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ABSTRACT

Automated evaluation leveraging large language models (LLMs), commonly re-
ferred to as LLM evaluators or LLM-as-a-judge, has been widely used in measuring
the performance of dialogue systems. However, the self-preference bias in LLMs
has posed significant risks, including promoting specific styles or policies intrinsic
to the LLMs. Despite the importance of this issue, there is a lack of established
methods to measure the self-preference bias quantitatively, and its underlying
causes are poorly understood. In this paper, we introduce a novel quantitative
metric to measure the self-preference bias. Our experimental results demonstrate
that GPT-4 exhibits a significant degree of self-preference bias. To explore the
causes, we hypothesize that LLMs may favor outputs that are more familiar to
them, as indicated by lower perplexity. We analyze the relationship between LLM
evaluations and the perplexities of outputs. Our findings reveal that LLMs assign
significantly higher evaluations to outputs with lower perplexity than human evalu-
ators, regardless of whether the outputs were self-generated. This suggests that the
essence of the bias lies in perplexity and that the self-preference bias exists because
LLMs prefer texts more familiar to them.

1 INTRODUCTION

Measuring the quality of responses in dialogue systems presents unique challenges due to the diverse
range of response strategies. Nowadays, thanks to the strong text understanding of large language
models (LLMs), various automatic evaluations can be easily implemented by employing LLMs as
evaluators (often referred to as LLM evaluators or LLM-as-a-judge). MT-Bench (Zheng et al., 2024)
is an example of a benchmark utilizing this approach to score dialogue systems.

However, as Deutsch et al. (2022) reported, LLM evaluators are inherently biased. The inherent bias
might cause inappropriate testing and inject biased preferences into the target dialogue systems (Zheng
et al., 2024). One of the most significant biases is self-preference bias, which refers to the tendency
of LLMs to overestimate the quality of their own outputs, as demonstrated in Figure 1a. The self-
preference bias poses potential risks, including the promotion of specific ideologies or response styles
intrinsic to the LLM evaluator.

In this paper, we measure the self-preference biases of LLMs in the pairwise evaluation. To ac-
complish this, we propose a new metric to quantify self-preference bias on the basis of algorithmic
fairness concepts, thereby enabling discussions within the existing frameworks of fairness. In our
experiment, we measured self-preference bias in eight LLMs. The results indicated that GPT-4
exhibited a significant self-preference bias (Figure 1b). This finding suggests a potential concern:
using GPT-4 as a judge may lead to excessive influence from GPT-4’s unique styles and policies.

Furthermore, we investigated the underlying causes of self-preference bias. Although LLM evaluators
are not explicitly informed whether a given text is their own, they still exhibit self-preference bias.
We hypothesized that LLM evaluators might be affected by the perplexity of the text, which tends
to be lower perplexity when it is generated by themselves. To test this hypothesis, we analyzed the
relationship between the perplexities of the texts to be evaluated and their corresponding evaluations.
Our analysis revealed that LLMs assign significantly higher evaluations to texts with lower perplexity
than human evaluators, regardless of whether the texts were self-generated. This suggests that the
fundamental cause of self-preference bias may be the familiarity of the texts to the LLM evaluators,
specifically how likely they are to generate the same response.
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(a) (b)

Figure 1: How much do LLMs prefer their own responses over human evaluations? (a) illustrates
an example where GPT-4 favors its own response, even when human evaluations prefer to a response
generated by Vicuna-13B. (b) compares the self-preference bias scores using our proposed metric
(Definition 3.1). These figures demonstrate that GPT-4 exhibits a stronger self-preference bias than
other models, suggesting that it tends to rate its own outputs more favorably than human evaluations.
For detailed experimental settings, refer to Section 3.

1.1 RELATED WORK

Several studies have addressed the issue of self-preference bias; however, there is a lack of reliable
metrics to quantify the extent of self-preference bias, and the fundamental causes of this phenomenon
remain unclear. Panickssery et al. (2024) reported on the relationship between self-preference bias and
self-recognition ability, but their work lacked a comparison with human evaluators. Xu et al. (2024)
and Stureborg et al. (2024) addressed quantifying self-preference bias within an evaluation approach
where LLMs assign an absolute score to a single generated text. In this approach, gold-standard
evaluators are required to assign scores based on abstract criteria while ensuring consistency with
prior evaluations, making it challenging to obtain accurate assessments. As a result, these studies
often restricted their scope to specific tasks, such as text summarization or machine translation, and
relied on reference-based metrics like BLEURT (Sellam et al., 2020), which does not reflect the
diversity of real-world use cases.

By contrast, a pairwise evaluation approach that involves direct comparison between two texts
enables evaluators to recognize specific differences more readily, resulting in more consistent human
judgments. Consequently, such pairwise evaluation methods are particularly suitable for analyzing
biases related to discrepancies with human evaluations.

1.2 CONTRIBUTIONS

The contributions of this paper are threefold: (1) We propose a new metric to quantify self-preference
bias in LLMs; (2) Using this metric, we evaluate the extent of self-preference bias across eight
different LLMs; and (3) We identify a tendency for LLMs to assign higher ratings to texts with lower
perplexity while exploring potential causes for this self-preference bias.

2 PRELIMINARIES: FAIRNESS AND BIAS

The measurement of bias in classifiers has been widely discussed within the framework of fair-
ness (Calders et al., 2009; Hardt et al., 2016). In this section, we focus on a representative definition
of fairness, Equal Opportunity, as the preparation for quantifying the self-preference bias in LLM
evaluators.
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Equal Opportunity (Hardt et al., 2016) is a fairness definition that requires the classifier to achieve
equal recall across groups with different sensitive attributes (e.g. gender or race). Specifically, let the
sensitive attribute be S ∈ {0, 1}, the prediction of the classifier be Y ′ ∈ {0, 1}, and the ground truth
label be Y ∈ {0, 1}. The classifier satisfies Equal Opportunity if the following condition holds:

P (Y ′ = 1|S = 1, Y = 1) = P (Y ′ = 1|S = 0, Y = 1) (1)

When quantifying bias in the classifier, the difference or ratio between both sides of the equation are
often used. The amount of bias derived from this definition is the difference in how well the classifier
matches the ground truth between groups with different sensitive attributes. Therefore, if there is
already bias towards sensitive attributes during the creation of the ground truth, Equation 1 cannot be
considered an ideal definition of fairness.

To address this drawback, the fairness definition known as Demographic Parity (Calders et al., 2009),
which does not rely on ground truth, is also widely used. Demographic Parity requires that the
predictive distribution of the classifier be consistent across groups with different sensitive attributes. It
is based on the assumption that there is no inherent causal relationship between the sensitive attributes
and the predicted labels.

LLM-as-a-judge is a technique aimed at replacing human evaluators with LLMs, and more specifically,
it assumes that dialogue system are aligned based on human preferences. Therefore, in this study, we
employ the concept of Equal Opportunity to quantify self-preference bias by treating LLM evaluators
as classifiers.

3 QUANTIFYING SELF-PREFERENCE BIAS

In this section, we propose a new metric to quantify self-preference bias. In particular, we focus on a
setting where evaluators compare two texts and select the one higher quality, allowing comparison
with reliable human evaluations.

3.1 SELF-PREFERENCE BIAS METRIC

To measure the extent to which an LLM’s evaluation deviates from human evaluations across its
own responses and those generated by others, we employ the concept of Equal Opportunity (Hardt
et al., 2016). The bias is quantified by calculating the difference between both sides of Equation 1. A
rigorous definition is provided below.

Definition 3.1. (self-preference bias of the evaluator f .) Let f be the evaluator assessing the quality
of dialogue responses, capable of generating its own responses. For a pair of responses y0 and y1 in
a dialogue, define: Y ∈ 0, 1 as the index of the human-preferred response, Y ′ ∈ 0, 1 as the index
of the f -preferred response, and S ∈ 0, 1 as the index of the f -generated response. We define the
self-preference bias of the evaluator f in dialogue comparison evaluation as follows:

Bias = P (Y ′ = 1|S = 1, Y = 1)− P (Y ′ = 1|S = 0, Y = 1). (2)

In this definition, the amount of bias is represented by the difference between the conditional
probability of the evaluator f rating itself favorably given that the human evaluator has rated it
favorably, and the conditional probability of the evaluator f rating itself unfavorably given that the
human evaluator has rated it unfavorably. A value of 0 indicates the absence of bias, while a value
close to 1 suggests a high degree of bias. Conversely, a value of −1 would indicate the presence of
a reverse bias, where the evaluator f tends to undervalue its own responses. In this definition, the
case where y1 is preferred is explicitly considered, but this does not result in a loss of generality by
treating the preferred response as y1.

3.2 EXPERIMENTAL SETTING

The aim of our experiment is to quantify the self-preference bias in various LLMs. To address a wide
range of tasks and topics, we have LLMs evaluate responses in open-ended dialogues and measure
the bias using the Definition 3.1.
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First, we provide the LLM evaluator with a user query written by a human and two responses
generated by different LLMs. We then ask the LLM evaluator to determine which of the two
responses demonstrates higher quality. For clarity and ease of reference during evaluation, we
designate the two responses as “response A” and “response B”. Finally, using the probabilities that
the LLM evaluator outputs for “A” and “B”, denoted as p(A|context) and p(B|context), we calculate
the score for response A using the following equation.

scoreA =
p(A|context)∑

w∈{A, B} p(w|context)
(3)

The score for response B is calculated in the same manner. This post-processing, as shown in
Equation 3 is designed to enhance the interpretability of analyses across LLMs with different
probability distributions, following the approach of Schick et al. (2021). Additionally, according to
Zheng et al. (2024), LLMs may exhibit position bias, which refers to the tendency to prefer responses
located in specific positions within the prompt. To mitigate this bias, we swap the positions of
responses A and B, and the evaluation scores are averaged over two iterations. Using the scores
obtained through the above process, we examine the extent to which there is a difference in evaluation
scores between the LLM’s own generated response and responses generated by other LLMs.

Empirical evaluation uses Chatbot Arena dataset (Zheng et al., 2024), which contains 33,000 dialogues
and each consisting of a user query and a pair of responses generated by two different LLMs. We
calculate evaluation scores for the pre-existing response pairs stored in the dataset. In this dataset,
every response pair is labeled with either ”model a”, ”model b”, or ”tie” as a result of a human
evaluation comparing the quality of the responses.

As the LLM evaluators, we employed the following eight LLMs, which also used in Chatbot Arena
dataset: the closed-source GPT-3.5-Turbo and GPT-4 (Josh et al., 2024), and the open-source Vicuna-
7b, Vicuna-13b (Chiang et al., 2023), oasst-pythia-12b (Biderman et al., 2023), dolly-v2-12b (Conover
et al., 2023), Koala-13b (Geng et al., 2023), and stablelm-tuned-alpha-7b (Jonathan Tow). We used
the same prompt as Zheng et al. (2024) to calculate the evaluation scores of responses A and B
for all LLM evaluators. This prompt was created based on the work of Zheng et al. (2024), and it
instructs the LLM to output either “[[A]]”, “[[B]]”, or “[[C]]” after providing an explanation. In the
implementation, we used the output probability distribution following the token corresponding to
“[[” in the generated text to compute the score using Equation 3. Additionally, if the LLM evaluators
failed to comply with the prompt instructions and did not provide a response in the format of “[[A]]”
or a similar structure, these cases were excluded from the analysis.

3.3 RESULT

The results of the bias measurement using Definition 3.1 are presented in Figure 1b. It was confirmed
that GPT-4 exhibits the highest self-preference bias. Definition 3.1 focuses on the recall of the LLM
evaluator concerning both high and low ratings by the human evaluator. Thus, it can be concluded
that GPT-4 showed lower recall in cases where humans evaluated unfavorably compared to when
higher evaluating. When examining the recall values in the confusion matrix shown in Figure 2, they
are calculated as 0.945 ≈ 1852

108+1852 and 0.425 ≈ 118
160+118 . The difference between these values is

0.520, which corresponds to the value reported in Figure 1b. Following GPT-4, Vicuna-13b and
Koala-13b also exhibited significant bias. In contrast, other LLMs displayed values relatively close to
zero. Notably, oasst-pythia-12, dolly-v2-12b, and stablelm-tuned-alpha-7b showed negative values,
indicating a reverse bias where the LLMs tend to underestimate their own outputs.

Table 1 presents a randomly selected example of self-preference bias in GPT-4, where humans favored
the alternative response. In this example, the user query is a straightforward request to list blue
items. While GPT-4 states that it lacks physical recognition before listing, GPT-3.5-Turbo directly
lists the blue items without any such explanation. Both responses are of high quality, and the final
evaluation reflects the evaluator’s policy and stylistic preferences. Although humans and GPT-3.5-
Turbo preferred the response from GPT-3.5-Turbo, GPT-4 favored its own response, illustrating a
typical case of self-preference bias.
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Figure 2: Confusion matrix for each LLM evaluator’s assessment of pairs including its own output. It
suggests that some LLMs, including GPT-4, have relatively high true positive rates than true
negative rate, which means that they have self-preference bias.

Table 1: An example of self-preference bias in GPT-4. The user query involves a simple request
to list blue items. GPT-4 responds by first acknowledging its lack of physical cognition, and
then proceeds to list blue items. In contrast, GPT-3.5-Turbo directly lists blue items without any
preliminary explanation which human evaluation prefers.

User: Please list the blue items
GPT-4: As a language model AI, I can’t see the
physical objects around you. However, here are
some common blue items that people might have:
1. Blue shirt
2. Blue jeans
3. Blue pen
4. Blue coffee mug
5. Blue pillow
6. Blue blanket
7. Blue towel
8. Blue notebook
9. Blue umbrella
10. Blue vase
Please specify the context or the category of items
you are interested in if you need a more precise list.

GPT-3.5-Turbo: Sure, here are some blue items:
1. Blue jeans
2. Blueberries
3. Blue shirt
4. Blue pen
5. Blue car
6. Blue backpack
7. Blue notebook
8. Blue umbrella
9. Blue sneakers
10. Blue curtains

GPT-4 preferred Human and GPT-3.5-Turbo preferred

4 HOW DO LLMS OVERESTIMATE THEIR OWN OUTPUTS?

We have shown that certain LLM evaluators tend to assign disproportionately high scores based on
whether the output being generated from themselves, even though LLM evaluators are not explicitly
provided with labels indicating whether a given output is their own. We hypothesized that LLM
evaluators might be affected by the similarity of the response to their own output. To investigate this
further, we focus on how LLM evaluators change their evaluation depending on the perplexities of
responses.

As in previous experiments, we employed the pairwise evaluation framework where evaluators com-
pare two responses, response A and B. First, we computed the perplexities of responses conditioned
on the prompt, and took the difference between response A and B for all samples. Next, we divided
the perplexity differences into bins and calculated the probabilities that each LLM evaluator judged
response A as the winner in each subset. Additionally, we computed the winning judgment rate of the

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 3: LLMs vs human conditioned on perplexity. Winning judgment rates by LLMs condi-
tioned on perplexity with human winning judgment rates are plotted. All models except dolly-v2-12b
and stablelm-tuned-alpha-7b demonstrated a clear tendency to assign higher evaluations to responses
with lower perplexity.

human for response A within each bin. In this experiment, we excluded GPT-4 and GPT-3.5-Turbo,
as perplexity values could not be obtained for these models.

Figure 3 shows the comparison of winning judgment rates within each perplexity bin for six models.
All models except stablelm-tuned-alpha-7b demonstrated a clear tendency to assign higher evaluations
to responses with lower perplexity. Furthermore, it was confirmed that this tendency was stronger in
vicuna-13b, vicuna-7b, koala-13b, and oasst-pythia-12b than in humans. This result indicates that
LLM evaluators overly change their evaluation depending on perplexities of responses.

To further investigate the effect of differences in whether the output is self-generated or not, we
segmented the evaluation results by the LLM evaluators into two distinct groups: one where the LLM
evaluators’ own output is included in the pair and another where it is not. We present the results with
the output of the LLM evaluator as response A, without loss of generality. As shown in Figure 4, the
winning judgment rates between two groups were similar for all models except dolly-v2-12b and
stable-tuned-alpha-7b. This suggests that the factor influencing the LLM evaluators’ judgments is not
whether the response is their own but rather the perplexity of the responses. As confirmed by Figure 5,
LLMs tend to exhibit lower perplexity for their own outputs. In other words, these findings imply
that self-preference bias may be a phenomenon where the model’s own output inherently exhibits
lower perplexity.

In these experiments, we were unable to obtain perplexity values from GPT-4 and GPT-3.5-Turbo,
resulting in a lack of analysis on the competitive LLMs. To address this gap, we conducted additional
experiments using Llama2 (Touvron et al., 2023) and Llama3 (Dubey et al., 2024). However, the
Chatbot Arena dataset does not contain human annotations for these LLMs’ responses. Therefore,
we obtained evaluations for existing responses from these Llama models and only compared them
with human evaluations.

The results are presented in Figure 6. We found that all models changed their evaluations more than
humans, depending on the difference in perplexity. This indicates that even in the competitive models,
including Llama 3.1, perplexity may be causing unfair bias in the evaluation.
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Figure 4: LLM vs other LLMs conditioned on perplexity. Winning judgment rates by LLMs on
their own texts and texts generated by other models conditioned on perplexity are plotted. Across all
models, except for dolly-v2-12b and stablelm-tuned-alpha-7b, no significant difference was observed
between the judgment rates for their own texts and those generated by other models. This suggests
that LLM evaluators assign higher ratings to texts with lower perplexity, regardless of whether the
text was self-generated or produced by other models.

Figure 5: Average of log-perplexity of responses for each LLM evaluator. The red bars represent
the perplexity for responses generated by the LLM evaluator itself, while the blue bars represent the
perplexity for responses generated by other LLMs. Across all models, the average perplexity is lower
for responses generated by the evaluators themselves.

5 DISCUSSION

To reduce self-preference bias, one possible approach is ensemble evaluation using multiple models.
This method is expected to provide a more equitable evaluation by avoiding reliance on a single model.
Specifically, when a model exhibits low perplexity on a sample, decreasing the weight assigned to that
model’s evaluation for that sample may contribute to bias mitigation. To evaluate the effectiveness of
bias reduction strategies, our proposed new metric can be utilized. Therefore, we believe that our
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Figure 6: Llama family vs human conditioned on perplexity. Winning judgment rates with
condition on perplexity are plotted. Llama-2 and later models models exhibited significantly higher
winning judgment rate with lower perplexity compared to human evaluators.

research makes a significant contribution to the understanding of self-preference bias and will greatly
facilitate the development of future research in this area.

Our experimental results reveal that LLM evaluators tend to assign higher scores to texts with lower
perplexity. We further discuss the reasons behind this phenomenon. First, LLMs are trained during
the pretraining phase to reduce perplexity on large-scale text corpora. Moreover, when aligning with
human preferences, the models are also trained to minimize perplexity on the given dialogue data.
Therefore, high-perplexity texts are likely those that the LLM has not frequently encountered during
training, suggesting that such texts may be related to domains that the LLM evaluators do not fully
comprehend.

This observation may seem contradicted by the fact that GPT-4, which is well-versed across various
domains due to a wide range of benchmarks, exhibits a high degree of self-preference bias. However,
by investigating specific cases of self-preference bias, as shown in Figure 1a and Table 1, we
found that the bias was often not related to clear factual errors but rather to differences in response
styles, such as the handling of specialized domains or the description of premises before answering.
This suggests that, advanced models like GPT-4, which thoroughly understand and adhere to their
predefined policies, may use the degree of alignment with these policies as a deciding factor when
evaluating responses of comparable quality.

6 CONCLUSION

In this study, we propose a metric to quantify the self-preference bias in LLM-as-a-judge and
measured the self-preference bias of eight LLMs. Experimental results confirmed that GPT-4, in
particular, exhibits a high self-preference bias. This finding suggests a risk that GPT-4 as a judge may
inadvertently reinforce its own style and policies.

Furthermore, we hypothesized that the self-preference bias is related to the perplexity of the texts,
and showed that, compared to human evaluators, LLM evaluators assigned higher evaluations to
texts with lower perplexity, and this tendency was observed regardless of whether the text was
generated by themselves or not. This suggests that the essence of the bias lies in perplexity and that
the self-preference bias exists because LLMs prefer texts more familiar to them.
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