learning (DiffGeo4DL), 2020.

Ricardo M. Trigo and Jean P. Palutikof. Simulation of daily temperatures for climate change sce-
narios over Portugal: A neural network model approach. Climate Research, 13(1):45–59, 1999.

Arjan van der Schaft and Dimitri Jeltsema. Port-Hamiltonian Systems Theory: An Introductory
Overview. Foundations and Trends® in Systems and Control, 1(2):173–378, 2014.

P. R. Vlachas, J. Pathak, B. R. Hunt, T. P. Sapsis, M. Girvan, E. Ott, and P. Koumoutsakos. Backprop-
agation algorithms and Reservoir Computing in Recurrent Neural Networks for the forecasting of
complex spatiotemporal dynamics. Neural Networks, 126:191–217, 2020.

Yi Jen Wang and Chin Teng Lin. Runge-Kutta neural network for identification of dynamical sys-
tems in high accuracy. IEEE Transactions on Neural Networks, 9(2):294–307, 1998.

Shuqi Yang, Xingzhe He, and Bo Zhu. Learning Physical Constraints with Neural Projections.
Advances in Neural Information Processing Systems, pp. 1–15, 2020.

Ge Zhong and Jerrold E Marsden. Lie-Poisson Hamilton-Jacobi Theory and Lie-Poisson Integrators.
Physics Letters A, 133(3):3–8, November 1988.

Yaofeng Desmond Zhong, Biswadip Dey, and Amit Chakraborty. Symplectic ODE-Net: Learning
Hamiltonian Dynamics with Control. In International Conference on Learning Representations
(ICLR), pp. 1–17, 2020a.

Yaofeng Desmond Zhong, Biswadip Dey, and Amit Chakraborty. Dissipative SymODEN: Encoding
Hamiltonian Dynamics with Dissipation and Control into Deep Learning. arXiv, pp. 1–6, 2020b.

13

Published as a conference paper at ICLR 2023

A HAMILTONIAN SYSTEM, ITS GENERALIZATION, AND FIRST INTEGRALS

Preliminary In this section, we briefly introduce potential target systems and related works. Meth-
ods proposed by related works use specific prior knowledge about target systems, such as constraints.
In contrast, our proposed FINDE assumes a situation where neural networks learn systems with un-
known properties. See, for example, Hairer et al. (2006); van der Schaft & Jeltsema (2014) for more
details about geometric mechanics.

On an N -dimensional manifold M, an ODE is defined using a vector field f : M → TuM, which
maps a point u on the manifold M to a tangent vector f(u) on the tangent space TuM. The NODE
defines an ODE in this way (Chen et al., 2018). Given a scalar-valued function H : M → R on
the manifold M, its differential dH : M → T ∗

uM is a cotangent vector field (a.k.a. a differential
1-form), which maps a point u on the manifold M to a cotangent vector dH(u) on the cotangent
space T ∗

uM.

Hamiltoanian System A Hamiltonian system is defined using a non-degenerate closed differential
2-form ω called symplectic form, which is a skew-symmetric bilinear map ωu : TuM× TuM →
R at point u. A symplectic form assigned to a manifold is called the symplectic structure. The
coordinate-free form of Hamilton’s equation is d

dtu = XH(u), ωu(XH(u),w) = ⟨dH(u),w⟩
for any w ∈ TuM, where XH is the Hamiltonian vector field. The symplectic form ω gives rise
to a bundle map ω♭

u : TuM → T ∗
uM, with which Hamilton’s equation is rewritten as d

dtu =

XH(u) = (ω♭
u)

−1(dH(u)). The right-hand side is locally equivalent to the product of a coefficient
matrix S and the gradient ∇H of the Hamiltonian H . Then, Hamilton’s equation is obtained as
d
dtu = S∇H(u). Hamiltonian systems are often expressed in the canonical form, in other words,
they are defined on Darboux coordinates, on which the state u is the paired generalized position q
and generalized momentum p. The corresponding coefficient matrix is S =

(
0 In

−In 0

)
for 2n = N

and the n-dimensional identity matrix In. The HNN was developed to model Hamiltonian systems
in the canonical forms (Greydanus et al., 2019).

An Euler–Lagrange equation with a hyperregular Lagrangian and a Lotka–Volterra equation are
also Hamiltonian systems; however, their coordinate systems are not Darboux coordinates. A neural
symplectic form (NSF) handles this class of equations (Chen et al., 2021). The KdV equation is also
a Hamiltonian system not on Darboux coordinates. For Hamiltonian PDE systems, HNN++ was
proposed (Matsubara et al., 2020). According to Darboux’s theorem, any Hamiltonian system on an
even–dimensional manifold can be transformed into the canonical form.

Noether’s theorem states that a continuous symmetry of a system leads to a conservation law. A
Hamiltonian system is symmetric (invariant) to translation in time and conserves the Hamiltonian
H . A two-body problem is symmetric to translation and rotation in space and conserves linear and
angular momenta. These quantities are first integrals. LieConv and EMLP-HNN had such symme-
tries implemented in their architectures (Finzi et al., 2020a; 2021). A pendulum is not symmetric
to translation and rotation in space and does not conserve linear and angular momenta, but does
exchange them with the base to which it is fixed.

Poisson System A Poisson system is named after a Poisson bracket {·, ·}, but it is convenient to
refer to it as a degenerate Hamiltonian system. A Poisson bracket is defined using a Poisson 2-vector
B, which is a skew-symmetric bilinear map Bu : T ∗

uM × T ∗
uM → R at point u. The Poisson

2-vector B gives rise to a bundle map B♯
u : T ∗

uM → TuM and defines Hamilton’s equation as
d
dtu = B♯(dH(u)). The Darboux–Lie theorem states that any Poisson system can be transformed

into the canonical form d
dtu = S∇H(u) by using a matrix S =

(
0 Ik 0

−Ik 0 0
0 0 0

)
for 2k < N . The last

N − 2k elements remain unchanged and correspond to the first integrals. In this sense, a Poisson
system is a degenerate Hamiltonian system. A Poisson 2-vector assigned to a manifold is called a
Poisson structure. Several models of the dynamics of disease spreading and chemical reactions are
Poisson systems, and total population and molecular mass are typical first integrals.

A Poisson neural network (PNN) learns to transform a given Poisson system into a canonical
form (Jin et al., 2020a).

14

Published as a conference paper at ICLR 2023

Constrained Hamiltonian System A constraint C(q) = 0 on the position q is called a holonomic
constraint. Holonomic constraint appear, for example, when the arm’s length restricts the position
of a robot’s hand. Differentiating a holonomic constraint C(q) = 0 yields a constraint involving the
velocity G(q,v) = ∂C

∂q v = 0, which is simply called a velocity constraint. Hence, each holonomic
constraint leads to two first integrals C and G. A Hamiltonian system with holonomic constraints is
also a Poisson system; in particular, it is a constrained Hamiltonian system.

A CHNN incorporates the known holonomic constraints C(q) and corresponding velocity con-
straints G(q,v) of a Hamiltonian system in the canonical form (Finzi et al., 2020b). The origi-
nal study suggested that CHNN may learn holonomic constraints from data, but this has not been
tested. For modeling a constrained Hamiltonian system, it is sufficient to incorporate only velocity
constraints G(q,v) because a holonomic constraint C(q) is implicitly satisfied if the corresponding
velocity constraint G(q,v) is satisfied. Celledoni et al. (2022) used such formulation, and extended
HNN and CHNN to systems on non-Euclidean spaces. A neural projection method learns fixed holo-
nomic constraints, as well as inequality constraints, which are outside the scope of this study (Yang
et al., 2020). This method updates the state by solving an optimization problem similar to Eq. (3)
iteratively using the gradient descent method at every training step. Subsequently, it applies the
backpropagation algorithm to all the optimization iterations. Thus, it has high computational and
memory costs.

These studies mainly focused on physically-induced holonomic constraints and may not work for
other first integrals, as shown in Appendices D.3 and D.5. However, the purpose of FINDE is to find
and preserve general first integrals, including energy and mass not limited by constraints.

Dirac Structure A Dirac structure is named after a Dirac bracket, a generalization of the Poisson
bracket (van der Schaft & Jeltsema, 2014), and can be found in various systems. For a rolling disk,
the direction in which the disk can move forward without slipping is limited by the disk’s orien-
tation. This constraint is called a non-holonomic constraint. In an electric circuit, when elements
are connected in series, the current flow through each element is always the same. This constraint
is called Kirchhoff’s current law. One can find Dirac structures in these systems. The dissipative
SymODEN was proposed to model a port-Hamiltonian system in the canonical form (Zhong et al.,
2020b), which is a special case of the Dirac structure. To the best of our knowledge, a neural network
model for a general Dirac structure has not yet been proposed. FINDE is the first neural network
method to learn Dirac structures better than NODE can, even though it is not specialized for Dirac
structures.

PDE with Mass Conservation The total mass of a PDE system is sometimes preserved (Furihata
& Matsuo, 2010). The KdV equation is a Hamiltonian system that describes shallow water waves,
in which the energy and total mass are preserved. The Cahn–Hilliard equation is a model of phase
separation of copolymer melts, in which the total mass is preserved, but the energy is dissipated. In
general, a quantity in an area is preserved if its flux entering minus its flux leaving is zero. Deep
conservation extracts latent dynamics of a PDE system and preserves a quantity of interest by forcing
its flux to be zero (Lee & Carlberg, 2021). HNN++ also ensures mass conservation by designing a
coefficient matrix that determines local interaction (Matsubara et al., 2020).

General First Intergals A concurrent study, “Constants-of-motion network,” introduced the
penalty loss function so that NODEs learn to preserve first integrals (Kasim & Lim, 2022); how-
ever, unlike other related methods, this method does not guarantee preservation. A Noether network
was proposed to model videos that do not always capture physical phenomena (Alet et al., 2021).
A subset of the latent variable is assumed to represent image features that do not change during a
video, such as the appearance of objects. For prediction, these features are forced not to change.
The Noether network is potentially useful for learning physical phenomena from videos, but is more
similar to semantic manipulation of latent variables (Shen et al., 2020).

Some studies have investigated methods that do not predict dynamics but specialize in finding first
integrals (Fukunaga & Olsen, 1971; Liu & Tegmark, 2021). These methods can be used to help
FINDE determine the hyperparameter K. They commonly estimate the number (N −K) of dimen-
sions of the tangent space TuM′ of the submanifoldM ′ at point u using its neighbors. For example,
AI Poincaré proposed by Liu & Tegmark (2021) assumes that all data points share the submanifold
M′ and uses an autoencoder to reconstruct the tangent space TuM′. Hence, it can only process a

15

Published as a conference paper at ICLR 2023

single long time series with fixed first integrals. In contrast, our proposed FINDE can leverage a
dataset of multiple time series with different values of the first integrals.

B DETAILS OF METHODS

B.1 DERIVATION OF FINDE

Continuous FINDE (cFINDE) Let us denote a current state and f̂ denote a vector field. After
a time interval ∆t, the state transitions to ûs+1. A typical projection method projects the state
ũs+1 onto a submanifold M′ and obtains a state us+1, which preserves the first integrals V =
(V1 . . . VK)⊤. This procedure is defined as an optimization problem in Eq. (3);

arg min
us+1

∥us+1 − ũs+1∥ subject to Vk(us+1)− Vk(u
s) = 0 for k = 1, . . . ,K. (A1)

One can solve the problem using the method of Lagrange multipliers. A Lagrangian function is

F (us+1,λ) = 1
2 ||u

s+1 − ũs+1||22 + (V (us+1)− V (us))⊤λ′, (A2)

where λ′ is the Lagrange multiplier. The stationary point satisfies

∂F
∂us+1 = us+1 − ũs+1 +

(
∂V

∂us+1

)⊤
λ′ = 0,

∂F
∂λ′ = V (us+1)− V (us) = 0.

(A3)

Subsequently, a projection method can be redefined as

us+1 = ũs+1 −
(

∂V
∂us+1

)⊤
λ′,

V (us+1)− V (us) = 0.
(A4)

We transform Eq. (A4) into

us+1−us

∆t = ũs+1−us

∆t −
(

∂V
∂us+1

)⊤
λ,

V (us+1)−V (us)
∆t = 0,

(A5)

where λ = λ′/∆t. Taking the limit as ∆t→ +0, we obtain Eq. (4);

f(us) = f̂(us)−
(
∂V
∂us

)⊤
λ,

d
dtV (us) = 0.

(A6)

The second equation ensures that a state transition following the new vector field f preserves the
first integrals V . By eliminating the Lagrange multiplier λ(u), we define the cFINDE as in Eq. (6),
that is,

d
dtu = f(u) = (I − Y (u))f̂(u) for Y (u) =M(u)⊤(M(u)M(u)⊤)−1M(u), (A7)

whereM = ∂V
∂u . Because of the above derivation, the cFINDE can be considered a continuous-time

version of a projection method. The preservation of first integrals can be proved as follows.

Proof of Theorem 1.
d
dtV (u) = ∂V

∂u
d
dtu

=M(u)f(u)

=M(u)(I −M(u)⊤(M(u)M(u)⊤)−1M(u))f̂(u)

= (M(u)− (M(u)M(u)⊤)(M(u)M(u)⊤)−1M(u))f̂(u)

= (M(u)−M(u))f̂(u)

= 0.

Hence, it holds that d
dtVk(u) = 0 for k = 1, . . . ,K, indicating that the cFINDE d

dtu = f(u)
preserves all first integrals Vk in continuous time.

16

Published as a conference paper at ICLR 2023

Discrete FINDE (dFINDE) For dFINDE, we take the discrete gradient of the Lagrangian equa-
tion in Eq. (A2) and obtain the discrete version of the necessary conditions for the stationary point;

∇(us+1,us)F = us+1 − ũs+1 +M(us+1,us)λ′ = 0,

∂F
∂λ′ = V (us+1)− V (us) = 0.

(A8)

M(us+1,us) corresponds to the Jacobian ∂V
∂u . By substituting the base model ũs+1−us

∆ts =

ψ̂(us; ∆ts) and the dFINDE us+1−us

∆ts = ψ(us+1,us; ∆ts) into the above equation and dividing
the first equation by ∆t, we obtain Eq. (8);

us+1−us

∆ts = ψ(us+1,us; ∆ts),

ψ(us+1,us; ∆ts) = ψ̂(us; ∆ts)−M(us+1,us)⊤λ(us+1,us),

V (us+1)− V (us) = 0,

(A9)

where λ = λ′/∆ts. By eliminating the Lagrange multiplier λ, we define the dFINDE as in Eq. (10),
that is,

us+1−us

∆ts = ψ(us+1,us; ∆ts) = (I − Y (us+1,us))ψ̂(us; ∆ts) for Y =M
⊤
(M M

⊤
)−1M.

(A10)
The preservation of first integrals can be proved as follows.

Proof of Theorem 2.

V (us+1)− V (us) =M(us+1,us)(us+1 − us)

=M(us+1,us)ψ(us+1,us; ∆ts)∆ts

=M(I −M
⊤
(M M

⊤
)−1M)ψ̂(us+1,us; ∆ts)∆ts

= (M − (MM
⊤
)(M M

⊤
)−1M)ψ̂(us+1,us; ∆ts)∆ts

= (M −M)ψ̂(us+1,us; ∆ts)∆ts

= 0.

Hence, it holds that Vk(us+1) = Vk(u
s) for k = 1, . . . ,K, indicating that the dFINDE us+1−us

∆ts =

ψ(us+1,us; ∆ts) preserves all first integrals Vk in discrete time.

B.2 DISCRETE GRADIENT

A discrete gradient is a discrete analogue to a gradient (Furihata & Matsuo, 2010; Gonzalez, 1996;
Hong et al., 2011). Discrete gradients that satisfy Definition 2 are not unique, and many varia-
tions have been proposed. For a neural network, Matsubara et al. (2020) proposed the automatic
discrete differentiation algorithm (ADDA). We briefly introduce the algorithm in the case of finite-
dimensional Euclidean spaces. The differential dg of a function g : RN → RM is a linear operator
dgu : RN → RM at point u and satisfies

lim
||h||RN →0

||g(u+ h)− g(u) + dgu(h)||RM

||h||RN

= 0. (A11)

The differential dg acting on a vector w is equivalent to the product of a vector w with the Jacobian
Jg(u) of the function g at point u: dgu(w) = Jg(u)w. Similarly, according to the chain rule,
the differential d(h ◦ g) of a composition h ◦ g of functions g, h is equivalent to the multiplication
with a series Jh(g(u))Jg(u) of Jacobians. Therefore, the automatic differentiation algorithm obtains
the differential of a neural network. The differential dg of a function g : RN → R is a horizontal
vector, and the gradient ∇g of the function g is a vertical vector dual to the differential. Therefore,
the gradient ∇g is obtained by transposing the differential dg. The ADDA replaces each Jacobian
with its discrete analogue. For linear layers, such as fully-connected and convolution layers, the
discrete Jacobian is identical to the ordinary Jacobian. For element-wise nonlinear layers, such as
activation functions, a diagonal matrix composed of the slopes between two inputs can act as the
discrete Jacobian. A discrete gradient obtained by the above steps satisfies Definition 2.

17

Published as a conference paper at ICLR 2023

B.3 PREDICTION AND TRAINING PROCEDURES

For ODEs modeled by neural networks, various training and prediction strategies have been pro-
posed to date (Chen et al., 2018; 2020; Course et al., 2020; Matsubara et al., 2020; Zhong et al.,
2020a); FINDE can adopt any of these. In our experiments, we used the following simple strategies.

In the case of the cFINDE and base models, taking a state us
GT from the dataset, a numerical inte-

grator solves the ODE d
dtu = f(u) and predicts the next state us+1

pred.. This process can be informally
expressed as

us+1
pred. ≃ us

GT +

∫ ts+∆ts

ts
f(u(τ))dτ for u(ts). (A12)

We solved this integration using torchdiffeq.odeint. The prediction accuracy can be evaluated using
the difference between the predicted state us+1

pred. and ground truth us+1
GT taken from the dataset. We

normalized the difference by the time-step size ∆ts and defined the 1-step error L1-step as

L1-step(u
s+1
pred.;u

s+1
GT ,us

GT,∆t
s) =

∥∥∥∥∥us+1
GT − us

GT

∆ts
−

us+1
pred. − us

GT

∆ts

∥∥∥∥∥
2

2

. (A13)

The cFINDE and base models were trained to minimize the 1-step error L1-step.

In the case of the dFINDE, the next state us+1
pred. is predicted by solving Eq. (10) as an implicit scheme;

in particular,

arg min
us+1

pred.

∥∥∥∥∥u
s+1
pred. − us

GT

∆ts
− (I − Y (us+1

pred.,u
s
GT))ψ̂(u

s
GT; ∆t

s)

∥∥∥∥∥ . (A14)

Therefore, prediction by the dFINDE is implicit. For evaluation, we solved this scheme using scipy.
optimize.fsolve and obtained the 1-step error in Eq. (A13). However, during the training phase, the
ground truth us+1

GT of the next state is known. Hence, we substituted this into Eq. (10), and then used
the difference between the left- and right-hand sides of the dFINDE as the loss function:

LdFINDE(u
s+1
GT ,us

GT,∆t
s) =

∥∥∥∥us+1
GT − us

GT

∆ts
− (I − Y (us+1

GT ,us
GT))ψ̂(u

s
GT; ∆t

s)

∥∥∥∥2
2

. (A15)

The discrete Jacobian M (and hence Y) can be obtained explicitly, and an explicit numerical inte-
grator can be used for the base model ψ̂. Hence, the process to obtain the value of the loss function
is explicit, and the dFINDE can be trained in an explicit way, whereas the prediction is still implicit.

Some previous studies have proposed alternative strategies. For example, a loss function can be
defined as the sum of the errors at multiple time points during a long-term prediction. The cFINDE
can naturally adopt such a training strategy, and the dFINDE can adopt it after a minor modification.
While it is helpful to pursue absolute performance, it requires additional hyperparameters, such as
the length of prediction time, and additional effort to adjust them. We used the 1-step error in the
present study for simplicity and fair comparisons.

The function V (u) learning a first integral may become a constant function during training; subse-
quently, its Jacobian matrix vanishes (∂V (u)

∂u ≡ 0). In this case, our algorithm returns a division-by-

zero error because it requires the inverse of the matrix ∂V (u)
∂u

∂V (u)
∂u

⊤
for the projection. We have not

taken any special measures to prevent such errors, but no errors occurred in any experiments with
proper settings. The division-by-zero errors have occurred only when FINDE assumes an unreason-
able number of first integrals (e.g., K = 6 for the double pendulum, which has five first integrals).
FINDE works correctly even when the functions f(u) and V (u) learn the same first integrals; we
verified such a case in Section 4.2, where both functions are known.

FINDE learns first integrals point-by-point, and the found first integral is not always consistent over
the domain. The same can be said about the energy function of HNN, and this type of problem is an
open problem for neural network models of dynamical systems.

18

Published as a conference paper at ICLR 2023

C DETAILS OF DATASETS

To generate each dataset, we used scipy package and the Dormand–Prince method (dopri5) with the
default relative tolerance of 10−9, unless otherwise stated. Experiments on the KdV dataset were
performed with double precision, and all other experiments were performed with single precision.

Hamiltonian System in Canonical Form: Two-Body Problem A gravitational two-body prob-
lem on a 2-dimensional configuration space has a state u composed of the 4-dimensional position
q = (x1 y1 x2 y2)

⊤ and 4-dimensional velocity v = (vx1 vy1 vx2 vy2)
⊤. This is a second-

order ODE, indicating that d
dtq = v. The momentum px1 of x1 equals m1vx1 . The time-

derivative d
dtv of the velocity v is called the acceleration. The acceleration of x1 is given by

d
dtvx1

= −Gm1m2
x1−x2

((x1−x2)2+(y1−y2)2)3/2
, where G, m1, and m2 denote the constant of gravity

and masses of two bodies, respectively. The same process applies for the remaining positions.

The total energy of the two-body problem is given by

H =
1

2
(m1(v

2
x1 + v2y1) +m2(v

2
x2 + v2y2))−

Gm1m2√
(x1 − x2)2 + (y1 − y2)2

. (A16)

The first and second terms denote the kinetic and potential energies, respectively. The two-body
problem is a Hamiltonian system, and the dynamics mentioned above can be rewritten as Hamilton’s
equation. The Hamiltonian H is one of the first integrals; the two-body problem has other first
integrals, such as the linear momenta in the x- and y-directions

px =
m1vx1 +m2vx2

m1 +m2
, py =

m1vy1 +m2vy2
m1 +m2

, (A17)

and angular momentum (Hairer et al., 2006).

We set G, m1, and m2 to 1.0. The initial distance r1 =
√
x21 + y21 of a mass m1 from the origin

was set to r1 ∼ U(0.5, 1.0), and the initial angle θ1 = tan−1(y1

x1
) was set to θ1 ∼ U(0, 2π). The

initial speed |v1| =
√
v2x1

+ v2y1
was set to 1

2r2 ϵv , where ϵv ∼ N (1, 0.05). The initial angle of the

velocity was set to θ ± 0.5π + ϵθπ, where ϵθ ∼ N (0, 0.05). The initial condition of the other mass
m2 was set to the opposite of the mass m1. Subsequently, the two masses trace elliptical orbits, and
when ϵv = ϵθ = 0, they trace exactly circular orbits. In addition, we added a perturbation following
N (0, 0.01) to the velocities of both masses, which corresponds to the center-of-gravity velocity.

We set the time-step size ∆t to 0.01 and generated 1,000 time-series of S = 500 steps for training
and 10 time-series of S = 10, 000 steps for evaluation. We trained each model for 100,000 iterations.

Hamiltonian System in Non-Canonical Form: KdV equation The KdV equation is a model of
shallow water waves and is known to have soliton solutions (Furihata, 2001). The dynamics is given
by

ut = −αuux + βuxxx, (A18)
where x denotes the spatial position and the subscripts denote partial derivatives; for example, ut =
∂u
∂t . The Hamiltonian is given by

H(u) =

∫
−1

6
αu3 − 1

2
βu2x dx. (A19)

As Hamilton’s equation d
dtu = S∇H , the partial differential operator ∂

∂x acts as the coefficient
matrix S. This system is Liouville integrable and has infinitely many first integrals, including the
Hamiltonian H , total mass I1 =

∫
udx, and T2 =

∫
u2dx (Miura et al., 1968). Other first integrals

are defined using higher-order partial derivatives.

For PDEs, PINNs are known to provide solutions when symbolic equations and boundary conditions
are given (Raissi et al., 2019). We, in contrast, consider learning spatially discretized PDEs as ODEs
from observed data and solving them using numerical integrators, in the same context as NODEs
and HNNs; this topic has also been studied extensively (Long et al., 2018; Matsubara et al., 2020;
Sun et al., 2020; Holl et al., 2020). Following the experiments in a previous study (Matsubara et al.,

19

Published as a conference paper at ICLR 2023

2020), we discretized the KdV equation in space; it no longer has infinitely many first integrals.
We set α = −6, β = 1, spatial size to 10 space units, and space mesh size to 0.2; the system
state u had 50 elements. We generated two solitons as the initial condition; each was expressed as
− 12

α κ
2sech2(κ(x− d)), where the size κ followed U(0.5, 2) and the initial position d of one soliton

was set to be at least 2.0 from that of the other.

We set the time-step size ∆t to 0.001 and generated 1,000 time-series of S = 500 steps for training
and 10 time-series of S = 10, 000 steps for evaluation, using the discrete gradient method to ensure
energy conservation (Furihata, 2001). We trained each model for 30,000 iterations.

Due to the spatial discretization, the KdV dataset contains spatial truncation errors. When the neural
network learns this dataset, no spatial truncation errors are additionally introduced. An evaluation
using the analytical solution as a dataset or datasets created with different spatial resolutions is
included in future work.

Poisson System: Double Pendulum A double pendulum (2-pend) is depicted in Fig. A1. In
polar coordinates, this is a Hamiltonian system. The state is composed of the angles (θ1, θ2) of
the two rods and their angular velocities (ω1, ω2). This is also a second-order ODE, indicating that
d
dtθ1 = ω1 and d

dtθ2 = ω2.

Let l1, l2 denote the lengths of the two rods, m1,m2 denote the masses of the two weights, and g
denote the gravitational acceleration. The acceleration is given by

d

dt
ω1 =

m2g sin θ2 cos∆− (l1ω
2
1 cos∆ + l2ω

2
2)m2 sin∆− (m1 +m2)g sin θ1

l1(m1 +m2 sin
2 ∆)

,

d

dt
ω2 =

(m1 +m2)(l1ω
2
1 sin∆− g sin θ2 + g sin θ1 cos∆) +m2l2ω

2
2 sin∆ cos∆

l2(m1 +m2 sin
2 ∆)

,

(A20)

where ∆ = θ1 − θ2. In 2-dimensional Cartesian coordinates, the state is composed of the positions
(x1, y1, x2, y2) of the two masses and the corresponding velocities (vx1, vy1, vx2, vy2). The position
is transformed by x1 = l1 sin θ1, y1 = l1 cos θ1, x2 = x1 + l2 sin θ2, and y2 = y1 + l2 cos θ2, and
the velocity is transformed accordingly. The total energy H is given by

H =
1

2
(m1(v

2
x1

+ v2y1
) +m2(v

2
x2

+ v2y2
)) + g(m1y1 +m2y2). (A21)

𝑚2

𝜃2

𝜃1
𝑙1

𝑙2𝑚1

𝑥

𝑦

⇓𝑔

Figure A1: Dia-
gram of the double
pendulum.

The first and second terms denote the kinetic and potential energies, respec-
tively. The double pendulum is no longer a Hamiltonian system in Carte-
sian coordinates. Because the lengths of the two rods are constant, the
double pendulum has two constraints on the position: l21 = x21 + y21 and
l22 = (x2 − x1)

2 + (y2 − y1)
2. These constraints are holonomic constraints,

and they lead to constraints involving the velocity, namely 0 = x1vx1
+y1vy1

and 0 = (x2 − x1)(vx2
− vx1

) + (y2 − y1)(vy2
− vy1

). When the constraints
involving the velocity are satisfied, the holonomic constraints are implicitly
satisfied. Therefore, the number of first integrals is five; however, three first
integrals are sufficient to determine the dynamics. The dynamics is degener-
ate and classified as a constrained Hamiltonian system, or a Poisson system
in a more general case.

We set the masses of the two weights to m1 = m2 = 1.0 and the gravitational acceleration g to
9.8. We set the lengths l1, l2 of the two rods to follow U(0.9, 1.1), the initial angles θ1, θ2 to follow
U(−0.5, 0.5), and the initial angular velocities θ̇1, θ̇2 to follow U(−0.1, 0.1).

We set the time-step size ∆t to 0.1 and generated 1,000 time-series of S = 500 steps for training
and 10 time-series of S = 5, 000 steps for evaluation. We trained each model for 100,000 iterations.

Dirac Structure: FitzHugh–Nagumo Model R. FitzHugh proposed a model of the electrical
dynamics of a biological neuron, and J. Nagumo created an equivalent electric circuit. This model
is called the FitzHugh–Nagumo model (Izhikevich & FitzHugh, 2006) and is a modified version of
the van der Pol oscillator; the state oscillates when the magnitude of the external current source I
is within an appropriate range. The circuit comprises a resistor R, inductor L, capacitor C, tunnel
diode D, and voltage source E connected as shown in Fig. A2. The whole circuit is connected to

20

Published as a conference paper at ICLR 2023

an external current source I . Let IR denote the current through the resistor R, and VR denote the
applied voltage. Ohm’s law and other properties of the elements give VR = IRR, C d

dtVC = IC ,
L d

dtIL = VL, and ID = D(VD), where we treat D as a nonlinear function. Kirchhoff’s current
law (KCL) obtains IC + ID + IR = I and IR = IL, and Kirchhoff’s voltage law (KVL) obtains
VC = VD = VR + VL + E. We denote W = IR and V = VC , and set L = 1/0.08, R = 0.8,
C = 1.0, VE = −0.7, and D(V) = V 3/3 − V . Subsequently, we obtain the FitzHugh–Nagumo
model of the original parameters as

d

dt
V = V − V 3/3−W + I,

d

dt
W = 0.08(V + 0.7− 0.8W).

(A22)

Due to the resistor R, the FitzHugh–Nagumo model is not an energy-conserving system.

𝐶

𝑅

𝐿

𝐷

𝐼

𝑉

𝐸

Figure A2: Circuit dia-
gram of FitzHugh–Nagumo
model (Izhikevich &
FitzHugh, 2006).

Consider a situation where the current through and the voltage ap-
plied to stateful elements (capacitors and inductors) are measurable,
but the connections between the elements are unknown. We treated
IC , IL, VC , VL as the system state u. Because the state is in 4-
dimensional space and the dynamics is intrinsically 2-dimensional,
there exist two first integrals; for example, but not limited to, I =
IC + D(VC) + IL and E = VC − ILR − VL. This type of elec-
tric circuit is an example of a Dirac structure because the state vari-
ables are constrained by the circuit topology and Kirchhoff’s cur-
rent and voltage laws (van der Schaft & Jeltsema, 2014). From
the viewpoint of generalized Hamiltonian systems, (IL, VC) corre-
sponds to the position, and (VL, IC) corresponds to the momentum.
The electric circuit can be described as a port-Hamiltonian system
in a non-canonical form. Because of the non-canonical form, the
FitzHugh–Nagumo model is outside the scope of CHNN and dissi-
pative SymODEN (Finzi et al., 2020b; Zhong et al., 2020b).

We set the external current source I to follow U(0.7, 1.1), set the initial values of V andW to follow
U(−1.5, 1.5) and U(0.0, 2.0), and transformed them to the state.

We set the time-step size ∆t to 0.1 and generated 1,000 time-series of S = 500 steps for training
and 10 time-series of S = 2, 000 steps for evaluation. We trained each model for 30,000 iterations.

D ADDITIONAL RESULTS AND DISCUSSION

D.1 DEMONSTRATION OF FIRST INTEGRAL PRESERVATION

0

10−6

st
a

te
M

S
E

0 105
step s

0.499

0.500

en
er

g
y

analytical

cFINDE

dopri5

dFINDE

Figure A3: Integration of
a known mass-spring system
by Dormand–Prince integrator.
(top) Mean squared errors in
states predicted by compari-
son methods. (bottom) Energy
calculated from the states pre-
dicted.

In Fig. 1, we examined a mass-spring system and FINDE using the
leapfrog integrator. We also examined the case with the Dormand–
Prince integrator (dopri5), as shown in Fig. A3. We increased the
number of steps to 105, and displayed the MSEs of the state in-
stead of the state itself. First, we focus on the energy. Even using
the Dormand–Prince integrator, a fourth-order method, the energy
is slightly decreased. The cFINDE with the Dormand–Prince inte-
grator shows the same tendency. This phenomenon is due to tem-
poral discretization errors and is called energy drift. The dFINDE
with the Dormand–Prince integrator significantly suppresses the
error in energy. The remaining error is caused by rounding errors.

When the focus is on the MSEs of the state, the trend is different:
the dFINDE with the Dormand–Prince integrator suffers from the
most significant errors in state. Although the dFINDE is designed
to eliminate temporal discretization errors in energy, it does not
necessarily reduce those in state. In contrast, the Dormand–Prince
integrator is designed to suppress temporal discretization errors in state.

21

Published as a conference paper at ICLR 2023

Therefore, there is no guarantee that the dFINDE improves the prediction performance when defined
using errors in state. Conversely, the experimental results in Table 3 demonstrate that the dFINDE
is superior to the base model and cFINDE in VPT. This is because dFINDE reduces the modeling
errors rather. For the mass-spring system, the governing equation is already known as an ODE and
is discretized by the dFINDE, leading to temporal discretization errors. However, when dFINDE
learns dynamics from data, the training data points are already sampled in discrete time, and the
dFINDE predicts future states in discrete time. Therefore, no temporal discretization error occurs,
and we obtain only the advantages of exactly preserving the first integral.

This type of paradox has been repeatedly discovered in previous studies. For example, the leapfrog
integrator and discrete gradient method are second-order methods. However, they are superior to
the Dormand–Prince integrator when combined with neural networks and learning dynamics from
data (Matsubara et al., 2020). For better learning (i.e., smaller modeling errors), the preservation of
specific properties of target systems is more important than the order of accuracy.

D.2 SYMBOLIC REGRESSION OF FOUND FIRST INTEGRALS

Using gplearn (based on genetic programming), we performed a symbolic regression of the first
integrals V found by the neural network. We prepared addition, subtraction, multiplication, and
division as candidate operations, used Pearson’s correlation coefficient as the evaluation criterion,
set the early stopping threshold to 0.9, and set the population size to 10,000. We set the other
hyperparameters to their default values, e.g., the maximum number of generations was 20.

We summarize the regression results of the HNN with cFINDE for K = 2 trained using the two-
body dataset in Table A1. Note that Pearson’s correlation coefficient is invariant to biases and scale
factors. FINDE is also invariant because it only uses the directions of the gradients of first integrals.
Hence, we removed biases and scale factors from the regression results. When the focus is on the
symbolic regression of the training data, V1, V1, V2, and V2 for trials 0, 1, 2, and 3 are identical to
the linear momentum in the x-direction up to scale factors; recall that we set m1 = m2 = 1.0 and
see Eq. (A17). V2, V2, V1, and V1 for trials 0, 1, 2, and 3 are also identical to the linear momentum
in the y-direction. V1 and V2 for trial 4 are weighted sums of the linear momenta in the x- and
y-directions; in particular, they can be regarded as the linear momenta in the (1,−1)- and (1, 1)-
directions, respectively.

When the quantities V1(u) and V2(u) are first integrals, any function of only V1(u), V2(u), and
arbitrary constants is a first integral functionally dependent on V1(u) and V2(u). Thus, it is in
principle impossible to re-discover a first integral as a well-known symbolic expression, and a failure
in symbolic regression is not a problem in any way. Previous studies introduced certain constraints
(such as “gauge fixing”) for symbolic regression (Liu & Tegmark, 2021); a combination of such
method may improve the results. However, recent studies on neural networks have revealed that
typical initialization and training procedures tend to learn simple functions (Barrett & Dherin, 2021;
Cao et al., 2021). Additionally, the symbolic regression limited the depth of the computation graph,
biasing the results toward simple functions; hence, the found first integrals were identical to the
well-known forms and were separated in the x- and y-directions in most cases.

The same is true for the symbolic regression of the test data, except for V1 for trial 0, which had a
small perturbation α. Because of the limited extrapolation ability, neural networks cannot always
accurately represent functions outside the training data range. Once first integrals are found by
FINDE and identified as equations by symbolic regression, one can use the equations instead of
neural networks, ensuring the preservation of first integrals in the entire domain. From these results,
we can conclude that cFINDE identified the linear momenta.

The state of the KdV dataset has 50 elements, which is too large to apply a symbolic regression. For
the 2-pend and FitzHugh–Nagumo datasets, we did not find consistent equations of first integrals.
For example, the symbolic regression identified a quantity x21 − y1 as a first integral in the 2-pend
dataset, which is not directly related to well-known first integrals. When the angle θ1 of the upper
rod is small, y1 takes a value close to −1, and the quantity x21 − y1 is close to x21 + y21 , which is a
well-known first integral, namely the square l21 of the upper rod length l1. It is difficult to determine
whether this inaccuracy is because of the training of FINDE or symbolic regression. There may still
be room for improvement in the training of FINDE or symbolic regression.

22

Published as a conference paper at ICLR 2023

Table A1: Symbolic Regression of First Integrals Found in Two-Body Problem

Training Data Test Data

Trial V1 V2 V1 V2

0 vx1+vx2 vy1+vy2 vx1+vx2+α vy1+vy2
1 vx1+vx2 vy1+vy2 vx1+vx2 vy1+vy2
2 vy1+vy2 vx1+vx2 vy1+vy2 vx1+vx2
3 vy1+vy2 vx1+vx2 vy1+vy2 vx1+vx2
4 vx1+vx2 − vy1 − vy2 vx1+vx2+vy1+vy2 vx1+vx2 − vy1 − vy2 vx1+vx2+vy1+vy2

We removed biases and scale factors. α = 0.003(y1 + y2)(vx2 + x1 + y1(vx2 + y1 + y2) + 1.402).

Table A2: Results with Known Holonomic Constraints.

2-pend 2-body

Model 1-step↓ VPT↑ 1-step↓ VPT↑

NODE 0.82 ±0.020 0.110 ±0.035 144.21 ±12.65 0.134 ±0.014
HNN (Greydanus et al., 2019) 6220.26 ±91.57 0.002 ±0.000 5.17 ±0.570 0.362 ±0.026
CHNN (Finzi et al., 2020b) 0.07 ±0.000 0.928 ±0.036 (not working)

NODE+cFINDE 0.71 ±0.040 0.461 ±0.071 163.64 ±9.790 0.147 ±0.024
HNN+cFINDE 236.51 ±7.150 0.020 ±0.002 8.32 ±0.430 0.476 ±0.040

D.3 COMPARISON WITH MODEL OF KNOWN HOLONOMIC CONSTRAINTS

The double pendulum (2-pend) is classified as a constrained Hamiltonian system. CHNN was pro-
posed for cases when holonomic constraints are known (Finzi et al., 2020b). We evaluated compari-
son methods under the assumption that the holonomic constraints were known. We summarized the
results in Table A2. The HNN, without constraints, completely failed to learn the dynamics. This
is unsurprising because the dynamics of the double pendulum is outside the scope of the HNN. The
two known holonomic constraints lead to two constraints involving the velocity; the CHNN took
into account all four known constraints and worked remarkably. The HNN with cFINDE was given
all four known constraints as the first integrals, but did not work properly. The original purpose of
projection methods is to eliminate temporal discretization errors of first integrals but not to change
the class to which the dynamics belong. Therefore, when a target system is not a subject of the base
model, the base model with FINDE does not work. The NODE learns an ODE in a general way, and
thus constrained Hamiltonian systems are included in its subjects. Given all four known constraints,
the NODE with cFINDE worked better but never surpassed the CHNN.

However, the CHNN works only for Hamiltonian systems in the canonical form with holonomic
constraints. We also evaluated comparison methods using the 2-body dataset under the assumption
that the linear momenta were known as first integrals. The CHNN attempted to obtain the inverse of
a singular matrix and could not learn the dynamics. In contrast, the cFINDE improved the perfor-
mances of both NODE and HNN.

Existing methods (e.g., HNN and CHNN) assume geometric structures (e.g., Hamiltonian struc-
ture) described in Appendix A in order to guarantee conservation laws. When multiple structures
are assumed at the same time, they must be integrated using appropriate prior knowledge. If it is
possible, it would achieve extremely high performance. Otherwise, the geometric structures would
conflict with each other and would not produce an appropriate model. This is the reason why CHNN
failed to learn the 2-body dataset and HNN+FINDE failed to learn the 2-pend dataset. In contrast,
NODE+FINDE does not assume any geometric structure and assumes first integrals in the most
general way, being available to any situation. Hence, FINDE can assume one or more first integrals
without changing anything.

When the detailed properties of target systems are known, one can choose the best models. If
the chosen model is inappropriate, the training procedure totally fails. FINDE provides a better
alternative when prior knowledge is limited. Moreover, a constrained Hamiltonian system can have
first integrals other than holonomic constraints and the Hamiltonian. In this case, the CHNN with
FINDE is potentially the best choice.

23

Published as a conference paper at ICLR 2023

Table A3: Results of NODE with cFINDE on Training Set of 2-Pend Dataset.

2-pend

Model K 1-step↓ VPT↑

NODE – 0.76 ±0.02 0.966 ±0.007

1 0.72 ±0.06 0.974 ±0.004
2 0.69 ±0.08 0.981 ±0.014

+ cFINDE 3 0.63 ±0.02 0.994 ±0.002
4 0.67 ±0.05 0.990 ±0.005
5 0.65 ±0.02 0.998 ±0.000
6 9.93 ±0.00 0.126 ±0.000

D.4 REASON FOR HIGH PERFORMANCE AND HOW TO DETERMINE NUMBER OF FIRST
INTEGRALS

The theoretical explanation for the high performance of neural networks (e.g., HNN) that assume
first integrals for physical phenomena is an open question. Sannai et al. (2021) has theoretically
shown that neural networks (e.g., CNNs and GNNs) with symmetry have faster learning conver-
gence, and we consider this approach can be applied to the above question. At least for cFINDE
and dFinde, we have an intuitive but not rigorous explanation; assuming one more first integral (i.e.,
increasing K by 1) reduces the number of degrees of freedom in the dynamics by 1, narrows the
hypothesis space, accelerates learning convergence, and suppresses generalization errors.

As shown in Table 3, the performance of cFINDE and dFINDE is sensitive to the assumed number
K of first integrals. Because K is a hyperparameter, it is basically a subject to be adjusted through
evaluations on a validation set. With inappropriately large K, both cFINDE and dFINDE dropped
their performance significantly. See the results of the 2-pend and FitzHugh–Nagumo datasets for
K = 6 and K = 3, respectively.

However, the performance drop can be found even with the training set. Table A3 summarizes the
prediction performance on the training set of the 2-pend dataset. As was the case with the test set,
the performance significantly dropped at K = 6. This is because NODE with cFINDE for K = 6
assumes the submanifold M′ to be 2-dimensional. The submanifold M′ is in fact 3-dimensional,
so NODE with cFINDE for K = 6 is incapable of learning the dynamics and performs poorly even
on the training set. Hence, the training set is enough to avoid a fatally inappropriate K.

Alternatively, K can be determined by using other methods (e.g., Fukunaga & Olsen (1971); Liu &
Tegmark (2021)). Although these methods have some drawbacks introduced in Appendix A, they
may be complementary to FINDE.

D.5 COMPARISON WITH MODIFIED NEURAL PROJECTION METHOD

The neural projection method (NPM) also employs a projection method (Yang et al., 2020). Using
a manner similar to Newton’s method, it enforces the constraint C(u) = 0 by the projection of the
state u under the assumption that the quantity C(u) is always zero. This assumption holds for some
cases (e.g., holonomic constraints in a fixed environment), but not for most first integrals, whose
values depend on initial conditions.

For example, the linear momentum in the x-direction of the two-body problem is the first inte-
gral expressed as V (u) = m1vx1(t) + m2vx2(t). This quantity V is constant within a trial (i.e.,
V (u(t)) = V (u(0))) and varies between trials depending on the initial speed vx1(0) and vx2(0).
The total energy, the total mass, and many other first integrals depend on the initial condition in the
same manner; hence, they are outside the scope of the NPM. In contrast, by imposing the constraint
on the gradient ∇V = 0 or discrete gradient ∇V = 0, our proposed FINDE keeps the quantity V
constant and can handle any first integrals.

For comparison, we replaced the constraint C(u) = 0 with C(us+1,us) = V (us+1) − V (us) =
0 and adopted the NPM to first integrals varying from trial to trial. We evaluated the modified
NPM using the 2-pend dataset. Because the modified NPM is a discrete-time projection method,

24

Published as a conference paper at ICLR 2023

Table A4: Comparison with Neural Projection Method (NPM)

K dFINDE (proposed) modified NPM

1-step↓ VPT↑ 1-step↓ VPT↑ successful

1 0.75 ±0.10 0.152 ±0.017 0.73 ±0.08 0.150 ±0.014 5/5
2 0.74 ±0.05 0.271 ±0.111 — — 0/5
3 0.69 ±0.05 0.447 ±0.081 (0.69 ±0.00) (0.138 ±0.000) 1/5
4 0.71 ±0.03 0.454 ±0.060 (0.72 ±0.03) (0.383 ±0.023) 3/5
5 0.86 ±0.09 0.591 ±0.087 0.85 ±0.11 0.364 ±0.134 5/5
6 58.88 ±22.98 0.037 ±0.039 (1.29 ±0.20) (0.103 ±0.016) 3/5

we compared it with the discrete-time version of the proposed FINDE (dFINDE). The results are
summarized in Table A4.

The dFINDE successfully learned the dynamics in all trials, but the modified NPM failed to learn the
dynamics in half the trials (see the rightmost column for the numbers of successful trials out of 5).
The modified NPM often encountered of the underflow of the time-step size or a division by the zero
gradient of the first integral. Even when the learning was successful, the performance of the NPM
was inferior to that of the dFINDE. The modified NPM solved the optimization problem in Eq. (3) at
every step, but it sometimes diverged or failed to converge, especially in the early phase of learning.
The NPM was successful for fixed environments but might be unsuited for general first integrals
varying from trial to trial. However, the dFINDE does not require solving an optimization problem
during training, making the learning process robust against randomness such as initialization.

25

	Introduction
	Background and Related Work
	First Integral-Preserving Neural Differential Equation
	Continuous FINDE: Time-Derivative Projection Method
	Discrete FINDE: Discrete-Time Derivative Projection Method

	Experiments
	Experimental Settings
	Demonstration of First Integral Preservation
	Finding Non-Hamiltonian First Integrals of Hamiltonian Systems
	Finding First Integrals of Unknown Systems

	Conclusion
	Hamiltonian System, its Generalization, and First Integrals
	Details of Methods
	Derivation of FINDE
	Discrete Gradient
	Prediction and Training Procedures

	Details of Datasets
	Additional Results and Discussion
	Demonstration of First Integral Preservation
	Symbolic Regression of Found First Integrals
	Comparison with Model of Known Holonomic Constraints
	Reason for High Performance and How to Determine Number of First Integrals
	Comparison with Modified Neural Projection Method

