
Consistency Purification: Effective and Efficient
Diffusion Purification towards Certified Robustness

Yiquan Li1∗ Zhongzhu Chen2∗ Kun Jin2∗ Jiongxiao Wang1∗ Jiachen Lei3
Bo Li4 Chaowei Xiao1

1University of Wisconsin-Madison; 2 University of Michigan-Ann Arbor;
3California Institute of Technology ;4University of Illinois Urbana-Champaign

Abstract

Diffusion Purification, purifying noised images with diffusion models, has been
widely used for enhancing certified robustness via randomized smoothing. How-
ever, existing frameworks often grapple with the balance between efficiency and
effectiveness. While the Denoising Diffusion Probabilistic Model (DDPM) offers
an efficient single-step purification, it falls short in ensuring purified images reside
on the data manifold. Conversely, the Stochastic Diffusion Model effectively places
purified images on the data manifold but demands solving cumbersome stochastic
differential equations, while its derivative, the Probability Flow Ordinary Differen-
tial Equation (PF-ODE), though solving simpler ordinary differential equations,
still requires multiple computational steps. In this work, we demonstrated that an
ideal purification pipeline should generate the purified images on the data manifold
that are as much semantically aligned to the original images for effectiveness in
one step for efficiency. Therefore, we introduced Consistency Purification, an
efficiency-effectiveness Pareto superior purifier compared to the previous work.
Consistency Purification employs the consistency model, a one-step generative
model distilled from PF-ODE, thus can generate on-manifold purified images with
a single network evaluation. However, the consistency model is designed not for
purification thus it does not inherently ensure semantic alignment between purified
and original images. To resolve this issue, we further refine it through Consistency
Fine-tuning with LPIPS loss, which enables more aligned semantic meaning while
keeping the purified images on data manifold. Our comprehensive experiments
demonstrate that our Consistency Purification framework achieves state-of-the-art
certified robustness and efficiency compared to baseline methods.

1 Introduction

Diffusion models were first proposed for high-quality image generation [1, 2, 3, 4, 5] and have been
extended to generative tasks across various modalities, including audio [6, 7, 8], video [9, 10], and
3D object [11, 12, 13]. A diffusion model for image generation typically involves two key processes:
(1) a forward diffusion process, which transforms the source image into an isotropic Gaussian by
gradually adding Gaussian noise, and (2) the reverse diffusion process, which uses a Deep Neural
Network (DNN) to perform iterative denoising starting from random Gaussian noise.

Due to the inherent denoising capability of diffusion models, there have been widely applied to
improve the robustness of DNNs. This enhancement is achieved by Diffusion Purification [14, 15,
16, 17, 18], which purifies the network inputs to reduce the effects of various types of unforeseen
corruptions or adversarial attacks. Among these, one particularly suitable and effective scenario
of purification is to improve certified robustness through randomized smoothing [19] for image

∗The first four authors contributed equally. Correspondence to: Jiongxiao Wang <jwang2929@wisc.edu>.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

classification tasks. This method guarantees a tight robustness in the ℓ2 norm with a smoothed
classifier. However, many previous works [19, 20, 21, 22, 23, 24] have shown that it still requires
retraining with Gaussian augmented examples for each noise level to optimize the smoothed classifier.
Diffusion models, capable of purifying Gaussian perturbed images before classification, can be
seamlessly integrated with any base classifier to produce a smoothed classifier for arbitrary noise
levels. This integration has been demonstrated to effectively enhance certified robustness, as supported
by numerous studies [18, 25, 26, 27].

Figure 1: An illustration of Consistency Purification framework.

However, current diffusion purification for certified robustness via randomized smoothing still faces
significant trade-offs between efficiency and effectiveness. Although Denoising Diffusion Probabilistic
Model (DDPM) [28] only requires one single network evaluation in the purification process [25], it
generates the mean of the posterior data distribution conditioned the noisy sample, which does not
necessarily locate on the data manifold and may exhibit ambiguity during classification. To further
improve diffusion purification, various methods such as DensePure [26], Local Smoothing [27] and
Noised Diffusion Classifiers [29] are applied. However, these methods are considerably less efficient
as they require multiple times of the computational costs compared to one-step DDPM. Another
promising approach involves using the Probability Flow Ordinary Differential Equation (PF-ODE)
[3]. It has offered a method to accelerate the sampling process [4] and achieved a closer distribution
to the original data, well balancing efficiency and effectiveness. However, several computational
steps are still needed to solve the ODE numerically.

To find a Pareto superior solution in terms of efficiency and effectiveness, we introduce a new frame-
work, Consistency Purification, which integrating consistency models into diffusion purification
with Consistency Fine-tuning. The consistency model is a novel category of diffusion models that
learns the trajectory of the PF-ODE that transits the data distribution to the noisy distribution. It is
trained to map any point along this trajectory back to its starting point. This property is desirable for
diffusion purification, as it allows images with any scale of Gaussian noise to be directly purified to
the clean images. Distilled from a pre-trained diffusion model by simulating the PF-ODE trajectory,
the consistency model can generate high-quality in-distribution images in a single step, thereby
ensuring both efficiency and effectiveness. However, since consistency models are primarily trained
for image generation, it may not suffice to guarantee that the purified image that maintains the same
semantic meaning as the original image. To address this issue, we propose adding a Consistency
Fine-tuning step into the purification framework, which further fine-tunes the consistency model using
Learned Perceptual Image Patch Similarity (LPIPS) [30] loss, aiming to minimize the perceptual
differences between the purified and original images, thereby ensuring better semantic alignment,
while at the same time, ensuring the purified images still lie on the data manifold.

We show that Consistency Purification is Pareto superior compared to baselines from two aspects.
First of all, compared with effective methods like DensePure [26], Local Smoothing [27] and Noised
Diffusion Classifiers [29], Consistency Purification is much more efficient since it enables single-step
purification. Secondly, compared with efficient method like onestep-DDPM [25], we provide both

2

theoretical analysis and experiment results to support the effectiveness improvement of Consistency
Purification. In Example 3.1, we show an one-dimensional example demonstrating that consistency
model can generate on-manifold purified samples while onestep-DDPM does not have this property.

In Theorem 3.3, we show an important theoretical result that given a purifier, the lower the transport
from the original distribution to the purified distribution (a measure of distance between probability
distributions, see [31]), the higher the probability that the purified sample is sufficiently close to
the original sample, and thus the better purification outcomes. Our experiment results verify that
both the integration of consistency model in Consistency Purification and the further Consistency
Fine-tuning decreases such transport and achieves better semantic alignment between purified samples
and original samples.

Beyond the validation of our theory, we conduct comprehensive experiments to demonstrate the
empirical improvements of Consistency Purification. Compared to various baseline settings, our
approach has shown significant improvements, achieving an average 5% gain in performance over
the previous onestep-DDPM under the same cost with single-step purification. These observations
underscore our success in finding a Pareto superior diffusion purification framework in both efficiency
and effectiveness for certified robustness.

2 Backgrounds

Randomized Smoothing [19]. Randomized smoothing is designed to certify the robustness of a
given classifier under ℓ2 norm perturbations. Given a base classifier f and an input x, randomized
smoothing first defines the smoothed classifier by g(x) = argmaxc Pϵ∼N (0,σ2I)(f(x + ϵ) = c),
where σ is the noise level, which controls the trade-off between robustness and accuracy. [19]
shows that g(x) induces the certifiable robustness for x under the ℓ2 norm with radius R, where
R = σ

2

(
Φ−1(pA)− Φ−1(pB)

)
, where pA and pB are the probability of the most probable class and

“runner-up” class respectively; Φ is the inverse of the standard Gaussian CDF. The pA and pB can be
estimated with arbitrarily high confidence via the Monte Carlo method.

Continuous-Time Diffusion Model [3]. The diffusion model has two components: the diffusion
process followed by the reverse process. Given an input random variable x0 ∼ p, the diffusion
process adds isotropic Gaussian noises to the data so that the diffused random variable at time t is
xt =

√
αt(x0 + ϵt), s.t., ϵt ∼ N (0, σ2

t I), and σ2
t = (1 − αt)/αt, and we denote xt ∼ pt. The

forward diffusion process can also be defined by the stochastic differential equation
dx = D(x, t)dt+G(t)dw, (SDE)

where x0 ∼ p, D : Rd×R 7→ Rd is the drift coefficient and typically has the form D(x, t) = D(t)x.
G : R 7→ R is the diffusion coefficient, dt is an infinitesimal time step, and w(t) ∈ Rn is the standard
Wiener process.

The reverse process exists and removes the added noise by solving the reverse-time SDE [32]
dx = [D(t)x−G(t)2▽x̂ log pt(x)]dt+G(t)dw, (reverse-SDE)

where pt(x) denotes the marginal distribution at time t, and w(t) is a reverse-time standard Wiener
process. [3] defined the probability flow ODE (PF ODE) which has the same marginal distribution as
reverse-SDE but can be solved much faster

dx =
[
D(t)x− 1

2G(t)2∇x log pt(x)
]
dt. (PF-ODE)

As shown in [4], the perturbation kernel of SDE has the general form
p0t(x(t) | x(0)) = N

(
x(t); s(t)x(0), s(t)2σ(t)2I

)
(perturbation-kernel)

where s(t) = exp
(∫ t

0
f(ξ)dξ

)
and σ(t) =

√∫ t

0
g(ξ)2

s(ξ)2 dξ. Under this formulation, PF-ODE can
written as

dx =
[
ṡ(t)
s(t)x− s(t)2σ̇(t)σ(t)∇x log p

(
x

s(t) ;σ(t)
)]

dt

where · denotes the time derivative and p
(

x
s(t) ;σ(t)

)
denotes the marginal distribution at time t. In

our context, we use the EDM parameter [4] where s(t) = 1 and σ(t) = t which gives us a probability
flow ODE

dx = −t∇x log pt(x)dt. (EDM-ODE)

3

We use {xt}t∈[0,1] and {x̂t}t∈[0,1] to denote the diffusion process and the reverse process generated
by SDE and reverse-SDE respectively, which follow the same distribution. We also use {x̃t}t∈[0,1]

to denote the reverse process generated by PF-ODE, which has the same marginal distribution as
{xt}t∈[0,1] and {x̂t}t∈[0,1] given t.

Discrete-Time Diffusion Model (DDPM [28]). DDPM constructs a discrete Markov chain
{x0,x1, · · · ,xi, · · · ,xN} as the forward process for the training data x0 ∼ p, such that
P(xi|xi−1) = N (xi;

√
1− βixi−1, βiI), where 0 < β1 < β2 < · · · < βN < 1 are prede-

fined noise scales such that xN approximates the Gaussian white noise. Denote αi =
∏N

i=1(1− βi),
we have P(xi|x0) = N (xi;

√
αix0, (1−αi)I), i.e., xt(x0, ϵ) =

√
αix0+(1−αi)ϵ, ϵ ∼ N (0, I).

The reverse process of DDPM learns a reverse direction variational Markov chain pθ(xi−1|xi) =
N (xi−1;µθ(xi, i),Σθ(xi, i)). [28] defines ϵθ as a function approximator to predict ϵ from xi such
that µθ(xi, i) =

1√
1−βi

(
xi − βi√

1−αi
ϵθ(xi, i)

)
. Then the reverse time samples are generated by

x̂i−1 = 1√
1−βi

(
x̂i − βi√

1−αi
ϵθ∗(x̂i, i)

)
+
√
βiϵ, ϵ ∼ N (0, I), and the optimal parameters θ∗ are

obtained by solving θ∗ := argminθ Ex0,ϵ

[
∥ϵ− ϵθ(

√
αix0 + (1− αi), i)∥22

]
. [28] also provided a

one-step approximate reconstruction of x0 from any xt,

x0 ≈ x̂0 =
(
xt −

√
1− αtϵθ(xt)

)
/
√
αt. (onestep-DDPM)

Consistency Model [33]. Given a solution trajectory of PF-ODE, the consistency model is defined as
D : (xt, t) 7→ xϵ. The model exhibits the property of self-consistency, ensuring that its outputs are
consistent for arbitrary pairs of (xt, t) from the same PF-ODE trajectory; specifically, D(xt, t) =
D(xt′ , t

′) for all t, t′ ∈ [ϵ, T]. As shown by the definition, consistency models are suitable for one-
shot denoising, allowing for the recovery of xϵ from any noisy input xt in one network evaluation.
Two distinct training strategies can be employed for training the consistency models: distillation
mode and isolation mode. The primary distinction lies in whether the models distill the knowledge
from pre-trained diffusion models or train from initial parameters. According to the experiments
reported in [33], consistency models trained in the distillation mode have been shown to outperform
those trained in isolation mode for generating high-quality images. Consequently, our paper only
considers consistency models trained in the distillation mode.

3 Theoretical Analysis

In this section, we provide theoretical explanations on the advantages of Consistency Purification,
with a focus on its purification performance improvement in terms of certified robustness over [25].

As demonstrated in [3], PF-ODE maintains the marginal distribution of reverse-SDE, thereby estab-
lishing a deterministic mapping between the noisy distribution xt and the data distribution x0. In other
words, PF-ODE guarantees that the purified sample lies on the data manifold, unlike onestep-DDPM,
which lacks this assurance. We present here a simple one dimensional example for illustration.
Example 3.1. Consider a one-dimensional space with a data set consisting of two samples {y1,y2},
where y1 = 1 and y2 = −1. The distribution can be represented as a mixture of Dirac delta distri-
butions: pdata(x) =

1
2 (δ(x− y1) + δ(x− y2)). By setting s(t) = 1 and σ(t) = t in perturbation-

kernel, the distribution at time t becomes: pt(x) = 1
2t

√
2π

(
e−

1
2 (

x−1
t)

2

+ e−
1
2 (

x+1
t)

2)
. Then

d log pt(x)
dx =

−(x−1
t)e

− 1
2 (

x−1

t2
)
2

−(x+1
t)e

− 1
2 (

x+1

t2
)
2

2t
√
2πpt(x)

= − x
t2 + e

− 1
2 (

x−1
t)

2

−e
− 1

2 (
x+1

t)
2

e
− 1

2 (
x−1

t)
2

+e
− 1

2 (
x+1

t)
2 .

From the derivative formula d log pt(x)
dx , it’s evident that x = 0 is an equilibrium point, and the

right-hand side expression is Lipschitz continuous around x = 0 by L’Hôpital’s rule. Thus, according
to the Picard-Lindelöf theorem, any trajectory starting on either side of x = 0 will not cross this
point. As PF-ODE drives pt(x) closer to the Dirac delta distribution pdata(x) as t approaches zero,
any initial point on positive/negative side of x = 0 will eventually approach 1 or −1, i.e., the data
manifold. Furthermore, in this example, PF-ODE generates not only a purified sample on the data

4

manifold but also closest to the noisy sample. This property is desirable as it establishes a relatively
large "robust" neighborhood around each true data point, which implies high certified robustness
and a significant certified radius, which will be further discussed later. With the consistency model,
we do not need to solve the ODE but rather directly map the noisy sample to either 1/− 1 depending
on its location relative to x = 0.

For comparison, given any x and t, the onestep-DDPM will output a posterior mean that is

e
− 1

2 (
x−1

t)
2

−e
− 1

2 (
x+1

t)
2

e
− 1

2 (
x−1

t)
2

+e
− 1

2 (
x+1

t)
2 = e

2x
t2 −1

e
2x
t2 +1

.

The posterior mean will be near 1 or−1 only when t is sufficiently small compared to ∥x∥. Otherwise,
it deviates from the data manifold. In the case when t is large, the posterior mean will be close to
zero, locating in an ambiguous classification region. In adversarial purification [25, 26, 14], we
typically select t based on the variance of the noise added to the data sample rather than using
an very small t. This practice helps avoid significant deviations in the posterior mean estimation
due to the imperfect estimation of score/noise. With a very small t, even a slight bias in score/noise
estimation can lead to a substantial deviation, resulting in a denoised sample even farther from the
data manifold represented by pdata(x).

Additionally, PF-ODE is deterministic, eliminating the overhead of majority voting required when
using reverse-SDE as a purifier [26]. The consistency model, which reduces ODE solving to a
one-step mapping, further ensures purification has the same efficiency as onestep-DDPM while
keeping the in-distribution property.

Though the consistency model enjoys both in-distribution property and one-step efficiency, it does
not guarantee that the purified sample has the same semantic meaning as the original sample. This is
because the derivation of PF-ODE only guarantees a mapping between noisy distribution and data
distribution, which is sufficient for generation, but not enough for denoising purposes.

To address this concern, we first delineate the desired characteristics of the purifier. As evidenced
in prior works [14, 25, 26, 34], an ideal purifier should yield a purified output situated within a
proximate vicinity of the original input. It is generally presumed that such purified outputs retain the
semantic meaning of the original inputs with a high probability. The disparity in semantic consistency
between the noisy input and the purified output generated by PF-ODE arises due to the proximity of
the purified output to other samples. In this regard, we propose quantifying this disparity through the
notion of transport between the data distribution and the purified distribution, derived by introducing
Gaussian perturbations to the data distribution and subsequently applying denoising via PF-ODE.
Given an original sample x, Gaussian noise ϵ, and purifier d, the mapping in the transport process
is defined as T : x → d(x + ϵ), which is probabilistic. We aim to demonstrate that a diminished
transport between the data distribution and the purified distribution is conducive to a higher likelihood
of the purified output being situated in proximity to the original sample, thereby preserving its
semantic meaning.

We will leverage the following definition.
Definition 3.2. Given the data distribution p, Gaussian noise ϵ, timestep t, and a purifier d, we
define πt : x → d(x+ tϵ) and the “transport" under gt between the data distribution and purified
distribution as Tπt

(p) :=
∫
∥x− πt(x)∥ · p(x)dx.

Intuitively, transport measures the distance between the original and purified samples, which should
be small by an effective purifier. Below, we quantify this intuition and present our main theorem. See
the detailed proof in Appendix B.
Theorem 3.3. Given the transport Tπt

(p) between the data distribution p and the corresponding
purified distribution under gt, then for any r > 0, the probability that the distance between the
original sample x and purified sample x̂ = πt(x) is larger than r is upper bounded by Tπt (p)

r .
Remark 3.4. By Theorem 3.3, the efficacy of the purifier hinges on two crucial factors: the transport
Tπt

(p) and the radius r. A theoretically perfect purifier would yield zero transport; however, this
is unattainable due to the inherent randomness of gt. Typically, we can optimize the parameter t
to minimize the transport, denoted as T ∗ = mint

Tπt (p)

r . In the context of classification tasks, the
selection of r also depends on the robustness of the classifier; a more robust classifier allows a larger
r to be chosen, thereby guarantee better purification efficacy.

5

Figure 2: Transport between purified im-
ages and clean images with noise level σ ∈
{0.25, 0.5, 0.75, 1.0}.

FID at different σ

Loss 0.25 0.5 1.0

- - 60.3 155.3 350.3
ℓ1 96.8 205.7 383.6
ℓ2 102.1 214.8 375.4

LPIPS 20.5 100.9 338.1

Table 1: FID between purified and
clean images on CIFAR-10 test set
using different types of fine-tuning
loss functions with noise level σ ∈
{0.25, 0.5, 1.0}.

For ensuring consistency in semantic meaning between the original and purified samples, it is
insufficient merely to minimize their distance; it is also necessary that the purified sample resides on
the data manifold, which is the in-distribution property we previously mentioned. To concurrently
achieve both objectives, rather than solely focusing on minimizing the Euclidean distance between
the original and purified samples, we opt to minimize the Learned Perceptual Image Patch Similarity
(LPIPS) loss between them. This strategy aids in mitigating the risk of the purified sample deviating
from the data manifold, thereby preserving semantic meaning. In Table 1, we show that using LPIPS
is better than ℓ1 and ℓ2 loss for Consistency Fine-tuning when we want to guarantee the generated
images are in-distribution, where lower FID scores indicate better in-distribution properties.

Figure 2 validates the effectiveness of Consistency Purification based on our results in Theorem 3.3,
it shows that both the integration of consistency model in Consistency Purification and the further
Consistency Fine-tuning can decrease the transport from the original distribution to the purified
distribution. Specifically, we can see that Consistency Purification achieves a lower average distance
from the purified sample to the original sample compared with onestep-DDPM, and Consistency
Fine-tuning further decreases this average distance, indicating both components result in a lower
transport and thus a better semantic alignment between purified samples and original samples.

4 Method

We propose our framework, Consistency Purification, with a further improved version using Consis-
tency Fine-tuning.

4.1 Consistency Purification

We introduce Consistency Purification, directly applying consistency model as a purifier to integrate
with a base classifier into smoothed classifier for randomized smoothing.

Following Diffusion Denoised Smoothing outlined in [25], it is necessary to establish a mapping
between Gaussian noise augmented images required by randomized smoothing and the noised image
in the ODE trajectory of consistency model. For a given consistency model purifier Dθ, any noisy
input xt ∼ N (x, t2I) can be recovered to the trajectory’s start xϵ by directly passing it through the
model with time t: xϵ = Dθ(xt, t).

When comparing this to the image augmented with additive Gaussian noise xrs ∼ N (x, σ2I),
which is required by randomized smoothing, we observe that xrs and xt share the same formula
when t = σ. However, since the variances σ ∈ {σi}mi=1 may not be used during the training of the
consistency model, we empirically select the nearest time step t from the discrete time steps used in
training for each σ.

For the entire time horizon [ϵ, T] with N − 1 sub-interval boundaries t1 = ϵ < t2 < · · · < tN = T ,
the time steps used in training are computed by: ti = (ϵ1/ρ+ i−1/N−1(T

1/ρ−ϵ1/ρ))ρ, where ρ = 7.

6

Given the variance σ of Gaussian noise used in randomized smoothing, we select the corresponding
time step t∗σ for Consistency Purified Smoothing by t∗σ = {ti|σ ∈ (ti−1+ti

2 , ti+ti+1

2]}.

4.2 Consistency Fine-tuning

To optimize the consistency model for aligning semantic meanings during purification, we fine-tune
the purifier Dθ by minimizing the following loss function: Lθ = E∥x−Dθ(xσ, t

∗
σ)∥LPIPS, where

the expectation is taken with x ∼ pdata, σ ∼ U{σi}mi=1, xσ ∼ N (x, σ2I). Here LPIPS denotes
the distance computed by the Learned Perceptual Image Patch Similarity [30]. pdata represents the
distribution of the training data, from which clean images x are sampled. U{σi}mi=1 denotes the
uniform distribution over m different noise scales σi used for randomized smoothing. Typically, we
select the scale set σi ∈ {0.25, 0.5, 1.0}, which is commonly used to compute the certified radius via
randomized smoothing.

After obtaining the fine-tuned consistency model purifier Dθ∗ ,it can replace the original model used in
Consistency Purified Smoothing to purify any noised image xrs with Gaussian variance σi, resulting
in the final purified image xp by xp = Dθ∗(xrs, t

∗
σi
).

We present the detailed algorithm of our Consistency Purification in Appendix A.

5 Experiments

In this section, we begin by detailing the experimental settings, followed by our main results.
Additionally, we conduct ablation studies to further demonstrate the effectiveness of our framework.
All experiments are conducted with 1×NVIDIA RTX A5000 24GB GPU.

5.1 Experimental Settings.

Dataset. We evaluate the Consistency Purification framework on both CIFAR-10 [35] and ImageNet-
64 [36]. CIFAR-10 contains 32× 32 pixel images across 10 different categories while ImageNet-64
includes 64× 64 pixel images across 1000 categories. Due to limited computational resources, we
select 500 test images for CIFAR-10 from the 10,000 CIFAR-10 test set, choosing every 20th example
in sequence (e.g., the 1st, 21st, 41st, etc.). Similarly, for the ImageNet-64 dataset, we sample 500 test
examples from its 50,000 test examples using a fixed interval of 100.

Consistency Purification. For CIFAR-10, to demonstrate the effectiveness of Consistency Purifi-
cation, we first perform purification with a public unconditional consistency model [37]. After
that, to further improve the performance, we fine-tune the model with noise levels σ sampling from
{0.25, 0.5, 1.0}, shown as the (+ Consistency Fine-tuning). However, currently there is no publicly
available unconditional consistency model checkpoint for the ImageNet dataset that can be used
directly for purification purposes. The only available model is the conditional consistency model on
ImageNet-64. Thus, here we trained an unconditional consistency model on ImageNet-64, initializing
it with the existing conditional consistency model checkpoint. Details of the training process are
included in Appendix C. Additionally, we also conduct Consistency Fine-tuning on ImageNet-64
model with noise levels σ ∈ {0.05, 0.15, 0.25}.
Baselines. For comparative analysis of CIFAR-10, we conduct baseline experiments under various
settings. The first baseline involves onestep-DDPM, where we employ the 50-M unconditional
improved diffusion models from [2] utilizing the one-shot denoising method [25] for purification.
Given that our consistency model is distilled from an EDM model [4], we include EDM as our
baselines, applying both one-shot denoising (onestep-EDM) and ODE solver (PF-ODE EDM) for
purification. Additionally, we include the recent advancement in diffusion purification methods,
Diffusion Calibration, as a baseline following [38], which fine-tunes the diffusion model with the
guidance of classifier WideResNet28-10 to improve the purification accuracy under the specific
classifier. While for ImageNet-64, due to the lack of public unconditional EDM model, we only
include the comparison baseline with onestep-DDPM.

Randomized Smoothing Settings. We set N = 10000 for both CIFAR-10 and ImageNet as
the number of sampling times used in randomized smoothing. We compute the certified radius
for each test example at three different noise levels σ ∈ {0.25, 0.5, 1.0} for CIFAR-10 and σ ∈
{0.05, 0.15, 0.25} for ImageNet-64. Then we calculate the proportion of test examples whose radius

7

exceeds a specific threshold ϵ. The highest accuracy among these noise levels is reported as the
certified accuracy at ϵ.

Classifiers. For the classifier used after purification for CIFAR-10, we employ ViT-B/16 model [39],
which is pretrained on ImageNet-21k [36] and finetuned on CIFAR-10 dataset. In our ablation studies,
we also use ResNet [40] and WideResNet [41] trained on CIFAR-10. For ImageNet-64, we make
up-sampling on the 64×64 images and directly apply ViT-B/16 as the classifier.

5.2 Main Results.

We present the certified accuracy of Consistency Purification for both CIFAR-10 and ImageNet-
64 dataset, with the results presented in Table 2. We also include the purification steps which
decide whether the purifier needs multiple evaluation times through the networks (Multi Steps) other
than a single network evaluation (One Step). As observed from Table 2, Consistency Purification
significantly outperforms onestep-DDPM for both CIFAR-10 and ImageNet-64 with even higher
certified accuracy with Consistency Fine-tuning. Besides, for CIFAR-10, the results also suggest the
effectiveness of Consistency Purification with Consistency Fine-tuning when compared with more
baseline methods such as onestep-EDM, PF-ODE EDM and Diffusion Calibration. For the detailed
certified accuracy evaluation of fine-grained ϵ at different noise levels σ, we present the results in
Figure 3 compared with the onestep-DDPM setting. All results have demonstrated that Consistency
Purification is able to certify robustness with both efficiency and effectiveness.

Table 2: Certified Accuracy of Consistency Purification for CIFAR-10 and ImageNet-64.

CIFAR-10 Certified Accuracy at ϵ (%)

Method Purification Steps 0.0 0.25 0.5 0.75 1.0

onestep-DDPM[25] One Step 87.6 73.6 55.6 39.2 29.6
onestep-EDM One Step 87.4 76.2 58.8 40.8 32.4
PF-ODE EDM Multi Steps 89.6 77.0 60.4 42.6 34.0
Diffusion Calibration[38] One Step 90.2 76.4 57.2 42.6 32.4

Consistency Purification One Step 90.4 77.2 59.8 42.8 33.2
+ Consistency Fine-tuning One Step 90.2 79.4 62.4 43.8 35.4

ImageNet-64 Certified Accuracy at ϵ (%)

Method Purification Steps 0.0 0.05 0.15 0.25 0.35

onestep-DDPM [25] One Step 55.2 44.8 33.4 15.2 8.8
Consistency Purification One Step 62.4 54.2 35.2 19.8 13.0
+ Consistency Fine-tuning One Step 68.6 58.0 37.4 23.4 17.4

Figure 3: Certified Accuracy of Consistency Purification with fine-grained radius ϵ. The left figure
shows results on CIFAR-10, the right figure shows results on ImageNet-64. The lines demonstrate
the certified accuracy of various radius ϵ under different Gaussian noise levels σ.

8

To better illustrate the significant improvement in certified robustness brought by Consistency
Purification, we present visualizations of images after diffusion purification in Figure 4 for CIFAR-
10 at a noise level of σ = 0.5, compared with the onestep-DDPM approach. As shown, our
method produces significantly higher-quality purified images than onestep-DDPM. Furthermore,
these purified images achieve a notably higher classification accuracy when evaluated by the same
classifier. Additional visualization examples for ImageNet-64 are included in Appendix D.

(a) Purified images by onestep-DDPM (b) Purified images by Consistency Purification

Figure 4: Visualization of purified images after the diffusion purification by applying onestep-DDPM
and Consistency Purification on CIFAR-10 with σ = 0.5 noise level. Identical noise patterns are
applied to images at corresponding locations. A green border indicates that the purified image is
correctly classified, while a red border denotes misclassification by the classifier.

5.3 Ablation Studies.

We conduct various ablation studies to evaluate the effectiveness of our proposed method.

Certified Accuracy at ϵ%

Methods 0.0 0.25 0.5 0.75 1.0

Randomized Smoothing [19] 74.8 59.2 42.0 31.8 22.0
Consistency Regularization [22] 74.4 66.0 56.2 41.4 32.8
Aces [42] 74.6 66.4 57.0 43.6 32.8
Consistency Purification 90.4 77.2 59.8 42.8 33.2
+ Consistency Fine-tuning 90.2 79.4 62.4 43.8 35.4

Table 3: Certified Accuracy of Consistency Purification
compared with non-diffusion-based baseline methods.

Comparison with Non-Diffusion-based
Baselines. To compare Consistency Pu-
rification with various non-diffusion-based
approaches, we conducted additional exper-
iments to compute the certified accuracy
under three non-diffusion-based methods
[19, 22, 42]. [19] first proposed training a
classifier with noisy images to ensure certi-
fied robustness. Subsequent works [22, 42]
build on [19]’s methodology, attempting to
enhance the smoothed classifier by adding
prediction consistency regularization, or incorporating per-sample bias. The experimental results
presented in Tabel 3 show that our method surpasses all previous non-diffusion-based methods
in achieving higher certified accuracy, particularly with a significantly high clean performance at
ϵ = 0.0. Furthermore, in contrast to non-diffusion-based methods, which incur significant costs by
requiring additional fine-tuning of robust classifiers for each specific noise level, our method can be
applied directly to any off-the-shelf classifiers, significantly broadening its practical applications.

Fine-tuning Loss Functions. To further demonstrate that LPIPS loss is the best choice considering
both on-manifold purification and semantic meaning alignment, we assess the certified accuracy of
Consistency Purification using different loss functions during Consistency Fine-tuning. Instead of
LPIPS distance between the clean and purified images as the loss function, we experiment with ℓ1
and ℓ2 distances. Results in Table 4 indicate that Consistency Purification with LPIPS loss achieves
the highest Certified Accuracy. In contrast, fine-tuning with ℓ1 and ℓ2 distances compromises the
purification performance for certification. This demonstrates that fine-tuning with LPIPS loss function
effectively aligns semantic meanings, whereas ℓ1 or ℓ2 distances may hurt them.

Noise Levels Sampling Schedules during Consistency Fine-tuning. In our experiments of
Consistency Fine-tuning, we simply select the same sampling schedules of noise levels σ ∼
U{0.25, 0.5, 1.0}, uniformly sampling σ used in randomized smoothing. To empirically demonstrate
its effectiveness, we compare this approach with continuous sampling schedules where σ ∼ U [0, 1].
Results presented in Table 5 show that our discrete sampling schedule achieves higher certified
accuracy. This indicates that fine-tuning with a discrete scale, aligned with the noise levels used in
randomized smoothing, enhances certified robustness.

9

Table 4: Certified Accuracy of Consistency Pu-
rification with different loss functions during
fine-tuning for CIFAR-10. "- -" represents the
setting without fine-tuning.

Certified Accuracy at ϵ%

Distance 0.0 0.25 0.5 0.75 1.0

- - 90.4 77.2 59.8 42.8 33.2
ℓ1 89.4 76.4 59.6 42.4 31.4
ℓ2 90.0 77.0 59.8 42.4 33.4

LPIPS 90.2 79.4 62.4 43.8 35.4

Table 5: Certified Accuracy of Consistency Pu-
rification with continuous and discrete sampling
schedules during fine-tuning for CIFAR-10. "-
-" represents the setting without fine-tuning.

Certified Accuracy at ϵ%

Schedules 0.0 0.25 0.5 0.75 1.0

- - 90.4 77.2 59.8 42.8 33.2
[0,1] 89.0 76.2 59.8 43.2 33.8

{0.25, 0.5, 1.0} 90.2 79.4 62.4 43.8 35.4

Generalizability with Different Classifiers. We compute certified accuracy with various classifiers
to test if our framework maintains its effectiveness with arbitrary classifiers. The results, presented
in Table 6, compare Consistency Fine-tuning with Diffusion Calibration, an alternative method to
fine-tune diffusion models for improving the certified robustness. When evaluated across different
classifiers, including ViT-B/16, ResNet56, and WideNet28-10, our method outperforms Diffusion
Calibration except certified accuracy at ϵ = 0.0 on WRN28-10 model. It is worth noting that the
Diffusion Calibration, which requires a specific classifier for guidance during fine-tuning, exhibits
limitations, only achieving comparable performance with the guidance classifier WRN28-10. This
demonstrates the advantages of Consistency Fine-tuning in generalizing across different classifiers.

Fine-tuning Classifier vs. Fine-tuning Diffusion Model. A potential concern with Consistency
Fine-tuning is the higher certified accuracy and lower training cost associated with Fine-tuning
the Classifier (CLS-FT) compared to our approach of Fine-tuning the Diffusion Model (DM-FT).
However, our experiments, as shown in Table 7, indicate that DM-FT does not conflict with CLS-FT;
rather, combining these two methods achieves even higher certified accuracy. On another hand,
although CLS-FT yield slightly higher certified accuracy than DM-FT, its requirement for fine-tuning
a specific classifier compromises the natural property of diffusion purification frameworks with
arbitrary off-the-shelf classifiers, thus limiting the practical applicability.

Table 6: Certified Accuracy of Consistency Fine-
tuning with different classifiers on CIFAR-10.
The guidance classifier used in Diffusion Cali-
bration is WideResNet28-10.

Certified Accuracy at ϵ%

Method Classifier 0.0 0.25 0.5 0.75 1.0

ViT-B/16 90.2 76.4 57.2 42.6 32.4
Diffusion Calibration [38] WRN28-10 88.2 76.4 59.2 42.0 31.8

ResNet56 86.0 72.8 52.6 35.2 25.8

ViT-B/16 90.2 79.4 62.4 43.8 35.4
Consistency Fine-tuning WRN28-10 88.0 76.4 59.8 42.8 33.0

ResNet56 87.2 74.8 57.6 38.2 30.2

Table 7: Certified Accuracy of Fine-tuning the
Diffusion Model (DM-FT) compared with Fine-
tuning the Classifier (CLS-FT) in diffusion pu-
rification frameworks on CIFAR-10.

Certified Accuracy at ϵ%

DM-FT CLS-FT 0.0 0.25 0.5 0.75 1.0

- - 90.4 77.2 59.8 42.8 33.2
✓ - 90.2 79.4 62.4 43.8 35.4
- ✓ 90.4 79.8 63.4 44.2 35.2
✓ ✓ 90.8 80.0 64.8 44.6 36.8

6 Conclusion

In this paper, we introduced Consistency Purification, a novel framework proposed to enhance
certified robustness via randomized smoothing. By incorporating consistency models into diffusion
purification approach and further refining them through Consistency Fine-tuning, our empirical
experiments have demonstrate the framework’s ability to achieve high certified robustness efficiently
with one single network evaluation for purification.

Limitations. A notable limitation of our study is that our empirical results do not include computing
certified robustness of high-resolution images such as ImageNet 256×256. This constraint is due to
the absence of publicly available checkpoints for the consistency model at this resolution. Additionally,
training a consistency model for ImageNet 256×256 would require huge computing resources, which
are currently beyond our affordability. However, our framework is designed for adaptability and
could be easily extended to ImageNet 256×256 once these checkpoints become available. As a result,
our empirical evaluations in this paper are limited to the CIFAR-10 and ImageNet 64×64 datasets.

10

References
[1] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances

in neural information processing systems, 33:6840–6851, 2020.

[2] Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic
models. In International Conference on Machine Learning, pages 8162–8171. PMLR, 2021.

[3] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. In
International Conference on Learning Representations, 2021.

[4] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space
of diffusion-based generative models. Advances in Neural Information Processing Systems,
35:26565–26577, 2022.

[5] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 10684–10695, 2022.

[6] Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile
diffusion model for audio synthesis. In International Conference on Learning Representations,
2020.

[7] Nanxin Chen, Yu Zhang, Heiga Zen, Ron J Weiss, Mohammad Norouzi, and William Chan.
Wavegrad: Estimating gradients for waveform generation. In International Conference on
Learning Representations, 2020.

[8] Vadim Popov, Ivan Vovk, Vladimir Gogoryan, Tasnima Sadekova, and Mikhail Kudinov. Grad-
tts: A diffusion probabilistic model for text-to-speech. In International Conference on Machine
Learning, pages 8599–8608. PMLR, 2021.

[9] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and
David J Fleet. Video diffusion models. Advances in Neural Information Processing Systems,
35:8633–8646, 2022.

[10] Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko,
Diederik P Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. Imagen video: High
definition video generation with diffusion models. arXiv preprint arXiv:2210.02303, 2022.

[11] Shitong Luo and Wei Hu. Diffusion probabilistic models for 3d point cloud generation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
2837–2845, 2021.

[12] Animesh Karnewar, Andrea Vedaldi, David Novotny, and Niloy J Mitra. Holodiffusion: Training
a 3d diffusion model using 2d images. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 18423–18433, 2023.

[13] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using
2d diffusion. arXiv preprint arXiv:2209.14988, 2022.

[14] Weili Nie, Brandon Guo, Yujia Huang, Chaowei Xiao, Arash Vahdat, and Anima Anandkumar.
Diffusion models for adversarial purification. In International Conference on Machine Learning
(ICML), 2022.

[15] Shutong Wu, Jiongxiao Wang, Wei Ping, Weili Nie, and Chaowei Xiao. Defending against
adversarial audio via diffusion model. In The Eleventh International Conference on Learning
Representations, 2022.

[16] Jiachen Sun, Jiongxiao Wang, Weili Nie, Zhiding Yu, Zhuoqing Mao, and Chaowei Xiao. A
critical revisit of adversarial robustness in 3d point cloud recognition with diffusion-driven
purification. In International Conference on Machine Learning, pages 33100–33114. PMLR,
2023.

11

[17] Jinyi Wang, Zhaoyang Lyu, Dahua Lin, Bo Dai, and Hongfei Fu. Guided diffusion model for
adversarial purification. arXiv preprint arXiv:2205.14969, 2022.

[18] Quanlin Wu, Hang Ye, and Yuntian Gu. Guided diffusion model for adversarial purification
from random noise. arXiv preprint arXiv:2206.10875, 2022.

[19] Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via randomized
smoothing. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the
36th International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pages 1310–1320. PMLR, 09–15 Jun 2019.

[20] Hadi Salman, Jerry Li, Ilya Razenshteyn, Pengchuan Zhang, Huan Zhang, Sebastien Bubeck,
and Greg Yang. Provably robust deep learning via adversarially trained smoothed classifiers.
Advances in Neural Information Processing Systems, 32, 2019.

[21] Runtian Zhai, Chen Dan, Di He, Huan Zhang, Boqing Gong, Pradeep Ravikumar, Cho-Jui
Hsieh, and Liwei Wang. Macer: Attack-free and scalable robust training via maximizing
certified radius. arXiv preprint arXiv:2001.02378, 2020.

[22] Jongheon Jeong and Jinwoo Shin. Consistency regularization for certified robustness of
smoothed classifiers. Advances in Neural Information Processing Systems, 33:10558–10570,
2020.

[23] Miklós Z Horváth, Mark Niklas Müller, Marc Fischer, and Martin Vechev. Boosting randomized
smoothing with variance reduced classifiers. arXiv preprint arXiv:2106.06946, 2021.

[24] Jongheon Jeong, Sejun Park, Minkyu Kim, Heung-Chang Lee, Do-Guk Kim, and Jinwoo
Shin. Smoothmix: Training confidence-calibrated smoothed classifiers for certified robustness.
Advances in Neural Information Processing Systems, 34:30153–30168, 2021.

[25] Nicholas Carlini, Florian Tramer, J Zico Kolter, et al. (certified!!) adversarial robustness for
free! arXiv preprint arXiv:2206.10550, 2022.

[26] Chaowei Xiao, Zhongzhu Chen, Kun Jin, Jiongxiao Wang, Weili Nie, Mingyan Liu, Anima
Anandkumar, Bo Li, and Dawn Song. Densepure: Understanding diffusion models for ad-
versarial robustness. In The Eleventh International Conference on Learning Representations,
2022.

[27] Jiawei Zhang, Zhongzhu Chen, Huan Zhang, Chaowei Xiao, and Bo Li. {DiffSmooth}:
Certifiably robust learning via diffusion models and local smoothing. In 32nd USENIX Security
Symposium (USENIX Security 23), pages 4787–4804, 2023.

[28] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models, 2020.

[29] Huanran Chen, Yinpeng Dong, Shitong Shao, Zhongkai Hao, Xiao Yang, Hang Su, and Jun Zhu.
Your diffusion model is secretly a certifiably robust classifier. arXiv preprint arXiv:2402.02316,
2024.

[30] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unrea-
sonable effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 586–595, 2018.

[31] Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data
science. Foundations and Trends® in Machine Learning, 11(5-6):355–607, 2019.

[32] Brian DO Anderson. Reverse-time diffusion equation models. Stochastic Processes and their
Applications, 12(3):313–326, 1982.

[33] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In
Proceedings of the 40th International Conference on Machine Learning, ICML’23. JMLR.org,
2023.

[34] Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient neural
network robustness certification with general activation functions. In NeurIPS, 2018.

12

[35] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[36] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[37] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In
International Conference on Machine Learning, pages 32211–32252. PMLR, 2023.

[38] Jongheon Jeong and Jinwoo Shin. Multi-scale diffusion denoised smoothing. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023.

[39] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[40] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[41] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks, 2017.

[42] Miklós Z Horváth, Mark Niklas Müller, Marc Fischer, and Martin Vechev. Robust and accurate–
compositional architectures for randomized smoothing. arXiv preprint arXiv:2204.00487,
2022.

13

A Consistency Purification Algorithm

We provide detailed descriptions of Consistency Purification in the following algorithms. Algorithm 1
presents the function of Consistency Fine-tuning and Consistency Purification respectively. Algo-
rithm 2 shows the randomized smoothing algorithm from [19] with applying Consistency Purification
to do prediction and compute the certified radius.

Algorithm 1 Consistency Fine-tuning and Consistency Purification

Input: Consistency model purifier Dθ where θ represents the model parameters. Noise levels used
in randomized smoothing {σi}mi=1. Arbitrary classification model fclf. Fine-tuning learning rate
η.

1: function CONSISTENCYFINE-TUNING(Dθ)
2: repeat
3: sample x ∈ Training Dataset, σ ∈ {σi}mi=1
4: xσ ← x+N (0, σ2I)
5: t∗σ ← GETTIMESTEP(σ)
6: L ← LPIPS(x,Dθ(xσ, t

∗))
7: θ ← θ − η∇θL
8: until convergence
9: return Dθ

10: end function

11: function CONSISTENCYPURIFICATION(fclf, x, σ)
12: t∗σ ← GETTIMESTEP(σ)
13: xrs ← x+N (0, σ2I)
14: xp ← Dθ∗(xrs, t

∗
σ)

15: y ← fclf(xp)
16: return y
17: end function

18: function GETTIMESTEP(σ)
19: ti ← (ϵ1/ρ + i−1

N−1 (T
1/ρ − ϵ1/ρ))ρ for i ∈ {1, . . . , N}

20: t∗σ ← find {ti|σ ∈
(

ti−1+ti
2 , ti+ti+1

2

]
}

21: return t∗σ
22: end function

B Proof of Theorem 3.3

Theorem 3.3. Given the transport Tπt
(p) between the data distribution p and the corresponding

purified distribution under gt, then for any r > 0, the probability that the distance between the
original sample x and purified sample x̂ = πt(x) is larger than r is upper bounded by Tπt (p)

r .

Proof. We can leverage the Markov’s inequality. Because

E[∥x− x̂∥] =

∫
∥x−x̂∥≤r

∥x− x̂∥ · p(x)dx+

∫
∥x−x̂∥>r

∥x− x̂∥ · p(x)dx

≥
∫
∥x−x̂∥>r

∥x− x̂∥ · p(x)dx

≥
∫
∥x−x̂∥>r

r · p(x)dx

= r · P (∥x− x̂∥ > r),

14

we have

P (∥x− x̂∥ > r) ≤ E[∥x− x̂∥]
r

=
E[∥x− πt(x)∥]

r

=
Tπt

(p)

r
.

Algorithm 2 Randomized Smoothing [19]

Input: Sampling times for prediction n. Sampling times for certification N . Significant confidence
level α. Function LOWERCONFBOUND(k, n, 1− α) returns a one-sided (1-α) lower confidence
interval for the Binomial parameter p given that k ∼ Binomial(n, p).

1: function PREDICT(fclf,x, σ, n, α)
2: counts← 0
3: for i ∈ {1, 2, . . . , n} do
4: y ← CONSISTENCYPURIFICATION(fclf,x, σ)
5: counts[y]← counts[y] + 1
6: end for
7: ŷA, ŷB ← top two labels in counts
8: nA, nB ←counts[ŷA],counts[ŷB]
9: if BINOMTEST(nA, nA + nB ,

1
2) ≤ α then

10: return ŷA
11: else
12: return Abstain
13: end if
14: end function
15:
16: function CERTIFY(fclf,x, σ, n,N, α)
17: counts0← 0
18: for i ∈ {1, 2, . . . , n} do
19: y ← CONSISTENCYPURIFICATION(fclf,x, σ)
20: counts0[y]← counts0[y] + 1
21: end for
22: ŷA ← top label in counts0
23: counts← 0
24: for i ∈ {1, 2, . . . , N} do
25: y ← CONSISTENCYPURIFICATION(fclf,x, σ)
26: counts[y]← counts[y] + 1
27: end for
28: pA ← LOWERCONFBOUND(counts[ŷA], N, 1− α)

29: if pA > 1
2 then

30: return prediction ŷA and radius σΦ−1(pA)
31: else
32: return Abstain
33: end if
34: end function

C Training Unconditional Consistency Model for ImageNet-64

We train an unconditional consistency model for ImageNet-64 from the public available conditional
version by transiting the class embedding layers to a learnable token, initialization with average class
embeddings. For each model forwarding, this token will be combined with the time embeddings for
computation. After that, we train the conditional consistency model, initialized with the unconditional
model’s parameters, on ImageNet-64 training set for 120k steps.

15

D Purified Images Visualization for ImageNet-64

We present visualization images after diffusion purification by applying onestep-DDPM and Consis-
tency Purification for ImageNet-64 under the noise level σ = 0.25 in Figure 5.

(a) Purified images by onestep-DDPM

(b) Purified images by Consistency Purification

Figure 5: Visualization of purified images after the diffusion purification by applying onestep-DDPM
and Consistency Purification on ImageNet-64 with σ = 0.25 noise level. Identical noise patterns are
applied to images at corresponding locations. A green border indicates that the purified image is
correctly classified, while a red border denotes misclassification by the classifier.

16

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have included our paper’s contributions and scope in the abstract and
introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitaitons of our work after Conclusion Section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We provide detailed assumptions in Section 3 and the proof of theorem in
Appendix B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.

17

• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All experiments in our paper can be reproducible with all disclosed information
shown in our experiment section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have submitted our code as the Supplementary Material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not

18

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have include the detailed experiment settings in Section 5.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars are not reported because it would be too computationally expensive
for the large language model fine-tuning process.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We include the details about the experiments compute resources in Section 5.

19

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have checked the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of our work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper does not have such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring

20

https://neurips.cc/public/EthicsGuidelines

that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have included licenses of original owners in our code and made citations
in our papers.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

21

paperswithcode.com/datasets

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

22

	Introduction
	Backgrounds
	Theoretical Analysis
	Method
	Consistency Purification
	Consistency Fine-tuning

	Experiments
	Experimental Settings.
	Main Results.
	Ablation Studies.

	Conclusion
	Consistency Purification Algorithm
	Proof of Theorem 3.3
	Training Unconditional Consistency Model for ImageNet-64
	Purified Images Visualization for ImageNet-64

