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Abstract
Named Entity Recognition (NER) is a crucial task in Nat-
ural Language Processing (NLP); however, achieving high
NER performance in the biomedical domain remains a chal-
lenge due to the limited availability of annotated data. To
tackle low-resource biomedical NER, we propose a novel ap-
proach, BioSynNER, which utilizes synthetic data genera-
tion through large language models (LLMs). BioSynNER
begins by mining key domain-specific attributes from seed
sentences, which are then used to generate highly effective
synthetic examples. Interestingly, we find that paraphrasing
these seed sentences is more effective than generating data
from scratch, as it preserves contextual and structural nu-
ances that enhance Biomedical NER performance. Addition-
ally, BioSynNER integrates the Unified Medical Language
System (UMLS), a comprehensive yet noisy medical knowl-
edge base, to address the complexity and diversity of biomed-
ical entity types. This combined approach not only improves
NER accuracy in biomedical texts but also provides a scalable
framework for synthetic data generation applicable to other
specialized domains. Experimental results confirm the effec-
tiveness of BioSynNER, highlighting its potential to advance
NER tasks significantly.

Introduction
Named Entity Recognition (NER), a cornerstone task in Nat-
ural Language Processing (NLP), plays a vital role in various
applications such as information extraction, machine trans-
lation, and question-answering systems. Despite its signif-
icance, achieving high performance in NER remains chal-
lenging due to the scarcity of annotated data, especially in
specialized domains like medical text analysis. One promis-
ing solution to overcome this issue is data generation, which
can generate diverse and rich training data. Recent studies
have shown the potential of LLMs in paraphrasing tasks, and
their application in data synthesis has gained considerable
attention. However, the application of LLM paraphrasing in
enhancing NER performance, particularly in the context of
biomedical text analysis, remains largely unexplored.

Moreover, the medical domain presents unique chal-
lenges for NER due to the complexity and variety of en-
tity types. General domain LLMs do not have the expertise

Copyright © 2025, GenAI4Health Workshop @ Association for the
Advancement of Artificial Intelligence (www.aaai.org). All rights
reserved.

B
io

Sy
nN

ER
 G

en
er

at
io

n

Augment Entities
from UMLS
Database

Generated
Synthetic NER

Dataset

Human
Expert

LLM

Extracted Sentence
Domain Attributes

A Japanese male patient underwent a living donor kidney
transplant having received tacrolimus, mycophenolate

mofetil, and prednisolone for immunosuppression.

LL
M

 E
nc

od
er

A
Japanese

male
patient

...

en

Word Tokens Prediction

Other
B-Subject
I-Subject
I-Subject

en

...

C
la

ss
ifi

ca
tio

n 
H

ea
d

N
am

ed
 E

nt
ity

 R
ec

og
ni

tio
n

LLM

Seed
Sentences

Figure 1: This figure illustrates the token-level Named En-
tity Recognition (NER) problem. Sentence Input: A sample
medical sentence is provided for analysis. BioSynNER is
an augmentation that augments the training datasets for this
task.

of highly specific biomedical knowledge. Thus, many NLP
tasks make use of comprehensive medical terminologies like
the Unified Medical Language System (UMLS), a common
external knowledge base maintained by the National Insti-
tute of Health. This is a unique, highly comprehensive, and
noisy knowledge, and its integration alone leads to addi-
tional challenges as well as benefits.

This paper aims to address these gaps by proposing a
novel approach, BioSynNER, to improve token-level NER
classification through LLM generation of existing NER
datasets using UMLS, We believe that BioSynNER not



only showcases how strong NER performance on highly
specific biomedical domains but also demonstrates a poten-
tial framework of synthetic data generation to any special-
ized domain. We present experimental results to validate our
approach and discuss potential directions for future research.

To summarize, our contributions are the following:

• Novel Low-Resource NER Data Generation: The paper
introduces a novel approach (Figure 1) to enhance NER
performance in low-resource biomedical domains through
BioSynNER for data augmentation, particularly a 2-stage
domain attribute and paraphrasing approach.

• Unified Medical Language System Integration: We
highlight the use of the Unified Medical Language System
(UMLS), a comprehensive yet noisy medical knowledge
base, integrated with NER to handle the complexity and
variety of biomedical entity types, addressing unique chal-
lenges in the medical domain. Furthermore, we explore
additional differences between general NER vs. biomedi-
cal NER dataset synthesis.

• Empirical Validation: BioSynNER quickly reaches
close to the original performance, starting exponentially
from 10 sentences. Models reach an average of 65.62% of
the performance of being trained on the original data with
only 20 seed sentences per label and 73.52% with 50 seed
sentences per label.

Related Work Previous work has attempted to generate
NER datasets for general domain (Zhou et al. 2023; Heng
et al. 2024) as the low-resource domain (Evuru et al. 2024).

For example, targeted distillation with mission-focused
instruction tuning has been introduced to train student mod-
els for specific application domains. For instance, Univer-
salNER (Zhou et al. 2023), a model distilled from Chat-
GPT, demonstrates impressive performance in named en-
tity recognition (NER) across 43 datasets. However, this
model is still quite large, being based on llama-7b (Touvron
et al. 2023) models, whereas the largest model we consider
is DeBERTAa-V3 (He, Gao, and Chen 2021) models less
than 304M parameters. Furthermore, we demonstrate that
for some datasets (Wang et al. 2023), there is no guaran-
tee that a general LLM may be able to capture the specific
annotator-specific tendencies.

ProgGen and CoDa (Heng et al. 2024; Evuru et al. 2024)
are perhaps the most relevant works to ours, as we take inspi-
ration from the domain-attribute-driven generation of syn-
thetic datasets. However, there are a few key differences be-
tween those works and ours. First, we demonstrate that sim-
ply generating sentences from scratch does not work well in
highly specific domains like biomedical NER. Furthermore,
we also augment with UMLS, an external dataset, whereas
ProgGen solely utilizes GPT-4o.

Related work also shows that augmenting LLMs with
definitions for biomedical NER is useful (Munnangi et al.
2024). However, we are able to avoid additional prompt
complications through our approach generation of new data,
which can be done without specific definitions (e.g. replac-
ing one drug with another can be a direct find-and-replace
operation). Furthermore, prompting LLMs for NER infer-
ence is still quite expensive compared to training a smaller

encoder LLM.

BioSynNER
We introduce our approach leveraging LLM-based data aug-
mentation and UMLS-driven entity augmentation to en-
hance model performance in biomedicine. The following
sections will explore the explain the overall generation pro-
cess as well as the UMLS entity augmentation.

Note that we utilize the Translation between Augmented
Natural Languages (TANL) format (Paolini et al. 2021), as it
seems to be a reasonable and interpretable format. All seed
sentences and synthetic sentences will be structured in this
format and will be converted to token-level metrics for en-
coder LLM training (and evaluation) using the IOB2 format
(Sang and Veenstra 1999).

Algorithm 1: BioSynNER Synthetic Dataset Generation
Framework. Comments are shown in # italics. This is a for-
malized version of Figure 2.
Inputs: Initial set of seed sentences S, number of sentences to gen-
erate per seed sentence Niters

Outputs: Set of synthetic sentences S̃
1: D ← [ ]
2: for S ∈ S do
3: # Obtain meta-level sentence domain info
4: D ← prompt get domain(S)
5: D ←D + [D]

S̃ ← [ ]
6: for S ∈ S do
7: for i ∈ Niters do
8: # Sample meta info from mined domains
9: D̃ ∼D

10: # Augment entities from UMLS database
11: D̃e ← get UMLS entities(D̃e)
12: # Paraphrase sentence S
13: S̃ ← prompt gen sentence(D̃, S)
14: S̃ ← S̃ + [S̃]

15: return S̃

Synthetic Data Augmentation To generate synthetic data
for biomedical Named Entity Recognition (NER) classifica-
tion using the provided framework, we start with a struc-
tured approach. First, we determine relevant attributes that
are crucial for data generation given a set of seed sentences.
This is provided by the human expert as seen in Figure 2.
An LLM is then prompted to extract the following 6 main
domain attributes based on the seed sentences.

Note that we perform this domain extract on multiple
batches. I.e. if we are given 50 seed sentences, we might
perform this extraction 50/batch size times (in our exper-
iments, we find that batch size=3 is a reasonable choice).
This repeated domain extraction is vital to improve the di-
versity and coverage of the domain attributes over the real
dataset.

In total, we consider 6 main domain attributes:

1. Length: The length of the sentences, the amount of de-
tail, etc



Relevant UMLS Entities:
Juvenile, Young Child, Nursery School
Students, adult, mature adult, old
age...

Extracted
Sentence
Domain

Attributes

Seed Sentences:
1. "[ Three months | Treatment.Duration ] following
[ splenectomy | Treatment.Drug ] ...

2. "A [ 26 yr old | Suject.Age ] female presents
with..."

3. "We've documented 3 instances where..."

LLM

Human
Expert

Prompt:
Your task is to describe how the meta-level
length, topic, writing style, context, structure,
label distribution, and additional entities given
some example sentences. This information will
be used to generate similar synthetic sentences
for Subject.Age

Prompt Output:
{
"Length": "...vary in length from short to long, providing different levels of detail...",
"Topic": "...medical in nature, dealing with treatments, disorders, and adverse events in

patients of varying ages...",
"Writing Style": "The sentences are written in a formal, scientific style typical of medical

literature...",
"Context": "...consistent with medical research papers or clinical guidelines...

medical journal articles, case studies, patient reports, or drug trials.",
"Structure": "...complex structures with a main clause supplemented by additional

clauses or phrases...",
"Label Distribution": "...labels include 'Subject.Age', 'Subject.Gender', 'Treatment.Drug',

'Treatment.Disorder', and 'adverse event'....ranging from two to five different
labels, with a slight emphasis on adverse events and the age of subjects.

"Additional Entities": ["newborn", "infant", "toddler", "preschooler", "school-aged child",
"adolescent", "young adult", "mid-aged adult", ... ]

}

Mine Narrower
+ Sibling EntitiesLLM

Prompt:
Your task is to create a synthetic dataset for NER by editing
and paraphrasing the sentence: "[ 55-year-old | Subject.age ]
presents with scleroderma..."

Generate up to 20 diverse sentences from the following
descriptions.
Valid NER Labels:  [UNIQUE_LABELS], NER Label to focus on:
[NER_LABEL], Sentence Length: [Length], Topic:
[Topic], Writing Style: [Writing Style], Context:
[Context], Structure: [Structure], Label Distribution: [Label
Distribution], Entities: [Entities]

Synthetic NER Dataset: 
1. We document a case involving a [ 35-year-old | Subject.Age ] patient with
[ scleroderma | adverse event ] due to [ UFT | Treatment.Drug ].

2. A report of a [ scleroderma - like reaction | adverse event ] induced by
hormonal changes in a [ 50-year-old | Subject.Age ] woman.
...

Figure 2: This figure illustrates the workflow for BioSynNER. Specifically, it demonstrates an example of how a biomedical
NER data point is generated. First, human experts provide seed sentences, which are then analyzed by LLMs to extract meta-
level domain attributes such as length, topic, writing style, and label distribution. These attributes guide the generation of
synthetic sentences. UMLS entities are mined to diversify the generated sentences. Finally, an LLM is prompted to paraphrase
the seed sentences to create the final synthetic dataset output.

2. Topic: The main style of the seed sentences, such as for-
mal, clinical, or scientific

3. Context: The main context in which the seed sentences
seem to be taken. E.g. discharge summary, a case study,
etc

4. Structure: This is a meta-level attribute that captures
how the seed sentences are written. E.g. grammatical cor-
rectness, how many prepositions, etc.

5. Label Distribution: In theory, this should help ground
the generation such that the label distribution of the syn-
thetic sentences is not too skewed compared to the origi-
nal label distribution.

6. Additional Entities: This represents alternative entities
that may be used to diversify the synthetic sentences.

The next step involves generating NER datasets based on
the filtered entities and attributes. We craft prompts to guide
the language model in creating synthetic sentences and em-
bedding entities from the pool into the text. An example
prompt might be, ”Generate sentences about cardiology that
include the terms ’Aspirin’ and ’Heart Disease’.” It is vital
to list entities with their corresponding types, such as Gene,
Disease, or Treatment, ensuring proper adherence to TANL
format. Moreover, the generated text must adhere to domain-
specific criteria, maintaining relevance to biomedical topics,
reflecting appropriate writing styles, and incorporating spec-
ified biomedical terms.

Finally, using the generated dataset, we train a biomed-
ical NER model. This model is then evaluated on real-
world biomedical datasets, with adjustments made to en-
hance accuracy and performance. This methodology effec-
tively leverages the framework to create diverse and relevant
synthetic data for training robust biomedical NER models.

Prompts are shown in Appendix .

UMLS Entity Augmentation The entity augmentation
process plays a crucial role in BioSynNER in enhancing
the entity diversity (shown to be very beneficial in synthetic
NER datasets (Heng et al. 2024)). To address this, the UMLS
(Unified Medical Language System) ontology, a comprehen-
sive resource containing detailed biomedical terms and rela-
tionships, is leveraged to expand the initial set of seed enti-
ties extracted from the original dataset.

The augmentation process begins by initializing an ex-
panded set to include the original seed entities. The algo-
rithm then proceeds in two key steps: First, it retrieves more
specific entities, referred to as “children”, from the UMLS
for each entity in the seed set. These child entities represent
finer-grained or narrower terms related to the seed entities,
ensuring the model can capture more detailed variations of
biomedical entities, which are often crucial in clinical con-
texts. For instance, if “disease” is the seed entity, its children
might include specific diseases such as “diabetes” or “hyper-
tension”. By including these more specific terms, the model



becomes more adept at recognizing highly detailed entities
that might not be explicitly present in the initial dataset.

The second step involves obtaining “sibling” entities. To
do this, the algorithm first queries UMLS for the “parents”
of each entity in the seed set. It then retrieves the children
of these parent entities, which are considered siblings of the
original seed entity. Sibling entities share a common parent
but may represent alternative or complementary terms in the
same category. For example, if e =“toddler” is a seed en-
tity, its sibling might be epc =“infant”, as both are types
of age classifications. Including sibling entities enriches the
training data with broader contextual knowledge, helping the
model understand a wider variety of terms related to a given
domain.

The decision to augment the dataset with both children
and sibling entities stems from the goal of increasing the
breadth and depth of the entity set. Children entities ensure
that the model is equipped to handle more specific, detailed
terms, which are essential for high-precision tasks in do-
mains like healthcare. Sibling entities, on the other hand,
broaden the model’s understanding by introducing alternate
or related terms, thereby improving its generalization across
different but related entities. Together, this augmentation en-
sures that the NER model can more effectively recognize
and classify both common and rare entities, improving per-
formance in specialized tasks where entity variety is a sig-
nificant challenge.

Algorithm 2: BioSynNER Unified Medical Language Sys-
tem (UMLS) Entity Augmentation. This is represented as
get UMLS entities() in Algorithm 1
Inputs: Initial set of seed entities e
Outputs: Set of expanded entities ẽ
1: ẽ← e
2: for e ∈ e do
3: # Obtain more specific entities
4: for ec ∈ children(e) do
5: ẽ← ẽ+ [ec]
6: # Obtain ”sibling” entities
7: for ep ∈ parents(e) do
8: for epc ∈ children(ep) do
9: ẽ← ẽ+ [epc]

10: return ẽ

Experiments
Datasets The 5 datasets used to evaluate BioSynNER in-
clude a variety of biomedical and drug-related NER datasets.
The GENIA dataset (Kim et al. 2003) consists of 1,999 Med-
line abstracts, annotated with multiple layers of linguistic
and semantic information, aimed at supporting information
extraction in molecular biology. The PHEE dataset (SUN
et al. 2022) is a large pharmacovigilance corpus, contain-
ing over 5,000 annotated medical events, specifically de-
signed for drug safety and adverse event analysis. The NCBI
Disease corpus (Dogan, Leaman, and Lu 2014) comprises
793 PubMed abstracts, with 6,892 disease mentions anno-
tated and mapped to unique disease concepts using MeSH
or OMIM identifiers. The BC2GM corpus (Kocaman and

Talby 2020) focuses on identifying gene mentions, with over
13,500 gene annotations manually reviewed for consistency
and accuracy. Lastly, the BC5CDR dataset (Li et al. 2016)
contains 1,500 PubMed articles, annotated with 4,409 chem-
icals, 5,818 diseases, and 3,116 chemical-disease interac-
tions, providing rich data for studying chemical-disease re-
lationships. PHEE and GENIA were obtained through In-
structUIE (Wang et al. 2023), and the rest were obtained via
Huggingface datasets (Lhoest et al. 2021).

Further details regarding the datasets, including label fre-
quency distribution and additional background are described
in Appendix .

Baselines We utilize 3 main models for our experiments
RoBERTa-Large (Liu et al. 2019), Biomedical RoBERTa
(base) (Gururangan et al. 2020), and DeBERTa-v3-Large
(He et al. 2021). We also utilized SapBERT (Liu et al.
2021), BioBERT (Lee et al. 2020), and BioClinicalBERT
(Alsentzer et al. 2019), but we found that these BERT-
based models generally performed worse compared to the
RoBERTa and DeBERTa-based models, so we conduct our
main experiments using the 3 best-performing models.

Evaluation In accordance with existing literature (Tjong
Kim Sang and De Meulder 2003), we utilize seqeval to
obtain entity mention-level metrics for precision, recall, and
F1 respectively. We utilize TANL (Paolini et al. 2021) for-
mat for the representation of entities in the sentences, as
seen in Seed Sentences in Figure 1. We convert the raw
unstructured text to token-level predictions using a simple
word level token splitting and labeling entity tokens in the
IBO2 format (Sang and Veenstra 1999).

Results Table 1 compares the performance of various
models on NER tasks using original training data versus data
augmented by BioSynNER 400(400 synthetic paraphrased
sentences per label). Key observations include the follow-
ing.

For most datasets (PHEE, GENIA, ncbi disease,
bc2gm corpus), models trained with BioSynNER’s syn-
thetic data exhibit lower performance (precision, recall,
and F1 scores) compared to the original training data. This
reflects the challenge of maintaining the same level of
performance when relying heavily on synthetic examples,
despite the data augmentation. In most cases, around 90%
of the performance is preserved. Notable exceptions include
the bc2gm corpus, which notably contains many highly
complex and specific Gene-related entities (e.g. “IgE”,
“CPK”, “NF ( H ) promoter’, ’beta - galactosidase reporter
gene”), which may make it more difficult to mine related
entities.

Furthermore, different models exhibit varying levels of
sensitivity to synthetic data augmentation. DeBERTa-v3-
L performs better than Biomed. RoBERTa and RoBERTa-
Large across multiple datasets, particularly in cases where
synthetic data is used. This suggests that larger or more ro-
bust models like DeBERTa-v3-L may better generalize from
augmented data.

Synthetic Data seems to be most effective in maintain-
ing recall. Across datasets, recall tends to be maintained at



Table 1: Low-resource synthetic data augmentation performance on unseen test data from our best performing method of data
synthesis: BioSynNER 400, where we paraphrase up to 400 initial seed sentences from each label in the dataset, ran on the
empirically best performing NER classification encoder models. The green subscripts denote performance as a percentage of
the original data. Bootstrapped standard deviations are shown in the Appendix.

Original AUG
Dataset Model Precision Recall F1 Precision Recall F1

PHEE
RoBERTa-Large 0.764 0.779 0.772 0.69390.68% 0.68988.41% 0.69189.54%

Biomed. RoBERTa 0.735 0.688 0.711 0.69594.53% 0.67297.73% 0.68396.16%

DeBERTa-v3-L 0.77 0.766 0.768 0.69690.35% 0.69891.18% 0.69790.77%

GENIA
RoBERTa-Large 0.798 0.794 0.796 0.70788.65% 0.77397.35% 0.73992.81%

Biomed. RoBERTa 0.781 0.78 0.781 0.71691.57% 0.76598.14% 0.74094.74%

DeBERTa-v3-L 0.809 0.802 0.805 0.70987.63% 0.77096.00% 0.73891.64%

ncbi disease
RoBERTa-Large 0.869 0.893 0.881 0.78790.54% 0.85095.19% 0.81792.77%

Biomed. RoBERTa 0.821 0.885 0.852 0.73088.98% 0.79890.17% 0.76389.55%

DeBERTa-v3-L 0.873 0.902 0.887 0.75986.89% 0.84693.83% 0.80090.17%

bc2gm corpus
RoBERTa-Large 0.813 0.816 0.814 0.56068.91% 0.74491.20% 0.63978.48%

Biomed. RoBERTa 0.79 0.803 0.797 0.60176.01% 0.70487.71% 0.64881.40%

DeBERTa-v3-L 0.835 0.84 0.837 0.64677.43% 0.76290.74% 0.69983.54%

bc5cdr
RoBERTa-Large 0.883 0.896 0.889 0.80691.30% 0.86296.25% 0.83393.69%

Biomed. RoBERTa 0.857 0.89 0.873 0.80193.53% 0.86497.09% 0.83295.24%

DeBERTa-v3-L 0.89 0.9 0.895 0.82893.03% 0.86696.22% 0.84794.58%

a higher percentage of the original training data’s perfor-
mance compared to precision, implying that the synthetic
data generation may help in identifying more potential en-
tities, though at the cost of precision (increased false pos-
itives). Models trained on synthetic data generally show a
more pronounced drop in precision, while recall remains
closer to the original values. This indicates that while syn-
thetic data helps in identifying more entities, it may lead to
more misclassifications, hence lowering precision.

While BioSynNER’s synthetic data helps to expand train-
ing data and maintain reasonable performance in certain
cases, particularly in the recall, it does not entirely replace
the efficacy of original annotated data in terms of preci-
sion and overall F1 scores across all datasets. The choice
of model also plays a significant role in how effectively it
leverages synthetic data.

Ablation: Synthetic Data Generation Method In this
section, we compare our method vs a generic generation
similar to ProGen (Heng et al. 2024) and CoDa (Evuru
et al. 2024). Specifically, we perform the same experiment
as BioSynNER, except without paraphrasing, instead gen-
erating sentences from scratch.

The results in Table 2 highlight the impact of generating
synthetic data from scratch rather than using paraphrasing,
as is done in BioSynNER. Across all datasets, generating
from scratch yields noticeably lower F1 scores compared to
other synthetic data generation strategies. For instance, on
the PHEE dataset, the F1 scores are only 69% to 75%, of the
original performance which is around 15% lower than para-
phrasing, which obtained a minimum of 89%. This trend of
underperformance can be attributed to the lack of domain-
specific contextual nuances and the LLM’s own inductive

Table 2: Low-resource synthetic data augmentation perfor-
mance of generating synthetic sentences from scratch given
domain attributes (similar to ProGen (Heng et al. 2024) and
CoDa (Evuru et al. 2024))

Dataset Model Precision Recall F1

PHEE
roberta-large 0.51467.29% 0.55471.08% 0.53369.08%

biomed roberta base 0.52571.40% 0.53778.09% 0.53174.72%

deberta-v3-large 0.51666.99% 0.55572.50% 0.53569.67%

GENIA
roberta-large 0.47359.27% 0.62378.51% 0.53867.61%

biomed roberta base 0.47460.65% 0.61578.88% 0.53568.54%

deberta-v3-large 0.49561.21% 0.62277.59% 0.55168.44%

ncbi
disease

roberta-large 0.46753.74% 0.43849.03% 0.45251.31%

biomed roberta base 0.43052.39% 0.43849.47% 0.43450.95%

deberta-v3-large 0.33438.26% 0.49254.55% 0.39844.86%

bc2gm
corpus

roberta-large 0.26732.85% 0.27033.10% 0.26933.04%

biomed roberta base 0.32240.75% 0.32840.84% 0.32540.80%

deberta-v3-large 0.28133.66% 0.22326.56% 0.24929.74%

bc5cdr
roberta-large 0.39644.87% 0.43348.35% 0.41446.57%

biomed roberta base 0.48356.38% 0.52859.32% 0.50457.73%

deberta-v3-large 0.48053.93% 0.52358.09% 0.50155.97%

bias when generating sentences from scratch, even when
given ICL examples, as it fails to capture the distribution
similar to the original data. The models struggle particu-
larly in datasets like bc2gm corpus, where generating from
scratch results in a dramatic decrease in F1 scores, compared
to much higher paraphrasing results.

Overall, this ablation study underscores the advantage
of BioSynNER’s approach of using paraphrasing to ex-
pand the original dataset. Paraphrasing retains key linguistic
structures and contextual information, leading to better gen-



eralization and higher performance in named entity recogni-
tion tasks across biomedical domains.

Ablation: Varying the Number of Seed Sentences Al-
though we obtain the best results with higher numbers of
seed sentences (since it is more representative of the entire
dataset), we also experiment with smaller numbers of seed
sentences.

Figure 3 shows that all datasets and models exhibit lower
F1 scores when using small synthetic datasets (k=10, k=20),
indicating that minimal synthetic data may not be enough
to generalize well to unseen test data. As the size of the syn-
thetic data increases, F1 scores tend to improve significantly,
often approaching or even surpassing original training data
performance. PHEE shows relatively modest gains in F1
scores over all models. GENIA, ncbi disease, and bc5cdr
show some of the best overall performance, with all models
improving rapidly as synthetic data is added. bc2gm corpus
seems to be the hardest dataset for models to improve upon,
which makes sense as it contains highly specific Gene enti-
ties that are difficult to augment.

Across all datasets, DeBERTa-v3 exhibits strong perfor-
mance similar to RoBERTa-Large, especially with larger
synthetic datasets, indicating its robustness when trained
with sufficient synthetic data. Biomed roberta base, while
initially weaker on small datasets, benefits significantly from
the addition of synthetic data, especially in datasets like GE-
NIA and bc5cdr, where it nearly matches the other models at
k=400. Synthetic data generation with BioSynNER proves
to be highly effective in enhancing NER performance, par-
ticularly as the amount of generated data increases. How-
ever, smaller datasets are less effective in boosting model
performance, indicating the need for sufficient diversity and
quantity of synthetic data to achieve meaningful improve-
ments in generalization and accuracy.

Conclusion
In conclusion, BioSynNER offers a promising solution
to the challenges of Named Entity Recognition (NER)
in specialized domains such as biomedical text analysis,
where annotated data is scarce. By combining two key
innovations—synthetic data augmentation using large lan-
guage models (LLMs) and entity augmentation via the Uni-
fied Medical Language System (UMLS)—BioSynNER en-
hances both the diversity and generalizability of training
data. The first step in the approach involves mining key
domain-specific attributes from seed sentences, which are
then used to generate diverse synthetic examples, address-
ing the need for more varied training data. The integration
of UMLS further strengthens the model by expanding entity
types with both more specific and sibling entities, thus im-
proving its ability to recognize complex biomedical terms.

Experimental results confirm that BioSynNER signif-
icantly boosts NER performance across various biomed-
ical datasets, with particularly strong improvements seen
in cases where the complexity and diversity of entities are
high. Without UMLS entity augmentation, the performance
drops, highlighting its critical role in expanding the entity
set and enhancing model generalization. Our ablation stud-

ies further reveal that generating data from scratch, rather
than using paraphrasing, leads to significantly lower perfor-
mance across all datasets. This reinforces the importance of
paraphrasing in preserving contextual and structural nuances
when generating synthetic data. Overall, BioSynNER not
only improves NER performance but also provides a scal-
able and adaptable framework for addressing data scarcity
in other highly specialized domains.
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Limitations While BioSynNER demonstrates consider-
able improvements in Named Entity Recognition (NER)
performance, it is not without its limitations. One potential
drawback is the reliance on large language models (LLMs)
for synthetic data generation. Although LLMs can produce
diverse and contextually relevant data, the quality of the



generated examples can vary, particularly in highly special-
ized biomedical domains where subtle contextual nuances
are critical. This variability may result in the generation of
unrealistic or irrelevant examples, which could potentially
mislead the model during training. One must always exer-
cise caution when using LLM output.

Additionally, while the integration of the Unified Medical
Language System (UMLS) enriches the diversity of entity
types by introducing specific and sibling entities, the noisy
nature of UMLS could introduce inconsistencies in the en-
tity labels, particularly when ambiguous or less well-defined
medical terms are used. This might reduce the clarity of an-
notations, impacting model performance. For example, one
such case might occur when mining siblings that are too
different / too broad, despite sharing the same parent con-
cept. Additionally, BioSynNER ’s reliance on UMLS for
entity expansion may limit its applicability to other domains
where such structured knowledge bases are unavailable or
less comprehensive.

Ethics and Reproducibility We utilized GPT-4-32k from
Microsoft Azure, with knowledge up to Sep 2021. The code
will be released later upon further polishing. All experiments
were run on a machine with 2 NVIDIA V100, and took a to-
tal of around 5 days. Each every-based model was finetuned
for a total of 3 epochs with a learning rate of 5e-5.

GPT-4o was utilized in writing this paper.

Human Impact BioSynNER has the potential to cre-
ate significant positive impacts on various human-centered
applications, particularly in the biomedical and healthcare
sectors. Improving NER directly benefits researchers, clin-
icians, and healthcare professionals by making the extrac-
tion of critical information from vast biomedical texts—such
as scientific literature, clinical trial reports, or patient
records—more efficient and reliable.

The enhanced ability to identify complex medical entities,
such as diseases, drugs, and interactions, can accelerate drug
discovery, improve patient safety through faster recogni-
tion of adverse drug reactions, and facilitate better decision-
making in clinical settings. For instance, BioSynNER ’s ap-
proach can be applied in pharmacovigilance tasks, helping
to monitor and identify harmful side effects or interactions,
which could lead to earlier interventions and better patient
outcomes.

Additionally, the framework can extend its impact beyond
biomedicine by addressing data scarcity issues in other spe-
cialized domains, enabling more effective automation in ar-
eas like legal text analysis, cybersecurity, or environmental
science. By generating synthetic data through paraphrasing
and entity augmentation, BioSynNER provides a scalable
solution that could aid in data mining, reducing human ef-
fort and improving consistency.

Ablation: Other Base Models In this set of results,
we observe the performance of three BERT-based mod-
els—SapBERT, BioBERT, and BioClinicalBERT—across
five biomedical NER datasets. These models show rela-
tively consistent performance, with minor variations across
datasets, but several key trends stand out, particularly when

Table 3: Performance of Other Base Models on the Original
Dataset

Dataset Model Precision Recall F1

PHEE
SapBERT 0.736 0.571 0.643
BioBERT 0.701 0.703 0.702

BioClinicalBERT 0.724 0.661 0.691

GENIA
SapBERT 0.785 0.782 0.784
BioBERT 0.78 0.773 0.776

BioClinicalBERT 0.779 0.764 0.772

ncbi disease
SapBERT 0.847 0.854 0.85
BioBERT 0.841 0.875 0.858

BioClinicalBERT 0.8 0.844 0.822

bc2gm corpus
SapBERT 0.811 0.822 0.817
BioBERT 0.789 0.805 0.797

BioClinicalBERT 0.766 0.783 0.774

bc5cdr
SapBERT 0.843 0.885 0.863
BioBERT 0.841 0.865 0.853

BioClinicalBERT 0.818 0.854 0.836

compared to the RoBERTa-based and DeBERTa models
used in our main experiments. Across the datasets, Sap-
BERT generally exhibits higher precision and recall in cer-
tain datasets, such as GENIA and bc5cdr, but these perfor-
mance differences are relatively narrow. BioBERT and Bio-
ClinicalBERT also show comparable performance, with F1
scores in a similar range (e.g., in PHEE and ncbi disease).
The models perform reasonably well, but the F1 scores
hover only in the mid-0.70s to mid-0.80s across all datasets.
This reflects the general capability of BERT-based models in
NER tasks, but with some limitations in terms of robustness
across diverse datasets. In certain datasets, like ncbi disease,
BioBERT tends to outperform the other BERT variants, par-
ticularly in terms of recall (0.875). However, in more com-
plex datasets like bc2gm corpus, none of the BERT-based
models achieve very high performance, struggling on more
complex biomedical corpora that require better generaliza-
tion.

Table 4: Test results without UMLS entity augmentation.

Dataset Model Precision Recall F1

PHEE
RoBERTa-Large 0.70592.33% 0.68187.35% 0.69389.80%

Biomed. RoBERTa 0.72298.18% 0.67397.91% 0.69798.04%

DeBERTa-v3-L 0.70391.26% 0.69190.28% 0.69790.77%

GENIA
RoBERTa-Large 0.69987.65% 0.75995.59% 0.72891.46%

Biomed. RoBERTa 0.70089.54% 0.74395.24% 0.72192.30%

DeBERTa-v3-L 0.70687.26% 0.76295.10% 0.73391.03%

ncbi
disease

RoBERTa-Large 0.72583.38% 0.82091.84% 0.76987.35%

Biomed. RoBERTa 0.71086.55% 0.78288.37% 0.74587.42%

DeBERTa-v3-L 0.73383.95% 0.84693.81% 0.78588.52%

bc2gm
corpus

RoBERTa-Large 0.51463.30% 0.70486.25% 0.59472.99%

Biomed. RoBERTa 0.55169.70% 0.65581.50% 0.59875.09%

DeBERTa-v3-L 0.54965.78% 0.69883.18% 0.61573.44%

bc5cdr
RoBERTa-Large 0.79790.27% 0.85094.94% 0.82392.53%

Biomed. RoBERTa 0.81194.62% 0.85796.25% 0.83395.41%

DeBERTa-v3-L 0.83393.58% 0.83692.84% 0.83493.21%



Ablation: Without UMLS Entity Augmentation In an-
alyzing the results of the model without UMLS entity aug-
mentation in Table 4, we observe a consistent decrease in
performance across all five datasets, with F1 scores gener-
ally lower by 1-2 points compared to the augmented model.
This drop, although moderate in most cases, highlights the
importance of UMLS entity augmentation in improving
model generalization and entity recognition.

One notable case is the bc2gm corpus dataset, which ex-
periences a more significant performance decline. The F1
score for this dataset drops considerably, suggesting that the
absence of UMLS-driven entity expansion particularly af-
fects models dealing with complex biomedical corpora like
bc2gm. The likely explanation for this sharper decline is
that the GPT-generated entities alone, without UMLS aug-
mentation, do not provide sufficient diversity. The limited
variety of unique entities generated by GPT might fail to
cover the full spectrum of entity types necessary for accu-
rately identifying and classifying entities in such specialized
datasets. Without the additional specific and sibling terms
from UMLS, the model lacks the necessary depth to gen-
eralize across various entity representations, resulting in di-
minished performance.

This pattern across the datasets reinforces the value of
using external knowledge sources like UMLS to enrich the
entity set, particularly in domains where the complexity of
entity types can significantly influence NER model perfor-
mance.

Datasets We describe the 5 main datasets here more in de-
tail.

Table 5: Table of Dataset Statistics

Dataset Name # Train # Valid # Test # Ner Tags

PHEE 2,898 961 968 14
GENIA 15,023 1,669 1,854 5

ncbi disease 5,433 924 941 1
bc2gm corpus 12,500 2,500 5,000 1

bc5cdr 5,228 5,330 5,865 2

• GENIA is a collection of 1,999 1,999 Medline abstracts,
selected through a PubMed search using the MeSH terms
”human,” ”blood cells,” and ”transcription factors.” It is
annotated with multiple layers of linguistic and semantic
information. It was developed to aid in the creation and
evaluation of information extraction and text mining sys-
tems specific to the field of molecular biology. The follow-
ing Table 6 shows the percentage that each ner tag occurs
over the number of all annotated sentences.

• PHEE is a large pharmacovigilance dataset with over
5,000 annotated events from medical case reports and lit-
erature. The following Table 7 shows the percentage that
each ner tag occurs over the number of all annotated sen-
tences.

• ncbi disease is comprised of 793 PubMed abstracts, di-
vided into training (593), development (100), and test
(100) subsets. It is fully annotated with disease mentions

Table 6: GENIA Label Prevalence

NER Tag Frequency Raw Count

DNA 27.95% 5184
RNA 4.18% 776

cell line 14.97% 2,777
cell type 27.2% 5,044
protein 69.9% 12,964

Table 7: PHEE Label Prevalence

NER Tag Frequency Raw Count

Subject.Age 13.9% 671
Subject.Disorder 6.75% 326
Subject.Gender 11.5% 555

Subject.Population 8.72% 421
Subject.Race 1.33% 64

Treatment.Disorder 31.72% 1,531
Treatment.Dosage 8.51% 411
Treatment.Drug 98.96% 4,777

Treatment.Duration 3.13% 151
Treatment.Freq 2.09% 101

Treatment.Route 11.79% 569
Treatment.Time elapsed 6.17% 298

adverse event 90.57% 4,372
potential therapeutic event 9.34% 451

using concept identifiers from MeSH or OMIM, and two
annotators manually labeled disease mentions and linked
them to the appropriate concepts, ensuring high inter-
annotator agreement. The final corpus includes 6,892 dis-
ease mentions mapped to 790 unique disease concepts,
with 88% linked to MeSH and the remainder to OMIM.
Table 8 shows the prevalence of the labels. We note that
not all sentences have a label.

Table 8: ncbi disease Label Prevalence

NER Tag Frequency Raw Count

Disease 54.23% 3,958

• bc2gm corpus focuses on identifying gene mentions
within sentences. BioCreative II includes over 13,500
GENE and ALTGENE annotations, with all annotations
manually reviewed for accuracy to improve consistency
across gene mentions. Table 9 shows the prevalence of the
labels. We note that not all sentences have a label.

• bc5cdr is composed of 1,500 PubMed articles, featur-
ing 4,409 annotated chemicals, 5,818 diseases, and 3,116
chemical-disease interactions. Table 10 shows the preva-
lence of the labels.

Main Results with Standard Deviations Table 11 con-
tains the same results as Table 1, only with the 100 sample
bootstrapped standard deviations.



Table 9: bc2gm corpus Label Prevalence

NER Tag Frequency Raw Count

GENE 51.12% 10,223

Table 10: bc5cdr Label Prevalence

NER Tag Frequency Raw Count

Chemical 56.56% 9,289
Disease 49.9% 8,195

Precision and Recall Plots Figure 4 and Figure 5 are
the test performance of models trained on BioSynNER
with different numbers of seed examples. Similar to Fig-
ure 3, we see an exponential increase in performance that
approaches the performance of the model trained on the
human-annotated training set.

Prompts Table 12 and Table 13 demonstrate how
BioSynNER uses LLMs to extract the domain attributes
and generate new synthetic data by paraphrasing, respec-
tively.



Table 11: Results on unseen test data from our best performing method of data synthesis: BioSynNER 400, where we paraphrase
up to 400 initial seed sentences from each label in the dataset, ran on the empirically best performing NER classification encoder
models. The standard deviations are in subscripts.

Original AUG
Dataset Model Precision Recall F1 Precision Recall F1

PHEE
RoBERTa-Large 0.7640.005 0.7790.005 0.7720.004 0.6930.007 0.6890.006 0.6910.006

Biomed. RoBERTa 0.7350.005 0.6880.004 0.7110.004 0.6950.007 0.6720.007 0.6830.007

DeBERTa-v3-L 0.7700.007 0.7660.005 0.7680.006 0.6960.006 0.6980.006 0.6970.006

GENIA
RoBERTa-Large 0.7980.003 0.7940.005 0.7960.003 0.7070.004 0.7730.004 0.7390.003

Biomed. RoBERTa 0.7810.005 0.7800.004 0.7810.003 0.7160.005 0.7650.005 0.7400.005

DeBERTa-v3-L 0.8090.005 0.8020.005 0.8050.004 0.7090.005 0.7700.006 0.7380.005

ncbi disease
RoBERTa-Large 0.8690.009 0.8930.005 0.8810.004 0.7870.010 0.8500.005 0.8170.006

Biomed. RoBERTa 0.8210.004 0.8850.005 0.8520.003 0.7300.010 0.7980.008 0.7630.008

DeBERTa-v3-L 0.8730.007 0.9020.005 0.8870.005 0.7590.009 0.8460.010 0.8000.009

bc2gm corpus
RoBERTa-Large 0.8130.003 0.8160.003 0.8140.002 0.5600.005 0.7440.003 0.6390.004

Biomed. RoBERTa 0.7900.002 0.8030.003 0.7970.002 0.6010.004 0.7040.003 0.6480.003

DeBERTa-v3-L 0.8350.003 0.8400.003 0.8370.002 0.6460.004 0.7620.005 0.6990.003

bc5cdr
RoBERTa-Large 0.8830.002 0.8960.001 0.8890.001 0.8060.003 0.8620.001 0.8330.002

Biomed. RoBERTa 0.8570.002 0.8900.003 0.8730.002 0.8010.003 0.8640.003 0.8320.003

DeBERTa-v3-L 0.8900.002 0.9000.003 0.8950.002 0.8280.003 0.8660.003 0.8470.002

Figure 4: Effect of different numbers of initial seed sentences on the precision performance of various models across five
biomedical datasets. The red dashed line denotes test precision of a model trained on the original dataset, and the green line
denotes test precision of each first k value through BioSynNER respectively.
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Figure 5: Effect of different numbers of initial seed sentences on the recall performance of various models across five biomedical
datasets. The red dashed line denotes test recall of a model trained on the original dataset, and the orange line denotes test recall
of each first k value through BioSynNER respectively.
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Table 12: Prompt to generate the domain attributes

Your task is to describe how the meta-level length, topic, writing style, context, structure, label
distribution, and additional entities given example sentences. This information will be used to
**generate similar synthetic sentences** later for **NER Label to focus on**
Notes:
- Sentences
are given in a format such that [ entity | NER label ] is the NER label for each a given entity.
-
There may be more than one kind of NER label in the sentences. Pay attention mainly on **NER Label
to focus on**.
- The output should be a valid JSON with the keys "Length", "Topic", "Writing
Style", "Context", "Structure", "Label Distribution", "Entities" and the values are lists of
string descriptions. E.g. ["description paragraph 1", "description paragraph 2", ...]
- For Label
Distribution, describe the number of times that ner tags occur in the sentences **in general** for
the purpose of generating similar sentences
- For "Entities", generate a list of up do 20 entities
that could be more examples of **NER Label to focus on** in the following format: "Entities":
[’Entity 1’, ’Entity 2’, ...]

# Example: /*
NER Label to focus on: Subject.Age
1. An evaluation
of ovarian structure and function should be considered in [ women | Subject.Gender ] of [
reproductive age | Subject.Age ] being treated with [ valproate | Treatment.Drug ] for [ epilepsy
| Treatment.Disorder ] , especially if they [ develop | adverse event ] menstrual cycle
disturbances during treatment .
2. [ Phenobarbital | Treatment.Drug ] hepatotoxicity [ in |
adverse event ] an [ 8 - month - old infant | Subject.Age ] .
3. A case of heatstroke is [
reported | adverse event ] in a [ 32 - year - old | Subject.Age ] [ man | Subject.Gender ]
diagnosed with [ schizophrenia | Treatment.Disorder ] and on [ clozapine | Treatment.Drug ]
monotherapy .

Domain Attributes:
‘‘‘json
{
"Length": ["The sentences vary in length from short to
long, providing different levels of detail. This variety can be mimicked in the extended dataset,
creating a range of sentences from succinct to detailed."],
"Topic": ["The sentences are medical
in nature, dealing with treatments, disorders, and adverse events in patients of varying ages. The
dataset can be extended by creating similar sentences that cover a broader range of medical
scenarios, conditions, treatments, and adverse events."],
"Writing Style": ["The sentences are
written in a formal, scientific style typical of medical literature. This style should be
maintained when extending the dataset, while also introducing new medical terminologies and
diverse sentence structures."],
"Context": ["The context of the sentences is consistent with
medical research papers or clinical guidelines. The extended dataset can include sentences
suitable for a variety of contexts like medical journal articles, case studies, patient reports,
or drug trials."],
"Structure": ["The sentences have complex structures with a main clause
supplemented by additional clauses or phrases. Similar complex sentence structures can be used in
the extended dataset, introducing different medical scenarios and information."],
"Label
Distribution": ["In the provided sentences, there is a diverse distribution of NER labels. The
labels include ’Subject.Age’, ’Subject.Gender’, ’Treatment.Drug’, ’Treatment.Disorder’, and
’adverse event’. Each sentence contains multiple labels, ranging from two to five different
labels, with a slight emphasis on adverse events and the age of subjects.]
"Entities": ["newborn",
"infant", "toddler", "preschooler", "school-aged child", "adolescent", "young adult", "mid-aged
adult", "elderly", "octogenarian", "nonagenarian", "centenarian", "teenager", "juvenile", "middle-
aged", "senior", "2-year-old", "40-year-old", "70-year-old", "90-year-old"]
}
‘‘‘
*/

NER Label to
focus on: [NER LABEL]
Sentences:
[TANL SENTENCES]

Domain Attributes:



Table 13: Prompt to generate the synthetic data given the domain attributes.

Your task is to create a synthetic dataset for NER by editing and paraphrasing a given sentence.
Generate up to [SENTENCES TO GEN] **diverse** sentences from the following descriptions.
Notes:
-
Sentences should be generated in a format such that [ entity | NER label ] is the NER label for
each a given entity. Ensure there is a space between the and the entity, |, and ner labels.
-
While generating sentences, generate at least one of **NER Label to focus on**. However, NER
labels in **Valid NER Labels** can also be generated.
- Ensure that generated sentences follow the
suggested domain attributes (Length, Topic, Writing Style, Context, Structure, and Label
Distribution).
- Do **not** generate other entity labels that are not **Valid NER Labels**
-
Entities are suggested entities to use for the synthesis, and may not be in correct format. Choose
relevant entities and format them in such such that they make more sense in context. Use Example
Sentences as examples of good entity placement and formatting.

**Valid NER Labels**:
[UNIQUE LABELS]
**NER Label to focus on**: [NER LABEL]
Domain Attributes:
- Sentence Length:
[Sentence Length]
- Topic: [Topic]
- Writing Style: [Writing Style]
- Context: [Context]
-
Structure: [Structure]
- Label Distribution: [Label Distribution]
- Entities: [Entities]

Input
Sentence:
[TANL SENTENCES]

Synthetic Sentences:


