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Abstract

Large Vision Language Models (LVLMs) have001
shown impressive performance on various002
vision-language tasks. However, while ob-003
jects in natural scenes inevitably exhibit visual004
variations in position, scale, orientation, and005
context due to changes in viewpoint and en-006
vironment, the robustness of LVLMs to these007
fundamental visual variations remains largely008
unexplored. To address this gap, we intro-009
duce V2R-Bench, a comprehensive benchmark010
framework for evaluating Visual Variation011
Robustness of LVLMs, which encompasses012
automated evaluation dataset generation and013
principled metrics for thorough robustness as-014
sessment. Through extensive evaluation of015
21 LVLMs, we reveal a surprising vulnera-016
bility to visual variations, in which even ad-017
vanced models that excel at complex vision-018
language tasks significantly underperform on019
simple tasks such as object recognition. Inter-020
estingly, these models exhibit a distinct visual021
position bias that contradicts theories of effec-022
tive receptive fields and demonstrate a human-023
like visual acuity threshold. To identify the024
source of these vulnerabilities, we present a sys-025
tematic framework for component-level anal-026
ysis, featuring a novel visualization approach027
for aligned visual features. Results show that028
these vulnerabilities stem from error accumula-029
tion in the pipeline architecture and inadequate030
multimodal alignment. Complementary experi-031
ments with synthetic data further demonstrate032
that these limitations are fundamentally archi-033
tectural challenges, underscoring the need for034
architectural innovations in future LVLM de-035
signs.1036

1 Introduction037

The rapid development of Large Vision Language038

Models (LVLMs) (Liu et al., 2023; Lu et al.,039

1Our code and data will be released in the final version.

2024a) has been driven by two key factors: in- 040

novations in model architectures and the avail- 041

ability of high-quality training data. These mod- 042

els have demonstrated impressive results in com- 043

plex vision-language tasks, achieving human-level 044

performance across various challenges (Fei et al., 045

2024). To systematically evaluate such capabilities, 046

numerous multimodal benchmarks have been devel- 047

oped to assess models’ fundamental knowledge (Fu 048

et al., 2024b), perceptual capability (Wu and Xie, 049

2023; Zhang et al., 2024b), cognitive understand- 050

ing (Fu et al., 2024a), and reasoning skills (Lu 051

et al., 2024b; Huang et al., 2024) across various 052

downstream applications. 053

While current benchmarks extensively evaluate 054

models using images collected in specific scenarios, 055

they overlook a more fundamental and generaliz- 056

able capability: the robustness of LVLMs to vi- 057

sual variations. In input images, objects naturally 058

exhibit diverse variations: spatial positions shift 059

with changes in camera angles and viewpoints; ob- 060

ject scales vary depending on viewing distances; 061

orientations deviate from standard poses through ro- 062

tations and inversions; and objects appear in a range 063

of visual semantic contexts. These visual variations 064

naturally raise several concerns about LVLMs’ ro- 065

bustness: whether models maintain consistent per- 066

ception capabilities across all spatial positions in 067

input images; what visual acuity threshold deter- 068

mines reliable performance; and how changes in 069

orientation and visual context influence model be- 070

havior. 071

Despite the importance of such robustness, cur- 072

rent research has primarily focused on model ro- 073

bustness to socio-cultural factors (Ananthram et al., 074

2024), adversarial prompt attacks (Wu et al., 2024b; 075

Liu et al., 2024b), or corrupted image inputs (Liu 076

et al., 2024a), leaving the impact of natural visual 077

variations largely unexplored. A thorough review 078

of related work is provided in Appendix A. 079

In this paper, we propose V2R-Bench, a compre- 080
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Figure 1: Illustration of V2R-Bench. Left: Automated data generation framework that adds visual variations
to images, including tasks: basic visual tasks and existing benchmarks, as well as supplementary visual tasks.
Right: Metrics for robustness testing, including performance consistency, semantic and token-level stability, and
LLM-as-a-judge.

hensive benchmark framework to evaluate LVLM081

robustness against fundamental visual variations.082

Our framework consists of (1) an automated data083

generation pipeline and (2) tailored evaluation met-084

rics, which can be readily extended to various VQA085

tasks. Through extensive evaluation of 21 LVLMs,086

we uncover surprising findings: despite their excel-087

lence in complex multimodal tasks, these models088

exhibit unexpected vulnerabilities to visual varia-089

tions, leading to poor performance even in basic090

tasks such as object recognition. Specifically, we091

observe: (1) a counter-intuitive position bias where092

models achieve higher accuracy at image edges093

rather than the center; (2) a human-like visual acu-094

ity threshold where model reliability steadily de-095

creases with object size, reaching and maintaining096

minimum performance below a critical scale thresh-097

old; (3) selective robustness to certain orientations098

while remaining fragile to others; and (4) a ten-099

dency to ground predictions on visual contextual100

inference rather than direct visual perception.101

To identify the root cause of these vulnerabili-102

ties, we conduct a systematic analysis of LVLM103

components. A key innovation in our analysis is104

a novel visualization method that reconstructs lan-105

guage tokens from aligned visual features, offering106

insights into how models process and transmit vi-107

sual information across modalities. Our investiga-108

tion reveals that inadequate multimodal alignment109

is the primary bottleneck, as models fail to maintain110

stable visual representations across variations and111

struggle to effectively align visual semantics with112

the language model. To disentangle whether these113

limitations stem from architectural constraints or114

data deficiency, we conduct complementary exper- 115

iments with synthetic training data. The results 116

reveal that these vulnerabilities are fundamentally 117

rooted in architectural design. These findings un- 118

derscore two critical directions for future LVLM de- 119

velopment: stronger multimodal alignment mecha- 120

nisms to maintain semantic consistency across vari- 121

ations, and unified architectural designs to mitigate 122

error accumulation in current pipeline structures. 123

Our contributions are summarized as follows: 124

• We identify and formulate a novel problem: the 125

robustness of LVLMs to visual variations, a fun- 126

damental yet overlooked capability essential for 127

reliable vision-language reasoning. 128

• We propose V2R-Bench, an evaluation frame- 129

work with automated data generation and tailored 130

metrics, uncovering significant vulnerabilities in 131

current LVLMs through an extensive evaluation 132

of 21 models. 133

• We develop a systematic component-level analy- 134

sis with a novel visualization technique for mul- 135

timodal alignment, revealing the root causes of 136

these vulnerabilities and providing insights for 137

future architectural improvements. 138

2 Evaluation Framework 139

In this section, we present our V2R-Bench eval- 140

uation framework. 2.1 introduces our automated 141

pipeline for generating diverse visual variations 142

across different task settings. 2.2 describes our 143

evaluation protocols. 2.3 details the construction 144

and characteristics of our evaluation dataset. 145
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2.1 Automated Variations Generation146

The automated data generation pipeline incorpo-147

rates four fundamental visual variations that are148

prevalent in real-world scenarios:149

Position variations investigate whether LVLMs150

exhibit blind spots2 in their visual processing,151

where models may fail to accurately perceive visual152

information at certain spatial locations.153

Scale variations examine the perceptual bound-154

aries of LVLMs when processing objects at dif-155

ferent scales, similar to clinical vision tests for156

humans.157

Orientation variations challenge the ability of158

LVLMs to process objects at different rotational159

angles, which is crucial for real-world scenarios160

like robotic navigation where objects rarely appear161

in canonical orientations.162

Context variations test whether model predic-163

tions remain consistent across diverse environmen-164

tal settings, revealing whether LVLMs perform gen-165

uine visual perception or rely primarily on contex-166

tual cues for inference.167

Formally, given an image I , a set of transformed168

images along these dimensions is generated as:169

D = {T (I, v)|v ∈ {P × S ×R× C}} (1)170

where P = {1, ...,W} × {1, ...,H}, S =171

[smin, smax], R = [0, 2π], and C ∈ B represent172

the sets of position, scale, rotation, and context173

variations respectively. For each question-image174

pair in the evaluation set, this generation process175

produces |P | × |S| × |R| × |C| variants in total,176

enabling a holistic exploration of the entire vari-177

ation space that leaves no potential vulnerability178

unexplored.179

2.2 Evaluation Protocol180

Our evaluation protocol considers two aspects of181

LVLM robustness: performance consistency and182

output stability across variations.183

Performance consistency measures whether a184

model maintains its task-specific metrics across vi-185

sual variations, which directly quantifies how these186

variations impact model performance. To quantify187

this consistency, we define:188

Cm(I) = 1−
√

1

N

∑
v∈V

(M(Iv)−M)2 (2)189

2https://en.wikipedia.org/wiki/Blind_spot_
(vision)

where M(Iv) denotes the task-specific metric on 190

variation Iv, M represents the mean performance 191

across all variations, and V is the set of variations. 192

A larger Cm indicates better consistency, with 1 193

representing that the model is robust enough to be 194

unaffected by visual variations. 195

Output stability evaluates the generation stability 196

of model outputs at both semantic and token levels, 197

as defined in the following equations: 198
199

Ss(I) =
1

|V|2
∑
vi∈V

∑
vj∈V

sim(E(Ovi), E(Ovj ))

(3) 200

St(I) =
1

|V|2
∑
vi∈V

∑
vj∈V

|T (Ovi) ∩ T (Ovj )|
|T (Ovi) ∪ T (Ovj )|

(4) 201

where E(O) denotes the output embedding, 202

sim(·, ·) computes the cosine similarity between 203

embeddings, and T (O) represents the set of tokens 204

in output O. 205

We also employ LLM-as-a-judge (Zheng et al., 206

2023) to emulate human assessment of LVLM- 207

generated outputs under structured visual varia- 208

tions, providing an additional qualitative perspec- 209

tive on model robustness. 210

2.3 Dataset Construction 211

The proposed automated generation pipeline is im- 212

plemented across two categories of tasks. The 213

first category examines fundamental visual capa- 214

bilities through object recognition and direction 215

recognition tasks, with target objects and direc- 216

tional indicators being systematically transformed 217

through our visual variations using image pro- 218

cessing algorithms and inpainting diffusion mod- 219

els (Corneanu et al., 2024; Lugmayr et al., 2022). 220

The second category extends to existing multi- 221

modal benchmarks, focusing on scenarios where 222

variations in position, scale, orientation, and con- 223

text preserve ground-truth validity, ensuring that 224

any performance changes reflect model robustness 225

rather than ground-truth alteration. The final evalu- 226

ation datasets contain a total of 428K images. Each 227

category serves a distinct yet complementary pur- 228

pose in our evaluation: the basic tasks provide 229

controlled, interpretable measures of fundamen- 230

tal capabilities, while the extended benchmarks 231

assess robustness in more naturalistic settings. The 232

detailed implementation of these generation algo- 233

rithms is provided in Appendix D. 234
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3 Cross-Modal Diagnosis235

To understand the underlying mechanisms of236

LVLM vulnerabilities to visual variations, we pro-237

pose a systematic analysis framework that exam-238

ines contributions of each model components to239

robustness issues. Central to this framework is a240

novel visualization technique that provides straight-241

forward insights into how visual features extracted242

by vision encoder are processed through the mul-243

timodal alignment module and aligned with lan-244

guage embedding space.245

3.1 Component-level Analysis246

Here we first formalize the general architecture and247

process pipeline of modern LVLMs to facilitate248

subsequent analysis. Given an input question Q249

and an image I , the vision encoder Ev first extract250

visual features from the input image:251

v = Ev(I; θv) ∈ RNv×Dv (5)252

These visual features are then projected into the253

language embedding space through a multimodal254

alignment module P :255

h = P (v; θp) ∈ RNv×Dh (6)256

Finally, the language model M takes the aligned257

visual features in conjunction with question embed-258

dings El(Q) ∈ RNq×Dh as input to generate the259

response in an autoregressive manner:260

Rt = M(h,El(Q), R<t; θm) for t = 1, . . . , T
(7)261

As the initial input module of LVLMs, the vision262

encoder Ev fundamentally determines the perfor-263

mance ceiling of the whole model, since the vi-264

sual information contained in its extracted features265

represents the upper bound of visual content avail-266

able to subsequent modules. Given the distinct pre-267

training paradigms of vision encoders (contrastive268

learning (Radford et al., 2021) and self-supervised269

learning (Oquab et al., 2024)), the feature qual-270

ity assessment differs accordingly: for contrastive-271

trained encoders, the corresponding text encoder272

enables zero-shot analysis, while for supervised-273

trained ones, linear probing (Alain and Bengio,274

2018) and clustering analysis serve to assess their275

extracted features.276

The multimodal projector P acts as a bridge277

between the visual feature and language embedding278

spaces, which raises two questions for its perfor-279

mance analysis: (RQ1) Do the projected features h280

preserve the visual information contained in v?, and 281

(RQ2) Do the projected features h align well with 282

the embedding space of the language model M? To 283

answer these questions, two analytical approaches 284

are employed: (1) comparing the performance of 285

pre-projection features v and post-projection fea- 286

tures h on visual tasks to quantify potential visual 287

information loss during multimodal alignment, and 288

(2) measuring the discriminability between pro- 289

jected visual features h and the language embed- 290

dings of their corresponding captions to assess the 291

quality of modality alignment. 292

The language model M , as the final module 293

for integrating aligned visual features with input 294

questions and generating responses, is inherently 295

affected by potential errors from upstream mod- 296

ules, which complicates the assessment of intrinsic 297

language model robustness. Thus, an evaluation 298

strategy is devised to bypass upstream modules by 299

directly providing visual information as language 300

tokens, which simulates ideal visual feature extrac- 301

tion and multimodal alignment where visual infor- 302

mation is perfectly preserved without any loss or 303

misalignment, enabling a controlled setting for an- 304

alyzing inherent language model capabilities. We 305

construct a set of text-based evaluation datasets that 306

parallel the visual tasks in LVLMs, where visual 307

scenes are simulated through matrix-structured text 308

inputs. The text inputs serve as ideal visual encod- 309

ings that contain different visual variations. Com- 310

paring the performance on these text-based tasks 311

with that of LVLMs reveals whether the vulnera- 312

bility to visual variations stems from the language 313

model component. 314

3.2 Visual-Linguistic Feature Analysis 315

In addition to the aforementioned quantitative anal- 316

ysis of multimodal alignment, our proposed frame- 317

work also incorporates a novel visualization ap- 318

proach, which reconstructs language tokens from 319

aligned visual features to provide interpretable ev- 320

idence of the alignment process, an aspect pre- 321

viously unexplored. Specifically, given a single 322

aligned visual feature h ∈ R1×Dh and token em- 323

bedding matrix E ∈ R|V |×Dh of the language 324

model M , the feature h can be decoded to a set 325

of language tokens that approximate its semantic 326

meaning: 327

t = topk
(

softmax
(
hE⊤

))
, (8) 328

where |V | denotes the vocabulary size of the lan- 329

guage model and k controls the number of tokens 330
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to be selected.331

Through these decoded language tokens, the se-332

mantic meaning captured by the aligned visual fea-333

tures becomes intuitively understandable, which334

helps address the following questions: (RQ3) how335

do language models interpret these aligned visual336

features? (RQ4) How robust is the semantics of337

aligned visual features to visual variations? A de-338

tailed investigation of these questions is provided339

in Section 4.3.340

4 Experiments341

4.1 Experimental Setup342

Detailed experiment settings are provided in Ap-343

pendix E.344

4.2 Impact of Visual Variations345

The evaluation results across different LVLM ar-346

chitectures and model scales are presented in Ta-347

bles 5, and 6. Despite their impressive performance348

demonstrated on complex visual tasks, these mod-349

els exhibit surprising vulnerability to simple visual350

variations, resulting in significantly degraded per-351

formance across basic visual tasks. Even propri-352

etary models such as gpt-4o, Claude, and Gemini353

not only produce incorrect outputs, but also occa-354

sionally claim an inability to perceive the visual355

content entirely, as illustrated in Appendix G. Inter-356

estingly, despite claims that some carefully distilled357

smaller models outperform their larger counterparts358

on mainstream benchmarks, our analysis reveals359

that scaling laws still hold for robustness: within360

the same model architecture, larger models con-361

sistently demonstrate better stability across visual362

variations.363

For an in-depth understanding of these vulnera-364

bilities, this study focuses on LLaVA model, which365

provides full access to its training data, code, and366

parameters. Position: as shown in Figure 8, model367

performance varies dramatically across different368

positions. Contrary to the effective receptive field369

theory (Luo et al., 2017; Raghu et al., 2022) which370

suggests vision models have better perception of371

central regions, LVLMs exhibit strong visual posi-372

tion bias with higher accuracy at peripheral regions,373

raising concerns about their fundamental visual pro-374

cessing mechanisms. Figure 11 presents a more375

intuitive example using right-pointing arrows as376

input, illustrating the significant effect of positional377

variations on prediction outcomes. Scale: Figure 3378

illustrates a sharp performance decline as object379

size decreases, stabilizing when the object occupies 380

1/100 of the image area (equivalent to 1/10 of both 381

width and height). This reveals a potential visual 382

acuity threshold in LVLMs, similar to human vi- 383

sion, that defines a critical boundary below which 384

model outputs become unreliable, serving as a key 385

indicator for deploying LVLMs in fine-grained vi- 386

sual perception tasks. Orientation: performance 387

degradation is observed across different orienta- 388

tions, with models exhibiting distinct directional bi- 389

ases: some orientations show robustness, while oth- 390

ers lead to significant failures. Interestingly, mod- 391

els like Fuyu and BLIP demonstrate a pronounced 392

predictive tendency, being heavily influenced by 393

the left orientation. Context: model predictions 394

vary with different contextual arrangements, corre- 395

lating with context content, which raises questions 396

about whether the model truly perceives the target 397

objects or infers them from contextual cues. 398

To further investigate the root causes of these 399

vulnerabilities, we design complementary tasks fo- 400

cusing on fundamental perceptual capabilities. To 401

examine whether position and direction vulnerabili- 402

ties stem from limitations in spatial and directional 403

perception, we introduce two specialized tasks: co- 404

ordinate identification, where models directly out- 405

put position coordinates to test spatial understand- 406

ing, and path tracking, where models sequentially 407

output coordinates following directional lines to 408

examine continuous directional perception. To ver- 409

ify whether models achieve genuine recognition or 410

merely rely on contextual inference, we develop a 411

modified OCR task where certain letters in fluent 412

text are intentionally replaced with incorrect char- 413

acters and then blurred at different levels, testing 414

whether models faithfully report the visual content. 415

As shown in Table 2, all models exhibit poor 416

performance in coordinate recognition and path 417

tracing, indicating these vulnerabilities fundamen- 418

tally originate from the inability to accurately per- 419

ceive spatial properties. Figure 12 reveals peak 420

accuracy at initial points followed by monotoni- 421

cally decreasing performance, with marginal re- 422

covery at terminal nodes. This indicates not only 423

weak isolated direction recognition but also inad- 424

equate performance in visual-following reasoning 425

tasks, suggesting that spatial reasoning capabili- 426

ties likely derive more from commonsense world 427

knowledge rather than genuine visual understand- 428

ing. Table 1 results demonstrate that LVLMs tend 429

to overconfidently output contextually inferred con- 430

clusions rather than objectively depicted visual con- 431
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Figure 2: Changes in vision encoder classification prob-
abilities and LVLM token predictions under different
visual variations (context and scale). For each variation,
we show the ViT’s top-3 class probabilities (left) and
LVLM’s top-5 token logits (right), demonstrating how
semantic interpretations shift across visual variations.

tent, while LLMs achieve better accuracy under the432

same task conditions. This contrast proves that the433

observed limitations stem not from the denoising434

characteristics (Devlin et al., 2019) inherent to the435

transformer architecture itself, but rather from the436

interference introduced by visual modality integra-437

tion.438

4.3 Component Analysis439

Vision Encoder. As shown in Figure 8, the440

LVLM and its vision encoder exhibit similar posi-441

tion bias, achieving higher accuracy in peripheral442

areas compared to central regions. Moreover, Fig-443

ure 2 reveals that changes in the prediction label444

probabilities of the vision encoder align with shifts445

in the next token logits of the LVLM when scale446

and context variations are introduced. This behav-447

ioral consistency suggests that the LVLM inherits448

its vulnerability to visual variations from its vision449

encoder component.450

Multimodal Projector. The following analyses451

address the four research questions posed above.452

(RQ1) Visual Information Loss. Linear prob-453

ing results for pre-projection and post-projection454

features are presented in Table 4. The significant455

performance degradation after multimodal projec-456

tion suggests irrecoverable information loss dur-457

ing the alignment process, potentially contributing458

to LVLM’s vulnerability across visual variations.459

The poor performance of MM-Projector implies460

that there is semantic information loss during the461

modality alignment process, meaning it is the po-462

tential cause for the degradation of LVLM robust-463

ness across visual variations.464
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Figure 3: Model performance as a function of rela-
tive object scale, where the x-axis represents the ratio
between input image dimension (width/height) and ob-
ject size. A larger ratio indicates the object occupies a
smaller portion of the input image.

We further compare the fine-tuned vision en- 465

coder in LLaVA 1.6 with the original one. While its 466

vision encoder is fine-tuned to adapt image-text fea- 467

tures for generative tasks, its linear probing perfor- 468

mance underperforms the original vision encoder, 469

revealing a trade-off: task-specific adaptation im- 470

proves multimodal coherence but erodes the vision 471

encoder’s innate spatial representational fidelity. 472

This aligns with LLaVA 1.5’s limitations, where 473

only the lightweight projector can be fine-tuned 474

and struggled to mitigate information loss from the 475

frozen CLIP encoder. Our results underscore that 476

while recent advancements in alignment neural net- 477

works alleviate alignment bottlenecks, fundamen- 478

tal architectural constraints such as patch-based 479

tokenization and positional bias persist as critical 480

vulnerabilities, necessitating unified approaches to 481

relax the conflicts between visual grounding and 482

multimodal alignment. 483

(RQ2) Inadequte Multimodal Alignment. Fig- 484

ure 4 illustrates the spatial distribution of visual fea- 485

tures, aligned features, and language embeddings. 486

We observe that the distribution of the aligned fea- 487

tures is similar to that of image features, meaning 488

that the multimodal process preserves the visual 489

semantics for some extent. Ideally, the aligned 490

features should closely resemble the language em- 491

beddings. However, our observation reveals a sig- 492

nificant disparity between the aligned feature space 493

and the language embedding space, suggesting a 494

lack of adequate modality alignment. This find- 495

ing underscores the critical role of the multimodal 496
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Figure 4: Visualization of different feature representa-
tions: aligned visual features projected into the language
embedding space, with images from the MSCOCO
dataset (Lin et al., 2015) and text embeddings obtained
from the language model.

projector, which is a key factor contributing to the497

LVLM’s vulnerability to visual variations.498

To explore the image feature representation with499

regard to visual variations, Figure 10 presents the500

clustering analysis of image features of the same501

object at different directions and positions. These502

variations introduce substantial alterations in image503

features, highlighting the inherent challenges faced504

by robust image encoding techniques. These fluctu-505

ations can lead to inconsistencies in feature extrac-506

tion and representation across different instances507

of the same object or scene. The limited robustness508

in current encoding methodologies may struggle509

to effectively capture and encode these variations510

while maintaining the semantic integrity of the fea-511

tures, potentially compromising the accuracy and512

reliability of downstream tasks. Addressing this513

issue requires the development of more resilient514

encoding strategies that can adapt to diverse visual515

transformations, enhancing the overall robustness516

and generalizability of image feature representa-517

tions in complex visual tasks.518

(RQ3) Interpretation of Aligned Features. Fig-519

ure 5 demonstrates the results of decoding aligned520

visual features into language tokens. Due to the521

inherent differences in attention patterns between522

vision encoder (bidirectional) and language model523

(autoregressive), these decoded results do not form524

coherent natural language, with only a subset of525

tokens being semantically relevant to the image526

content. These aligned visual features, which527

reside outside the discrete language embedding528

Figure 5: Images with their corresponding word cloud
visualization of the decoded aligned features. The
dashed red circles highlight selected semantically rele-
vant tokens.

space (as shown in Figure 4), can be interpreted 529

as visually conditioned soft prompts (Lester et al., 530

2021; Gu et al., 2022; Liu et al., 2022), provid- 531

ing implicit cues that contain image-related infor- 532

mation to guide model responses to image-related 533

queries. However, prior work (Bailey et al., 2024) 534

has revealed the limitations of such soft prompt 535

approaches, including their instability and poten- 536

tial hidden bugs due to lack of interpretability and 537

the discrepancy from language model embedding 538

space, ultimately leading to the vulnerability to 539

visual variations. 540

(RQ4) Visual Semantics Vulnerability. Based 541

on the results for RQ3, significant changes in de- 542

coded language tokens are observed across vi- 543

sual variations, indicating poor semantic robust- 544

ness. These inconsistent soft prompt prefixes con- 545

sequently lead to substantial fluctuations in model 546

outputs, further compromising the model’s robust- 547

ness. 548

Language Model. It has come to the commu- 549

nity’s attention that positional biases in natural 550

language widely exist in language models (Wang 551

et al., 2023a; Jung et al., 2019; Zheng et al., 2023; 552

Koo et al., 2024), where models tend to favor in- 553

formation appearing earlier in the text. Similarly, 554

we observe that language models exhibit position 555

bias in matrix-structured text representations of vi- 556

sual information. Furthermore, although object and 557

background information are explicitly represented 558
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as language tokens, model predictions are still in-559

fluenced by context, albeit to a lesser extent than560

LVLMs, suggesting that the vulnerability primarily561

stems from the upstream vision encoder and multi-562

modal alignment module, where the aligned visual563

features fed into the language model are already564

heavily influenced by visual context. The low accu-565

racy in the coordinate task demonstrates that, simi-566

lar to LVLMs, language models also lack precise567

positional awareness of objects. These limitations568

are rooted in the autoregressive nature of language569

models, which has the tendency to prioritize se-570

quential dependencies over structural relationships.571

4.4 Mitigating Robustness Issues572

To determine whether the robustness issues stem573

from architectural limitations or insufficient train-574

ing data, we explore improvements through two575

complementary approaches: First, we conduct con-576

trolled experiments on a subset of our test data577

while maintaining a held-out test set, directly prob-578

ing the architectural capacity for robust visual un-579

derstanding. Second, we utilize a general visual580

instruction tuning dataset injected with visual vari-581

ations to analyze whether a more diverse training582

distribution can enhance model robustness. We find583

that a more diverse dataset offers limited improve-584

ment in model robustness, likely due to insufficient585

data volume (as exhaustively covering these vari-586

ations requires many more variants). Moreover,587

while directly training the model on spatial visual588

tasks improves its performance on position and di-589

rection tasks, it does not enhance robustness against590

position and orientation variations. As Figure 7591

suggests, after training, despite improvements in592

the coordinate task, the path tracing task remains593

underperforming, due to the lack of sustained vi-594

sual attention. This reveals that the vulnerabil-595

ity is fundamentally rooted in architectural design596

choices rather than data limitations. The design of597

the vision encoder utilizes patch-based tokeniza-598

tion (Radford et al., 2021) and positional embed-599

dings, which may lead to information fragmenta-600

tion due to arbitrary patch partitioning and position601

sensitivity induced by explicit positional encoding.602

Moreover, the cascading pipeline architecture fur-603

ther amplifies vulnerabilities at each component,604

suggesting the potential benefits of a new architec-605

tural approach. Although unified architectures cur-606

rently underperform on visual understanding tasks607

due to training stability challenges (Chen et al.,608

2025a), this direction remains promising.609
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Figure 6: An example of visual-linguistic feature analy-
sis. The decoded language tokens show that the output
of MM-Projector does not align well with the text em-
bedding space and suffers from semantic information
loss. These aligned features also lack robustness against
visual variations.
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Figure 7: The comparison of benchmark evaluation
results and upper bound on coordinate and path tasks,
where the upper bound is the testing result of the LVLM
fine-tuned on partial benchmark dataset.

5 Conclusion 610

In this paper, we present V2R-Bench, an evalua- 611

tion framework designed to assess the robustness of 612

LVLMs against visual variations. Our results show 613

significant vulnerabilities in existing LVLMs and 614

identify their origins as twofold: insufficient multi- 615

modal alignment and error accumulation inherent 616

in pipeline model architectures. While synthetic 617

data augmentation seems as a mitigation strategy, 618

fundamental advancement in the field necessitates a 619

shift towards native multimodal architectures rather 620

than the current approach of concatenating separate 621

language and vision modalities. We aim to draw 622

attention to the importance of visual robustness in 623

LVLMs and inspire future research toward more 624

robust architectural paradigms. 625
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Limitations626

Aligned with the paper track’s focus, this work627

primarily concentrates on identifying a novel prob-628

lem, establishing corresponding evaluation meth-629

ods, and providing initial analytical insights into630

these vulnerabilities. Regarding solutions to the631

identified vulnerabilities, only two data synthe-632

sis approaches were explored, while potential im-633

provements through architectural modifications,634

pre-training strategies, or novel modality alignment635

methods remain unexplored due to their substan-636

tial resource requirements. The detailed analysis637

presented in this paper aims to provide insights for638

future research addressing these challenges. Addi-639

tionally, while this study examines four fundamen-640

tal types of visual variations, it does not exhaust641

the infinite possibilities of visual transformations,642

leaving some long-tail cases unexplored.643

Ethics Statements644

This study reveals a fundamental vulnerability in645

LVLMs - their lack of robustness to visual vari-646

ations that naturally occur from camera parame-647

ter adjustments and environmental changes. Such648

robustness deficiency results in significant output649

inconsistencies across visually similar scenarios,650

compromising model reliability in real-world de-651

ployments.652

A critical security implication emerges from653

these findings: visual variations could serve as a654

novel attack vector. Through strategic object place-655

ment with specific positions, scales, orientations, or656

contexts, these fundamental visual variations could657

be exploited to manipulate model behavior. Unlike658

conventional adversarial attacks requiring sophis-659

ticated training procedures, this approach requires660

no training and generates natural images without661

artificial artifacts, making such attacks particularly662

challenging for existing detection mechanisms.663

The identified vulnerability underscores the need664

for increased attention within the research commu-665

nity to these fundamental yet profoundly impact-666

ful visual variations, rather than solely pursuing667

state-of-the-art performance on complex tasks. En-668

hanced robustness to these variations is crucial for669

ensuring consistent model performance in natu-670

ral environments. Moreover, as attacks based on671

visual variations exploit inherent model vulnera-672

bilities rather than crafted adversarial strategies,673

addressing this robustness issue becomes essential674

for improving both the reliability and security of675

deployed LVLMs. 676
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A Related Work1437

Large Vision Language Models. The remark-1438

able progress of LVLMs stems from continuous1439

advances in model architectures and the exponen-1440

tial growth of training datasets. On the architec-1441

tural front, the rapid progress in foundation lan-1442

guage models (OpenAI et al., 2024; Touvron et al.,1443

2023; Jiang et al., 2023; Bai et al., 2023a) and vi-1444

sion models (Radford et al., 2021; Oquab et al.,1445

2024), together with increasingly sophisticated1446

multimodal alignment modules (Liu et al., 2023;1447

Li et al., 2023b; Alayrac et al., 2022; Zhu et al.,1448

2023; Wang et al., 2024b), has established the fun-1449

damental capabilities of LVLMs in understanding1450

and reasoning across modalities. Building upon1451

these architectural foundations, the emergence of1452

high-quality datasets (Chen et al., 2023a; Zhao1453

et al., 2023; Wang et al., 2023b; Li et al., 2023c)1454

designed for different training stages (e.g., multi-1455

modal alignment, visual instruction tuning, pref-1456

erence alignment) has enabled LVLMs to demon-1457

strate exceptional performance across diverse real-1458

world scenarios. More recently, research efforts1459

have focused on optimizing lightweight model ar-1460

chitectures and curating datasets tailored to edge1461

scenarios (Ma et al., 2024; Chu et al., 2024; Zhu1462

et al., 2024; Yao et al., 2024), thereby promoting1463

the practical deployment and adoption of LVLMs1464

in real-world applications.1465

While the pipeline architecture of these LVLMs1466

effectively leverages pretrained domain-specific1467

knowledge from vision and language components,1468

it potentially accumulates errors and vulnerabilities1469

across modules. However, no systematic inves-1470

tigation has been conducted to attribute model1471

failures to individual architectural components,1472

limiting both model interpretability and under-1473

standing of modality alignment.1474

LVLM Evaluation and Benchmarking. Recent1475

years have witnessed the emergence of numer-1476

ous benchmarks for evaluating LVLM capabilities1477

across cognitive and perceptual dimensions (Liang1478

et al., 2024; Fu et al., 2024b,a; Liu et al., 2024d; Yu1479

et al., 2024; Li et al., 2023a; Lee et al., 2024; Wu1480

et al., 2024a), comprehensively assessing various1481

aspects including reasoning skills, understanding1482

abilities, and inherent knowledge. The scope of1483

evaluation has further extended into specialized do-1484

mains, with an increased emphasis on real-world1485

scenario performance, as researchers develop dedi-1486

cated benchmarks for embodied intelligence (Wang1487

et al., 2024a; Yang et al., 2023; Zhang et al., 2023), 1488

medical image analysis (Xia et al., 2024; Chen 1489

et al., 2024a; Hu et al., 2024), and robotic con- 1490

trol (Chen et al., 2024b; Wang et al., 2023c). In 1491

parallel with capability assessment, researchers 1492

have begun investigating LVLM robustness from 1493

two critical perspectives: first, examining semantic 1494

biases in model responses, particularly those re- 1495

lated to societal factors like gender and racial prej- 1496

udices (Wang et al., 2024c; Howard et al., 2024; 1497

Steed and Caliskan, 2021); and second, analyzing 1498

adversarial vulnerabilities via carefully crafted vi- 1499

sual prompts for assessing model reliability under 1500

targeted attacks (Liu et al., 2024a; Luo et al., 2024b; 1501

Zhang et al., 2024a; Wang et al., 2024c; Chen et al., 1502

2023b). However, the capacity to withstand basic 1503

visual variations, a fundamental aspect of robust- 1504

ness that is widely present in real-world deploy- 1505

ment, remains unexplored in current research. 1506

B Discussion 1507

Summary of Empirical Findings Through the 1508

evaluation of V2R-Bench, we discover that intro- 1509

ducing visual variation causes inconsistent and un- 1510

stable output. Such vulnerability is due to the error 1511

accumulation in the data generation pipeline. We 1512

discover that ViT has the tendency to depend on 1513

the context during inference rather than truly recog- 1514

nize a target object. Through component analysis, 1515

we claim that multimodal projector is the main 1516

cause of the vulnerability to visual variations. The 1517

inadequate multimodal alignment causes visual in- 1518

formation loss and the decoding result of aligned 1519

feature does not form coherent natural language. 1520

The Use of Synthetic Data While our frame- 1521

work enables the incorporation of real-world bench- 1522

marks, we acknowledge that generated variations 1523

may not fully capture the complexity and diver- 1524

sity of real-world visual inputs. To address this, 1525

future work can be done to further integrate our 1526

framework with diffusion-based contextual blend- 1527

ing or 3D synthetic data generation technique such 1528

as Blender-SDG (Arenas, 2020). 1529

Future Directions V2R-Bench fills a crucial gap 1530

in existing evaluations by systematically testing 1531

robustness to fundamental visual variations (po- 1532

sition, scale, orientation, context)—ubiquitous in 1533

real-world scenarios but overlooked by current 1534

benchmarks. For instance, autonomous vehicles 1535

require consistent object recognition regardless of 1536
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camera angles, and medical imaging tools must1537

identify anomalies across scales. By integrating1538

existing benchmarks and evaluating with our syn-1539

thetic data, our framework directly addresses these1540

needs by enabling models to be stress-tested under1541

realistic conditions. Researchers can also easily ex-1542

pand tests to new variations (e.g., lighting changes)1543

or domains (e.g., CT image).1544

The benchmark’s component-level analysis of-1545

fers fine-grained diagnostic information, guiding1546

researchers toward targeted improvements. A key1547

future direction lies in enhancing the multimodal1548

alignment mechanisms. Additionally, the identified1549

vulnerabilities are not merely the result of limited1550

data or training strategies but also stem from fun-1551

damental architectural constraints requiring further1552

investigation.1553

C Prompt Template1554
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Figure 8: Accuracy heatmaps for object recognition and
direction recognition across different object scales and
position variations.

Prompt For Evaluation

• Object: Identify the object in the image.

• Direction: List the direction the arrow
is pointing in the image using one of the
following: up, down, left, right, top-left,
bottom-left, top-right, or bottom-right.

• Coordinate: This is a coordinate plot
with a single point. Provide the coordi-
nate in the format (x, ) for 1D, (x, y) for
2D, or (x, y, z) for 3D.

• Path: Describe the coordinates
of each point along the line from
the start to the end in the format
[(x1, y1), (x2, y2), . . . , (xn, yn)].

1555

D Experimental Setup 1556

We conduct comprehensive experiments across 1557

three distinct datasets to evaluate our model’s per- 1558

formance under various conditions. The experi- 1559

mental settings for each dataset are detailed below. 1560

D.1 Coordinate Dataset 1561

For the coordinate dataset, we systematically vary 1562

four key parameters to thoroughly assess model per- 1563

formance. The point range parameter defines the 1564

spatial extent of the coordinate system, with values 1565

spanning from confined spaces ([−5, 5]) to broader 1566

ranges ([−10, 10], [0, 10], and [0, 20]). This vari- 1567

ation allows us to evaluate the model’s ability to 1568

handle different scales of spatial information. 1569

To investigate the impact of visual aids on model 1570

performance, we experiment with both the pres- 1571

ence and absence of reference lines and grid sys- 1572

tems. These binary parameters (True/False) help 1573

us understand how additional visual context affects 1574

the model’s coordinate understanding. 1575

Regarding dimensionality, we focus our analysis 1576

on one- and two-dimensional coordinate systems. 1577

While three-dimensional coordinates were initially 1578

considered, they were ultimately excluded from our 1579

final experiments due to consistently poor model 1580

performance across preliminary tests. 1581

D.2 Path Dataset 1582

In the path dataset experiments, we explore the 1583

model’s capability to process and understand con- 1584

nected point sequences. We vary the complexity of 1585

paths by adjusting the number of points from 2 to 1586
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Model Visual Dependency Knowledge Dependency

Text B0 B1 B2 B3 Text B0 B1 B2 B3

GPT-4o 0.2109 0.0475 0.0586 0.2916 0.4724 0.0821 0.2044 0.2030 0.2004 0.2232
Qwen2-VL 0.2531 0.1169 0.2417 0.3710 0.5344 0.2674 0.2344 0.2284 0.3154 0.4945
Llava-1.6 0.2129 0.5732 1.8404 1.8026 1.4573 0.3743 0.5676 1.8013 1.7919 1.4485

Table 1: Performance Comparison of Models under Different Blur Conditions: LVLMs favor contextual inference
over input-output consistency, while LLMs maintain better alignment with inputs. As blur levels increase, LVLMs
confidently continue contextual reasoning, implying they inherently operate through inference from ambiguous
visual signals rather than direct visual processing.
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Figure 9: Linear probing results for Vision Encoder showing position bias patterns similar to those observed in
LVLMs.

6, creating a progression from simple linear paths1587

to more complex multi-point trajectories.1588

The spatial distribution of these points is con-1589

trolled through the same range parameters as the1590

coordinate dataset: [−5, 5], [−10, 10], [0, 10], and1591

[0, 20]. For each unique combination of point count1592

and range setting, we generate a substantial set of1593

100 images, ensuring robust evaluation across dif-1594

ferent configurations.1595

We evaluate the performance of path tracing and1596

coordinate recognition through the following met-1597

ric:1598

(1) Exact Match Accuracy (EMA) A predicted1599

path is considered correct only if it exactly matches1600

the ground truth answer. 1601

(2) Partial Match Order-Independent Accuracy 1602

(PM-IA) In this metric, a point in the predicted 1603

path is deemed correct if its coordinates match any 1604

point in the ground-truth path. PM-IA is computed 1605

as the average accuracy across all positions. 1606

(3) Partial Match Order-Sensitive Accuracy 1607

(PM-SA) This metric marks a point in the pre- 1608

dicted path as correct only if both its coordinates 1609

and position in the path match those of a point in 1610

the ground truth path. PM-SA is calculated as the 1611

average accuracy across all positions. 1612
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Model EMA PM-IA PM-SA PA

Qwen2-VL-INST 0.060 0.239 0.079 0.487
Molmo-7B-D 0.000 0.160 0.053 0.199
Phi3-Vison-128K-INST 0.062 0.448 0.188 0.707
Phi3.5-Vison-INST 0.005 0.093 0.030 0.123
LLaVA-onevision-Qwen2 0.005 0.074 0.021 0.077
LLaVA-1.6 0.000 0.017 0.005 0.013

Table 2: Path (the first three columns) and coordinate
(the last column) task accuracy comparison of 6 selected
models across multiple metrics. Metric definitions are
in Appendix D.2.

(4) Point Accuracy (PA) This metric is the accu-1613

racy of the coordinate recognition.1614

D.3 Object and Orientation Dataset1615

The object and orientation dataset is designed to1616

evaluate the model’s understanding of object posi-1617

tioning and directionality. We carefully selected ten1618

distinct object categories, including eight animals1619

(shiba dog, cat, bear, eagle, snake, panda, turtle,1620

and fish) and two vehicles (car and plane). This1621

diverse selection allows us to assess the model’s1622

performance across varying object morphologies1623

and complexities.1624

Scale perception is tested through a comprehen-1625

sive set of object-to-background ratios: 1/2, 1/3,1626

1/5, 1/10, 1/15, and 1/20. These ratios represent1627

a wide spectrum from prominent objects (1/2) to1628

more subtle presentations (1/20). Furthermore,1629

we evaluate each object against two distinct back-1630

ground types: solid colors for controlled conditions1631

and semantic images for real-world complexity.1632

The orientation aspect of our experiments en-1633

compasses eight distinct directions: the four cardi-1634

nal directions (up, down, left, right) and their inter-1635

mediates (top-left, bottom-left, top-right, bottom-1636

right). This comprehensive directional coverage1637

allows us to assess the model’s ability to under-1638

stand and interpret various object orientations.1639

Through these carefully designed experimental1640

settings, we aim to provide a thorough and system-1641

atic evaluation of our model’s capabilities across1642

different aspects of visual understanding and spa-1643

tial reasoning.1644

D.4 Text Dataset1645

We create char matrices of size 8*8, 16*16,1646

24*24, 32*32, 40*40, 64*64. A target word1647

is selected from one of the following, [’dog’,1648

’cat’, ’bird’, ’lion’, ’tiger’, ’zebra’,1649

’monkey’, ’panda’], and is positioned within the1650
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Figure 10: t-SNE visualization of aligned features under
directional and positional variations, demonstrating par-
tial sensitivity to visual variations in the feature space.

matrices. Except the object, the rest of the ma- 1651

trices are either asterisks (e.g. corresponding to 1652

the w/o BG setting) or random background words. 1653

We design 3 tasks to test the robustness of LLM 1654

in the cross-component analysis: (1) target word 1655

recognition, corresponding to object detection task 1656

in image (2) coordinate recognition which corre- 1657

sponds to coordinate recognition and (3) object 1658

counting, which is a fundamental skill needed in 1659

path tracing. By systematically varying the back- 1660

ground contexts while maintaining the target object, 1661

we can evaluate whether models truly recognize ob- 1662

jects independently or merely rely on contextual 1663

associations. 1664

E Experimental Setup 1665

E.1 Evaluated Models 1666

Qwen-VL The Qwen-VL model family rep- 1667

resents Alibaba’s cutting-edge vision-language 1668

model series. The family includes three main 1669

20



Model Number Coordinate Object

w/o BG w/ BG w/o BG w/ BG w/o BG w/ BG

Llama-3 0.0688 0.1012 0.0032 0.0024 0.9996 0.8464
Mistral-v0.2 0.2940 0.0776 0.0008 0.000 0.8832 0.8528
Qwen-2 0.3288 0.1364 0.0088 0.0084 0.9952 0.9784

Table 3: Performance of LVLM Language Model Backbones on Text-based Tasks: Comparing scenarios with
background tokens represented as asterisks (w/ BG) versus random words (w/o BG).

Model Zero-shot Classification Linear Probing

Object Direction Object Direction

Original Vision Encoder 0.135 0.151 0.442 0.912
Finetuned Vision Encoder - - 0.406 0.826

Multimodal Projector 0.0 0.0 0.032 0.117

Table 4: Accuracy on Object and Direction Tasks: Comparing Original Vision Encoder, Finetuned Vision Encoder
(aligned with text features in LLaVA-1.6), and Multimodal Projector.
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Figure 11: Examples demonstrating position bias ef-
fects. Green indicators show correct identifications
while red ones represent model predictions, revealing
spatial-dependent performance patterns.

variants: the original Qwen-VL (Bai et al.,1670

2023b), which established the foundation for1671

vision-language processing; Qwen2-VL-7B, offer-1672

ing a balanced mid-size option; and Qwen2-VL-1673

72B, the largest and most sophisticated version1674

featuring state-of-the-art visual understanding ca-1675

pabilities and support for videos over 20 minutes1676

long (Wang et al., 2024b). The latest addition,1677

QVQ-72B-Preview, serves as an experimental re-1678

search model specifically focused on advancing 1679

visual reasoning capabilities (Team, 2024). 1680

Molmo Molmo-7B-D (Deitke et al., 2024) is an 1681

open-source vision-language model developed by 1682

the Allen Institute for AI, built on Qwen2-7B and 1683

utilizing OpenAI’s CLIP as its vision backbone. 1684

H2OVL The H2OVL-Mississippi (Galib et al., 1685

2024) model family are specifically designed for ef- 1686

ficient on-device applications and privacy-focused 1687

use cases. The family consists of two special- 1688

ized models: H2OVL-Mississippi-0.8B, a com- 1689

pact model optimized for text recognition that 1690

achieves state-of-the-art performance on OCR- 1691

Bench, and H2OVL-Mississippi-2B, a model for 1692

general vision-language tasks including image cap- 1693

tioning and visual question answering. 1694

Phi-3 Microsoft’s Phi-3-vision and Phi-3.5- 1695

vision (Abdin et al., 2024) represent a significant 1696

advancement in multimodal AI. Phi-3.5-vision, the 1697

latest iteration, is a lightweight yet powerful model 1698

featuring a 128K token context length and support 1699

for both single and multi-image processing. 1700

InternVL The InternVL family includes: Mono- 1701

InternVL (Luo et al., 2024a), which established the 1702

foundation with its vision-language capabilities; 1703

InternVL-2 (Chen et al., 2024c), which expanded 1704

the model sizes and improved performance; and 1705

InternVL-2.5 (Chen et al., 2025b), the latest iter- 1706

ation that introduces significant architectural and 1707
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training improvements.1708

LLaVA LLaVA-1.5 (Liu et al., 2023) uses pre-1709

trained CLIP (Radford et al., 2021) and Vi-1710

cuna language model as the backbone, establish-1711

ing the foundation with impressive performance1712

across 12 benchmark datasets. LLaVA-OneVision-1713

Qwen2 (Li et al., 2024) pushes performance bound-1714

aries across single-image, multi-image, and video1715

scenarios while enabling strong task transfer capa-1716

bilities. LLaVA-1.6(Liu et al., 2024c), or LLaVA-1717

NeXT, further enhances capabilities with increased1718

input resolution, improved visual reasoning, and1719

enhanced OCR capabilities.1720

Llama Llama 3.2 Vision models (Dubey et al.,1721

2024) represent Meta’s latest advancement in mul-1722

timodal AI, introducing vision capabilities to the1723

Llama family for the first time. The 11B and 90B1724

parameter versions are specifically designed to han-1725

dle both text and image inputs, featuring a novel1726

architecture that integrates image encoder represen-1727

tations into the language model.1728

GLM-4 GLM-4V-9B (GLM et al., 2024)1729

supports high-resolution image processing at1730

1120*1120 pixels and enables dialogue capabilities1731

in both Chinese and English.1732

MiniCPM-V MiniCPM-V (Yao et al., 2024) is1733

a series of multimodal large language models1734

(MLLMs) designed specifically for deployment on1735

end-side devices like mobile phones and personal1736

computers.1737

E.2 Implementation Details1738

Our experiments are conducted on 8 NVIDIA H1001739

GPUs. All models maintain their original parame-1740

ter configurations during inference, with an average1741

processing speed of 525 tokens per second.1742

To examine spatial reasoning capabilities analo-1743

gous to those in LVLMs, we design a suite of tasks1744

that evaluate text-based object recognition, count-1745

ing, and spatial analysis. Using a matrix-structured1746

text input that simulates idealized visual encoding,1747

we assess three fundamental capabilities: (1) tar-1748

get token identification amid background elements,1749

(2) frequency quantification of target tokens, and1750

(3) spatial localization of target tokens within the1751

matrix. The dataset specifications and distributions1752

are detailed in Appendix D.4.1753

Figure 12: Performance evaluation on a 6-point path
tracing task across different positions, where accuracy
indicates coordinate prediction precision at each sequen-
tial point. Results demonstrate that LVLMs progres-
sively lose accuracy when tracking points along the
path.

F Visually Conditioned Soft Prompt 1754

In this section, we explain why aligning visual fea- 1755

tures to the language model’s embedding space 1756

through multimodal alignment module can be 1757

viewed as a form of visually conditioned soft 1758

prompt. Soft prompting prepends learned vectors 1759

to the language model’s input, optimizing these vec- 1760

tors during training to achieve desired tasks. These 1761

vector prefixes learn latent instructions during the 1762

tuning process: 1763

ht = LM([ P︸︷︷︸
prompt

;x]<t),

where P ∈ Rl×d, L =
∑
t

− log p(xt|ht)

(9) 1764

where P represents the learned soft prompt vectors 1765

and x is the input token embeddings. In LVLM’s 1766

multimodal alignment process, extracted visual fea- 1767

tures are mapped to the language model’s embed- 1768

ding space through a neural network based multi- 1769

modal alignment module. The module is trained 1770

to transform visual features into embedding space 1771

that serve as special task prefixes, guiding model 1772

responses to image-related queries:: 1773

ht = LM([fθ(Ev(I))︸ ︷︷ ︸
visual prompt

;x]<t),

where L =
∑
t

− log p(xt|ht, I)
(10) 1774
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where fθ is the alignment network and v repre-1775

sents the visual features. Fundamentally, both ap-1776

proaches optimize vector prefixes independent of1777

the discrete language embedding matrix. The key1778

difference lies in their optimization objectives: soft1779

prompts aim to generate task-relevant responses1780

based on the dataset, learning fixed prefixes that1781

remain constant after training. In contrast, while1782

aligned visual features are also trained on the entire1783

dataset, they produce dynamic, image-specific pre-1784

fixes during inference. Therefore, aligned visual1785

features can be considered a special case of soft1786

prompts - visually conditioned soft prompts - shar-1787

ing the characteristic of residing in a representation1788

space distinct from the language embedding space.1789

G Examples.1790

• ChatGPT: Sorry, I don’t see the arrow in the1791

image.1792

• Claude: A sleek fish glides through the harbor1793

waters, its scales catching glints of sunlight fil-1794

tering through the surface. The backdrop fea-1795

tures wooden pier posts rising from the water1796

and moored fishing boats gently bobbing in the1797

distance. The water has a deep blue-green tint1798

typical of a working harbor, with small ripples1799

creating patterns of light and shadow. The fish1800

appears to be navigating between the shadows1801

cast by the docks, perhaps searching for food or1802

shelter among the port’s underwater structures.1803

• Gemini: Reasons:1804

– Image Information: The image only shows1805

an animal on the water’s surface, without1806

indicating the specific direction of the ani-1807

mal’s head, body, or tail.1808

– Lack of Reference Points: There are no1809

other objects or background elements to1810

help determine the animal’s orientation.1811

Therefore, it is impossible to determine the ani-1812

mal’s orientation from the information provided1813

in the image.1814

If you can provide more information about the1815

image, such as the shooting angle or the animal’s1816

posture, it may be possible to determine its ori-1817

entation more accurately.1818

• InternVL: This image shows a pure white back-1819

ground without any recognizable objects or text.1820

It is a simple plane with no complex designs or 1821

patterns. 1822

An online anonymous leaderboard is avail- 1823

able at https://anonymous.4open.science/ 1824

r/Visual-Variations-Robustness-EFC3/ 1825

README.md 1826
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Model Position Orientation Scale Context

Object Direction Object Direction Object Direction Object Direction

Qwen-VL 0.037 0.285 0.023 0.281 0.153 0.477 0.051 0.477
Qwen2-VL-7B 0.059 0.402 0.067 0.427 0.175 0.509 0.067 0.427
Molmo-7B-D 0.260 0.626 0.262 0.646 0.278 0.632 0.262 0.646
h2ovl-2b 0.055 0.398 0.063 0.423 0.172 0.506 0.063 0.423
h2ovl-800m 0.013 0.201 0.011 0.199 0.179 0.332 0.173 0.308
Phi-3-vision 0.015 0.367 0.018 0.379 0.064 0.375 0.018 0.379
Phi-3.5-vision 0.062 0.408 0.070 0.417 0.079 0.430 0.067 0.417
InternVL-Mono 0.057 0.400 0.065 0.425 0.177 0.510 0.065 0.425
InternVL-2 0.061 0.405 0.069 0.430 0.179 0.513 0.069 0.430
InternVL-2.5 0.058 0.403 0.066 0.428 0.176 0.511 0.066 0.418
llava-1.5 0.056 0.399 0.064 0.424 0.174 0.508 0.064 0.424
llava-onevision-qwen2 0.160 0.446 0.173 0.459 0.245 0.474 0.173 0.459
llava-1.6-mistral 0.017 0.190 0.019 0.194 0.044 0.216 0.019 0.194
llava-1.6-vicuna 0.018 0.192 0.020 0.196 0.045 0.218 0.020 0.196
Llama-11B-V 0.057 0.400 0.065 0.425 0.177 0.510 0.065 0.425
Llama-90B-V 0.063 0.412 0.071 0.437 0.182 0.517 0.071 0.437
glm-4v-9b 0.141 0.279 0.093 0.117 0.381 0.257 0.012 0.233
MiniCPM-V-2 0.057 0.392 0.013 0.393 0.156 0.419 0.063 0.428
MiniCPM-V-2.5 0.092 0.448 0.090 0.483 0.210 0.555 0.090 0.463
MiniCPM-V-2.6 0.059 0.405 0.067 0.430 0.178 0.513 0.067 0.430
GPT-4o 0.315 0.782 0.298 0.772 0.319 0.695 0.267 0.799

Table 5: Bias Type and Tasks for Different Models. We present the mean accuracy across variations here as a
reference.

Model Position Orientation Scale Context

Object Direction Object Direction Object Direction Object Direction

Qwen-VL 0.913 0.897 0.924 0.773 0.891 0.899 0.832 0.879
Qwen2-VL-7B 0.945 0.910 0.955 0.664 0.862 0.923 0.937 0.890
Molmo-7B-D 0.911 0.905 0.916 0.739 0.879 0.955 0.882 0.862
h2ovl-2b 0.833 0.910 0.977 1 0.926 1 1 0.979
h2ovl-800m 0.793 0.890 0.921 0.745 0.832 0.926 0.895 0.901
Phi-3-vision 0.968 0.929 1 0.622 0.937 1 1 0.929
Phi-3.5-vision 0.955 0.923 0.945 0.635 1 1 0.937 0.923
InternVL-Mono 0.915 0.905 0.935 0.745 0.915 0.955 0.925 0.915
InternVL-2 0.945 0.925 0.965 0.785 0.945 0.975 0.955 0.945
InternVL-2.5 0.965 0.935 0.985 0.815 0.965 0.985 0.975 0.965
llava-1.5 0.955 0.925 0.975 0.765 0.955 0.985 0.965 0.955
llava-onevision-qwen2 0.929 0.911 0.895 0.712 0.929 1 0.830 0.905
llava-1.6-mistral 0.968 0.937 1 0.788 0.968 0.968 1 0.968
llava-1.6-vicuna 0.965 0.935 0.985 0.775 0.965 0.975 0.985 0.965
Llama-11B-V 0.925 0.913 0.945 0.752 0.925 0.965 0.930 0.925
Llama-90B-V 0.975 0.945 0.986 0.825 0.975 0.984 0.985 0.975
glm-4v-9b glm-4v-9b 0.953 0.925 0.971 0.796 0.959 0.970 0.961 0.955
MiniCPM-V-2 0.932 0.912 0.952 0.762 0.937 0.963 0.948 0.931
MiniCPM-V-2.5 0.953 0.922 0.973 0.782 0.957 0.972 0.968 0.948
MiniCPM-V-2.6 0.962 0.933 0.982 0.793 0.968 0.983 0.977 0.959
GPT-4o 0.983 0.962 1 0.853 0.987 1 1 0.982

Table 6: Comprehensive Evaluation of Model Robustness Across Different Metrics and Test Scenarios.
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