
SCube: Instant Large-Scale Scene Reconstruction
using VoxSplats

Xuanchi Ren1,2,3∗,Yifan Lu1,4∗, Hanxue Liang1,5, Zhangjie Wu1,6,
Huan Ling1,2,3, Mike Chen1, Sanja Fidler1,2,3, Francis Williams1, Jiahui Huang1

1NVIDIA, 2University of Toronto, 3Vector Institute, 4Shanghai Jiao Tong University
5University of Cambridge, 6National University of Singapore

https://research.nvidia.com/labs/toronto-ai/scube/

Abstract

We present SCube, a novel method for reconstructing large-scale 3D scenes (geom-
etry, appearance, and semantics) from a sparse set of posed images. Our method
encodes reconstructed scenes using a novel representation VoxSplat, which is a
set of 3D Gaussians supported on a high-resolution sparse-voxel scaffold. To re-
construct a VoxSplat from images, we employ a hierarchical voxel latent diffusion
model conditioned on the input images followed by a feedforward appearance pre-
diction model. The diffusion model generates high-resolution grids progressively
in a coarse-to-fine manner, and the appearance network predicts a set of Gaussians
within each voxel. From as few as 3 non-overlapping input images, SCube can
generate millions of Gaussians with a 10243 voxel grid spanning hundreds of
meters in 20 seconds. Past works tackling scene reconstruction from images either
rely on per-scene optimization and fail to reconstruct the scene away from input
views (thus requiring dense view coverage as input) or leverage geometric priors
based on low-resolution models, which produce blurry results. In contrast, SCube
leverages high-resolution sparse networks and produces sharp outputs from few
views. We show the superiority of SCube compared to prior art using the Waymo
self-driving dataset on 3D reconstruction and demonstrate its applications, such as
LiDAR simulation and text-to-scene generation.

1 Introduction

Recovering 3D geometry and appearance from images is a fundamental problem in computer vision
and graphics which has been studied for decades. This task lies at the core of many practical
applications spanning robotics, autonomous driving, and augmented reality; just to name a few. Early
algorithms tackling this problem use stereo matching and structure from motion (SfM) to recover
3D signals from image data (e.g.[44]). More recently, a line of work starting from Neural Radiance
Fields [32] (NeRFs) has augmented traditional SfM pipelines by fitting a volumetric field to a set of
images, which can be rendered from novel views. NeRFs augment traditional reconstruction pipelines
by encoding dense geometry, and view-dependent lighting effects. While radiance-field methods
present a drastic step forward in our ability to recover 3D information from images, they require
a time-consuming per-scene optimization scheme. Furthermore, since each scene is recovered in
isolation, radiance fields do not make use of data priors, and cannot extrapolate reconstructions away
from the input views. Thus, radiance-field methods require dense view coverage in order to produce
high-quality 3D reconstructions.

∗Equal contribution.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://research.nvidia.com/labs/toronto-ai/scube/

Input Images Novel Views Input Images Novel Views

Render

Real-world Capture Text2Image “...a road in the foreground, several
vehicles in motion, lampposts on the side, ...”

Render

Reconstruct Reconstruct

Figure 1: SCube. Given sparse input images with little or no overlap, our model reconstructs a
high-resolution and large-scale scene in 3D represented with VoxSplats, ready to be used for novel
view synthesis or LiDAR simulation.

Another recent line of work applies deep learning to predict 3D from images. These methods either
meta-learn an initialization to the radiance-field optimization problem [7, 30, 49], or directly predict
3D from images using a feed-forward network [17, 57, 73]. While learning-based approaches can
produce reconstructions from sparse views, they have only been used successfully for the case of
single objects at low resolutions. Furthermore, these methods often suffer from 3D inconsistencies
(e.g. the multi-layer surface or the Janus problem). In order to solve the general 3D reconstruction
from images problem, we need methods that can (1) generalize reconstruction to general scenes over
the pure object case, (2) produce accurate and high-quality reconstructions in the presence of dense
views, leveraging data priors to produce plausible reconstructions in the sparse-view regime, and
(3) run quickly and efficiently (in terms of runtime and memory) on large-scale and high-resolution
inputs. These demands are difficult to satisfy in practice since high-quality ground-truth 3D data is not
widely available for scenes, 3D representations for deep learning that scale to large and diverse inputs
are under-explored in the literature, and corresponding scalable and easy-to-train model designs need
to be developed alongside any new 3D representation.

Nevertheless, we remark that some of these issues have been resolved in isolation: Gaussian Splatting
[23] enables fast, differentiable rendering and high reconstruction quality (but is not being used with
data priors), and sparse voxel hierarchies [40] have been successfully used to build generative models
of large-scale 3D scenes with attributes such as semantics and colors, and have been trained on partial
data such as LiDAR scans from autonomous vehicle captures.

In light of the above observations, we introduce SCube, a feed-forward method for large 3D scene
reconstruction from images. Our method encodes 3D scenes as a hybrid of Gaussian splats (which
enable fast rendering), supported on a sparse-voxel-hierarchy (which enables efficient generative
modeling of large 3D scenes with semantics). We call this hybrid representation VoxSplats and
predict a VoxSplat from images using a feed-forward process consisting of two steps: (1) A generative
geometry network that predicts a sparse voxel hierarchy conditioned on input images, and (2) an
appearance network that predicts the Gaussian attributes within the voxels as well as a skybox
texture to represent the background. The networks are implemented using highly efficient sparse
convolution [14, 40] designed for 3D data which enables us to reconstruct a full scene from images
in under 20 seconds. We evaluate our performance on the Waymo Open Dataset [53] on the
challenging task of reconstructing a scene from sparse images with low overlap. We show that SCube
significantly outperforms existing methods on this task. Furthermore, we demonstrate that SCube
enables downstream applications such as LiDAR simulation and text-to-scene generation.

2 Related Work

3D Scene Representation. Scenes in the wild are often large in scale and contain complicated
internal structures which cause representations such as tri-planes [12], dense voxel grids [36], or
meshes [19, 46] to fail due to capacity or memory limitations. Optimization-based reconstruction
methods [15, 32] use high-resolution hash grids [1, 33], but these are non-trivial to infer using a neural

2

Voxel Grid Reconstruction

Appearance Reconstruction

Coarse-level Voxels Fine-level Voxels

3D Gaussians Scene

Input Feature Cube

Condition Condition

Voxel Latent

Diffusion

Voxel Latent

Diffusion
(2563) (10243)

Voxel + Image Feature Sparse 3D UNet

Per-voxel

Gaussians

Sky Feat. Panorama

Sample

Render

2D Feature Map

Novel View

Foreground Img

Background Img

Ray Casting

Pano. Encoding

2D Decoder

Figure 2: Framework. SCube consists of two stages: (1) We reconstruct a sparse voxel grid with
semantic logit conditioned on the input images using a conditional latent diffusion model based on
XCube [40]. (2) We predict the appearance of the scene represented as VoxSplats and a sky panorama
using a feedforward network. Our method allows us to synthesize novel views in a fast and accurate
manner, along with many other applications.

network [30]. In contrast, sparse voxel grids are effective for learning scene-reconstruction [40, 75]
thanks to efficient sparse neural operators [8, 54]. Recently, Gaussian splatting [23] has enabled
real-time neural rendering and has been applied to overfitting large scenes [66, 76]. [31, 39] use
a hybrid of the above two representations, but the voxel grid or octree is only used to regularize
the Gaussian positions without any data priors learned. This is in contrast to our VoxSplat that
allows reconstruction in a direct inference pass thanks to the efficiency of sparse grids and the
high representation power of Gaussian splats. We support operating only on sparse-view images,
significantly lifting the input requirements by learning from large datasets.

Sparse-view 3D Reconstruction. Sparse-view images often contain insufficient correspondences
required by traditional reconstruction methods [44]. One line of work uses learned image-space
priors such as depth [9], normal maps [70], and appearance from GANs [43] or diffusion models [63]
to augment an optimization process such as NeRF. To speed up inference, another line of work
uses a feed-forward model to predict renderable features [4, 6, 22, 29, 57, 73]. Alternatively, some
papers perform learning directly in 3D space, which yields better consistency and less distortion [5,
13, 17, 68]. Our setting is similar to [13] where input images come from the same rig, but ours is
more challenging since we do not use temporally-sequenced inputs with high overlap. We remark
that semantic scene completion works [21, 26, 51, 61] also reconstruct voxels but at much lower
resolutions and without appearance.

Generative Models for 3D. 3D reconstruction can also be formulated as a conditional generative
problem (i.e.modeling the distribution of scenes given partial observations). Text and single-image
to-3D generation has been explored for objects [17, 28, 38, 47, 55, 56, 60, 69]. Extending this task
to large-scenes is comparatively unexplored, and object-based methods often fail due to scaling
limitations or assumptions on the data. [48, 72] recursively apply an image generative model to
inpaint missing regions in 3D, but produces blurry reconstructions at a limited scale. XCube [40] is
among the first to directly learn high-resolution 3D scene priors. Here, we extend this model with
multiview image conditioning and enable it to predict appearance on top of geometry.

3 Method

Our method reconstructs a high-resolution 3D scene from N sparse images I = {Ii}Ni=1 in two
stages: (1) We reconstruct the scene geometry represented as a sparse voxel grid G with semantic

3

features (§ 3.1). (2) We predict the appearance A of the scene that allows for high-quality novel view
synthesis (§ 3.2) using VoxSplats and a sky panorama. We can express our pipeline as taking samples
from the distribution p(G,A|I) = p(A|G, I)p(G|I). In order to improve the final view quality of
the output, we apply an optional post-processing step discussed in § 3.3.

3.1 Voxel Grid Reconstruction

Background: 3D Generation with XCube. XCube [40] is a 3D generative model that produces
high-quality samples for both objects and large outdoor scenes. XCube uses a hierarchical latent
diffusion model to generate sparse voxel hierarchies, i.e., a hierarchy of sparse voxel grids where
each fine voxel is contained within a coarse voxel. XCube learns a distribution over latent X encoded
by a sparse structure Variational Autoencoder (VAE). Both the VAE and the diffusion model are
instantiated with sparse convolutional neural networks [14], and can generate geometry at up to 10243

resolution. We use XCube as the backbone for our geometry reconstruction module. We remark that
while the original paper only focused on unconditional or text-conditioned generation, we introduce a
novel image-based conditioning C.

Image Conditioned Geometry Generation. To condition XCube on posed input images, we
lift DINO-v2 [34] features computed on the input images to 3D space as follows. First, we use
the pre-trained DINOv2 model to extract robust visual features for input images, and process the
DINO feature using several trainable 2D conv layers to reduce the feature channel to C +D. We
then split the channel C +D into two parts for each pixel j and input image index i: one part is a
regular C-dimensional feature Fi

j and the other will be a D-dimensional Softmax-normalized vector
θij ∈ RD. Here θij can be viewed as a distribution over the depth of the corresponding pixel, and we
follow a strategy similar to LSS [37] to unproject the images into a dense 3D voxel grid Ω where v
denotes the index of a voxel and d ∈ [1, D] indexes the depth buckets:

Fi
jd = θijd · Fi

j , Cv =
∑
(i,j,d)

Fi
jd ∈ RC . (1)

Note that we quantize the depth into D bins dividing the range from a predefined znear to zfar.
Unlike image-conditioning techniques used in object-level or indoor-level datasets where the camera
frusta have significant overlap, our large-scale outdoor setting only takes sparse low-overlapping
views captured from an ego-centric camera. Hence previous methods [28, 50, 52] that broadcast
the same features to all the voxels along the rays corresponding to the pixel are not suitable here
to precisely locate the geometries such as vehicles. The use of the weight θ allows us to handle
occlusions effectively and produce a more accurate conditioning signal. After building C, we directly
concatenate it with the latent X and feed it into the XCube diffusion network as conditioning.

Training and Inference. Our training pipeline is similar to [40], where we first train a VAE to learn
a latent space over sparse voxel hierarchies. We add semantic logit prediction as in [40] to the grid
and empirically find that it helps the model to learn better geometry. Then we train the diffusion
model conditioned on C using the following loss:

L = LDiffusion + λLDepth, LDepth = EX,i,jFocal(θij , [θ
i
j]gt), (2)

where LDiffusion is the loss for diffusion model training (see Appendix A for details). Focal(·) is the
multi-class focal loss [27]. This additional depth loss is an explicit supervision to properly weigh the
image features and encourage correct placement into the corresponding voxels. Due to the generative
nature of XCube, we could learn the data prior to generate complete geometry even if some of the
ground-truth 3D data is incomplete.

3.2 Appearance Reconstruction

The VoxSplat Representation. In the second stage, we fix the voxel grid G generated from the
geometry stage and predict a set of Gaussian splats in each voxel to model the scene appearance.
Gaussian splatting [23] is a powerful 3D representation technique that models a scene’s appearance
volumetrically as sum of Gaussians:

G(x) = RGB · α · e− 1
2 (x−µ)⊤Σ−1(x−µ), (3)

4

where α ∈ [0, 1] is the opacity, µ ∈ R3 is the center of each Gaussian, and Σ = RSS⊤R⊤ ∈ R3×3

is its covariance. The covariance matrix is factorized into a rotation matrix R parameterized by a
quaternion q and a scale diagonal matrix S = diag(s). Each Gaussian additionally stores a color
value RGB. Note that the original paper uses a set of SH coefficients for view-dependent colors, but
we only use the 0th-order SH in our model (i.e., without view-dependency) which we found to be
sufficient for sparse-view reconstruction.

While the original Gaussian Splatting paper and its follow-ups [23, 67, 71] propose many heuristics to
optimize the positions of Gaussians for a given scene, we instead choose to predict M Gaussians per-
voxel using a feed-forward model. We limit the positions of the Gaussians within a neighborhood of
their supporting voxels, thus preserving the geometric structure of the supporting grid. By grounding
the splats on a voxel scaffold, our reconstructions achieve better geometric quality without resorting
to heuristics. Fittingly, we dub our voxel-supported Gaussian splats VoxSplats.

The output of our network is {[µ̄v, ᾱv, s̄v, q̄v,RGBv] ∈ R14}M for each voxel v. To compute the
per-Gaussian parameters used for rendering we apply the following activations:

µv = r · tanh µ̄v + Centerv, αv = sigmoid(ᾱv), sv = exp s̄v, Rv = quat2rot(q̄v), (4)

where Centerv is the centroid of the voxel v, and r is a hyperparameter that controls the range of a
Gaussian within its supporting voxel. Here, we set r to three times the voxel size. We can efficiently
render the Gaussians predicted by our model using rasterization [23] or raytracing [11].

Sky Panorama for Background. To capture appearance away from the predicted geometry,
our model builds a sky feature panorama L ∈ RHp×Wp×Cp from all input images, which can be
considered as an expanded unit sphere with an inverse equirectangular projection. For each pixel
in the panorama L, we get its cartesian coordinate P = (x, y, z) on the unit sphere and project P
to the image plane to retrieve the image feature; since only the view direction decides the sky color,
we zero the translation part of the camera pose in the projection step. We also apply a sky mask to
ensure the panorama only focuses on the sky region.

To render a novel viewpoint with its extrinsics and intrinsics, we recover the background appearance
by sampling the sky panorama and decoding it into RGB values. For each camera ray from the novel
view, we calculate its pixel coordinate on the 2D sky panorama L with equirectangular projection
and get the sky features via trilinear interpolation, resulting in a 2D feature map for the novel view.
We finally decode the 2D feature map with a CNN network to get the background image Ibg, which
will be alpha-composited with the foreground image from Gaussian rasterization:

Ipred(u, v) = IGS(u, v) + (1−T(u, v)) · Ibg(u, v) (5)

where IGS(u, v) is the rendered image of Gaussians, (u, v) indicates the pixel coordinate, and T(u, v)
is the accumulated transmittance map of the Gaussians (see [23] for details).

Architecture Details. We predict the (M × 14)-dimensional vector {[µ̄v, ᾱv, s̄v, q̄v,RGBv]}M
for each voxel via a 3D sparse convolutional U-Net which takes as input the sparse voxel grid Ω
outputted by the geometry stage, where each voxel contains a feature sampled from the input images
as follows: We process each input image Ii using a CNN to get the image feature, and then cast a
ray from each image pixel into Ω, accumulating the feature in the first voxel intersected by that ray.
Voxels that are not intersected by any rays receive a zero feature vector.

For the sky panorama model, we use the same image feature as above. In the training stage, we set
smaller Hp and Wp for faster training and lower memory usage; in the inference stage, we increase
Hp and Wp to get a sharper and more detailed sky appearance.

Given a set of training images {Iigt}i and sky masks {Mi}i distinct from the inputs, we supervise the
appearance model using the loss:

L = λ1L1(I
i
pred, I

i
gt) + λ2L1(T

i,Mi) + λSSIMLSSIM(Iipred, I
i
gt) + λLPIPSLLPIPS(I

i
pred, I

i
gt), (6)

where the training views Iigt are sampled from nearby 10 views of the input images; the predicted
views Iipred and transmittance masks Ti are rendered using Eq (5); and LLPIPS/LSSIM are perceptual
and structural metrics defined in [74] and [59].

5

+ COLMAP
Points

+ Object
BBox

Curb & Lane Vehicles Road Sidewalk Vegetation Building Sign & PolePedestrian

Figure 3: Data Processing Pipeline. We add COLMAP [44] dense reconstruction points to the
accumulated LiDAR points and compensate for dynamic objects using their bounding boxes. This
provides us with a more complete geometry for training.

3.3 Postprocessing and Applications

Optional GAN Postprocessing. The novel views directly rendered from our appearance model
sometimes suffer from voxelization artifacts or noise. We resolve this with an optional lightweight
conditional Generative Adversarial Network (GAN) that takes the rendered images as input and
outputs a refined version. The discriminator of this GAN takes 256×256 image patches sampled from
the input sparse view images, as well as the generated images conditioned on the rendered images.
Drawing inspiration from [41, 43, 45], we fit the GAN independently for each scene at inference
time, which takes ∼20min to train. Due to the excessive time cost, we apply this step optionally only
when higher-quality images are needed (which we call SCube+). Fig. 8 shows the results with and
without this step, and we further present a general postprocessing without per-scene optimization
in Appendix C.

Application: Consistent LiDAR Simulation. LiDAR simulation [77] aims at reproducing the point
cloud output given novel locations of the sensor and is an important application for training and
verification of autonomous driving systems. The generated LiDAR point clouds should accurately
reflect the underlying 3D geometry and a sequence of LiDAR scans should be temporally consistent.
Our method enables converting sparse-view images directly into LiDAR point clouds, i.e., a sensor-
to-sensor conversion scheme. To achieve this, we leverage the output high-resolution Gaussians from
our model and ray-trace the LiDAR rays to obtain the corresponding distances. Thanks to our clean
voxel scaffold, the reconstructed scene is free of floaters and we set the opacity α to 1 for all the
Gaussians to ensure a hard intersection that aligns better with the geometry.

Application: Text-to-Scene Generation. Our method can be easily extended to generate 3D
scenes from text prompts. Similar to MVDream [47], we train a multi-view diffusion model with
the architecture of VideoLDM [2] that generates images from text prompts. The original spatial
self-attention layer is inflated along the view dimension to achieve content consistency [25, 65]. For
training, we use CogVLM [58] to annotate the images automatically on a large scale. After the model
is trained, we directly feed the output of the multi-view model to SCube to lift the observations into
3D space for novel view synthesis.

4 Experiments

In this section, we validate the effectiveness of SCube. First, we present our new data curation
pipeline that produces ground-truth voxel grids (§ 4.1). Next, we demonstrate SCube’s capabilities
in scene reconstruction (§ 4.2), and further highlight its usefulness in assisting the state-of-the-art
Gaussian splatting pipeline (§ 4.3). Finally, we showcase other applications of our method (§ 4.4)
and perform ablation studies to justify our design choices (§ 4.5).

4.1 Dataset Processing

Accurate 3D data is essential for our method to learn useful geometry and appearance priors. Fortu-
nately, many autonomous driving datasets [3, 53] are equipped with 3D LiDAR data, and one can
simply accumulate the point clouds to obtain the 3D scene geometry [20, 40]. However, the LiDAR

6

Input Views

D
U

St
3R

Sc
ub

e+
 (O
ur
s)

Novel View Rendering

Front-RightFrontFront-Left Front-RightFrontFront-Left

Ti
m

es
ta

m
p
T

Ti
m

es
ta

m
p
T+

10

Input Views

Novel View Rendering
Pi

xe
lS

pl
at

Figure 4: Novel View Synthesis. We show the synthesized novel views of SCube+ compared to
baselines approaches. The inset of each subfigure shows a top-down visualization (an extreme novel
view) of the reconstructed scene geometry.

points usually do not cover high-up regions such as tall buildings and contain dynamic (non-rigid)
objects that are non-trivial to accumulate.

102.4m

10
2.
4m

90%

50%
10%

50%

We hence build a data processing pipeline based on Waymo Open
Dataset [53] as shown in Fig. 3, consisting of three steps: Step 1, we
accumulate the LiDAR points in the world space, removing the points
within the bounding boxes of dynamic objects such as cars and pedestri-
ans. We additionally obtain the semantics of each accumulated LiDAR
point, where non-annotated points are assigned the semantics of their
nearest annotated neighbors. Step 2, we use the multi-view stereo (MVS)
algorithm available in COLMAP [44] to reconstruct the dense 3D point
cloud from the images, and the semantic labels of the points are obtained
by Segformer [64]. Step 3, we add point samples for the dynamic objects
according to their bounding boxes at a given target frame. This gives us
static and accumulated ground truths available for training. For each data sample, we crop the point
cloud into a local chunk of 102.4m × 102.4m centered around a randomly sampled ego-vehicle pose.
Since there are no rear-view cameras in the Waymo dataset, we allocate more space for the chunk in
the forward direction, as shown in the inset figure. See Appendix A for additional details.

4.2 Large-scale Scene Reconstruction

Evaluation and Baselines. To assess our method’s power for 3D scene reconstruction, we follow
the common protocol to evaluate the task of novel view synthesis [4, 42, 68]. Given input multi-view
images (details about choosing views are in Appendix A) at frame T , we render novel views at
future timestamps T +5 and T +10, and compare them to the corresponding ground-truth frames by
calculating Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM), and
Learned Perceptual Image Patch Similarity (LPIPS) [74]. We exclude the regions of moving objects
for T + 5 and T + 10 evaluation, and only use three front views when computing the metrics.

We use PixelNeRF [68], PixelSplat [4], DUSt3R [57], MVSplat [6], and MVSGaussian [29] as our
baselines for comparison. [4, 6, 29, 68] take images and their corresponding camera parameters
as input and reconstruct NeRFs or 3D Gaussian representations. DUSt3R [57] directly estimates
per-pixel point clouds from the images. We append additional heads to the its decoder which predicts
other 3D Gaussian attributes along with the mean positions and finetune it with a rendering loss. For
all other baselines, we take the official code and re-train them on our dataset. We tried to add the

7

Reconstruction (T) Prediction (T + 5) Prediction (T + 10)

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
PixelNeRF [68] 15.26 0.51 0.66 15.21 0.52 0.64 14.61 0.49 0.66
PixelSplat [4] 22.15 0.71 0.61 20.11 0.70 0.60 18.77 0.66 0.62
DUSt3R [57] 17.17 0.60 0.58 17.08 0.62 0.56 16.08 0.58 0.60
MVSplat [6] 21.84 0.71 0.46 20.14 0.71 0.48 18.78 0.69 0.52
MVSGaussian [29] 21.25 0.80 0.51 16.49 0.70 0.60 16.42 0.60 0.59

SCube (Ours) 25.90 0.77 0.45 19.90 0.72 0.47 18.78 0.70 0.49
SCube+ (Ours) 28.01 0.81 0.25 22.32 0.74 0.34 21.09 0.72 0.38

Table 1: Quantitative Comparisons on 3D Reconstruction. The metrics are computed both at the
input frame T and future frames. ↑: higher is better, ↓: lower is better.

Metric3Dv2 Ours Metric3Dv2 Ours

Figure 5: Geometry Reconstruction from Sparse Views. We show the comparison between our
method and Metric3Dv2 [18]. The semantics of Metric3Dv2 are obtained from Segformer [64].

state-of-the-art depth estimator Metric3Dv2 [18] for depth supervision but empirically found that the
performance degraded.

Results and Analysis. We show our results quantitatively in Tab. 1 and visually in Fig. 4. Our
method outperforms all the baselines for both the current frame (reconstruction) and future frames
(prediction) by a considerable margin on all metrics. PixelNeRF is limited by the representation power
of the network, and simply fails to capture high-frequency details in the scene. PixelSplat highly
relies on overlapping regions in the input views and cannot adapt well to our sparse view setting. It
fails to model the true 3D geometry as shown in the top-down view, and simply collapses the images
into constant depths. The multi-view-stereo-based methods [6, 29] cannot enable extreme novel view
synthesis such as the bird-eye view, and could not recover highly-occluded regions. Thanks to the
effective pre-training of DUSt3R, it is able to learn plausible displacements in the image domain,
but the method still suffers from missing regions, misalignments, or inaccurate depth boundaries. In
contrast, our method can reconstruct complete scene geometry even for far-away regions. It is both
accurate and consistent while producing high-quality novel view renderings.

To better demonstrate the power of learning priors in 3D, we build another baseline using the state-of-
the-art metric depth estimator Metric3Dv2 [18] to unproject the images into point clouds using 2D
learned priors. As shown in Fig. 5, our method can reconstruct more complete, uniform, and accurate
scenes, justifying the power of representing and learning geometry directly in the true 3D space.

4.3 Assisting Gaussian Splatting Initialization

Our method creates scene-level 3D Gaussians with accurate geometry and appearance, which can be
used to initialize large-scale 3D Gaussian splatting [23] training. This is particularly useful in outdoor
driving scenarios where structure-from-motion (SfM) may fail due to the sparsity of viewpoints.

To demonstrate this, we consider and compare three initialization methods: Random initialization
is where points are uniformly sampled within the range of (−20m, 20m)3 around each camera.
Metric3Dv2 initialization is where we use the unprojected cloud from Metric3Dv2 [18]’s monocular

8

R = 10 R = 20 R = 40

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Random 21.66 0.72 0.38 24.27 0.78 0.34 24.93 0.80 0.35
Metric3Dv2 [18] 23.30 0.75 0.33 25.21 0.80 0.32 25.58 0.80 0.34
SCube (Ours) 24.10 0.77 0.32 25.94 0.81 0.30 26.07 0.82 0.32

Table 2: Initializations for Gaussian Splatting training. We train 3D Gaussians with different
initialization for R frames. We report the test-set metrics. ↑: higher is better, ↓: lower is better.

Input Front View Simulated LiDAR Sequence

Figure 6: LiDAR Simulation. We demonstrate qualitative results of image-to-consistent-LiDAR
transfer. The LiDAR sequences are simulated by moving the camera forward by 60 meters.

depth and align its scale to metric-scale LiDAR. SCube (ours) initialization directly adopts the
positions and colors of the Gaussians from our pipeline. For input to these methods, we choose the
views from the first frame T and control the number of initial points to 200k. We then incorporate R
subsequent frames into the full training, with every 3 frames skipped to be used in the test set. The
number of training iterations is fixed to 30k and the initial positional learning rate is set to 1.6e−5.
We select 15 static scenes for experiments and report their average metrics, which are shown in Tab. 2.
The results consistently demonstrate SCube’s effectiveness as an initialization strategy that provides
accurate 3D grounding and alleviates overfitting on the training views.

4.4 Other Applications

We demonstrate the applications of our method as described in § 3.3. Fig. 6 shows the consistent
LiDAR simulation results, where the simulated sequences could effectively cover a long range away
from the input camera positions, while resolving intricate geometric structures such as buildings,
trees, or poles. Fig. 7 exemplifies the text-to-scene generation capability enabled by our method. The
3D geometry and appearance respect the input text prompt and the corresponding images. Readers
are referred to Appendix D.3 for more generative results.

4.5 Ablation Study

Image-Conditioning Strategy. We replace the image conditioning strategy described in Eq (1) in
the voxel grid reconstruction stage with a vanilla scheme that broadcasts the same feature to all the
voxels along the pixel’s ray. The final IoU of the fine-level voxel grid drops from 34.31% to 30.33%,
and the mIoU that considers the accuracy of the voxel’s semantic prediction drops from 20.00% to
16.61%. This shows the effectiveness of our conditioning strategy being able to disambiguate voxels
at different depths.

Two-stage Reconstruction. We disentangle the voxel grid and appearance reconstruction stages
to make the best use of different types of models. Using a single-stage model2 that simultaneously

2In practice, we test the upper bound of the single-stage model by feeding in ground-truth 10243 voxel grids,
because otherwise the fully-dense high-resolution condition will lead to out-of-memory.

9

… a palm tree, a road with traffic, lined with trees and buildings, under a blue sky with scattered white clouds, …

Reconstruct Reconstruct

Figure 7: Text-2-Scene Generation. Given a text prompt, we could generate various multi-view
images and lift them to 3D scenes with SCube. See Appendix D.3 for more text-2-scene results.

Figure 8: Effects of GAN Postprocessing. Left:
SCube+; Right: SCube.

Resolution M PSNR↑ LPIPS↓

2563 4 18.58 0.62
10243 1 19.34 0.52
10243 4 19.34 0.48

Table 3: Ablation Study for Appearance Re-
construction.

predicts the sparse voxels and the appearance from images, we can only achieve a PSNR/LPIPS of
17.88/0.57, in comparison to 19.34/0.48 when using the two-stage model. Here the values are the
average of T + 5 and T + 10 frames. In terms of geometry quality, the single-stage model is also
significantly worse (up to 100×) in Chamfer distance than the two-stage model. Please refer to more
details about the analysis of geometry quality in Appendix D.1.

Appearance Reconstruction. We validate the effect of voxel grid resolution and the number of
Gaussians per voxel M in the appearance reconstruction stage. Results are shown in Tab. 3. We
find that higher-resolution voxel grids are crucial for capturing detailed geometry, and using a larger
number of Gaussians only slightly increases the performance. Thus, we set M = 4 as a moderate
value for the final results. Compared in Fig. 8, the GAN-based postprocessing, despite the time cost,
is beneficial for producing high-quality images by sharpening the renderings. See Appendix D.2 for
more visual comparisons.

5 Discussion

Conclusion. In this work, we have introduced SCube, a feed-forward method for large 3D scene
reconstruction from images. Given sparse view non-overlapping images, our method is able to
predict a high-resolution 3D scene representation consisting of voxel-supported Gaussian splats
(VoxSplat) and a light-weight sky panorama in a single forward pass within tens of seconds. We have
demonstrated the effectiveness of our method on the Waymo Open Dataset, and have shown that our
method outperforms the state-of-the-art methods in terms of reconstruction quality.

Limitations. Our method does suffer from some limitations. First, the current method is not able to
handle complicated scenarios such as dynamic scenes under extreme lighting or weather conditions.
Second, the quality of appearance in occluded regions still carries uncertainty. Third, the method
itself still requires ground-truth 3D training data which is not always available for generic outdoor
scenes. In future work, we plan to address these limitations by incorporating more advanced neural
rendering techniques and by exploring more effective ways to generate training data.

10

References
[1] J. T. Barron, B. Mildenhall, D. Verbin, P. P. Srinivasan, and P. Hedman. Zip-nerf: Anti-aliased grid-based

neural radiance fields. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 19697–19705, 2023.

[2] A. Blattmann, R. Rombach, H. Ling, T. Dockhorn, S. W. Kim, S. Fidler, and K. Kreis. Align your latents:
High-resolution video synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 22563–22575, 2023.

[3] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan, and
O. Beijbom. nuscenes: A multimodal dataset for autonomous driving. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 11621–11631, 2020.

[4] D. Charatan, S. Li, A. Tagliasacchi, and V. Sitzmann. pixelsplat: 3d gaussian splats from image pairs for
scalable generalizable 3d reconstruction. arXiv preprint arXiv:2312.12337, 2023.

[5] Y. Chen, J. Wang, Z. Yang, S. Manivasagam, and R. Urtasun. G3r: Gradient guided generalizable
reconstruction. In ECCV 2024 Workshop on Wild 3D: 3D Modeling, Reconstruction, and Generation in
the Wild, 2024.

[6] Y. Chen, H. Xu, C. Zheng, B. Zhuang, M. Pollefeys, A. Geiger, T.-J. Cham, and J. Cai. Mvsplat: Efficient
3d gaussian splatting from sparse multi-view images. arXiv preprint arXiv:2403.14627, 2024.

[7] G. Chou, I. Chugunov, and F. Heide. Gensdf: Two-stage learning of generalizable signed distance functions.
Advances in Neural Information Processing Systems, 35:24905–24919, 2022.

[8] T. Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv preprint
arXiv:2307.08691, 2023.

[9] K. Deng, A. Liu, J.-Y. Zhu, and D. Ramanan. Depth-supervised nerf: Fewer views and faster training for
free. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
12882–12891, 2022.

[10] W. Falcon and The PyTorch Lightning team. PyTorch Lightning, Mar. 2019.

[11] J. Gao, C. Gu, Y. Lin, H. Zhu, X. Cao, L. Zhang, and Y. Yao. Relightable 3d gaussian: Real-time point
cloud relighting with brdf decomposition and ray tracing. arXiv preprint arXiv:2311.16043, 2023.

[12] J. Gao, T. Shen, Z. Wang, W. Chen, K. Yin, D. Li, O. Litany, Z. Gojcic, and S. Fidler. Get3d: A generative
model of high quality 3d textured shapes learned from images. Advances In Neural Information Processing
Systems, 35:31841–31854, 2022.

[13] T. Gieruc, M. Kästingschäfer, S. Bernhard, and M. Salzmann. 6img-to-3d: Few-image large-scale outdoor
driving scene reconstruction. arXiv preprint arXiv:2404.12378, 2024.

[14] B. Graham and L. Van der Maaten. Submanifold sparse convolutional networks. arXiv preprint
arXiv:1706.01307, 2017.

[15] J. Hasselgren, N. Hofmann, and J. Munkberg. Shape, light, and material decomposition from images using
monte carlo rendering and denoising. Advances in Neural Information Processing Systems, 35:22856–
22869, 2022.

[16] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in neural information
processing systems, 33:6840–6851, 2020.

[17] Y. Hong, K. Zhang, J. Gu, S. Bi, Y. Zhou, D. Liu, F. Liu, K. Sunkavalli, T. Bui, and H. Tan. Lrm: Large
reconstruction model for single image to 3d. arXiv preprint arXiv:2311.04400, 2023.

[18] M. Hu, W. Yin, C. Zhang, Z. Cai, X. Long, H. Chen, K. Wang, G. Yu, C. Shen, and S. Shen. Metric3d
v2: A versatile monocular geometric foundation model for zero-shot metric depth and surface normal
estimation. arXiv preprint arXiv:2404.15506, 2024.

[19] S.-M. Hu, Z.-N. Liu, M.-H. Guo, J.-X. Cai, J. Huang, T.-J. Mu, and R. R. Martin. Subdivision-based mesh
convolution networks. ACM Transactions on Graphics (TOG), 41(3):1–16, 2022.

[20] S. Huang, Z. Gojcic, J. Huang, A. Wieser, and K. Schindler. Dynamic 3d scene analysis by point cloud
accumulation. In European Conference on Computer Vision, pages 674–690. Springer, 2022.

11

[21] Y. Huang, W. Zheng, Y. Zhang, J. Zhou, and J. Lu. Tri-perspective view for vision-based 3d semantic
occupancy prediction. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 9223–9232, 2023.

[22] M. Z. Irshad, S. Zakharov, K. Liu, V. Guizilini, T. Kollar, A. Gaidon, Z. Kira, and R. Ambrus. Neo 360:
Neural fields for sparse view synthesis of outdoor scenes. In ICCV, 2023.

[23] B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis. 3d gaussian splatting for real-time radiance field
rendering. ACM Transactions on Graphics, 42(4):1–14, 2023.

[24] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

[25] X. Li, Y. Zhang, and X. Ye. Drivingdiffusion: Layout-guided multi-view driving scene video generation
with latent diffusion model. CoRR, abs/2310.07771, 2023.

[26] Y. Li, Z. Yu, C. Choy, C. Xiao, J. M. Alvarez, S. Fidler, C. Feng, and A. Anandkumar. Voxformer: Sparse
voxel transformer for camera-based 3d semantic scene completion. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 9087–9098, 2023.

[27] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal loss for dense object detection. In Proceedings
of the IEEE international conference on computer vision, pages 2980–2988, 2017.

[28] M. Liu, R. Shi, L. Chen, Z. Zhang, C. Xu, X. Wei, H. Chen, C. Zeng, J. Gu, and H. Su. One-2-3-45++:
Fast single image to 3d objects with consistent multi-view generation and 3d diffusion. arXiv preprint
arXiv:2311.07885, 2023.

[29] T. Liu, G. Wang, S. Hu, L. Shen, X. Ye, Y. Zang, Z. Cao, W. Li, and Z. Liu. Mvsgaussian: Fast generalizable
gaussian splatting reconstruction from multi-view stereo. arXiv preprint arXiv:2405.12218, 2, 2024.

[30] J. Lorraine, K. Xie, X. Zeng, C.-H. Lin, T. Takikawa, N. Sharp, T.-Y. Lin, M.-Y. Liu, S. Fidler, and J. Lucas.
Att3d: Amortized text-to-3d object synthesis. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 17946–17956, 2023.

[31] T. Lu, M. Yu, L. Xu, Y. Xiangli, L. Wang, D. Lin, and B. Dai. Scaffold-gs: Structured 3d gaussians for
view-adaptive rendering. arXiv preprint arXiv:2312.00109, 2023.

[32] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng. Nerf: Representing
scenes as neural radiance fields for view synthesis. Communications of the ACM, 65(1):99–106, 2021.

[33] T. Müller, A. Evans, C. Schied, and A. Keller. Instant neural graphics primitives with a multiresolution
hash encoding. ACM transactions on graphics (TOG), 41(4):1–15, 2022.

[34] M. Oquab, T. Darcet, T. Moutakanni, H. Vo, M. Szafraniec, V. Khalidov, P. Fernandez, D. Haziza,
F. Massa, A. El-Nouby, et al. Dinov2: Learning robust visual features without supervision. arXiv preprint
arXiv:2304.07193, 2023.

[35] G. Parmar, T. Park, S. Narasimhan, and J.-Y. Zhu. One-step image translation with text-to-image models.
arXiv preprint arXiv:2403.12036, 2024.

[36] S. Peng, M. Niemeyer, L. Mescheder, M. Pollefeys, and A. Geiger. Convolutional occupancy networks. In
Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part III 16, pages 523–540. Springer, 2020.

[37] J. Philion and S. Fidler. Lift, splat, shoot: Encoding images from arbitrary camera rigs by implicitly
unprojecting to 3d. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part XIV 16, pages 194–210. Springer, 2020.

[38] B. Poole, A. Jain, J. T. Barron, and B. Mildenhall. Dreamfusion: Text-to-3d using 2d diffusion. arXiv
preprint arXiv:2209.14988, 2022.

[39] K. Ren, L. Jiang, T. Lu, M. Yu, L. Xu, Z. Ni, and B. Dai. Octree-gs: Towards consistent real-time rendering
with lod-structured 3d gaussians. arXiv preprint arXiv:2403.17898, 2024.

[40] X. Ren, J. Huang, X. Zeng, K. Museth, S. Fidler, and F. Williams. Xcube: Large-scale 3d generative
modeling using sparse voxel hierarchies. In CVPR, 2024.

[41] X. Ren, Z. Qian, and Q. Chen. Video deblurring by fitting to test data. CoRR, abs/2012.05228, 2020.

12

[42] X. Ren and X. Wang. Look outside the room: Synthesizing A consistent long-term 3d scene video from A
single image. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New
Orleans, LA, USA, June 18-24, 2022, pages 3553–3563. IEEE, 2022.

[43] B. Roessle, N. Müller, L. Porzi, S. R. Bulò, P. Kontschieder, and M. Nießner. Ganerf: Leveraging
discriminators to optimize neural radiance fields. ACM Transactions on Graphics (TOG), 42(6):1–14,
2023.

[44] J. L. Schonberger and J.-M. Frahm. Structure-from-motion revisited. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 4104–4113, 2016.

[45] T. R. Shaham, T. Dekel, and T. Michaeli. Singan: Learning a generative model from a single natural image.
In Proceedings of the IEEE/CVF international conference on computer vision, pages 4570–4580, 2019.

[46] T. Shen, J. Munkberg, J. Hasselgren, K. Yin, Z. Wang, W. Chen, Z. Gojcic, S. Fidler, N. Sharp, and J. Gao.
Flexible isosurface extraction for gradient-based mesh optimization. ACM Transactions on Graphics
(TOG), 42(4):1–16, 2023.

[47] Y. Shi, P. Wang, J. Ye, M. Long, K. Li, and X. Yang. Mvdream: Multi-view diffusion for 3d generation.
arXiv preprint arXiv:2308.16512, 2023.

[48] J. Shriram, A. Trevithick, L. Liu, and R. Ramamoorthi. Realmdreamer: Text-driven 3d scene generation
with inpainting and depth diffusion. arXiv preprint arXiv:2404.07199, 2024.

[49] V. Sitzmann, E. Chan, R. Tucker, N. Snavely, and G. Wetzstein. Metasdf: Meta-learning signed distance
functions. Advances in Neural Information Processing Systems, 33:10136–10147, 2020.

[50] V. Sitzmann, J. Thies, F. Heide, M. Nießner, G. Wetzstein, and M. Zollhofer. Deepvoxels: Learning
persistent 3d feature embeddings. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 2437–2446, 2019.

[51] S. Song, F. Yu, A. Zeng, A. X. Chang, M. Savva, and T. Funkhouser. Semantic scene completion from a
single depth image. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 1746–1754, 2017.

[52] J. Sun, Y. Xie, L. Chen, X. Zhou, and H. Bao. Neuralrecon: Real-time coherent 3d reconstruction from
monocular video. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 15598–15607, 2021.

[53] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui, J. Guo, Y. Zhou, Y. Chai, B. Caine,
et al. Scalability in perception for autonomous driving: Waymo open dataset. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 2446–2454, 2020.

[54] H. Tang, Z. Liu, X. Li, Y. Lin, and S. Han. Torchsparse: Efficient point cloud inference engine. Proceedings
of Machine Learning and Systems, 4:302–315, 2022.

[55] D. Tochilkin, D. Pankratz, Z. Liu, Z. Huang, A. Letts, Y. Li, D. Liang, C. Laforte, V. Jampani, and Y.-P.
Cao. Triposr: Fast 3d object reconstruction from a single image. arXiv preprint arXiv:2403.02151, 2024.

[56] V. Voleti, C.-H. Yao, M. Boss, A. Letts, D. Pankratz, D. Tochilkin, C. Laforte, R. Rombach, and V. Jampani.
Sv3d: Novel multi-view synthesis and 3d generation from a single image using latent video diffusion.
arXiv preprint arXiv:2403.12008, 2024.

[57] S. Wang, V. Leroy, Y. Cabon, B. Chidlovskii, and J. Revaud. Dust3r: Geometric 3d vision made easy.
arXiv preprint arXiv:2312.14132, 2023.

[58] W. Wang, Q. Lv, W. Yu, W. Hong, J. Qi, Y. Wang, J. Ji, Z. Yang, L. Zhao, X. Song, et al. Cogvlm: Visual
expert for pretrained language models. arXiv preprint arXiv:2311.03079, 2023.

[59] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment: from error visibility
to structural similarity. IEEE Trans. Image Process., 2004.

[60] Z. Wang, C. Lu, Y. Wang, F. Bao, C. Li, H. Su, and J. Zhu. Prolificdreamer: High-fidelity and diverse
text-to-3d generation with variational score distillation. Advances in Neural Information Processing
Systems, 36, 2024.

[61] Y. Wei, L. Zhao, W. Zheng, Z. Zhu, J. Zhou, and J. Lu. Surroundocc: Multi-camera 3d occupancy prediction
for autonomous driving. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 21729–21740, 2023.

13

[62] F. Williams, J. Huang, J. Swartz, G. Klar, V. Thakkar, M. Cong, X. Ren, R. Li, C. Fuji-Tsang, S. Fidler,
E. Sifakis, and K. Museth. fvdb: A deep-learning framework for sparse, large-scale, and high-performance
spatial intelligence. ACM Transactions on Graphics (TOG), 43(4):133:1–133:15, 2024.

[63] R. Wu, B. Mildenhall, P. Henzler, K. Park, R. Gao, D. Watson, P. P. Srinivasan, D. Verbin, J. T. Barron,
B. Poole, et al. Reconfusion: 3d reconstruction with diffusion priors. arXiv preprint arXiv:2312.02981,
2023.

[64] E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez, and P. Luo. Segformer: Simple and efficient
design for semantic segmentation with transformers. In Neural Information Processing Systems (NeurIPS),
2021.

[65] Y. Xu, H. Tan, F. Luan, S. Bi, P. Wang, J. Li, Z. Shi, K. Sunkavalli, G. Wetzstein, Z. Xu, et al. Dmv3d:
Denoising multi-view diffusion using 3d large reconstruction model. arXiv preprint arXiv:2311.09217,
2023.

[66] Y. Yan, H. Lin, C. Zhou, W. Wang, H. Sun, K. Zhan, X. Lang, X. Zhou, and S. Peng. Street gaussians for
modeling dynamic urban scenes. arXiv preprint arXiv:2401.01339, 2024.

[67] Z. Ye, W. Li, S. Liu, P. Qiao, and Y. Dou. Absgs: Recovering fine details for 3d gaussian splatting. arXiv
preprint arXiv:2404.10484, 2024.

[68] A. Yu, V. Ye, M. Tancik, and A. Kanazawa. pixelnerf: Neural radiance fields from one or few images. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4578–4587,
2021.

[69] X. Yu, Y.-C. Guo, Y. Li, D. Liang, S.-H. Zhang, and X. Qi. Text-to-3d with classifier score distillation.
arXiv preprint arXiv:2310.19415, 2023.

[70] Z. Yu, S. Peng, M. Niemeyer, T. Sattler, and A. Geiger. Monosdf: Exploring monocular geometric
cues for neural implicit surface reconstruction. Advances in neural information processing systems,
35:25018–25032, 2022.

[71] Z. Yu, T. Sattler, and A. Geiger. Gaussian opacity fields: Efficient and compact surface reconstruction in
unbounded scenes. arXiv preprint arXiv:2404.10772, 2024.

[72] F. Zhang, Y. Zhang, Q. Zheng, R. Ma, W. Hua, H. Bao, W. Xu, and C. Zou. 3d-scenedreamer: Text-driven
3d-consistent scene generation. arXiv preprint arXiv:2403.09439, 2024.

[73] K. Zhang, S. Bi, H. Tan, Y. Xiangli, N. Zhao, K. Sunkavalli, and Z. Xu. Gs-lrm: Large reconstruction
model for 3d gaussian splatting. arXiv preprint arXiv:2404.19702, 2024.

[74] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, 2018.

[75] X.-Y. Zheng, H. Pan, P.-S. Wang, X. Tong, Y. Liu, and H.-Y. Shum. Locally attentional sdf diffusion for
controllable 3d shape generation. ACM Transactions on Graphics (TOG), 42(4):1–13, 2023.

[76] X. Zhou, Z. Lin, X. Shan, Y. Wang, D. Sun, and M.-H. Yang. Drivinggaussian: Composite gaussian
splatting for surrounding dynamic autonomous driving scenes. arXiv preprint arXiv:2312.07920, 2023.

[77] V. Zyrianov, H. Che, Z. Liu, and S. Wang. Lidardm: Generative lidar simulation in a generated world.
arXiv preprint arXiv:2404.02903, 2024.

14

– Appendix –

A Implementation Details

Additional Data Processing Details. For each data sample, we crop the point cloud obtained from
§ 4.1 into a local chunk of 102.4m × 102.4m. The point cloud is then voxelized into the fine-level
and coarse-level grids used in § 3.1 with 10243 and 2563 resolutions respectively (with voxel sizes of
0.1m and 0.4m). Our dataset contains 20243 chunks for training and 5380 chunks for evaluation, out
of the 798 training and 202 validation sequences.

Input and Evaluation Details. Waymo dataset provides 5 views for each camera frame, namely
front, front-left, front-right, side-left and side-right. However, not all of the baseline
methods we compared with in § 4.2 can handle the unconventional camera intrinsic in the side-left
and side-right views. We hence only use the first three views (with a resolution of 1920× 1280)
in § 4.2 for both the input and the evaluation metrics. However, in § 4.3 we opt to use all 5 views for
the input to both our method and the baseline due to compatibility and maximized performance.

For the baselines, the original PixelSplat [4] method does not have depth supervision. To make the
comparison fair, we attempt to add a depth supervision loss to it. However, the experimental result
shows that the additional loss hurts the performance as shown in Tab. 4. We thus report the results of
vanilla PixelSplat in the main paper.

T + 5 T + 10

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
PixelSplat [4] 20.11 0.70 0.60 18.77 0.66 0.62
PixelSplat [4] w/ Depth Supervision 19.91 0.58 0.66 18.87 0.56 0.67

Table 4: Comparison of PixelSplat and PixelSplat with Depth Supervision.

Training Details. The diffusion loss in Eq (2) is defined similar to [16, 40] with a v-parametrization
as:

LDiffusion = Et,X,ϵ∼N (0,I)

[∥∥v(√ᾱtX+
√
1− ᾱtϵ, t)− (

√
ᾱtϵ−

√
1− ᾱtX)

∥∥2
2

]
, (7)

where v(·) is the diffusion network, t is the randomly sampled diffusion timestamp, and ᾱt is the
scheduling factor for the diffusion process, whose details are referred to in [16].

We train all of our models using the Adam [24] optimizer with β1 = 0.9 and β1 = 0.999. We
use PyTorch Lightning [10] for building our distributed training framework. For the voxel grid
reconstruction stage, we train both coarse-level and fine-level voxel latent diffusion models with 64×
NVIDIA Tesla A100s for 2 days. For the appearance reconstruction model, we train it using 8×
NVIDIA Tesla A100s for 2 days. Empirically, we use λ = 1.0 for LDepth in Eq (2). Additionally, we
use λ1 = 0.9, λ2 = 1.0, λSSIM = 0.1 and λLPIPS = 0.6 in Eq (6). For image condition, we set the
feature channel C = 32, the number of depth bins D = 64, znear = 0.1 and zfar = 90.0. We linearly
increase the interval of depth bins.

B Network Architecture

Voxel Grid Reconstruction. We follow [40] to implement the Sparse Structure VAE and the
Diffusion UNet using the sparse 3D deep learning framework fVDB [62]. Hyperparameters for
training them are listed in Tab. 5 and Tab. 6. We pass the images to distilled DINO-v2 [34] ViT-B/14.
We use four 2D convolutional layers (channel dims: [768, 256, 256, 32, 32], kernel size: 3, stride: 1)
to further process the DINO-v2 output to predict the image feature and the depth distribution.

Appearance Reconstruction. We process the original input images with three 2D convolutional
layers (channel dims: [3, 16, 32, 32], kernel size: 3, stride: [1, 1, 2]). For the last two convolutional

15

Waymo Waymo
643 → 2563 2563 → 10243

Model Size 14.9M 3.8M
Base Channels 64 32
Channels Multiple 1,2,4 1,2,4
Latent Dim 8 8
Batch Size 32 32
Epochs 50 50
Learning Rate 1e-4

Table 5: Hyperparameters for VAE.

Waymo - 643 Waymo - 2563

Diffusion Steps 1000
Noise Schedule linear
Model Size 728M 83.0M
Base Channels 192 64
Depth 2
Channels Multiple 1,2,4,4 1,2,2,4
Heads 8
Attention Resolution 16 32
Dropout 0.0 0.0
Batch Size 512 256
Iterations 40K 20K
Learning Rate 5e-5

Table 6: Hyperparameters for voxel latent diffusion models.

layers, we set the residual connections. We additionally positionally encode each voxel and then
concatenate the positional encoding [32] of each voxel with the corresponding voxel feature after ray
casting. We then apply a 3D sparse UNet to output per-Gaussian parameters. We use GT voxels in
appearance reconstruction training. Hyperparameters of this 3D sparse UNet are listed Tab. 7.

Model Size Base Channels Channels Multiple Batch Size Epochs Learning Rate

4.3M 32 [1, 2, 4] 32 15 1e-4

Table 7: Hyperparameters for 3D sparse UNet in appearance reconstruction stage.

Sky Panorama for Background. For the sky panorama model, we set Hp = 768,Wp = 1536 in
the training stage and increase Hp = 1024,Wp = 2048 in the inference time. To decode sampled
sky features into the RGB image, we utilize a 2D CNN network reducing the channel from 32 to 16
to 3 with stride 1, keeping the spatial resolution unchanged.

C SCube+ without Per-scene Training

In § 3.3 we introduce a GAN postprocessing module to refine the rendered images, which is finetuned
on each scene. To further improve the efficiency of our method, we hereby present a postprocessing
module that is jointly trained on the full dataset, without the need of per-scene finetuning. Specifically,
we replace the original GAN with a pix2pix-turbo model [35] (which we denote as SCube+*) and
train it with image pairs inferred from our model and the ground truths. The results are shown in
Fig. 9. This improved model not only reduces the voxel block artifacts, but also resolve the ISP
inconsistencies within the image. After enabling this module, the FPS drops from 138 to 20 but can
still be visualized interactively.

16

Reconstruction (T) Prediction (T + 5) Prediction (T + 10)

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
SCube 25.90 0.77 0.45 19.90 0.72 0.47 18.78 0.70 0.49
SCube+ 28.01 0.81 0.25 22.32 0.74 0.34 21.09 0.72 0.38
SCube+* 22.59 0.68 0.38 20.37 0.66 0.41 19.65 0.65 0.42

Table 8: Quantitative Comparisons on 3D Reconstruction. The metrics are computed both at the
input frame T and future frames. ↑: higher is better, ↓: lower is better.

SCube SCube+* SCube SCube+*SCube SCube+*

Figure 9: SCube+*. Results from the postprocessing network without per-scene optimization. White-
balance inconsistencies from different views (marked in red box) can be fixed.

D Additional Results

In this section, we provide more qualitative results on all datasets. We additionally provide a
supplementary video in the accompanying files to better illustrate our results.

D.1 Geometry Quality

We note that the uncertainty of the scene geometry given our input images is large, and the problem
that the model tackles is indeed non-trivial and sometimes even ill-posed. To demonstrate this, we
compute the percentage of occluded voxels (that are invisible from the input images) w.r.t. all the
ground-truth voxels, and the number is around 80%. To quantitatively evaluate the geometry quality,
we compute an additional metric called ‘voxel Chamfer distance’ that measures the L2-Chamfer
distance between the predicted voxels and ground-truth voxels (that are pixel-aligned), divided by the
voxel size. This metric reflects the geometric accuracy of our prediction by measuring on average
how many voxels is the prediction apart from the ground truth. The results on Waymo Open Dataset
are shown in Tab. 9.

Quantile 0.5
(median) 0.6 0.7 0.8 0.9

Ours 0.26 0.28 0.32 0.37 0.51

Table 9: Geometry Quality Comparison. We show the voxel Chamfer distance comparison between
our two-stage model and a single-stage non-diffusion model.

Tab. 9 indicates that on 90% of the test samples, the predicted voxel grid is only half of a voxel off
from the ground truth. We note that during our data curation process, there could be errors in the
ground-truth voxels (e.g., due to COLMAP failures), accounting for the outliers in the above metric.
In the meantime, we visualize the sample with the worst voxel Chamfer distance in Fig. 10. The
predicted results are decent even though the ground truth is corrupted due to the lack of motion in the
ego car. This demonstrates the robustness of our method.

D.2 Visual Ablation Study

In addition to the quantitative ablation study in Tab. 3, we present a qualitative demonstration in
Fig. 11. For the single-stage model, we test the upper bound of it by feeding the ground-truth 10243

voxel grids because otherwise the fully-dense high-resolution condition will lead to out-of-memory.
The qualitative results match the numbers, showing the importance of using higher-resolution voxel
grids and the two-stage model.

17

Final Rendering

Predicted VoxelsDataset Ground-truth Voxels Reconstructed 3D Gaussians Scene

Figure 10: Result on the data sample with the worst voxel Chamfer distance. We show geometry
reconstruction and the image renderings.

(a) (b) (c) (d)

Figure 11: Visual Ablation Study. (a) SCube+ (b) SCube (c) SCube with a 2563 resolution input
grid (d) Single-stage model. Zoom in for a better view.

18

D.3 Additional Results on Text-2-Scene Generation

We provide additional text-2-scene generation results in Fig. 12 and Fig. 13.

A residential neighborhood features houses with well-maintained gardens, autumn-colored trees, lawns
with scattered leaves, parked cars, driveways, and clear blue skies.

Reconstruct

Reconstruct

A residential area features multiple houses, some with specific decorations and vehicles parked outside,
including a white pickup truck and a gray car, along with various greenery and utility elements.

Figure 12: More Text-2-Scene Generation. The generated multi-view images may contain flaws,
while SCube is still able to reconstruct the 3D scenes.

19

A suburban neighborhood features two-story houses with reddish-brown roofs and beige walls, marked
roads, various parked vehicles, stop signs, and a mixture of gravel, rocks, and trees providing shade on

a sunny day.

Reconstruct

A suburban neighborhood features a park with green trees, residential houses with red-tiled roofs,
streets with bike lane signs and white markings, well-maintained lawns, and sidewalks.

Reconstruct

Figure 13: More Text-2-Scene Generation.

20

D.4 Additional Results on Large-scale Scene Reconstruction

We provide additional results on large-scale scene reconstruction from real-world captures in Fig. 14.

Render

N
ov
el

 V
ie

w
s

In
pu
t I

m
ag

es

Reconstruct

Render

Reconstruct

N
ov
el

 V
ie

w
s

In
pu
t I

m
ag

es

Figure 14: More Novel View Synthesis. Our method is able to synthesis extreme novel views.

21

D.5 Additional Results on LiDAR Simulation

We provide additional LiDAR Simulation results in Fig. 15. We also show the result on a long
sequence input in Fig. 16.

Input Front View Simulated LiDAR Sequence

Figure 15: More LiDAR Simulation results.

Figure 16: SCube with Long Sequence Input. Up: reconstructed scene with appearance. Down:
LiDAR simulation result. We chunk the long sequence into clips and apply out method iteratively.

22

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes] .

Justification: We make three claims: (1) We are the first feed-forward model to directly
reconstruct GSplats grounded in a predicted 3D space. To the best of our knowledge,
we are not aware of other work in the literature doing this. (2) We obtain a full 3D
reconstruction from which we can render novel views in a single forward pass. We show
many instances of this in the experiments section (both novel views, semantic reconstruction,
and LiDAR resimulation). (3) We are SOTA when compared to baseline methods which
perform reconstruction from sparse views. We compare against a wide variety of baselines
and demonstrate qualitative and quantitative improvements over these. (4) Our inference
pipeline takes under 20 seconds. In the meantime, we simply report this as fact in the paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes] .

Justification: Section 5 includes an explicit limitations section. We remark on difficulties
with dynamic scenes and out-of-distribution weather and lighting conditions, challenges
reconstructing high-quality appearance in highly occluded regions, and training data limita-
tions. See this section for more details.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

23

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: NA

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe our method in great detail and provide enough information that a
researcher familiar with diffusion models and neural rendering should be able to reproduce
the pipeline. We describe our experiments in detail as well and run them on Waymo Open
which is a public dataset accessible to all. The appendix includes detailed training and
network architecture information. Together, these should make our results fully reproducible.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.

24

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: Due to institutional constraints, we are not able to release the code until the
paper is fully accepted. Upon acceptance, we will release all code and data required to
reproduce this work.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes] .

Justification: See descrition in Section 4 and appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance

25

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: It is not clear what assumptions should be made on error distributions. Un-
fortunately, in this particular literature, error bars and confidence intervals are not typically
reported.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report these explicitly in the experiments section

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the code of ethics and believe our paper fully conforms to it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.

26

https://neurips.cc/public/EthicsGuidelines

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: We feel there are no direct negative societal impacts of this work as it is a
foundational method for reconstruction. While such a foundational method could eventually
be used in pipelines with potential negative consequences (e.g. offensive applications in
military settings), we do not believe our method directly enables this. Furthermore, by
training on an open driving dataset, we focus simply on reconstructing the 3D world from
car footage, which alone cannot be used to negatively impact society.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We don’t believe our model poses an immediate risk of misuse. We believe it
will help advance research in 3D reconstruction from images.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

27

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite relevant related works and datasets. All image and video assets in the
paper and supplementary material are our own.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new assets alongside the paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We did no crowdsourcing or human subject experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

28

paperswithcode.com/datasets

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We did not study on human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

29

