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ABSTRACT

Quantization is essential for reducing the computational cost and memory usage
of deep neural networks, enabling efficient inference on low-precision hardware.
Despite the growing adoption of uniform and floating-point quantization schemes,
selecting optimal quantization parameters remains a key challenge, particularly for
diverse data distributions encountered during training and inference. This work
presents a novel statistical error analysis framework for uniform and floating-point
quantization, providing theoretical insight into error behavior across quantization
configurations. Building on this analysis, we propose iterative quantizers de-
signed for arbitrary data distributions and analytic quantizers tailored for Gaussian-
like weight distributions. These methods enable efficient, low-error quantization
suitable for both activations and weights. We incorporate our quantizers into
quantization-aware training and evaluate them across integer and floating-point
formats. Experiments demonstrate improved accuracy and stability, highlighting
the effectiveness of our approach for training low-precision neural networks. 1

1 INTRODUCTION

Quantization is a key optimization for deploying large deep learning models efficiently (1). By
reducing parameter precision, quantization decreases model size and improves memory bandwidth
utilization through reduced data movement (2; 3). When activations are also quantized, forward-pass
computations can leverage specialized low-precision hardware units such as INT8, FP8, and FP4
matrix multipliers, which are widely used in linear and convolution layers (4; 5). These optimizations
collectively enable low-latency, high-throughput inference (4).

Quantization schemes are typically categorized as non-uniform, uniform, or floating-point. Non-
uniform quantization offers maximum flexibility by allowing arbitrary placement of quantization
levels, but its hardware incompatibility limits its use primarily to weight-only quantization (6).
Uniform quantization constrains levels to be equally spaced, enabling efficient implementation with
integer formats such as INT8/4/2 or UINT8/4/2 (7; 8). Floating-point quantization, such as FP8 or
FP4, follows the standard floating-point representation, where levels are dense near zero and expand
exponentially, making it well-suited for parameters clustered around zero (9; 10).

In this work, we introduce a statistical framework for analyzing and minimizing quantization error
in uniform and floating-point schemes. Our approach enables the selection of optimal quantization
parameters for weights and activations. We propose iterative quantizers tailored to arbitrary data
distributions observed in activations, and analytic quantizers optimized for Gaussian-distributed
weights, a common assumption during training (11). We focus on quantization-aware training (QAT)
to validate these quantizers across integer and floating-point formats. Importantly, our analysis
extends to floating-point formats such as FP4, which are gaining native hardware support in modern
accelerators like NVIDIA Blackwell. To our knowledge, this is the first closed-form analytic solution
for FP quantizers in QAT, offering both theoretical novelty and practical hardware relevance.

1Code is submitted with the paper. Upon acceptance, it will be publicly available.
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2 BACKGROUND

The quantization operator is a many-to-one function, formulated in its general form as follows:
Q(x|l, t) = lk, if tk < x ≤ tk+1, (1)

where x ∈ R denotes a scalar input to be quantized, t ∈ RN is a list containing N sorted thresholds
defining the predetermined quantization intervals, and l ∈ RN−1 contains corresponding quantization
levels for each interval. Given x, the operator compares its value to N − 1 intervals defined by N
thresholds t and assigns it to the corresponding level lk.

2.1 NON-UNIFORM QUANTIZATION

The non-uniform quantization scheme does not constrain the choice of levels and thresholds, making it
highly flexible. There are 2N − 1 parameters, including thresholds and levels. In practice, thresholds
are often chosen as the midpoints between consecutive levels, such as tk = (lk + lk−1)/2 for
k = 1 : N − 2, and t0 = −∞, tN−1 = ∞, to cover the full input range. This choice minimizes the
mean-squared quantization error given a fixed set of levels (12).

2.2 UNIFORM QUANTIZATION

In this scheme, l is constrained to have evenly spaced N − 1 quantization levels, which can be
determined using a scale parameter s and a shift parameter z. The levels and thresholds are then
defined as: lk = sk+ z for k = 0 : N − 2 and tk = s(k− 1/2)+ z for k = 1 : N − 2. This scheme
underlies integer quantization methods such as INT8, INT4, and INT2, which are widely deployed in
hardware-efficient inference engines (4; 3).

When z is set to −(N/2−1)s, the levels are symmetric around zero: lk = [−(N/2−1)s, . . . , (N/2−
1)s], and the thresholds become t = [−∞,−(N − 3)s/2, . . . , (N − 3)s/2,∞]. This symmetric
setting reduces parameter count at the expense of increased quantization error. Appendix A provides
implementation details of uniform quantization.

2.3 FLOAT QUANTIZATION

A float number comprises a sign bit, E exponent bits, and M mantissa bits. Its value is computed as
(−1)s × 2(e−b) × (f0 +

∑M
m=1 fm2−m), where b is a bias term for the exponent. E bits define the

exponent value e, and {fm}m=1:M define the fraction. This representation introduces non-uniform
spacing, where smaller values are represented with higher resolution, making float formats such as
FP8 and FP4 particularly suited for data clustered around zero (10; 11).

The floating-point standard includes subnormal and normal regions (13). When f0 = 0, subnormal
representation is active to handle very small magnitudes. When f0 = 1, the normal grid is active.
The positive half of the grid points are denoted as:

gp =

{
p21−M−b, if p ∈ [0, 2M − 1]

2

⌊
p

2M

⌋
−b(1 + (p mod 2M )2−M ), if p ∈ [2M , 2M+E − c− 1]

(2)

for p = 0 : 2M+E − c− 1 where c accounts for special values like NaNs or INFs. This grid doubles
its spacing every 2M points. Including the negative half, the total number of grid points becomes
2M+E+1 − 2c− 1. With scale s and shift z parameters, the quantization levels l are defined as

lk =

{
z − sg−k+2M+E−c−1, if k ∈ [0, 2M+E − c− 2]

z + sgk−2M+E+c+1, , if k ∈ [2M+E − c− 1, 2M+E+1 − 2c− 2]
(3)

where s and z are parameters to be determined. See Appendix B for the practical implementation.

2.4 QUANTIZED TRAINING

The training objective is to minimize the negative log-likelihood and a regularization term:

L(θ) = − log p(θ)−
N∑

n=1

log p(yn|xn,θ), (4)
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where θ ∈ RM is the set of model parameters. The prior is often factorized across layers: log p(θ) =∑L
l=1 log p(θl). Per-layer quantization can then be enforced via an additonal regularization term:

Lr(θl) = inf
θ0∈l

||θl − θ0||p = ||θl −Q(θl|l)||p (5)

which penalizes the p-norm difference between the original parameters and their quantized counter-
parts. Since Q(·) is non-differentiable (14), the straight-through estimator (STE) (15) is commonly
used to approximate gradients of the regularization term. Particularly, the gradients are computed at
the quantized parameters with the loss function in Eq. 4. Subsequently, the parameter updates are
performed in unconstrained space.

Additionally, activations can be quantized in quantization-aware training for low precision de-
ployment (16; 8). A linear layer using quantized weights θ and activations x computes θTx ≈
Q(θ|lθ)Q(x|lx).

3 ERROR-DRIVEN QUANTIZER PARAMETER OPTIMIZATION

The previous section introduced uniform and floating-point quantizers, each parameterized by a scale
and shift to define quantization levels and thresholds. We now formulate the quantization error ana-
lytically for both schemes and propose iterative and analytic quantizers to optimize these parameters.
For completeness, we include optimization details for non-uniform quantizers in Appendix E.

3.1 UNIFORM QUANTIZERS: ERROR MODEL AND OPTIMIZATION

In the uniform quantization scheme, levels are defined as lk = sk + z for k = 0 : N − 2, and
thresholds are tk = s(k − 1

2 ) + z for k = 1 : N − 2, with t0 = −∞ and tN−1 = ∞. The
mean-squared quantization error function is given by:

E[e2] = E[(x−Q(x|l, t))2] =
N−2∑
k=0

∫ tk+1

tk

(x− lk)
2p(x)dx, (6)

where the errors corresponding to each quantization level are integrated over N−1 intervals given the
data distribution p(x). We decompose this function as the sum of two terms, clipping Ec and stepping
Es error functions. Clipping error function is defined as the error due to the saturated regions:

Ec =

∫ −s/2+z

−∞
(x− z)2p(x)dx+

∫ ∞

s(N−3/2)+z

(x− s(N − 2)− z)2p(x)dx, (7)

whereas the stepping error function Es is defined as the power of stepping error es = x−Q(x|l, t),
which is a random variable uniformly distributed on the interval [− s

2 ,
s
2 ] according to the stochastic

uniform error model (17; 18). Thus p(es) = 1
s I(−s/2 ≤ es ≤ s/2) with the mean value being zero

due to symmetry. The mean squared value of es, which corresponds to the stepping error function
Es, is computed by

Es = E[e2s] =
∫

e2sp(es)des =
1

s

∫ s
2

− s
2

e2sdes =
s2

12
. (8)

The total quantization error is E[e2] = Ec +Es. Since reducing s shrinks Es but increases Ec, this
tradeoff defines an optimization problem over s and z.

3.1.1 ITERATIVE UNIFORM QUANTIZER

When there is no prior information about the distribution of the data, we minimize Eq. 6 via alternating
optimization over s and z. Taking the derivatives of the error and setting them to zero yields:

s =

∑N−2
k=0 k

∫ tk+1

tk
(x− z)p(x)dx∑N−1

k=0 k2
∫ tk+1

tk
p(x)dx

, (9)

z =

∑N−2
k=0

∫ tk+1

tk
(x− sk)p(x)dx∑N−1

k=0

∫ tk+1

tk
p(x)dx

. (10)
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Then, the thresholds are updated as tk = s(k − 1/2) + z for k = 1 : N − 2 where t0 = −∞ and
tN−1 = ∞. First, the data points are quantized given the previous values of s and z, and then, s and
z are updated given the quantized data. This process resembles a modified 1D k-means algorithm,
constrained so that cluster centers (quantization levels) are evenly spaced.

3.1.2 NORMAL-OPTIMAL UNIFORM ANALYTIC QUANTIZER

Assuming the data is normally distributed (a reasonable prior for weights due to L2 norm regulariza-
tion (11; 19)), we derive an analytic uniform quantizer for parameter quantization. The input space
is unbounded when the data distribution is normal. Hence, a clipping point is determined, which
results in a clipping error. Denoting the clipping point by C, the clipping error function for zero-mean
normally distributed data is computed analytically as follows:

Ec = 2(σ2 + C2)Q
(
C
σ

)
− 2C σ√

2π
exp

(
− C2

2σ2

)
, (11)

where Q(z) = 1√
2π

∫∞
z

exp−
u2

2 du is the Q function (see Appendix C for the derivation). Given a

C value, the step size is computed as s = 2C
N−1 due to uniformity. Given that the stepping error is

uniformly distributed, the stepping error function is given by

Es =
C2

3(N − 1)2
. (12)

The goal is to maximize the signal-to-noise ratio:

SNR =
σ2

Ec + Es
=

[
2(1 + C2

σ2 )Q
(
C
σ

)
− C

σ

√
2
π e

− C2

2σ2 + C2

3σ2(N−1)2

]−1
(13)

Given N and σ, finding C that maximizes SNR does not have a closed form, so we perform a
numerical search. Different from the iterative method, this search is done offline without requiring
any data. In practice, we set σ2 = 1 and find the optimal clipping Copt that maximizes SNR with
numerical search given the total number of levels N . Then, during the quantization process, the
mean and variance of the the data are computed, and the scale and shift parameters are determined
accordingly as s = 2Coptσ(x)/(N − 1) and z = −s(N/2 − 1) + m(x) where σ(x) and m(x) are
empirical standard deviation and mean of the data points, respectively.

3.2 FLOATING POINT QUANTIZERS: ERROR MODEL AND OPTIMIZATION

Floating-point quantization introduces exponentially spaced levels that better match the distributions
centered around zero (9; 10; 11). The quantization error function for floating-point schemes is
analogous to the uniform case (Eq. 6), but uses the level definitions from Eq. 2, and sets the number
of levels as N = 2M+E+1 − 2c− 1.

As in uniform quantization, the total mean-squared quantization error is decomposed into a clipping
error Ec and a stepping error Es. The clipping error Ec is defined identically as in Eq. 7. The key
challenge lies in computing Es, as the floating-point grid consists of non-uniform intervals, with
spacing that doubles every 2M points. We define R such grid regions (subintervals) and denote each
region by Rr. The number of such regions is R = 2

⌊
kmax

2M

⌋
+ 2I(kmax mod 2M > 0)− 3 where

kmax = 2M+E − c− 1 is the index of the last representable grid point in the positive half-space.

Each region Rr corresponds to an interval:

Rr =


[−s2⌊R/2⌋−r+3−b + z,−s2⌊R/2⌋−r+2−b + z], r ≤ ⌊R/2⌋
[−s22−b − z, s22−b + z], r = ⌊R/2⌋+ 1

[s2r−⌊R/2⌋−b + z, s2r−⌊R/2⌋+1−b + z], r > ⌊R/2⌋+ 1

(14)

The quantization step size within region r is denoted as vr = s2|r−1−⌊R/2⌋|+1−M−b.

Following the stochastic uniform error model, we model the stepping error in each region as condi-
tionally uniform. Thus, the overall error distribution becomes a mixture of uniform distributions:

p(es) =

2R−1∑
r=1

1

vr
I
(
−vr

2
≤ e ≤ vr

2

)
· p(x ∈ Rr), (15)
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where p(x ∈ Rr) denotes the probability mass of region r under p(x). (Appendix F gives an
illustration of the stepping error). The expected stepping error is then:

Es =

2R−1∑
r=1

v2r
12

· p(x ∈ Rr). (16)

3.2.1 ITERATIVE FLOATING-POINT QUANTIZER

To optimize the parameters s and z, we employ an alternating optimization approach again. The scale
update is s = Ns(x)/Ds(x) where:

Ns(x) =

N/2−2∑
k=0

g−k+(N−3)/2

∫ tk+1

tk

(x− z)p(x)dx+

N−2∑
k=N/2−1

gk−(N−3)/2

∫ tk+1

tk

(x− z)p(x)dx,

(17)

Ds(x) =

N/2−2∑
k=0

g2−k+(N−3)/2

∫ tk+1

tk

p(x)dx+

N−2∑
k=N/2−1

g2k−(N−3)/2

∫ tk+1

tk

p(x)dx. (18)

The shift z is updated as z = Nz(x)
Dz(x)

with:

Nz(x) =

N/2−2∑
k=0

∫ tk+1

tk

(x− sg−k+(N−3)/2)p(x)dx+

N−2∑
k=N/2−1

∫ tk+1

tk

(x− sgk−(N−3)/2)p(x)dx,

(19)

Dz(x) =

N−2∑
k=0

∫ tk+1

tk

p(x)dx. (20)

where the denominator Dz(x) sums up to the total number of points I . Then, we update the thresholds
as tk = s(lk + lk+1)/2 + z for k = 1 : N − 2 where t0 = −∞ and tN−1 = ∞. In summary, in the
first step, the data points are quantized given the previous values of s and z, and in the second step,
s and z are updated given the quantized data. This procedure resembles a constrained 1D k-means
clustering, but where cluster centers must lie on a scaled floating-point grid.

3.2.2 NORMAL-OPTIMAL ANALYTIC FLOAT QUANTIZER

Assuming x ∼ N (0, σ2), we can evaluate p(x ∈ Rr) analytically:

p(x ∈ Rr) = F (Rh
r )− F (Rl

r), (21)

where F (x) is the Gaussian CDF and Rl
r, Rh

r denote region bounds. From Eqs. 16 and 11, the total
signal-to-noise ratio becomes:

SNR =
[
2
(
1 + C2

σ2

)
Q
(
C
σ

)
− C

σ

√
2
π e

− C2

2σ2 +

2R−1∑
r=1

v2r
12σ2

(F (Rh
r )− F (Rl

r))
]−1

(22)

As in the uniform case, we fix σ2 = 1 and numerically find Copt offline that maximizes SNR. We
then compute scale as s = Coptσ(x)/g2M+E−c−1, and derive levels using Eq. 2 and Eq. 3.

3.3 QUANTIZED TRAINING RECIPE

In quantization-aware training (QAT), quantization operations are inserted into the forward pass to
simulate inference-time behavior, while gradients are propagated using the straight-through estimator
(STE) (15). However, fully optimizing quantization parameters at each training step is computationally
prohibitive, particularly for iterative methods that require multiple passes to converge.

To address this, we adopt a single-step update scheme where the parameters at time step t, denoted st

and zt, are updated using the values from the previous step (st−1, zt−1) via a single iteration. This
incremental update approximates convergence while maintaining training efficiency. The procedure

5
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Algorithm 1 Iterative Quantization Step
Qk(x | s, z) assigns level indices; Q(x | s, z) re-
turns dequantized values. See Eqs. (26)–(30).

1: Input: x ∈ RI , previous scale st−1, shift zt−1

2: Quantize: Qk(x | st−1, zt−1)
3: Update scale:

st =

∑
j(xj − zt−1) ·Qk(xj | st−1, zt−1)∑

j Qk(xj | st−1, zt−1)2

4: Update shift:

zt =
1

I

∑
j

xj − st−1 ·Qk(xj | st−1, zt−1)

5: Dequantize: Q(x | st, zt)
6: Output: Q(x | st, zt), st, zt

Algorithm 2 Analytic Quantization Step
Parameters computed via analytic method. Qk and
Q as defined in Eqs. (26)–(30).

1: Input: x ∈ RI , optimal clipping point Copt
2: Compute mean: µx = 1

I

∑
j xj

3: Compute variance: σ2
x = 1

I

∑
j(xj − µx)

2

4: Set shift: z = µx

5: Set scale: s = 2Copt · σx/(N − 1)
6: Quantize: Qk(x | s, z)
7: Dequantize: Q(x | s, z)
8: Output: Q(x | s, z)

is outlined in Algorithm 1 for iterative quantizers. In contrast, analytic methods do not require
convergence, as the updates are in closed form. Algorithm 2 illustrates a single quantization step
employed at time step t. See Appendix G for the initialization of the iterative quantizer, and Appendix
H for the relative update speeds of the quantizers.

4 EXPERIMENTS

4.1 SIGNAL-TO-NOISE RATIO (SNR) ANALYSIS

We first present an error analysis of different data formats based on the error models derived in
Section 3 for zero-mean, unit-variance Gaussian distributed data. This enables direct computation of
the signal-to-noise ratio (SNR) using the analytic formulas in Eq. 13 and Eq. 22. Figure 1 illustrates
the resulting SNR curves as a function of the clipping point for 4-bit floating-point and 4/3/2-bit
uniform quantizers. Results indicate that the 4-bit uniform quantizer theoretically can outperform
the E2M1 FP4 floating-point quantizer when Gaussian distribution data is quantized. However, a
floating-point quantizer offers more robustness in case clipping points are suboptimal. On the other
hand, Figure 1 shows that E2M1 FP4 format achieves higher peak SNR than E3M0, but E3M0 shows
resilience to suboptimal clipping due to its larger dynamic range. This analysis suggests that E2M1
FP4 and INT4/3/2 are proper choices when weight-only quantization-aware training is performed
under L2 regularization, which intrinsically forces normally distributed data.

4.2 QUANTIZATION-AWARE TRAINING (QAT)

We experiment with end-to-end quantization-aware training, focusing on ResNet, MobileLLM, and
Llama models. We use ResNet in our ablation study to show the effects of quantizer choice during
training. Then, we use MobileLLM and Llama models to highlight that the proposed quantizers can
achieve state-of-the-art accuracy. All experiments are conducted in 4-bit, representing the lowest
precision currently supported by standardized floating-point formats.

4.2.1 ABLATION STUDY WITH RESNET

For the ablation study, we use the Resnet-18 model, and train it with CIFAR-10 in the QAT framework
in which both activations and weights are quantized. Training recipe includes a stochastic gradient
descent optimizer with a momentum of 0.9 and a weight decay coefficient of 5e−4.

The baseline training scheme is FP32. We compare the performance of min-max (FP4/INT4-minmax),
analytic (FP4/INT4-analytic), and iterative quantization schemes (FP4/INT4-iterative). In the min-
max training scheme, min-max quantizers are used for activations and weights in all quantizable

6
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Figure 1: Signal-to-noise ratio versus clipping point for 4-bit float and 4/3/2-bit uniform quantizers,
assuming zero-mean unit variance Gaussian input.

Figure 2: Loss functions with 4-bit uniform (left) and float (right) quantization across 40 epochs.

layers, including linear and 2D convolution layers in ResNet. The iterative quantization schemes use
iterative quantizers for both activations and weights. Due to the arbitrary distributions of activations,
the FP4/INT4-analytic scheme uses iterative quantizers for activations and analytic quantizers for the
weights. The granularity is consistently tensor-wise in all experiments.

Figure 2.a shows training curves (log-scale) for 40 epochs for uniform quantizers. Likewise, Figure
2.b shows training curves for float quantizers. The loss curves consistently indicate the inferior
performance of the min-max quantizer (See Appendix D for a discussion). We observe that analytic
and iterative quantization schemes perform similarly. The final trained models result in the following
loss values on the test set: [.0063, .0057, .0058] for minmax, analytic, and iterative with INT4,
respectively. Likewise, [.0065, .0059, .0055] for the float quantizers. The full precision model gives
.0050 test performance. The experiment indicates that analytic and iterative quantizers can perform
similarly, especially in the INT4 setting. The performance of the analytic quantizer deteriorates
slightly in FP4, which aligns with the SNR analysis in the previous section.

4.2.2 LLM PERFORMANCE

We compare StatQAT with state-of-the-art QAT frameworks, LLM-QAT (10) and ParetoQ (20), on
MobileLLM (125M/600M) and Llama 3.2 (1B/3B) models. Evaluation was conducted on zero-shot
common-sense reasoning tasks and WikiText-2.

Each model was fine-tuned using AdamW with a learning rate of 2e− 5 with a cosine scheduler, L2
regularization of 0.01, and a batch size of 2 per GPU across 6 A100s. Epoch durations range from <1
minute (125M) to 9 minutes (3B) on WikiText-2. To match baseline settings, we apply symmetric
weight-only quantization, using E2M1 for FP4 based on prior SNR analysis.

7
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Table 1 compiles the results of the proposed StatQAT quantizers compared to baselines. The analytic
quantizer has a comparable performance to the iterative quantizer in all cases. This justifies that
estimating quantization parameters based on a Gaussian assumption holds in real-world deep learning
models. We observe that baseline algorithms degrade significantly in tensor-wise granularity, whereas
StatQAT quantizers can maintain performance better. The impact of optimal clipping is inherently
greater in the per-tensor setting, where a single clipping value must handle a broader dynamic range,
including outliers. This effect is well known and consistent across all algorithms, as also observed in
our experiments. Our method shows large gains in the per-tensor case, demonstrating its ability to
correctly and efficiently determine optimal clipping points.

In channel-wise granularity, StatQAT quantizers outperform LLM-QAT in the majority of cases and
ParetoQ in all cases. We observe that the performance of LLM-QAT and ParetoQ is not competitive
in large models compared to StatQAT when the granularity is tensor-wise. In the per-channel setting,
where each channel has its own clipping value and thus a narrower distribution, the optimization
problem is inherently easier, and performance differences are expected to be smaller. Nonetheless,
our results show consistent improvements, albeit marginal, across all tested models. These gains,
while modest, were reproducible across multiple datasets, indicating statistical significance.

5 RELATED WORK

Quantization reduces memory, compute, and bandwidth requirements in deep neural networks by
lowering numerical precision. Early PTQ methods relied on heuristic techniques such as min–max
scaling or k-means clustering (21; 3), which often failed at low bit-widths.

To overcome these limitations, quantization-aware training (QAT) was introduced, where quantization
effects are simulated during training to improve robustness (4). Frameworks such as DoReFa-Net (7),
PACT (8), and LSQ (16) proposed gradient approximations and parameter calibration tailored to
specific quantizers, enabling accuracy retention in the 4-bit regime and below. More recent QAT
approaches, including LLM-QAT (10) and ParetoQ (20), extend these ideas to large language models
(LLMs), achieving state-of-the-art performance.

From a theoretical perspective, minimizing mean-squared quantization error has inspired more princi-
pled methods, such as Lloyd–Max optimization (22) and differentiable quantization objectives (23).
Other works explore learned or data-driven quantizers (24; 25), but these approaches often incur
significant overhead due to iterative optimization within each training step (26).

In parallel, the rise of LLMs has driven PTQ strategies specialized for transformer architectures.
GPTQ (27) employs Hessian-based error-aware quantization to achieve high-fidelity INT4 quantiza-
tion. AWQ (28) improves GPTQ by decoupling weight scales and applying per-channel clipping,
while SmoothQuant (29) shifts scaling from activations to weights, enabling effective INT8 quantiza-
tion for both weights and activations. These methods highlight the importance of error compensation,
scale decoupling, and outlier-aware clipping for preserving LLM performance.

Meanwhile, FP8 and FP4 formats have emerged as promising alternatives for training and infer-
ence (30; 31). Kuzmin et al. (9) treat the clipping point as a trainable parameter, similar to LSQ,
while Liu et al. (10) propose FP4 quantization in a PTQ setting, optimizing clipping points via online
search. However, such iterative schemes are impractical for QAT, where clipping must be updated
at every training step. To our knowledge, we present the first closed-form analytic solution for FP
quantizers in QAT, offering both theoretical novelty and practical hardware relevance.

Our work introduces a unified statistical framework for uniform and floating-point quantization. The
proposed analytic and iterative quantizers are lightweight and suitable for QAT. The latency of our
analytic quantizer is slightly better than min–max scaling (Appendix H). This complements existing
LLM quantization techniques and provides a principled foundation for large-scale QAT deployments.

6 CONCLUSION

We presented a comprehensive statistical framework for analyzing and minimizing quantization error
in uniform and floating-point quantization schemes. Building on this foundation, we proposed novel
iterative and analytic quantizers effective for activations and weights. Our methods support accurate,
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Model Type Granularity Method Arc-e Arc-c BoolQ PIQA SIQA HellaSwag OBQA WinoGrande Avg. Wiki2

MobileLLM
125M

FP4

Tensor

LLM-QAT 37.5 20.5 45.8 56.7 36.8 29.9 13.6 50.8 36.5 13.3
ParetoQ 37.2 19.8 45.0 56.8 36.6 30.1 14.6 50.0 36.3 13.7

StatQAT-iterative 44.0 20.5 56.3 61.1 36.6 31.3 17.4 52.9 40.0 10.5
StatQAT-analytic 42.8 19.4 58.0 61.4 37.5 31.4 17.0 52.4 40.0 10.3

Channel

LLM-QAT 44.9 20.0 56.1 62.6 38.1 32.0 17.6 51.8 40.4 9.8
ParetoQ 44.2 19.2 60.5 62.0 37.9 31.9 18.4 51.7 40.7 10.1

StatQAT-iterative 46.0 19.9 59.1 62.3 37.7 32.0 18.4 52.5 41.0 9.8
StatQAT-analytic 44.9 21.1 60.9 62.0 36.9 31.6 17.6 54.1 41.1 10.0

INT4

Tensor

LLM-QAT 29.3 20.1 40.3 53.0 34.5 27.2 14.8 51.5 33.8 26.2
ParetoQ 29.8 19.6 51.8 53.7 34.8 27.0 13.4 53.3 35.4 34.2

StatQAT-iterative 42.3 20.8 44.6 61.5 36.4 31.4 16.0 51.9 38.1 10.6
StatQAT-analytic 41.5 21.2 55.4 60.6 36.7 31.1 17.4 51.7 39.5 10.7

Channel

LLM-QAT 44.3 20.1 56.7 62.6 37.4 32.0 17.8 51.8 40.3 10.1
ParetoQ 42.2 18.6 52.1 61.0 36.1 30.9 17.6 51.9 38.8 10.8

StatQAT-iterative 45.6 20.9 53.8 61.8 37.2 32.1 17.4 52.2 40.1 10.0
StatQAT-analytic 44.9 20.8 53.5 61.9 36.9 31.7 18.8 52.6 40.1 10.2

MobileLLM
600M

FP4

Tensor

LLM-QAT 44.8 23.5 47.3 62.2 36.7 35.1 15.6 53.4 39.8 9.7
ParetoQ 45.0 23.6 46.8 61.4 36.9 35.0 15.8 53.3 39.7 9.8

StatQAT-iterative 57.9 26.5 59.3 69.6 37.7 40.7 20.4 58.3 46.3 7.8
StatQAT-analytic 57.6 27.5 59.4 69.3 38.8 40.3 21.2 56.9 46.4 7.8

Channel

LLM-QAT 59.1 26.3 63.1 69.7 40.3 42.3 24.2 58.3 47.9 7.3
ParetoQ 57.6 25.6 61.8 68.7 39.5 41.8 22.0 58.3 46.9 7.4

StatQAT-iterative 59.8 26.7 62.5 69.4 40.6 42.1 25.2 58.6 48.1 7.3
StatQAT-analytic 60.1 27.9 56.1 68.4 38.6 41.2 22.8 58.1 46.7 7.5

INT4

Tensor

LLM-QAT 28.7 20.1 40.3 54.7 34.0 27.5 13.8 50.7 33.7 25.9
ParetoQ 27.6 20.2 38.9 51.4 32.8 26.5 14.4 48.5 32.5 43.1

StatQAT-iterative 57.9 26.5 61.3 67.7 38.0 39.7 20.8 56.8 46.1 8.0
StatQAT-analytic 56.1 26.3 58.3 67.6 38.2 39.2 21.6 56.0 45.4 8.2

Channel

LLM-QAT 58.5 25.2 62.0 69.8 39.9 41.7 21.8 58.7 47.2 7.4
ParetoQ 56.8 26.5 62.6 69.0 41.0 40.9 21.4 55.9 46.8 7.7

StatQAT-iterative 59.1 25.6 62.7 68.9 39.6 41.9 22.6 59.6 47.5 7.4
StatQAT-analytic 57.8 26.5 57.2 67.9 37.4 40.3 22.2 58.4 46.0 7.8

Llama 3.2
1B

FP4

Tensor

LLM-QAT 27.2 20.3 37.8 51.7 34.1 26.0 13.8 49.8 32.6 194.5
ParetoQ 26.1 19.9 37.8 50.8 34.4 26.0 13.4 49.8 32.3 203.9

StatQAT-iterative 60.7 29.5 45.4 70.9 40.9 42.5 21.6 55.6 45.9 9.6
StatQAT-analytic 59.8 28.7 56.3 69.7 41.0 42.6 21.4 55.6 46.9 9.3

Channel

LLM-QAT 59.8 30.5 49.5 70.9 39.0 43.7 22.6 56.2 46.5 9.5
ParetoQ 60.5 28.9 55.2 70.3 38.6 42.9 19.8 55.6 46.5 10.4

StatQAT-iterative 61.9 30.3 51.0 72.2 40.2 44.6 23.2 57.2 47.6 8.9
StatQAT-analytic 60.6 30.4 54.5 72.0 40.1 43.0 24.4 55.7 47.6 9.1

INT4

Tensor

LLM-QAT 26.3 19.5 37.8 51.2 33.6 26.1 11.2 51.1 32.1 389.6
ParetoQ 26.2 20.5 37.8 50.3 34.0 26.1 12.4 49.3 32.1 493.9

StatQAT-iterative 56.8 27.6 52.4 70.6 41.5 42.2 21.2 53.2 45.7 9.6
StatQAT-analytic 56.1 27.2 56.5 69.5 40.0 40.7 19.8 55.2 45.6 9.8

Channel

LLM-QAT 59.4 29.5 58.0 70.3 39.2 41.8 21.0 56.4 46.9 10.0
ParetoQ 52.4 27.0 52.6 66.1 37.8 38.5 20.8 54.5 43.7 12.0

StatQAT-iterative 61.0 29.9 56.1 71.3 40.6 43.6 24.8 55.6 47.9 9.1
StatQAT-analytic 59.4 29.7 59.2 70.1 41.0 42.0 23.4 56.5 47.7 9.4

Llama 3.2
3B

FP4

Tensor

LLM-QAT 30.6 17.7 37.9 55.3 33.8 27.3 13.4 49.9 33.2 25.2
ParetoQ 31.8 18.6 38.0 54.5 33.6 27.4 13.0 48.1 33.1 24.5

StatQAT-iterative 58.0 30.9 46.4 69.0 39.2 42.5 18.2 59.7 45.5 8.3
StatQAT-analytic 64.3 33.4 49.6 71.2 41.2 43.6 21.6 59.0 48.0 8.1

Channel

LLM-QAT 73.6 41.2 65.5 75.8 42.2 52.1 29.2 65.8 55.7 7.6
ParetoQ 72.3 40.7 61.5 75.0 42.4 51.2 28.0 65.2 54.5 7.8

StatQAT-iterative 73.6 39.4 62.5 75.8 43.9 52.2 30.0 66.7 55.5 7.4
StatQAT-analytic 69.7 38.5 61.7 74.6 42.6 49.1 27.0 63.1 53.3 7.7

INT4

Tensor

LLM-QAT 26.4 21.8 37.8 50.7 34.8 26.0 12.6 49.6 32.5 473.4
ParetoQ 26.8 20.8 37.8 50.9 34.8 26.1 12.4 50.2 32.5 533.6

StatQAT-iterative 53.9 29.4 60.9 66.2 38.8 40.6 19.0 55.2 45.5 8.4
StatQAT-analytic 55.4 28.6 56.3 67.9 38.5 40.8 19.6 57.1 45.5 8.5

Channel

LLM-QAT 72.1 39.3 63.9 74.6 42.5 50.5 29.4 66.1 54.8 7.8
ParetoQ 68.1 35.7 70.8 72.7 41.4 48.5 25.4 65.3 53.5 8.3

StatQAT-iterative 68.9 36.9 62.9 75.3 43.6 51.4 30.6 66.6 54.5 7.6
StatQAT-analytic 67.6 35.8 54.5 72.3 40.6 46.4 24.2 61.2 50.3 8.0

Table 1: Accuracy comparison of proposed StatQAT quantizers with baselines on benchmark datasets.
Our test setup included the implementation of the baselines for a fair comparison. ±0.1 variance is
accounted for when bolding the best performance for statistical significance.

low-overhead quantization-aware training by enabling efficient estimation of optimal quantization
parameters. Our error analysis and experimental results on ResNet and LLMs demonstrate that our
quantizers achieve state-of-the-art performance. Notably, analytic quantizers achieve performance
comparable to iterative ones at a fraction of the cost, making them highly practical for training. Our
findings lay the groundwork for extending statistical quantizer design to more complex distributions
and adaptive training scenarios. While our study focuses on 4-bit quantization due to current hardware
support for formats like FP4, extending our framework to ultra-low precision remains an important
direction for future research.
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A PRACTICAL IMPLEMENTATION OF UNIFORM QUANTIZATION

In real-world applications, instead of storing high-precision lk values corresponding to each data
point, only the indexes are stored in integer format for reduced data size. Updating Eq.1 to return
indexes instead of levels as

Qk(x|l, t) = k, if tk < x ≤ tk+1, (23)

we obtain the unsigned integer representation of point x. For signed integer representation, the
function returns k −N/2 + 1.
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We can alternatively compute the index for uniform unsigned integer quantization as follows:

Qk(x|s, z) = clip(
⌊x− z

s

⌉
, n,m) (24)

where
⌊⌉

is the integer rounding, and clip(x, n,m) is the clipping operator where n,m defines the
boundaries such that n = 0,m = N − 2. In this case, the level is computed as:

Q(x|s, z) = sk̂ + z (25)

where k̂ = Qk(x|s, z) is the quantization index of x.

For signed integer quantization, the index is computed as follows

Qk(x|s, z) = clip(
⌊x− z

s

⌉
, n,m)− N

2
+ 1 (26)

and the levels as Q(x|s, z) = s(k̂ +N/2− 1) + z.

B PRACTICAL IMPLEMENTATION OF FLOAT QUANTIZATION

Given a higher precision floating point number x, we can quantize it to a lower precision floating
point number by first computing the step size v given the scaled and shifted input value:

v =

2⌊log2 | x−z
s |⌋−M , if ⌊log2 |

x− z

s
|+ b⌋ ≥ 1

21−M−b, otherwise
Then, we quantize x with this step size

Qk(x|s, z) = v ∗ clip(
⌊x− z

sv

⌉
, n,m) (27)

When we scale-shift back, we obtain dequantized data:
Q(x|s, z) = sQk(x|s, z) + z (28)

where m = −n = 22
E−b−2(2 − 2−M ). Note the input dependency of the step size due to the

non-uniform normal grid. Qk(x|s, z) is the grid point in lower precision, which we store for reduced
data size or low precision computation.

C DERIVATION OF CLIPPING ERROR FUNCTION

The clipping error is defined as

Nc = 2

∫ ∞

C

(x− C)2p(x)dx (29)

where
p(x) =

1

σ
√
2π

e−
x2

2σ2 (30)

is the centered normal data distribution with σ2 variance. We can decompose the error function as
follows:

Nc = 2

∫ ∞

C

x2p(x)dx+ 2C2

∫ ∞

C

p(x)dx− 4C

∫ ∞

C

xp(x)dx (31)

The integral in the first term is computed by integration by parts:∫ ∞

C

x2p(x)dx =
1

σ
√
2π

∫
C

x2e−
x2

2σ2 dx

=
σ2

2
erf

(√ x

2σ2

)
− σ√

2π
xe−

x2

2σ2

∣∣∣x=∞

x=C

= σ2(
1

2
− 1

2
erf(

C

σ
√
2
)) +

Cσ√
2π

e−
C2

2σ2

= σ2Q(
C

σ
) +

Cσ√
2π

e−
C2

2σ2

(32)
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The integral in the second term is computed by the definition of the erf function:∫ ∞

C

p(x)dx =
1

σ
√
2π

∫ ∞

C

e−
x2

2σ2 dx

=
1

2
erf(

√
1

2σ2
x)
∣∣∣x=∞

x=C

=
1

2
(1− erf(

√
1

2σ2
x))

= Q(
C

σ
)

(33)

The integral in the third term is computed by integration by parts:∫ ∞

C

xp(x)dx =
1

σ
√
2π

∫ ∞

C

xe−
x2

2σ2 dx

= − Cσ√
2π

e−
x2

2σ2

∣∣∣x=∞

x=C

=
Cσ√
2π

e−
C2

2σ2

(34)

Plugging Eq. 32, Eq. 33, and Eq. 34 into Eq. 31 results in

Nc = 2(σ2 + C2)Q(
C

σ
)− 2C

σ√
2π

e−
C2

2σ2 (35)

D RELATION TO MIN-MAX QUANTIZER AND CASTING

D.1 UNIFORM QUANTIZATION

Assume the data is uniformly distributed, p(x) = Unif(x| − α, α). The clipping error is then
computed analytically as follows:

Ec = 2

∫ ∞

C

(x− C)2p(x)dx =
1

α

∫ ∞

C

(x− C)2dx

= −C3

3α
+ C2 − Cα+

α2

3

(36)

while Es is the same as in Eq. 8. It can be observed that Ec decreases cubically with C until α,
while Es increases quadratically. Therefore, in the case of uniformly distributed data, the minimum
error is achieved when C is set to α, resulting in zero clipping error. This indicates that the min-max
quantizer is the optimal uniform quantizer in terms of mean squared quantizer error only when the
data is uniformly distributed, which is not the case in deep learning model parameters or activations.
Therefore, while this quantizer is commonly used in quantization tools, it has also been the primary
source of quantization error due to high stepping error, especially in low-bit settings.

D.2 FLOAT QUANTIZATION

Directly casting the input data corresponds to using quantization levels without scaling and shifting.
This method introduces large quantization errors if the data values are much smaller than the largest
grid point (stepping error) or if the data values are larger than the largest grid (clipping error). These
errors become more significant when we use lower bit quantization, such as in FP4 data types.

To avoid clipping errors, we can shift and scale the levels so that they match the data range using
min-max quantization with s = α−β

2lmax
and z = β + slmax where lmax is the largest grid point

floating data type can represent, α = max(X) and β = min(X). Then we can transform the data as
(x− z)/s and do the typical float casting. This method zeros out the clipping error but introduces a
large stepping error when there are outliers in the dataset. Unlike uniform quantization, the min-max
float quantizer is not optimal for uniform distributed data. Indeed, there is no such tractable data
distribution that this quantizer is optimal for due to base2 grid spacing.
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E OPTIMIZATION OF NON-UNIFORM QUANTIZERS

Mean-squared quantization error is formulated as follows:

E[e2] = E[(x−Q(x|l, t))2] =
N−2∑
k=0

∫ tt+1

tk

(x− lk)
2p(x)dx (37)

where the errors corresponding to each quantization level are integrated over N − 1 intervals given
the data distribution p(x). The objective is to determine the quantization levels l and thresholds t to
minimize the error function.

E.1 ITERATIVE METHOD

In non-uniform quantization, there are no constraints on the parameters. This allows for iterative
optimization of the objective. We present an alternating optimization algorithm for this purpose. By
taking the derivative of the quantization error in Eq. 37 with respect to lk and setting it to zero, we
can derive the following update for the levels:

lk = E[x|tk < x ≤ tk+1] (38)

for k = 0 : N − 2. This expectation is computed using the empirical mean of the data points in the
interval. Taking the derivative with respect to tk yields the following update for the thresholds:

tk =
1

2
(lk + lk−1) (39)

for k = 1 : N − 2. Then, t0 = −∞, and tN = ∞ are set to cover the unbounded data space. In
summary, in the first step of the algorithm, input data is compared to the thresholds determined at
the previous iteration and quantized accordingly, and in the second step, the levels and thresholds
are updated given the recently quantized data. This algorithm converges to optimal mean-squared
quantization error regardless of the data distribution when initialized properly. One can recognize
that the iterative solution is a 1-dimensional k-means clustering solution, which has been used in (2)
for deep learning model quantization.

E.2 NORMAL-OPTIMAL ANALYTIC QUANTIZER

The deep learning models have approximately normally distributed weights (11). Based on this
assumption, we propose an analytic quantizer, which is fast and as accurate as the iterative method
as long as the distribution assumption holds. The update equation 38 in the iterative method relies
on computing the expectation of the data given an interval. Given the data is zero-mean normally
distributed with unit variance, this expectation can be computed analytically without any samples via
the first moment of the two-sided truncated normal distribution:

E[x|tk < x ≤ tk+1] = −p(tk + 1)− p(tk)

F(tk+1)−F(tk)
(40)

Iterating through Eq. 40 and Eq. 39 converges to the optimal non-uniform quantizer for data with a
centered unit variance normal distribution, in terms of mean squared quantization error. Unlike the
iterative method, this optimization is performed offline without any data, and the computed optimal
levels lopt and thresholds topt are used afterward for all layers during the quantization process as
follows: the mean and variance of each quantizable weight tensor are computed, and the quantizer
levels are updated accordingly as l = σ(x)lopt+m(x), where σ(x) and m(x) are the empirical standard
deviation and mean, respectively. This makes the online quantization process much faster, as only
basic statistics are computed at that stage.

E.3 RELATION TO QUANTILE QUANTIZATION

Another non-iterative method for non-uniform quantization is quantile quantization, which computes
the quantiles of N equally spaced probabilities and uses them as quantization levels (11). To find the
quantile function, we first compute empirical CDF, then use its inverse to determine threshold levels
as follows:

tk = F−1
x (k/(N − 1)) (41)
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for k = 1 : N − 2, t0 = −∞ and tN−1 = ∞. Then we estimate levels as lk = E[x|tk < x < tk+1]
for k = 0 : N − 2. In practice, we sort the input data points and assign the data points with indexes
k(I − 1)/(N − 1) as thresholds, where I is the total number of data points. One can notice that if
we use only levels to quantize by finding the closest levels using squared distance, we don’t exactly
equalize the histogram. Ideally, one should use thresholds to determine the index and then assign the
level accordingly by Eq. 1 for improved equalization. Empirically, using levels with squared distance
works better in terms of mean squared quantization error. Equalizing the bins does not necessarily
result in lower quantization error. Indeed, this is true only for uniform distributed data, which is not
the case for deep learning model weights.

E.4 COMPARISON OF QUANTIZATION LEVELS

Non-uniform quantizers have no constraints on choosing quantization levels. Here we show how
non-uniform quantizers compare to each other given a simulated input tensor of shape [256x256]
from a zero-mean unit variance normal distribution. As seen in Figure 3, iterative and analytic
quantizers converge to the same points for the normally distributed data. The quantizer errors
are MSE = [0.21, 0.21, 0.25], and MAE = [0.41, 0.41, 0.41] for iterative, analytic, and quantile
quantization, respectively. Quantile quantizer has a higher MSE than others, although all quantizers
give a comparable MAE.

Figure 3: Inferred quantization levels of 3-bit non-uniform quantizers for a normally distributed input
data.

F STEPPING ERROR DISTRIBUTION

We define total quantization error as the sum of clipping and stepping errors. Clipping error is obtained
with quadratic error integrated over the data distribution. However, the stepping error depends on the
quantization scheme. Figure 4 illustrates the differences in the stepping error distribution of uniform
and float quantization schemes given a set of normally distributed input data with zero mean and
unit variance. Regardless of the data distribution, quantizer type, and total bits, we obtain uniform
distributed stepping error in a uniform quantization scheme. The error is bounded in [−s/2, s/2]
with probability 1/s as shown in Figure 4.a-c. From this observation, we compute the stepping error
power as in Eq. 8. On the other hand, the error distribution is a mixture of uniforms in floating point
quantization schemes due to the exponential spacing of every 2M point. Thus, the error space widens
at each consecutive region as shown in Figure 4.b-d. Hence, the stepping error power is computed by
Eq. 16 since now the data distribution affects the mixture coefficient, which changes the stepping
error power.
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(a) 8-bit uniform grid (b) 8-bit float grid

(c) 4-bit uniform grid (d) 4-bit float grid

Figure 4: Quantization error distribution for float and uniform quantization grids

G INITIALIZATION OF STATQAT-ITERATIVE

Quantizer initialization is critical to avoid early-stage gradient instabilities. For weights, if the
initialization follows a normal distribution, as is typical under common initialization schemes and
regularization, the analytic quantizer derived under Gaussian assumptions is a natural choice. For
weights initialized from uniform distributions, the min-max method provides a better match to the
initial data distribution.

Activation quantizers are initialized during the first forward pass. Since activation distributions can be
highly non-Gaussian and vary across tasks and layers, the ideal approach is to fit an iterative quantizer
on the first minibatch. However, this can be computationally expensive. Empirically, we find that
analytic quantizers still provide competitive initialization performance and allow stable training from
the outset.

H ITERATION SPEEDS OF QUANTIZERS

We compare the iteration rate of the min-max, analytic, and iterative quantizers in Table 2 for FP4
and INT4 datatypes and channel and tensor-wise granularity on A100 GPU. We use 2048× 2048
tensor as input. In all configurations, the iterative quantizer is the slowest by an order of magnitude,
while the analytic quantizer is slightly faster than min-max. These results confirm that the analytic
quantizer is light enough to be used as a drop-in replacement for the min-max quantizer for QAT.
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Type Quantizer Granularity 1k iter/sec
INT4 Min-max Channel 21.6
INT4 Iterative Channel 4.4
INT4 Analytic Channel 25.1
FP4 Min-max Channel 20.1
FP4 Iterative Channel 1.9
FP4 Analytic Channel 24.6

INT4 Min-max Tensor 21.2
INT4 Iterative Tensor 4.6
INT4 Analytic Tensor 24.2
FP4 Min-max Tensor 18.8
FP4 Iterative Tensor 1.9
FP4 Analytic Tensor 23.0

Table 2: Iteration rate of quantizers.

17


	Introduction
	Background
	Non-uniform quantization
	Uniform quantization
	Float quantization
	Quantized Training

	Error-Driven Quantizer Parameter Optimization
	Uniform Quantizers: Error Model and Optimization
	Iterative Uniform Quantizer
	Normal-Optimal Uniform Analytic Quantizer

	Floating point quantizers: Error Model and Optimization
	Iterative Floating-Point Quantizer
	Normal-Optimal Analytic Float Quantizer

	Quantized Training Recipe

	Experiments
	Signal-to-Noise Ratio (SNR) Analysis
	Quantization-Aware Training (QAT)
	Ablation Study with ResNet
	LLM performance


	Related Work
	Conclusion
	Practical Implementation of Uniform Quantization
	Practical Implementation of Float Quantization
	Derivation of Clipping Error Function
	Relation to Min-max Quantizer and Casting
	Uniform Quantization
	Float Quantization

	Optimization of non-uniform quantizers
	Iterative Method
	Normal-optimal Analytic Quantizer
	Relation to Quantile Quantization
	Comparison of quantization levels

	Stepping Error Distribution
	Initialization of StatQAT-iterative
	Iteration Speeds of Quantizers

