
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

REINFORCEMENT LEARNING WITH DISCRETE DIFFU-
SION POLICIES FOR COMBINATORIAL ACTION SPACES

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning (RL) struggles to scale to large, combinatorial action spaces
common in many real-world problems. This paper introduces a novel framework
for training discrete diffusion models as highly effective policies in these complex
settings. Our key innovation is an efficient online training process that ensures
stable and effective policy improvement. By leveraging policy mirror descent
(PMD) to define an ideal, regularized target policy distribution, we frame the policy
update as a distributional matching problem, training the expressive diffusion
model to replicate this stable target. This decoupled approach stabilizes learning
and significantly enhances training performance. Our method achieves state-of-
the-art results and superior sample efficiency across a diverse set of challenging
combinatorial benchmarks, including DNA sequence generation, RL with macro-
actions, and multi-agent systems. Experiments demonstrate that our diffusion
policies attain superior performance compared to other baselines.

1 INTRODUCTION

Reinforcement learning (RL) has been instrumental in pushing the boundaries of autonomous decision-
making, achieving superhuman performance in a diverse range of complex sequential tasks (Silver
et al., 2016; Vinyals et al., 2019; Schrittwieser et al., 2020). However, a significant frontier remains:
scaling these successes to problems with vast, combinatorial discrete action spaces. Such challenges
are not niche; they are central to many real-world applications, including planning with macro-actions
in hierarchical RL (Sutton et al., 1999a; Durugkar et al., 2016), coordinating strategies in multi-agent
systems (Hernandez-Leal et al., 2019), and generating slates in recommender systems (Ie et al., 2019).
The sheer scale of these action spaces poses a fundamental challenge to standard RL algorithms,
demanding highly efficient policy parameterizations and effective exploration strategies.

Prior approaches have attempted to mitigate this complexity by mapping actions to lower-dimensional
subspaces (Stulp et al., 2012; Tennenholtz & Mannor, 2019), employing hierarchical training schemes
(Nachum et al., 2018), or assuming specific structural properties of the action space (Carrara et al.,
2019). While effective in certain contexts, these methods often rely on structural assumptions or
inductive biases that may not hold in more general and complex problem settings. More recently,
the success of autoregressive models (Vaswani et al., 2017) has inspired their use for policies over
combinatorial actions (Chen et al., 2021; Wen et al., 2022b). Yet, these models suffer from two key
limitations: high computational cost during inference due to their sequential generation process and
the imposition of a causal action ordering, which is often an artificial and restrictive constraint.

Diffusion models have emerged as a powerful class of generative models, renowned for their ability to
capture highly complex probability distributions without imposing a causal structure (Sohl-Dickstein
et al., 2015; Ho et al., 2020). Recent extensions to discrete spaces have further broadened their
applicability (Austin et al., 2021; Sun et al., 2022; Campbell et al., 2022; Shi et al., 2024). This
inherent flexibility and expressiveness make them an ideal candidate for modeling policies in large,
unstructured discrete action spaces. While diffusion models have been actively explored for synthe-
sizing policies in continuous control (Wang et al., 2022; Ding et al., 2024; Ren et al., 2024; Ma et al.,
2025), a principled and efficient framework for training discrete diffusion policies with RL remains
unexplored.

In this work, we introduce a novel framework for training discrete diffusion models as highly effective
policies for combinatorial action spaces. Our key innovation is an efficient online training process

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

that ensures stable and effective policy improvement. We leverage policy mirror descent (PMD, Shani
et al. (2020); Tomar et al. (2021); Lan (2023)) to define the ideal target policy distribution based
on the PMD optimization objective. This reframes the policy update as a distributional matching
problem, where we train our expressive diffusion model to replicate this stable target. This decoupled
approach is critical: it separates the RL objective optimization from the complex task of representation
learning, which we delegate to the diffusion model, thereby stabilizing the entire learning process
and significantly enhancing performance.

Our core contributions are as follows: (1) We introduce RL-D2, a new and efficient online training
framework for using discrete diffusion models as policies in RL for combinatorial action spaces. Our
core mechanism reframes the policy update as a distributional matching problem by using policy
mirror descent (PMD) to define a stable target distribution, which significantly stabilizes learning. (2)
We derive and analyze two practical policy improvement methods based on minimizing the forward
and reverse Kullback-Leibler (KL) divergence to the PMD target. (3) Finally, we conduct extensive
experiments across three distinct and challenging domains: DNA sequence generation (Gosai et al.,
2023), long-horizon RL with macro-actions in Atari (Bellemare et al., 2013), and cooperative multi-
agent RL in the challenging Google Research Football domain (Kurach et al., 2020). In all settings,
our method achieves state-of-the-art results, demonstrating superior performance, scalability, and
efficiency.

2 RELATED WORK

Discrete Diffusion Models. Diffusion models for generating continuous data, such as images,
typically rely on the gradual addition and removal of Gaussian noise to learn and synthesize complex
probability distributions (Sohl-Dickstein et al., 2015; Ho et al., 2020). However, this paradigm is
ill-suited for discrete data like text or biological sequences, where values are categorical and adding
small amounts of continuous noise is not meaningful. To address this, discrete diffusion models extend
the iterative refinement idea to discrete state spaces, with forward and backward processes using
Markov chains where each transition in a sequence is sampled independently. Various approaches
have explored different transition mechanisms and training objectives (Austin et al., 2021; Campbell
et al., 2022; Sun et al., 2022; Lou et al., 2023; Shi et al., 2024). Among these, absorbing (or masked)
diffusion has proven to be particularly effective (Sahoo et al., 2024; Ou et al., 2024). The success
of these models has led to their application in a range of domains. In natural language processing,
they have been adapted for complex generation tasks (Arriola et al., 2025; Ye et al., 2025; Nie et al.,
2025). More relevant to our work, discrete diffusion has shown significant promise in bio-sequence
modeling for generating novel proteins and DNA sequences with desired properties (Gruver et al.,
2023; Wang et al., 2024a).

Reward-based Fine-tuning and RL for Discrete Diffusion. A key challenge, beyond unconditional
generation, is adapting discrete diffusion to optimize for specific objectives. This has primarily been
approached through reward-based fine-tuning, which adjusts the model’s parameters to increase
the likelihood of generating high-reward samples. For instance, (Wang et al., 2024a) enable direct
reward backpropagation by leveraging the Gumbel-softmax trick, while ()zekri2025fine optimize
the model by manipulating the score entropy (Lou et al., 2023). While effective, these methods can
be viewed as forms of a single-step policy optimization. By contrast, the application of online RL
to discrete diffusion is unexplored, and faces challenges such as exploration-exploitation trade-offs,
computational efficiency, horizon-complexity trade-off.

3 PRELIMINARIES

In this section, we review the necessary background. We first define the problem setup for RL with
large, combinatorial action spaces. We then introduce policy mirror descent as the foundation for our
policy improvement step, followed by a review of discrete diffusion models, which will serve as our
policy parameterization.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3.1 PROBLEM SETUP

We consider a Markov decision process (MDP) defined by a tuple (S,AK , P, γ, r, ρ0), where S
is the state space, P is the transition function, r is a reward function, γ ∈ [0, 1) is the discount
factor, and ρ0 is the initial state distribution. The action space AK is assumed to be large, with
some combinatorial structure, i.e., a ∈ AK is a structured, “multi-component” object 1. The reward
function r : S ×AK → R and transition function P : S ×AK 7→ ∆S are defined w.r.t. AK .

This general setup encapsulates a range of different problems, one of which is hierarchical RL
(Sutton et al., 1999a; Vezhnevets et al., 2017; Haarnoja et al., 2018), where each action a ∈ AK

is a macro-action, or a sequence of K primitive actions, a = (a1, . . . , aK).2. In this case, r(s, a)
and P (s′|s, a) represent the total discounted reward and the final state after executing the entire
K-step sequence. Other examples include multi-agent policy optimization (Hernandez-Leal et al.,
2019), where a = (a1, . . . , aK) is the joint action for K agents, where ai ∈ Ai is the ith agent’s
action; slate recommendation (Ie et al., 2019), where ai is the item at the ith position of a set/slate of
recommendations of size K; and combinatorial sequential assignment (Carrara et al., 2019).

A policy π : S 7→ ∆AK maps a state to a distribution over the action space. The state-action value
function qπ(s, a) is the expected return after taking action a in state s and following π thereafter:

qπ(s, a) = r(s, a) + γEs′∼P (·|s,a),a′∼π(·|s′)[q
π(s′, a′)]. (1)

The state-value function is the expectation over actions, vπ(s) := Ea∼π(·|s)[q
π(s, a)]. The agent’s

goal is to find an optimal policy π∗ within a policy class Π that maximizes the expected return:
π∗ ∈ argmaxπ∈Π Es∼ρ0 [v

π(s)].

3.2 POLICY MIRROR DESCENT

Policy mirror descent (PMD) (Beck & Teboulle, 2003; Shani et al., 2020; Tomar et al., 2020; Lan,
2023) is a policy optimization method that provides a provably convergent stable and regularized
policy improvement step. Given a current policy πold, the PMD update finds a new policy π by
solving:

π(·|s) ∈ argmax
π∈Π

Ea∼π(·|s)[A
πold(s, a)]− λdKL(π, πold; s) ∀s ∈ S (2)

where Aπold(s, a) := qπold(s, a)− vπold(s) is the advantage function, λ > 0 is a temperature param-
eter, and dKL is the Kullback-Leibler (KL) divergence: dKL(π, µ; s) :=

∑
a∈AK π(a|s) log π(a|s)

µ(a|s) .

The unique solution to this optimization problem is given by:

πMD(a|s) = πold(a|s) exp(Aπold(s, a)/λ) / Z(s), (3)

where Z(s) = Ea∼πold
[exp(qπold(s, a)/λ)] is the normalization constant, or partition function.

3.3 MASKED DISCRETE DIFFUSION PROCESSES

We provide a general background on discrete diffusion in this subsection, and refer the reader to
Austin et al. (2021) and Appendix A for an exhaustive derivation of this method. A reader already
familiar with discrete diffusion processes can skip directly to Sec. 4.

Discrete diffusion models are powerful generative models, well-suited for capturing complex distri-
butions over structured, sequential data. We therefore focus on combinatorial action spaces that can
be represented as a fixed-length sequence of K discrete actions, a = (a0, . . . , aK−1) ∈ AK . This
formulation directly applies to the macro-action problem and can be adapted for other settings like
multi-agent joint actions by imposing a consistent ordering on the agents. We use a masked diffusion
process (Shi et al., 2024), which operates over an augmented vocabulary A ∪ {m} that includes a
mask action m.

1For simplicity we focus on power sets of A, though more complex combinatorial action spaces can be used.
2We abuse terminology slightly. In general, macro-actions (or options) are general “local” policies with

suitable termination conditions that can used within a larger hierarchical or abstract policy (Sutton et al., 1999b;
Hauskrecht et al., 1998). However, the fixed sequence view of macros (a special case of the former) also appears
in the literature (Durugkar et al., 2016).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Collect Data Policy Eval-
uation

Q-function
qπk

PMD Target
πk
MD

Minimize Loss
minπθ E[d(πθ, π

k
MD; s)]

New Policy
πk+1

Discrete
Diffusion Model

D Target

Parameterize πθ

Next Iteration (k ← k + 1)

Construct
via Eq. (3)

Figure 1: Overview of the RL-D2 Framework. Our framework adopts a policy iteration structure.
Following policy evaluation, which estimates the current Q-function, the policy improvement step is
implemented as a distributional matching problem. Here, the discrete diffusion policy is trained to
minimize the KL divergence (FKL or RKL) relative to an optimal target distribution (πk

MD) derived
via Policy Mirror Descent in equation 3.

Forward Process. The fixed forward process q gradually noises a clean macro-action a0 ∈ AK

into a fully masked sequence aN over N discrete steps. This noising process is applied independently
to each component at ∈ a. The single-action transition is defined as q(an = m|an−1 ̸= m) = 1−βn

and q(an = an−1|an−1 ̸= m) = βn, where {βn}Nn=1 is a fixed schedule. This defines a marginal
distribution q(an|a0) where an = a0 with probability αn and an = m with probability 1− αn, for a
known noise schedule αn.

Reverse Process. The learned reverse process pθ(an−1|an, s) is trained to reverse this noising,
conditioned on the state s. It iteratively denoises a sequence an, starting from the pure noise prior
aN ∼ p(·|s), to generate a clean macro-action a0 ∼ πθ(·|s). This process is parameterized by a
model fθ (e.g., a Transformer) that predicts the clean sequence µθ(an, n, s) ≈ a0 from any noised
sequence an at step n.

Training Objective. The model fθ is trained by maximizing the Evidence Lower Bound (ELBO),
LELBO(a0, s; θ), which is a lower bound on the log-likelihood log πθ(a0|s). This objective trains
the network to reconstruct the clean action a0 from its noised versions an. For a macro-action a0
with K actions, the objective to maximize is a sum of weighted negative cross-entropy terms over all
diffusion steps n and actions k:

LELBO(a0, s; θ) =

N∑
n=1

ᾱnEan∼q(·|a0)[

K−1∑
k=0

δan
k ,m

· logµθ(an, n, s)a0
k
] (4)

where ᾱn is a weighting term derived from the noise schedule, δan
k ,m

is an indicator function that is 1
if the k-th action is masked (and 0 otherwise), and logµθ(·)a0

k
is the model’s predicted log-probability

for the original clean action a0k. The full derivation is detailed in Appendix A.

4 RL-D2: REINFORCEMENT LEARNING WITH DISCRETE DIFFUSION

We now introduce our framework for training discrete diffusion policies. Our approach follows a
policy iteration structure. Let k be the current training iteration. The process alternates between
(1) policy evaluation, which estimates the Q-function qπk for the current policy πk, and (2) policy
improvement. The core of our method lies in the latter improvement step.

We first define a target distribution, πk
MD, which is the mirror descent iteration optimal solution

from Eq. (3) calculated using πold ≡ πk and qπold ≡ qπk . This transforms the policy improvement
problem into a distributional approximation problem, a common paradigm in deep RL (Chan et al.,
2022; Abdolmaleki et al., 2018). The new policy πk+1 is then obtained by finding the parameters θ
that minimize a chosen divergence d to this target; namely,

πk+1 ∈ argmin
πθ∈Π

Es∼D
[
d(πθ, π

k
MD; s)

]
(IMPR. STEP)

where D is a distribution of states, typically from a replay buffer or current policy stationary state
distribution. A flowchart summarizing our approach is presented in Fig. 1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.1 REVERSE AND FORWARD KL

The choice of the divergence d in (IMPR. STEP) is critical and defines the practical update rule.
We focus on the Kullback-Leibler (KL) divergence (i.e., d ≡ dKL). Specifically, we consider two
variants of (IMPR. STEP) using forward KL and reverse KL divergences, which result in two different
methods for policy improvement, as we explain below. We refer the reader to (Chan et al., 2022) for
a thorough review of reverse and forward KL properties in RL.

Forward KL Divergence (FKL). The forward KL objective, dKL(π
k
MD, πθ; s), seeks a policy πθ

that covers the modes of the target distribution. This "mean-seeking" behavior can be beneficial for
exploration, as it encourages the policy to maintain probability mass over all high-value actions (Chan
et al., 2022). Minimizing this objective directly is intractable. Instead, we minimize a tractable bound
derived by applying the diffusion model’s ELBO inequality to the KL definition (see Appendix B.1).
This results in the following weighted ELBO loss:

LFKL(θ) = −Es∼D,Âs∼πk

[∑
a0∈Âs

(softmaxa∈Âs
(Aπk(s, a0)/λ)) · LELBO(a0, s; θ)

]
. (FKL Loss)

Here, Âs is a batch of macro-actions sampled from the "old" policy πk (i.e., a target network, πθold),
and LELBO is the weighted cross-entropy loss in equation 4. The softmax re-weights the sampled
actions to approximate the target distribution πk

MD. This objective effectively trains the diffusion
model as a generative classifier, focusing the model’s capacity on reconstructing high-value actions
more frequently and is more easily adjusted to off-policy training.

Reverse KL Divergence (RKL). The reverse KL objective, dKL(πθ, π
k
MD; s), is equivalent to the

original PMD optimization in Eq. (2) (see Appendix B.2). This objective has strong theoretical policy
improvement guarantees (Chan et al., 2022) and results in a "mode-seeking" policy that focuses on
the highest-value action. This objective can be written as follows:

LRKL(θ) = Es∼D,a∼πk
[−η(s, a; θ)Aπk(s, a) + λdKL(πθ, πk; s)], (RKL Loss)

where here, η(s, a; θ) := πθ(a|s)/πk(a|s) is an importance sampling (IS) ratio. In this case, D usual
choice is the state occupancy measure of πk (Schulman, 2015; Shani et al., 2020) for an on-policy
training.

For diffusion policies, the likelihood πθ(a|s) is intractable, and thus so is the ratio η. Following Ren
et al. (2024), we can construct an augmented MDP where states are (s, an) (an environment state and
a noisy action at diffusion step n) and the advantage for a denoising step is defined by the final clean
action’s advantage, i.e., Aπk((s, an), an−1) ≜ Aπk(s, a0). This yields a tractable IS ratio based on
the single-step reverse process:

η((s, an), an−1; θ) =
pθ(an−1|an, s)

pk(an−1|an, s)
.

We refer to this ratio as "single-step ratio". Given a tractable estimator for η, we optimize the objective
in Eq. (RKL Loss) using a PPO-style clipping mechanism (Schulman et al., 2017).

4.2 ON-POLICY DIFFUSION LEARNING

The standard ELBO objective, used in both (FKL Loss) and (RKL Loss), trains the model to denoise
samples (an, a0) generated from the fixed forward process q(an|a0). However, this distribution of
noised actions an may differ significantly from the actions the policy actually generates during its
own generative process. To align the training distribution with the inference distribution, we propose
On-Policy Diffusion Learning. Instead of starting from a clean action a0 ∼ πk and adding noise, we
generate the entire diffusion trajectory (aN , . . . , a0) on-policy by sampling from the learned reverse
process of the current policy, i.e., aN ∼ p(·|s) and an−1 ∼ pθk(·|an, s). This yields (an, a0) pairs
that are "on-policy" with respect to the policy’s own generative dynamics, which we find enhances
stability and sample efficiency. Note that the “on-policy” here only refers to the diffusion process,
rather than the overall RL framework.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Pre
tra

ined CG
SMC

TDS
CFG

DRAKES-K
L

DRAKES

RL-D
2 -32

RL-D
2 -200

0

2

4

6

8

Re
w

ar
d

Reward and Approximate Log Likelihood

-300

-275

-250

-225

-200

A
pp

ro
x.

 L
og

 L
ik

el
ih

oo
d

32-steps 64-steps 128-steps 200-steps

6.75

6.80

6.85

Re
w

ar
d

Performance vs. Diffusion Timesteps

220

215

210

205

A
pp

ro
x.

 L
og

 L
ik

el
ih

oo
d

AR Reward: 6.8
Reward Trend
AR App-log-lik: -205
Log Likelihood Trend

Reward
LogLikelihood

Figure 2: Reward and Approximate Likelihood of DNA generation. Left: The proposed RL-D2 gets
best performance on reward and log likelihood, even with fewer diffusion time steps. Right: The
mean and 95% confidence intervals of reward and approximate log likelihood with various diffusion
timesteps.

5 EXPERIMENTS

We conduct a comprehensive set of experiments to evaluate our proposed framework for training
discrete diffusion policies. Our evaluation spans three distinct and challenging domains to demonstrate
the method’s effectiveness, scalability, and versatility: (1) reward-based finetuning for DNA sequence
generation, (2) online reinforcement learning with long-horizon in complex single-agent Atari
environments, and (3) multi-agent cooperative learning with combinatorial joint action spaces.

5.1 DNA SEQUENCE GENERATION: SINGLE-STEP POLICY OPTIMIZATION

We first validate our approach on a reward-guided generation task, which serves as a single-step
RL problem (i.e., combinatorial multi-armed bandit). The goal is to finetune a pretrained discrete
diffusion model to generate DNA sequences that maximize a specific reward signal, verifying the
effectiveness of our policy optimization algorithm.

We use a large public enhancer dataset of approximately 700,000 DNA sequences with length
200 (Gosai et al., 2023). A reward function, detailed in Appendix D.1, is defined to predict gene
expression activity, we leverage the pre-trained reward model provided by (Wang et al., 2024a).
Our primary metrics are the reward achieved and the approximate log-likelihood of the generated
sequences, which measures their naturalness. We compare against controlled generation methods such
as conditional guidance (CG) (Nisonoff et al., 2024), SMC and TDS (Wu et al., 2023) and classifier-
free guidance (CFG) (Ho & Salimans, 2022), as well as a strong RL-based baseline, DRAKES (Wang
et al., 2024a), that optimizes the policies by backpropagating reward through the reverse process
using Gumbel-Softmax trick. For this task, we optimize our policy using the forward KL (FKL)
objective Eq. (FKL Loss).

As shown in Fig. 2 (left), our method achieves a new state-of-the-art, attaining the highest reward
scores while simultaneously generating the most probable sequences (highest log-likelihood). This
demonstrates that our FKL-based update effectively optimizes for the target reward without sacri-
ficing generative quality. Moreover, Fig. 2 (right) showed that we can achieve consistently strong
performance with diffusion timesteps much smaller than the sequence length 200, highlighting the
inference-time efficiency compared to autoregressive (AR) generation. Finally, our approach is sig-
nificantly more computationally efficient than DRAKES. As we don’t need to backpropagate through
the whole reverse process, we reduced GPU memory consumption from 66.4 GB to 10.6 GB, and
computation time from 268 minutes to 97 minutes compared to DRAKES, making high-performance
reward optimization more accessible.

5.2 REINFORCEMENT LEARNING WITH MACRO ACTIONS

Next, we now evaluate our RL-D2 in the challenging MinAtar (Young & Tian, 2019) and Atari (Belle-
mare et al., 2013) benchmarks, where the agent learns to make decisions over long horizons by
generating macro-actions, i.e., sequences of primitive actions. Our experiments are designed to assess

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Atari performance. Mean and 95% confidential intervals of scores over the last 100 evaluation
episodes with 3 random seeds during training on MinAtar

ASTERIX BREAKOUT FREEWAY SEAQUEST SPACE INVADERS

DQN 276.10 ± 40.67 189.85 ± 26.46 61.05 ± 0.45 106.02 ± 6.77 1.12K ± 156.02

DQN-MACRO 44.84 ± 2.32 300.81 ± 49.38 57.27 ± 1.18 171.80 ± 12.83 801.94 ± 113.24

IMPALA 24.29 ± 1.81 0.99 ± 0.00 42.72 ± 3.12 42.43 ± 3.33 46.77 ± 0.00

IMPALA-MACRO 21.95 ± 1.90 7.36 ± 0.10 52.01 ± 2.31 58.34 ± 5.17 33.86 ± 0.00

RL-D2 (OURS) 50.37 ± 1.83 20.18K ± 3.75K 61.20 ± 0.52 161.0 ± 13.04 178.9K ± 64.63K

0.0 0.2 0.4 0.6 0.8 1.0
Samples 1e8

0

1

2

3

4

A
ve

ra
ge

 H
um

an

 N
or

m
al

iz
ed

 S
co

re

RL-D2

DQN
DQN-Macro
R2D2
PPO
IMPALA-Macro
IMPALA

Figure 3: Atari performance. Performance improvement over the best baseline, evaluated by the
percentage of human normalized scores.

the performance and scalability in using diffusion policies for complex planning tasks. For these
tasks, we optimize our policy using the forward KL (FKL) objective in Eq. (FKL Loss).

We evaluate RL-D2 on the MinAtar benchmark (Young & Tian, 2019), a suite of simplified Atari
games that provide a controlled setting without partial observability. We employ a macro-action
length of 4. We compare against DQN (Mnih et al., 2015), IMPALA (Espeholt et al., 2018), and their
macro-action-enabled variants (DQN-Macro, IMPALA-Macro). In DQN-Macro, the Q-network’s
output dimension is modified to |A|4 to select one of all possible length-4 macro-actions. For
IMPALA-Macro, the policy network’s output is changed to 4× |A|, allowing it to sample the four
actions of the macro-action independently at once. The detailed implementations are in Appendix D.2.

As shown in Table 1, RL-D2 achieves substantially stronger performance in 4 out of 5 tasks in
MinAtar. The substantial score improvements in BREAKOUT and SPACE INVADERS highlight the
policy’s ability to discover and represent complex, long-term strategies. While standard baselines
adapted for macro-actions show modest gains, they are far outstripped by our approach, underscoring
the necessity of an expressive generative model to effectively navigate large combinatorial action
spaces.

We confirm our findings on the full Atari benchmark (Bellemare et al., 2013) with additional strong
baselines including R2D2 (Kapturowski et al., 2018) and PPO (Schulman et al., 2017). As shown
in Figure 3, our method achieves the highest average human-normalized score in average and
outperforms strong baselines using both macro and single actions in 36 of 56 environments (the full
results can be found in Appendix E.1), showcasing the strong performance of the proposed discrete
diffusion.

Scalability and horizon-complexity trade-off. We investigate the scalability by varying the macro-
action length. As the size of action space grows exponentially with respect to the macro action length
but the horizon only shrinks linearly, solving the MDP becomes much more difficult with increasing
macro action length. Fig. 4 (left) shows that with a fixed computational budget, performance peaks
at a macro-action length of 4. However, the key advantage of our method is its scalability. As
shown in Fig. 4 (right), when we scale up model capacity and data proportionally to the action
space complexity, our diffusion policy’s performance continues to improve, consistently surpassing
baselines IMPALA-Macro and DQN-Macro that output the whole set of macro actions (We select
Alien, BeamRider, Phoenix, Zaxxon to demonstrate scalability as RL-D2 showed good performance
with longer macro action length). DQN-Macro fails to fit in a reasonable learner with macro action 8

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

2 4 8 16 32 50
Macro Action Length

0

1

2

3

A
ve

ra
ge

 H
um

an

 N
or

m
al

iz
ed

 S
co

re

2 4 8 16
Macro Action Length

3.0

3.2

3.4

3.6

3.8

A
ve

ra
ge

 H
um

an

 N
or

m
al

iz
ed

 S
co

re

Scalability vs. Baselines

RL-D2

IMPALA-Macro
DQN-Macro

Figure 4: Left: Mean and 95% confidence intervals of averaged episode return over all 56 tasks to
show the trade-off between planning horizon and model complexity with fixed network size and data.
Right: The proposed method scales more effectively with increasing network size and data compared
to baselines. DQN-Macro fails to learn in a reasonable amount of time as the action space grows too
large with macro actions more than 4.

0.5 1.0 1.5
Number of Params (Millions)

0.80

0.85

0.90

0.95

1.00

A
ve

ra
ge

 N
or

m
al

iz
ed

 S
co

re Performance vs. Model Size

RL-D2-16
Baseline

100 200 300 400 500
Number of Samples (Millions)

Performance vs. Samples

RL-D2-16
Baseline

20 40 60
Wall time (Hours)

Performance vs. Wall Time

RL-D2-16
Baseline

Figure 5: Mean episode return of RL-D2 with 16 macro actions compared to the 8 macro actions as a
function of model parameters, data samples, and training time, averaged over 4 tasks and 3 seed each.

and 16 as the size of action space increases exponentially. This demonstrates that our approach can
effectively leverage increased resources to tackle more complex, longer-horizon problems. Moreover,
we also show how our proposed approach scales up well with increasing computational resources like
model sizes, samples, and training time in Fig. 5, while the baseline IMPALA-Macro fails to increase
performance when the macro action length increase from 8 to 16.

Efficient and flexible sampling techniques. We evaluate the inference-time efficiency and flexibility
of discrete diffusion policies. To make the difference clear, we extend to a long macro action setup with
length 32. We leverage two techniques to further improve the sampling qualities of discrete diffusion
models for these extra-long macro actions, (1) Top-p sampling or nuclear sampling (Holtzman et al.,
2019) that selects actions from the smallest set of actions whose cumulative probabilities exceed a
certain threshold; (2) Remasking diffusion process (Wang et al., 2025) that allows the actions to be
re-masked and re-unmasked during the reverse process. The implementation details can be found in
Appendix C.3.

As seen in Figure 6, top-p sampling enhanced the performance of RL-D2 with fewer diffusion steps,
such as 4 and 8, making inference-time more efficient without losing performance. Remasking
sampling performs best when the number of timesteps is close to the sequence length. This highlights
the flexibility of diffusion models.

More Experimental Results and Ablation studies.

In the appendix, we explore other techniques and perform ablation studies. This includes a) au-
tomatically tuning the temperature parameter λ in Eq. (3) by enforcing a hard KL constraint; b)
leveraging discrete diffusion as a planner instead of committing to all macro actions generated, and c)
the ablation study of on-policy diffusion training discussed in Sec. 4.2. d) comparing FKL with RKL
with the same computation time. Please refer to Appendix E for the results and discussions.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 2 4 6 8
Samples 1e7

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

 N

or
m

al
iz

ed
 S

co
re

Diffusion Timestep: 4

0 2 4 6
Samples 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Diffusion Timestep: 8

0 1 2 3 4
Samples 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Diffusion Timestep: 16

0.0 0.5 1.0 1.5 2.0
Samples 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Diffusion Timestep: 32

ancestral
topp
remasking

Figure 6: Mean and 95% confidence intervals of scores averaged over 4 tasks and 3 seed each
normalized by best scores achieved with macro action length 32 as a function of diffusion timesteps
and sampling techniques. Top-p sampling excels with very few steps while remasking improve the
performance with more diffusion steps.

Table 2: Final performances of on Google Research Football academy scenarios, measured by
maximum mean win rate scaled by 100 with confidence intervals.

PASS & SHOOT RUN PASS & SHOT 3 VS 1 CT-EASY CT-HARD CORNER 5 VS 5 11 VS 11 11 VS 11 SM

AUTOREGRESSIVE 78.2 ± 40.1 70.2 ± 35.2 75.8 ± 35.1 69.3 ± 30.6 33.6 ± 40.1 0.0 ± 0.0 71.1 ± 30.5 34.4 ± 14.4 0.0 ± 0.0

RL-D2 RKL (OURS) 100 ± 0.0 98.5 ± 1.6 98.6 ± 1.0 99.1 ± 0.6 97.7 ± 2.2 96.3 ± 3.4 99.6 ± 0.4 99.8 ± 0.2 0.0 ± 0.0

RL-D2 FKL (OURS) 99.0 ± 1.0 98.6 ± 0.5 97.3 ± 2.0 98.0 ± 1.1 97.1 ± 2.9 93.2 ± 2.9 98.4 ± 1.0 97.4 ± 0.9 67.2 ± 8.1

MAT 97.9 ± 2.1 98.3 ± 1.2 92.9 ± 1.1 87.9 ± 2.1 88.2 ± 3.8 95.3 ± 2.5 93.7 ± 0.9 92.0 ± 2.4 9.0 ± 3.7

MAPPO 99.5 ± 0.2 73.2 ± 3.6 93.2 ± 1.5 70.1 ± 3.8 63 ± 2.1 53.1 ± 5.3 95.4 ± 1.6 52.6 ± 3.1 5.0 ± 0.2

5.3 COOPERATIVE MULTI-AGENT REINFORCEMENT LEARNING

Finally, we evaluate our framework in cooperative multi-agent reinforcement learning (MARL),
where the combinatorial action space is the joint action of all agents. Efficiently searching this space
is a primary challenge in MARL. By modeling the joint action distribution, our diffusion policy can
capture complex inter-agent dependencies without relying on restrictive factorization assumptions.

We test our policy on the challenging Google Research Football benchmark (Kurach et al., 2020),
using scenarios ranging from small-scale tasks (3 vs 1) to full-team games (11 vs 11). Our diffusion
model generates the joint action for all controlled agents simultaneously. We adopt the feature
extractor and scenario settings suggested by (Song et al., 2023); for further implementation details,
please refer to appendix D.4. We evaluate our diffusion policy, examining both RKL and FKL
objective variants against an autoregressive sampler baseline. Additionally, we compare our method
against two centralized MARL policy baselines: Multi-Agent PPO (MAPPO) (Yu et al., 2022) and
the current state-of-the-art, Multi-Agent Transformer (MAT) (Wen et al., 2022b). Note that MAT
operates autoregressively, mitigating causal bias by training over random permutations of the agents’
order. Finally, to assess sample efficiency, we conduct an ablation on the full game scenario (11 vs.
11) using significantly smaller budget of 100M environment steps (compared to the standard 1G) -
marked as 11 vs 11 sm.

As presented in Table 2, our discrete diffusion policy variants achieve the highest mean win rates
across all scenarios. This advantage is particularly presented in the most challenging tasks requiring
intricate team coordination, such as 5 vs 5, corner, ct-hard, and the highly complex 11 vs 11 full game,
where our method shows a clear advantage over state-of-the-art methods. regarding the baselines, we
note that the naive autoregressive sampler lags significantly behind. This suggests that to match the
performance of diffusion models, autoregressive methods require additional alignment techniques,
such as the random permutations used in MAT, to mitigate causal bias. Furthermore, while the RKL
objective yields superior results overall, FKL significantly outperforms RKL (and other baselines)
in the small-budget regime 11 vs 11 sm, approaching a 70% win rate. RKL is more exploratory,
allowing it to achieve optimal behavior given sufficient samples, whereas the FKL exploits faster at
the cost of less exploration. Moreover, we observe FKL is likely to collapse if the temperature tuning
is not handled well (results shown in Appendix E.2.3). Overall, these results highlight the potential
of discrete diffusion models to effectively generate highly coordinated joint actions in challenging
multi-agent tasks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

5.4 EMPIRICAL SELECTION OF FKL AND RKL

We summarize our empirical observations about FKL or RKL to provide guidance to practitioners
from the viewpoint of balancing the trade-off between computational efficiency and asymptotic
performance.

Data efficiency: FKL demonstrates faster learning in the initial stages with fewer samples, as
evidenced by the 11 vs 11 sm scenario in Table 2 and the Atari benchmarks in Fig. 15. We attribute
this to the temperature values employed. As shown in Fig. 9, FKL performs well only with a large
KL constraint and small temperatures; this configuration promotes aggressive exploitation by rapidly
shifting the policy toward being greedy and deterministic. In contrast, our RKL implementation
utilizes importance sampling ratio clipping. This mechanism results in more gradual shifts in the
policy distribution, thereby leading to a slower learning pace.

Asymptotic performance and stability. Table 2 demonstrates that RKL typically outperforms
FKL when trained with large sample sizes. Moreover, the temperature schedule ablation for Google
Football in Fig. 11 indicates that FKL is prone to collapse if the temperature is not appropriately
selected. This slightly inferior performance of FKL may stem from two factors: (1) FKL optimizes
the ELBO, a lower bound of policy loss, whereas RKL optimizes the unbiased policy mirror descent
loss; and (2) the potential for collapse is caused by the fact that policy being too deterministic results
in a lack of diversity in the replay buffer.

In summary, our empirical results have shown that, RL-D2-FKL favors learning faster by heavy
exploitation, but is less stable and requires careful temperature tuning. It is suitable for tasks with
data and computational bottleneck such as Atari games. RL-D2-RKL learns slightly slower but is
more stable and have better asymptotic performance. It is suitable for tasks with cheap sampling cost,
such as Google Football.

6 SUMMARY

This paper introduces RL-D2, a novel framework for reinforcement learning with discrete diffusion
policies, aimed at solving decision making problems with large, combinatorial action spaces. In
this framework, we propose to train diffusion models by fitting their output distribution to the
analytic solution of the Policy Mirror Descent policy optimization algorithm. This is done by
projecting the outputs of the model with either the forward or reverse KL divergences. Extensive
experiments demonstrate that the proposed method achieves state-of-the-art performance across three
challenging domains: reward-guided sequence generation, long-horizon planning with macro-actions,
and cooperative multi-agent RL. The results suggest that the RL-D2 framework provides a scalable
and high-performing solution to a long-standing challenge in RL, effectively handling complex,
combinatorial action spaces where traditional methods often fail.

ETHICS STATEMENT

Our work strictly follows the ICLR Code of Ethics. This study did not involve human subjects,
personally identifiable information, or the use of proprietary data. All utilized datasets were sourced
exclusively from publicly available resources that explicitly permit academic research. All authors
confirm they have read and agree to comply with the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our findings, we have provided comprehensive details of our pro-
posed framework and experimental evaluation. The full derivations for the forward and reverse
KL-divergence-based policy update rules, are presented in Sec. 4 and Appendix B. The general imple-
mentation details, model architectures, and key hyperparameters are described in Appendix C. Specific
experimental setups for DNA sequence generation, Reinforcement Learning with macro-actions, and
Multi-Agent Reinforcement Learning are detailed in Appendix D, which also includes descriptions of
the baseline implementations and domain-specific hyperparameters. Complete experimental results
and extensive ablation studies are provided in Appendix E.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and Martin
Riedmiller. Maximum a posteriori policy optimisation. arXiv preprint arXiv:1806.06920, 2018.

Marianne Arriola, Aaron Gokaslan, Justin T Chiu, Zhihan Yang, Zhixuan Qi, Jiaqi Han, Sub-
ham Sekhar Sahoo, and Volodymyr Kuleshov. Block diffusion: Interpolating between autoregres-
sive and diffusion language models. arXiv preprint arXiv:2503.09573, 2025.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in neural information processing
systems, 34:17981–17993, 2021.

Žiga Avsec, Vikram Agarwal, Daniel Visentin, Joseph R Ledsam, Agnieszka Grabska-Barwinska,
Kyle R Taylor, Yannis Assael, John Jumper, Pushmeet Kohli, and David R Kelley. Effective gene
expression prediction from sequence by integrating long-range interactions. Nature methods, 18
(10):1196–1203, 2021.

Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods for
convex optimization. Operations Research Letters, 31(3):167–175, 2003.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of artificial intelligence research, 47:
253–279, 2013.

Andrew Campbell, Joe Benton, Valentin De Bortoli, Thomas Rainforth, George Deligiannidis, and
Arnaud Doucet. A continuous time framework for discrete denoising models. Advances in Neural
Information Processing Systems, 35:28266–28279, 2022.

Nicolas Carrara, Edouard Leurent, Romain Laroche, Tanguy Urvoy, Odalric-Ambrym Maillard, and
Olivier Pietquin. Budgeted reinforcement learning in continuous state space. In Advances in
Neural Information Processing Systems 32 (NeurIPS-19), 2019.

Onur Celik, Zechu Li, Denis Blessing, Ge Li, Daniel Palanicek, Jan Peters, Georgia Chalvatzaki,
and Gerhard Neumann. Dime: Diffusion-based maximum entropy reinforcement learning. arXiv
preprint arXiv:2502.02316, 2025.

Alan Chan, Hugo Silva, Sungsu Lim, Tadashi Kozuno, A Rupam Mahmood, and Martha White.
Greedification operators for policy optimization: Investigating forward and reverse kl divergences.
Journal of Machine Learning Research, 23(253):1–79, 2022.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Shutong Ding, Ke Hu, Zhenhao Zhang, Kan Ren, Weinan Zhang, Jingyi Yu, Jingya Wang, and Ye Shi.
Diffusion-based reinforcement learning via q-weighted variational policy optimization. arXiv
preprint arXiv:2405.16173, 2024.

Ishan P Durugkar, Clemens Rosenbaum, Stefan Dernbach, and Sridhar Mahadevan. Deep reinforce-
ment learning with macro-actions. arXiv:1606.04615, 2016.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with
importance weighted actor-learner architectures. In International conference on machine learning,
pp. 1407–1416. PMLR, 2018.

Carlos E Garcia, David M Prett, and Manfred Morari. Model predictive control: Theory and
practice—a survey. Automatica, 25(3):335–348, 1989.

Sager J Gosai, Rodrigo I Castro, Natalia Fuentes, John C Butts, Susan Kales, Ramil R Noche,
Kousuke Mouri, Pardis C Sabeti, Steven K Reilly, and Ryan Tewhey. Machine-guided design of
synthetic cell type-specific cis-regulatory elements. bioRxiv, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Nate Gruver, Samuel Stanton, Nathan Frey, Tim GJ Rudner, Isidro Hotzel, Julien Lafrance-Vanasse,
Arvind Rajpal, Kyunghyun Cho, and Andrew G Wilson. Protein design with guided discrete
diffusion. Advances in neural information processing systems, 36:12489–12517, 2023.

Tuomas Haarnoja, Kristian Hartikainen, Pieter Abbeel, and Sergey Levine. Latent space policies
for hierarchical reinforcement learning. In International Conference on Machine Learning, pp.
1851–1860. PMLR, 2018.

Milos Hauskrecht, Nicolas Meuleau, Leslie Pack Kaelbling, Thomas Dean, and Craig Boutilier.
Hierarchical solution of Markov decision processes using macro-actions. In Proceedings of the
Fourteenth Conference on Uncertainty in Artificial Intelligence (UAI-98), pp. 220–229, Madison,
WI, 1998.

Pablo Hernandez-Leal, Bilal Kartal, and Matthew E. Taylor. A survey and critique of multiagent
deep reinforcement learning. Autonomous Agents and Multi-Agent Systems, 33(6):750–797, 2019.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Matthew W Hoffman, Bobak Shahriari, John Aslanides, Gabriel Barth-Maron, Nikola Momchev,
Danila Sinopalnikov, Piotr Stańczyk, Sabela Ramos, Anton Raichuk, Damien Vincent, et al. Acme:
A research framework for distributed reinforcement learning. arXiv preprint arXiv:2006.00979,
2020.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. arXiv preprint arXiv:1904.09751, 2019.

Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado Van Hasselt,
and David Silver. Distributed prioritized experience replay. arXiv preprint arXiv:1803.00933,
2018.

Eugene Ie, Vihan Jain, Jing Wang, Sanmit Narvekar, Ritesh Agarwal, Rui Wu, Heng-Tze Cheng,
Tushar Chandra, and Craig Boutilier. SlateQ: A tractable decomposition for reinforcement learning
with recommendation sets. In Proceedings of the Twenty-eighth International Joint Conference on
Artificial Intelligence (IJCAI-19), pp. 2592–2599, Macau, 2019.

Steven Kapturowski, Georg Ostrovski, John Quan, Remi Munos, and Will Dabney. Recurrent
experience replay in distributed reinforcement learning. In International conference on learning
representations, 2018.

Karol Kurach, Anton Raichuk, Piotr Stańczyk, Michał Zając, Olivier Bachem, Lasse Espeholt, Carlos
Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet, et al. Google research football:
A novel reinforcement learning environment. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pp. 4501–4510, 2020.

Guanghui Lan. Policy mirror descent for reinforcement learning: Linear convergence, new sampling
complexity, and generalized problem classes. Mathematical programming, 198(1):1059–1106,
2023.

Alessandro Lazaric, Mohammad Ghavamzadeh, and Rémi Munos. Analysis of classification-based
policy iteration algorithms. Journal of Machine Learning Research, 17(19):1–30, 2016.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
of the data distribution. arXiv preprint arXiv:2310.16834, 2023.

Haitong Ma, Tianyi Chen, Kai Wang, Na Li, and Bo Dai. Soft diffusion actor-critic: Efficient online
reinforcement learning for diffusion policy. arXiv preprint arXiv:2502.00361, 2025.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical
reinforcement learning. Advances in neural information processing systems, 31, 2018.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin, Ji-
Rong Wen, and Chongxuan Li. Large language diffusion models. arXiv preprint arXiv:2502.09992,
2025.

Hunter Nisonoff, Junhao Xiong, Stephan Allenspach, and Jennifer Listgarten. Unlocking guidance
for discrete state-space diffusion and flow models. arXiv preprint arXiv:2406.01572, 2024.

Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan Li.
Your absorbing discrete diffusion secretly models the conditional distributions of clean data. arXiv
preprint arXiv:2406.03736, 2024.

Allen Z Ren, Justin Lidard, Lars L Ankile, Anthony Simeonov, Pulkit Agrawal, Anirudha Majumdar,
Benjamin Burchfiel, Hongkai Dai, and Max Simchowitz. Diffusion policy policy optimization.
arXiv preprint arXiv:2409.00588, 2024.

Subham Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin Chiu,
Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language
models. Advances in Neural Information Processing Systems, 37:130136–130184, 2024.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

John Schulman. Trust region policy optimization. arXiv preprint arXiv:1502.05477, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Lior Shani, Yonathan Efroni, and Shie Mannor. Adaptive trust region policy optimization: Global
convergence and faster rates for regularized mdps. In Proceedings of the AAAI conference on
artificial intelligence, volume 34, pp. 5668–5675, 2020.

Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis Titsias. Simplified and generalized
masked diffusion for discrete data. Advances in neural information processing systems, 37:
103131–103167, 2024.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep Unsupervised
Learning using Nonequilibrium Thermodynamics. In Proceedings of the 32nd International
Conference on Machine Learning, pp. 2256–2265. PMLR, June 2015.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learning,
pp. 2256–2265. pmlr, 2015.

Yan Song, He Jiang, Haifeng Zhang, Zheng Tian, Weinan Zhang, and Jun Wang. Boosting studies of
multi-agent reinforcement learning on google research football environment: The past, present,
and future. arXiv preprint arXiv:2309.12951, 2023.

Freek Stulp, Evangelos A Theodorou, and Stefan Schaal. Reinforcement learning with sequences
of motion primitives for robust manipulation. IEEE Transactions on robotics, 28(6):1360–1370,
2012.

Haoran Sun, Lijun Yu, Bo Dai, Dale Schuurmans, and Hanjun Dai. Score-based continuous-time
discrete diffusion models. arXiv preprint arXiv:2211.16750, 2022.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211,
1999a.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Richard S. Sutton, Doina Precup, and Satinder P. Singh. Between MDPs and Semi-MDPs: Learning,
planning, and representing knowledge at multiple temporal scales. Artificial Intelligence, 112:
181–211, 1999b.

Guy Tennenholtz and Shie Mannor. The natural language of actions. In International Conference on
Machine Learning, pp. 6196–6205. PMLR, 2019.

Manan Tomar, Lior Shani, Yonathan Efroni, and Mohammad Ghavamzadeh. Mirror descent policy
optimization. arXiv preprint arXiv:2005.09814, 2020.

Manan Tomar, Lior Shani, Yonathan Efroni, and Mohammad Ghavamzadeh. Mirror descent policy
optimization, 2021. URL https://arxiv.org/abs/2005.09814.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. In
International conference on machine learning, pp. 3540–3549. PMLR, 2017.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung
Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in
starcraft ii using multi-agent reinforcement learning. nature, 575(7782):350–354, 2019.

Chenyu Wang, Masatoshi Uehara, Yichun He, Amy Wang, Tommaso Biancalani, Avantika Lal,
Tommi Jaakkola, Sergey Levine, Hanchen Wang, and Aviv Regev. Fine-tuning discrete diffusion
models via reward optimization with applications to dna and protein design. arXiv preprint
arXiv:2410.13643, 2024a.

Guanghan Wang, Yair Schiff, Subham Sekhar Sahoo, and Volodymyr Kuleshov. Remasking discrete
diffusion models with inference-time scaling. arXiv preprint arXiv:2503.00307, 2025.

Yinuo Wang, Likun Wang, Yuxuan Jiang, Wenjun Zou, Tong Liu, Xujie Song, Wenxuan Wang,
Liming Xiao, Jiang Wu, Jingliang Duan, and Shengbo Eben Li. Diffusion Actor-Critic with
Entropy Regulator, December 2024b.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. arXiv preprint arXiv:2208.06193, 2022.

Muning Wen, Jakub Kuba, Ruiqing Lin, Weinan Zhang, Ying Wen, Jun Wang, and Yaodong
Yang. Multi-agent reinforcement learning is a sequence modeling problem. In Ad-
vances in Neural Information Processing Systems, volume 35, pp. 16706–16719, 2022a.
URL https://proceedings.neurips.cc/paper_files/paper/2022/hash/
6b0928eÑČÑĞÐřÑĄÑĆÐÿÑŔ82d7349b604bebc53aa1e-Abstract-Conference.
html.

Muning Wen, Jakub Kuba, Runji Lin, Weinan Zhang, Ying Wen, Jun Wang, and Yaodong Yang. Multi-
agent reinforcement learning is a sequence modeling problem. Advances in Neural Information
Processing Systems, 35:16509–16521, 2022b.

Luhuan Wu, Brian Trippe, Christian Naesseth, David Blei, and John P Cunningham. Practical and
asymptotically exact conditional sampling in diffusion models. Advances in Neural Information
Processing Systems, 36:31372–31403, 2023.

Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
Kong. Dream 7b: Diffusion large language models. arXiv preprint arXiv:2508.15487, 2025.

Kenny Young and Tian Tian. Minatar: An atari-inspired testbed for thorough and reproducible
reinforcement learning experiments. arXiv preprint arXiv:1903.03176, 2019.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
surprising effectiveness of ppo in cooperative multi-agent games. Advances in neural information
processing systems, 35:24611–24624, 2022.

14

https://arxiv.org/abs/2005.09814
https://proceedings.neurips.cc/paper_files/paper/2022/hash/6b0928e участия82d7349b604bebc53aa1e-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/6b0928e участия82d7349b604bebc53aa1e-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/6b0928e участия82d7349b604bebc53aa1e-Abstract-Conference.html

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A MASKED DISCRETE DIFFUSION PROCESS

Similar to the continuous diffusion, discrete diffusion is also composed by a fixed forward process
and a learned reverse process. The forward process degrades a data sample x0 ∼ q

(
x0

)
into a

sequence of progressively noisier latent variables x1, x2, . . . , xN via a Markov chain,

q
(
x1:N | x0

)
=

N∏
n=1

q
(
xn | xn−1

)
,where q

(
xn | xn−1

)
= Cat

(
xn; p = Q⊤

n x
n−1

)
where Qn is the transition matrix with [Qn]ij = q

(
xn = j | xn−1 = i

)
. Specifically, we focus on a

family of discrete diffusion processes called masked diffusion models (Austin et al., 2021; Campbell
et al., 2022; Shi et al., 2024), where an additional [MASK] action is added to the action space. Denote
the mask action as a special m action, the transition kernel of the forward process is defined as

Qn = βnI+ (1− βn)1e
⊤
m,

In another word,

q
(
xn | xn−1

)
=


1− βn if xn−1 ̸= m and xn = m

βn if xn−1 ̸= m and xn = xn−1

1 if xn−1 = xn = m

0 otherwise

which means the action is masked out with 1 − βn probability, otherwise stays as the same. The
masking schedule is defined as αn :=

∏n
i=1(1 − βi). Once the action is masked, it stays as

the masked action m. The learned reverse Markov process pθ(x0:N) = p(xN)
∏N

n=1 pθ(x
n−1|xn)

gradually denoises (unmasks) the latent variables towards the data distribution. The reversal model
estimates the posterior:

q(xn−1|xn, x0) =

{
Cat

(
xn−1; ᾱnx

0 + (1− ᾱn)em
)

xn = em,

Cat
(
xn−1;xn

)
xn ̸= em

where ᾱn := αn−1−αn

1−αn
, through the parameterized model pθ(xn−1|xn) := q(xn−1|xn, µθ(x

n, n)),
where

µθ(x
n, n) =

{
softmax(fθ(xn, n)) xn = m,

xn xn ̸= m.

is the clean sample mean-value estimator induced by a trained model fθ optimized by maximizing
the Evidence Lower Bound (ELBO)

LELBO(x
0; θ) =

N∑
n=1

ᾱnExn∼qn|0

[
δxn,m · (x0)⊤ logµθ(x

n, n)
]
, (5)

where δx,y is an indicator function and qn|0 := q(xn|x0). The ELBO acts as a lower bound for the
expected log-likelihood

log pθ(x
0) ≥ LELBO(x

0; θ). (6)

Throughout this work, we abuse the notation such that xn can be either an integer or its corresponding
one-hot vector, whenever it is clear from the context.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B PROOFS AND DERIVATIONS

B.1 PROOF TO THE FORWARD KL LOSS EQ. (FKL Loss)

Proof. Denoting the forward KL:

dKL(πMD, πθ; s) =
∑

a∈AK

πMD(a|s) log πMD(a|s)
πθ(a|s)

=
∑

a∈AK

πMD(a|s) log πMD(a|s)−
∑

a∈AK

πMD(a|s) log πθ(a|s)

= −H(πMD(·|s))−
∑

a∈AK

πold(a|s)
exp(qπold(a, s)/λ)

Z(s)
log πθ(a|s)

≤ −
∑

a∈AK

πold(a|s)
exp(qπold(a, s)/λ)

Z(s)
LELBO(a, s; θ)

= Ea∼πold

[
−exp(qπold(a, s)/λ)

Z(s)
LELBO(a, s; θ)

]
,

where the first equality is the KL divergence definition, the third equality come from the definition
of entropy H and the definition of the MD policy in Eq. (3), the inequality comes from the ELBO
inequality w.r.t log πθ(a|s) of the discrete diffusion policy and from the fact that entropy is has a
non-negative value.

That is, we can bound the forward KL metric using the self-imitation objective. Given the support of
πold: A(πold; s) = {a0|πold(a0|s) > 0, a0 ∈ Ak}, the self-imitation loss is a weighted average of the
discrete diffusion loss with softmax weights wλ over this support. The SI loss is a generalized version
of the classification policy iteration (Lazaric et al., 2016), which is the solution w.r.t non-regularized
MD policy:

Remark 1 (Classification Discrete Diffusion Loss). Consider the limit MD policy’s temperature
λ → 0, we get that:

lim
λ→0

Ea∼πold

[
−exp(qπold(a, s)/λ)

Z(s)
LELBO(a, s; θ)

]
= − 1

n∗

∑
a∗∈A∗(πold;s)

LELBO(a∗, s; θ),

where, A∗(π; s) := argmaxa∈A(πold;s)
qπ(a, s) and n∗ := |A∗(π; s)|. This is a classification policy

iteration (Lazaric et al., 2016) of the discrete diffusion policy .

Overall, the self-imitation loss encapsulate a weighted behavioral cloning objective w.r.t MD policy.
In practice, computing wλ is non-trivial, as sampling actions from the whole action space may be
expensive, especially in the domains consider in this work. Therefore, a practical approach would be
to estimate wλ by sampling a subset of actions Âs ∼ πold(·|s), where Âs := {ai}Mi=1, ai ∼ πold(·|s)
and perform a softmax over their q-function values, which effectively estimates the normalization
factor over the sampled set:

Z(s) ≈ 1

M

∑
a∈Âs

exp(qπold(s, a)/λ) =
Ẑ(s)

M
.

This gives us the next approximated loss:

LFKL(θ) = −Es∼D,Âs∼πold

 ∑
a0∈Âs

ŵλ(s, a0)LELBO(a0, s; θ)

,
where ŵλ(s, a) := exp(qπold (s,a)/λ)

Ẑ(s)
and D is the replay buffer.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B.2 PROOF TO THE REVERSE KL LOSS EQ. (RKL Loss)

Proof. Denoting the reverse KL:

dKL(πθ, πMD; s) =
∑

a∈AK

πθ(a|s) log
πθ(a|s)

πMD(a|s)

=
∑

a∈AK

πθ(a|s) log πθ(a|s)−
∑

a∈AK

πθ(a|s) log πMD(a|s)

=
∑

a∈AK

πθ(a|s) log πθ(a|s)−
∑

a∈AK

πθ(a|s) log πold(a|s)− λ−1
∑

a∈AK

πθ(a|s)qπold(a, s) + Z(s)

= dKL(πθ, πold; s)− λ−1Ea∼πθ
[qπold(a, s)] + Z(s)

Since the normalization factor is independent of θ

argmin
θ

dKL(πθ, πMD; s) = argmax
θ

Ea∼πθ
[qπold(a, s)]− λdKL(πθ, πold; s)

which is the mirror decent objective regularized with πold.

B.3 USING ELBO AS AN ESTIMATOR OF IMPORTANCE SAMPLING RATIOS

The importance sampling ratio η(s, a; θ) in equation RKL Loss can be estimated by a biased estima-
tion using η̂ELBO(s, a; θ) = exp (LELBO(a0, s; θ)− LELBO(a0, s; θk)). To show the bias factor,
we can reformulate the ELBO such that:

LELBO(a0, s; θ) = log πθ(a0|s)︸ ︷︷ ︸
Log−likelihood

−
N∑

n=2

Ean∼qn|0 [dKL(q(an−1|an, a0, s), pθ(an−1|an, s))]︸ ︷︷ ︸
Bias(a0,s;θ)

.

Examining η̂ELBO:

η̂ELBO(s, a0; θ) = exp{log πθ(a0|s)− log πθold(a
0|s) +Bias(a0, s; θold)−Bias(a0, s; θ)}

=
πθ(a0|s)
πθold(a0|s)

exp{Bias(a0, s; θold)−Bias(a0, s; θ)}

= η(s, a0; θ)Γ(s, a0; θ).

where Γ(s, a0; θ) := exp{Bias(a0, s; θold)−Bias(a0, s; θ)}.

We show empirical results in Appendix E.6, which is not as good as augmented MDP approach
mentioned in Sec. 4.1 due to the biased nature.

C IMPLEMENTATION DETAILS

C.1 RL-D2 IMPLEMENTATION DETAILS FOR ATARI

We follow similar off-policy distributed RL framework as R2D2 (Kapturowski et al., 2018) imple-
mented on ACME (Hoffman et al., 2020). In Atari games, we leverage the same recurrent feature
extraction in (Kapturowski et al., 2018) by unrolling an LSTM network. We leverage the priority
experience replay (Horgan et al., 2018). The hyperparameters are listed in Table 3.

Model Architechtures. The same 3-layer convolutional network structure as (Kapturowski et al.,
2018; Mnih et al., 2015) is used for all the algorithms, followed by an LSTM with 512 hidden units,
which feeds into an actor and value networks implemetned as transformers.

The learnable parameters inside our transformer include the input embedding, linear projections
for conditioning, weights/biases in the multi-head attention and feed-forward networks within each
transformer block. Key learnable parameters are also the adaptive normalization layers (lns) that
generate dynamic shift, scale, and gate values based on the conditioning. Finally, the output pro-
jection is learnable. Conditioning is introduced via a FiLM-like (Feature-wise Linear Modulation)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 3: RL-D2 Hyperparameters with FKL

Parameters Value Parameters Value

Number of samples 1e8 Sample-to-insert Ratio 4.0
Number of parallel actors 16 Mini Batch size 64
Unroll length 40 Burn-in length 8
Q-network Transformer Target update rate 0.005
Policy network Transformer Actor learning rate 1× 10−4

Tempearture learning rate 1× 10−2 Critic leaning rate 1× 10−4

Transformer hidden dim 80 Transformer layers 3
Transformer heads 1 Discounted factor 0.997
Priority exponent 0.99 Replay buffer size 5× 106

mechanism. The objective then passes through small linear networks to produce shift, scale, and gate
parameters. These dynamically modulate activations after layer normalization in both the attention
and feed-forward sub-layers. For example, inputs to sub-layers become norm(h) * (scale +
1.0) + shift, with gate controlling residual connections. This enables the transformer to adapt
its internal computations layer-wise based on external conditions.

C.2 TEMPERATURE TUNING BY HARD KL DIVERGENCE CONSTRAINTS

Autotuning the temperature parameters λ has been a challenging problem for RL with diffusion
policies, as the output log probabilities are unknown. Existing methods leverage Gaussian mix-
ture fitting (Wang et al., 2024b), uniform data insertion (Ding et al., 2024), and data processing
inequalities (Celik et al., 2025).

We noticed a simple approach using duality by enforcing a hard constraint on the KL divergence
based on Abdolmaleki et al. (2018). Consider the policy mirror descent with hard constraints,

max
π

Ea∼π[A
πold(s, a)]

s.t. dKL(π, πold) ≤ ϵ
(7)

To solve it, we construct the Lagrangian

L(π, λ, η) = Ea∼π[A
πold(s, a)] + λ(ϵ− dKL(π, πold)) + η(1−

∑
a

π(a|s))

Gradient to the primal objective,

∂πL = Aπold(s, a)− λ(log
π(a|s)

πold(a|s)
+ 1) + η

Let it equal 0 we get the primal optimal solution is

π = πold(a|s) exp(
Aπold(s, a)

λ
) exp(

η − λ

λ
)

As we have the normalization constraint, we have

exp(−η − λ

λ
) =

∑
a

πold(a|s) exp(
Aπold(s, a)

λ
) := Z

Therefore, we have
η = λ(1− logZ)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Substituting this back to the Lagrangian, we have

g(λ) =λϵ+ η +
∑

a

π(a|s) (Aπold(s, a)− λ log (exp(Aπold(s, a)/λ)) + λ logZ − η)

=λϵ+
∑

a

π(a|s)(λ logZ)

=λϵ+ λ logZ

=λϵ+ λ log
∑

a

πold(a|s) exp(
Aπold(s, a)

λ
)

≈λϵ+ λ log
1

N

N∑
i=1

exp(
Aπold(s, ai)

λ
) ai ∼ πold(ai|s)

=λϵ+ λ logsumexp(
Aπold(s, ai)

λ
)− λ logN

Therefore, we can update the temperature parameter by min g(λ), which can be used in discrete and
continuous diffusion.

C.3 SAMPLING TECHNIQUES.

• Top-p sampling. For each action that is sampled to be unmasked, we select the smallest set
of actions whose cumulative probability computed from fθ exceeds P = 0.98. Then we re-
normalize the distribution including only these actions and sample from this re-normalized
distribution.

• Re-masking. Using the same techniques in (Wang et al., 2025), we don’t need to change
the ELBO Eq. (5) as well as the FKL policy loss Eq. (FKL Loss). We only need to change

D EXPERIMENTS

D.1 DNA GENERATION SETUP

Dataset. The experiment is based on a large, publicly available dataset of enhancers, which contains
activity measurements for approximately 700,000 DNA sequences, each 200 base pairs long, within
human cell lines. The dataset contains the expressive level, which is also used to train our reward
models. A masked discrete diffusion model was pretrained on the complete set of sequences.

Reward models. Following established conventions in (Wang et al., 2024a), the dataset was then
divided by chromosome to train two distinct reward models, or "oracles". These oracles, built on the
Enformer (Avsec et al., 2021) architecture, were designed to predict the enhancer activity level in
the HepG2 cell line; one oracle was used to fine-tune the models, while the other was reserved for
evaluation.

Evaluation Metrics. To conduct a thorough assessment of each model’s ability to generate effective
enhancers, the following metrics were employed:

1. Predicted Activity (Reward): This metric measures the enhancer activity level in the HepG2
cell line as predicted by the evaluation reward oracle. It’s important to note that the models
were fine-tuned using a separate oracle trained on a different chromosomal subset of the
data.

2. Approximated Log-Likelihood (App-Log-Lik): The log-likelihood of the generated se-
quences was calculated with respect to the pretrained model. This measures how "natural"
the sequences are; a low likelihood would indicate that the model over-optimized the reward
and generated out-of-distribution sequences.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

D.2 IMPLEMENTATION OF THE MACRO BASELINES

We conducted the following algorithm that converts baseline algorithms to the setup with macro
actions.

• DQN-Macro: For DQN, we directly make the Q−network output to be in the shape of
|A|K , which is the size of the total combinatorial action space.

• IMPALA-Macro: Instead of output |A| logits for a single action, the actor networks
predict K × |A|, where each |A|-dim vector is the logits for one action in the macro actions.

D.2.1 HYPERPARAMETER SEARCH FOR THE DQN-MACRO

We conduct hyperparameter search for the baseline DQN-Macro algorithm to see that whether the
our macro baselines prefer different hyper parameters from the original algorithm. we conduct search
on the following 3 parameters:

• MLP layers. The original paper include a 1-layer MLP head over the deep residual feature
extractors. We increase the number of layers to 2 and 3 to see whether the increase number
of parameters benefit macro actions.

• Prioritized experience replay exponents. Current one used for DQN is 0.6 and we try 0.4.

• The value of ϵ in the ϵ-greedy exploration. Current one used for DQN is 0.01 and we try
0.001 and 0.1.

The results are shown in Fig. 7, which shows that the default DQN parameters, also the one we used
in our main results, still perform the best for the DQN with macro actions.

0.00 0.25 0.50 0.75 1.00
Samples 1e8

0

1

2

3

4

A
vg

 N
or

m
al

iz
ed

 S
co

re RL-D2

DQN-Macro Hyperparameters:
MLP Layers

2
3
1 (current)

0.00 0.25 0.50 0.75 1.00
Samples 1e8

0

1

2

3

4

A
vg

 N
or

m
al

iz
ed

 S
co

re RL-D2

DQN-Macro Hyperparameters:
PER Exponents

0.4
0.6 (current)

0.00 0.25 0.50 0.75 1.00
Samples 1e8

0

1

2

3

4

A
vg

 N
or

m
al

iz
ed

 S
co

re RL-D2

DQN-Macro Hyperparameters:
Epsilon

0.001
0.1
0.01 (current)

Figure 7: DQN-Macro hyperparameter search. The results shows averaged human normalized score
over 10 Atari environments, each with 3 random seeds. Red dash line is the proposed RL-D2 for
reference.

D.3 SCALABILITY AND HORIZON-COMPLEXITY TRADE-OFF SETUP

Compared to the hyper parameters in Table 3, we scale the computation by the following conditions:

• Number of environment steps: 5× 108 maximum for macro action length 8 and 16.

• Model sizes: We change the heads of the transformers, 2 heads for macro aciton 4, 4 heads
for macro aciton 8, 6 heads for macro aciton length 16.

• Batch size. We change the mini-batch size to 128, resulting in a total effective batch size of
4096 for macro action length 8 and 16.

D.4 RL-D2 IMPLEMENTATION OF GOOGLE RESEARCH FOOTBALL

For the Google Research Football we used the same features using in (Song et al., 2023) and the
same scenarios settings for training and evaluation. We implemented the RKL version of RL-D2 with
a single-step ratio in a PPO (Schulman et al., 2017) framework. For the state embeddings we used

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

an additional transformer similar to the one used for the diffusion process. The transformer outputs
an state embedding for each player, which are fed as a condition for the action-transformer while
also fed to a value-head MLP network that outputs a value for each player. The value is trained as
mentioned in (Wen et al., 2022a). We trained the model and baselines over 1G enviornment steps for
11 vs 11 and 500M for the rest of the scenarios.

Table 4: Google Research Football Hyperparameters

Parameters Value Parameters Value

Critic LR 5e-4 Sample-to-insert Ratio 1.0
Actor LR 5e-4 Batch size 256
Discount factor 0.995 Number of mini-batch 1
Number of actors 256 Max grad norm 0.5
Entropy coeff 1e-2 Discount factor 0.995
Training epochs 10 Rollout size 1024
Diffusion steps Num of players Ratio clip 0.2

Tasks DQN DQN-Macro IMPALA IMPALA-Macro PPO R2D2 RL-D2

Alien 11.49k ± 105.46 2.63k ± 43.32 9.04k ± 201.70 12.40k ± 183.48 17.84k ± 480.29 8.09k ± 89.89 22.53k ± 848.31

Amidar 3.43k ± 37.04 691.56 ± 29.63 3.06k ± 12.48 5.60k ± 39.90 1.44k ± 1.89 1.64k ± 35.44 6.44k ± 71.30

Assault 5.92k ± 137.76 6.46k ± 433.42 18.34k ± 884.87 18.29k ± 467.93 5.23k ± 121.56 3.50k ± 96.09 20.99k ± 286.49

Asterix 4.56k ± 73.22 24.42k ± 611.26 361.80k ± 6.94k 28.07k ± 563.07 37.57k ± 1.92k 4.67k ± 64.12 133.56k ± 7.46k

Asteroids 1.51k ± 23.60 2.11k ± 15.32 5.71k ± 112.65 8.95k ± 145.30 14.49k ± 266.01 2.01k ± 32.60 82.24k ± 5.90k

Atlantis 984.11k ± 13.14k 802.66k ± 50.57k 1030.98k ± 6.81k 864.89k ± 1.24k 710.85k ± 18.11k 1082.26k ± 40.63k 1003.63k ± 1.79k

BankHeist 1.84k ± 18.02 1.25k ± 19.15 1.50k ± 2.70 1.10k ± 4.31 485.20 ± 4.21 944.20 ± 3.53 1.70k ± 6.59

BattleZone 116.15k ± 1.48k 43.66k ± 837.10 68.43k ± 1.12k 166.30k ± 2.96k 54.66k ± 472.35 76.09k ± 1.69k 197.94k ± 3.08k

BeamRider 3.55k ± 99.35 5.62k ± 815.84 21.07k ± 837.41 14.82k ± 143.88 29.47k ± 774.52 3.10k ± 78.03 28.98k ± 1.10k

Berzerk 340.95k ± 24.42k 1.11k ± 19.22 1.49k ± 45.20 7.43k ± 269.77 1.29k ± 33.72 110.48k ± 42.94 802.99k ± 64.87k

Bowling 266.38 ± 0.01 41.94 ± 6.70 70.00 ± 0.00 54.80 ± 0.13 149.03 ± 0.25 197.18 ± 0.17 266.38 ± 0.00

Boxing 97.13 ± 0.20 99.31 ± 0.10 100.00 ± 0.00 98.60 ± 0.02 98.99 ± 0.11 97.89 ± 0.12 99.51 ± 0.00

Breakout 76.39 ± 2.94 401.10 ± 1.61 675.48 ± 18.21 161.19 ± 5.48 394.17 ± 0.69 124.08 ± 1.44 424.15 ± 0.00

Centipede 36.42k ± 541.25 6.26k ± 214.74 8.08k ± 381.00 27.66k ± 835.60 27.60k ± 380.41 20.66k ± 247.27 68.41k ± 910.77

ChopperCommand 13.18k ± 320.75 3.59k ± 300.73 23.86k ± 630.67 15.74k ± 709.66 2.35k ± 115.21 2.52k ± 148.92 34.36k ± 609.01

CrazyClimber 93.75k ± 1.37k 136.37k ± 3.07k 136.05k ± 949.62 107.05k ± 1.55k 70.01k ± 1.19k 118.39k ± 1.04k 113.69k ± 759.99

Defender 17.60k ± 256.97 51.94k ± 496.01 427.49k ± 23.25k 33.85k ± 618.50 55.75k ± 606.50 38.70k ± 961.61 138.16k ± 7.10k

DemonAttack 3.89k ± 61.93 26.78k ± 5.85k 132.40k ± 126.41 44.64k ± 1.58k 9.91k ± 313.53 2.89k ± 35.35 55.93k ± 1.34k

DoubleDunk -0.36 ± 0.06 -3.18 ± 2.10 23.46 ± 0.07 0.00 ± 0.00 5.60 ± 0.36 -0.86 ± 0.34 24.00 ± 0.00

Enduro 651.59 ± 8.84 2.22k ± 58.92 8.16 ± 0.49 1.15k ± 19.29 1.64k ± 48.10 852.35 ± 29.13 1.45k ± 50.17

FishingDerby 68.54 ± 0.86 26.46 ± 0.52 44.99 ± 0.66 45.31 ± 0.68 0.20 ± 0.67 20.74 ± 0.99 80.64 ± 0.00

Freeway 33.82 ± 0.00 32.61 ± 0.07 32.73 ± 0.03 33.46 ± 0.03 32.68 ± 0.06 34.00 ± 0.00 33.84 ± 0.00

Frostbite 9.41k ± 14.63 3.93k ± 194.22 862.00 ± 48.06 9.00k ± 2.64 3.97k ± 429.59 10.47k ± 78.34 14.39k ± 143.25

Gopher 2.72k ± 120.47 27.47k ± 3.09k 89.58k ± 3.91k 27.69k ± 626.48 5.38k ± 132.20 3.95k ± 274.47 67.92k ± 1.32k

Gravitar 2.68k ± 11.18 1.10k ± 19.89 4.27k ± 2.64 4.87k ± 28.31 4.57k ± 5.56 3.08k ± 28.87 4.62k ± 13.83

Hero 22.90k ± 17.41 10.69k ± 452.97 28.98k ± 5.71 36.74k ± 7.49 14.08k ± 10.82 32.41k ± 685.43 28.94k ± 14.34

IceHockey 12.45 ± 0.70 4.62 ± 0.67 26.42 ± 0.15 25.69 ± 0.20 15.98 ± 0.45 -0.15 ± 0.16 46.60 ± 0.14

Jamesbond 1.41k ± 50.94 584.00 ± 9.20 1.74k ± 66.32 75.06k ± 80.92 1.60k ± 155.90 1.08k ± 18.32 18.21k ± 3.59k

Kangaroo 14.67k ± 113.45 8.96k ± 273.42 14.50k ± 0.00 14.22k ± 8.61 2.00k ± 0.00 12.80k ± 127.16 15.26k ± 10.64

Krull 69.80k ± 1.86k 9.36k ± 132.50 10.02k ± 38.49 83.59k ± 2.56k 8.97k ± 83.18 61.42k ± 1.50k 385.51k ± 3.70k

KungFuMaster 26.71k ± 236.87 36.65k ± 718.07 55.69k ± 1.09k 15.98k ± 206.24 31.15k ± 465.11 54.57k ± 1.02k 63.76k ± 789.60

MontezumaRevenge 835.28 ± 36.72 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 400.00 ± 0.00 400.00 ± 0.00 2.50k ± 7.26

MsPacman 20.18k ± 162.54 3.90k ± 130.60 8.85k ± 77.01 7.77k ± 63.70 21.04k ± 250.98 9.82k ± 68.46 22.87k ± 3.39

NameThisGame 6.86k ± 68.39 14.91k ± 442.47 15.64k ± 90.75 13.69k ± 109.46 8.40k ± 68.86 7.15k ± 81.37 12.66k ± 197.84

Phoenix 4.98k ± 66.88 14.11k ± 1.41k 192.34k ± 11.13k 6.37k ± 38.35 43.91k ± 3.04k 5.61k ± 46.40 202.39k ± 5.33k

Pitfall 0.00 ± 0.00 -2.48 ± 0.94 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Pong 13.31 ± 0.12 19.70 ± 0.13 20.47 ± 0.09 12.25 ± 0.22 21.00 ± 0.00 19.73 ± 0.11 21.00 ± 0.00

PrivateEye 35.22k ± 4.16 100.00 ± 0.00 389.34 ± 268.73 99.64 ± 0.02 1.59k ± 0.57 35.12k ± 28.48 15.18k ± 4.02

Qbert 29.68k ± 62.59 9.00k ± 431.38 15.66k ± 386.65 475.04 ± 0.03 5.49k ± 263.05 16.68k ± 213.54 30.85k ± 57.30

Riverraid 7.48k ± 81.04 17.07k ± 492.67 18.44k ± 100.97 9.87k ± 39.11 8.01k ± 56.74 11.33k ± 90.61 17.94k ± 98.91

RoadRunner 317.32k ± 9.62k 52.61k ± 630.59 59.20k ± 368.83 514.91k ± 7.59k 23.88k ± 212.10 77.74k ± 1.95k 563.86k ± 2.53k

Robotank 33.33 ± 0.72 66.72 ± 0.49 71.97 ± 0.33 66.67 ± 0.17 63.62 ± 0.51 31.22 ± 0.20 66.74 ± 0.79

Seaquest 3.97k ± 37.56 24.67k ± 5.63k 27.12k ± 824.83 10.85k ± 134.19 6.87k ± 72.78 3.63k ± 194.09 144.62k ± 4.65k

Skiing -4.43k ± 5.26 -29.41k ± 266.48 -9.01k ± 0.07 -8.95k ± 0.00 -15.00k ± 111.88 -27.93k ± 185.34 -4.41k ± 7.47

Solaris 15.00k ± 517.51 3.26k ± 181.94 2.22k ± 113.16 2.41k ± 47.98 6.00k ± 146.73 3.02k ± 160.32 14.39k ± 263.47

SpaceInvaders 2.02k ± 30.80 6.22k ± 714.13 41.54k ± 8.75k 9.92k ± 329.91 3.87k ± 56.20 1.75k ± 59.99 10.86k ± 480.94

StarGunner 1.40k ± 22.05 96.97k ± 7.53k 142.15k ± 838.43 29.10k ± 850.92 33.55k ± 427.98 2.23k ± 42.72 52.69k ± 448.91

Tennis 0.00 ± 0.00 20.77 ± 0.54 0.00 ± 0.00 0.00 ± 0.00 -2.34 ± 0.58 -1.69 ± 0.51 22.20 ± 0.17

TimePilot 34.33k ± 404.16 10.66k ± 159.67 55.38k ± 918.01 109.15k ± 4.05k 33.82k ± 544.74 11.37k ± 222.24 42.26k ± 722.78

Tutankham 160.03 ± 1.36 213.78 ± 8.55 240.49 ± 9.66 187.71 ± 0.03 190.20 ± 1.81 120.27 ± 3.63 230.73 ± 0.84

UpNDown 76.44k ± 910.55 65.52k ± 9.48k 422.67k ± 2.82k 322.33k ± 3.00k 240.21k ± 9.79k 127.06k ± 2.61k 264.48k ± 2.48k

Venture 2.05k ± 12.84 1.50k ± 35.34 20.00 ± 0.00 1.99k ± 2.95 1.41k ± 24.61 1.50k ± 24.88 2.06k ± 3.76

VideoPinball 155.83k ± 3.47k 341.15k ± 59.03k 542.75k ± 15.87k 392.46k ± 17.02k 63.37k ± 4.76k 117.67k ± 3.64k 545.38k ± 76.91k

WizardOfWor 31.94k ± 1.13k 16.52k ± 1.16k 19.41k ± 371.79 39.40k ± 406.34 9.68k ± 1.12k 10.94k ± 529.67 58.41k ± 588.34

YarsRevenge 82.41k ± 1.41k 70.73k ± 1.80k 125.27k ± 1.07k 139.64k ± 1.55k 70.65k ± 600.98 75.95k ± 785.33 165.95k ± 245.07

Zaxxon 18.84k ± 311.75 12.58k ± 727.69 34.99k ± 233.45 45.80k ± 276.10 30.07k ± 262.07 13.28k ± 505.46 30.60k ± 310.47

Table 5: Full Performance of Atari Games.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 FULL RESULTS FOR ATARI GAMES

Please refer to Table 5 for the full results of Atari games, and Fig. 8 for the comparison with the best
baselines. We outperm all the baselines in 36 out of 56 Atari environments.

Ja
m

es
bo

nd
Up

N
D

ow
n

Ti
m

eP
ilo

t
A

st
er

ix
St

ar
G

un
ne

r
A

tla
nt

is
Sp

ac
eI

nv
ad

er
s

G
op

he
r

D
em

on
A

tt
ac

k
D

ef
en

de
r

Br
ea

ko
ut

Za
xx

on
C

ra
zy

C
lim

be
r

En
du

ro
Ro

bo
ta

nk
N

am
eT

hi
sG

am
e

Pr
iv

at
eE

ye
H

er
o

Ba
nk

H
ei

st
G

ra
vi

ta
r

Tu
ta

nk
ha

m
So

la
ris

Ri
ve

rr
ai

d
Be

am
Ri

de
r

Bo
xi

ng
Fr

ee
w

ay
Po

ng
Pi

tf
al

l
Bo

w
lin

g
Sk

iin
g

Ve
nt

ur
e

Q
be

rt
Te

nn
is

Ka
ng

ar
oo

Fi
sh

in
gD

er
by

D
ou

bl
eD

un
k

M
sP

ac
m

an
M

on
te

zu
m

aR
ev

en
ge

Ku
ng

Fu
M

as
te

r
A

m
id

ar
Ya

rs
Re

ve
ng

e
A

lie
n

Ba
tt

le
Zo

ne
Fr

os
tb

ite
A

st
er

oi
ds

Ph
oe

ni
x

C
ho

pp
er

C
om

m
an

d
Ic

eH
oc

ke
y

Vi
de

oP
in

ba
ll

W
iz

ar
dO

fW
or

Kr
ul

l
A

ss
au

lt
Be

rz
er

k
Ro

ad
Ru

nn
er

C
en

tip
ed

e
Se

aq
ue

st

-100%

0%

100%

 200%

Pe
rf

or
m

an
ce

 G
ai

n

Figure 8: Mean human normalized score of RL-D2 compared to the best baselines in each Atari task.

E.2 ABLATION OF TEMPERATURE TUNING

We conduct ablation studies on the temperature tuning discussed in Appendix C.2 on multiple
benchmarks including MinAtar, Atari and Google Football.

E.2.1 MINATAR

For MinAtar, the current temperature is updated following a KL constraint is set to 1.0. We compare
auto-tuning with fixed temperatures. The results are shown in Fig. 9, showing the auto-tuning
consistently outperforms fixed temperature.

learn
ed 1.0 0.01

0.0001
0

20

40

60

Sc
or

e

asterix

learn
ed 1.0 0.01

0.0001

101

102

103

104

Sc
or

e
(L

og
 S

ca
le

)

breakout (Log Scale)

learn
ed 1.0 0.01

0.0001
0

20

40

60

Sc
or

e

freeway

learn
ed 1.0 0.01

0.0001
0

100

200

Sc
or

e

seaquest

learn
ed 1.0 0.01

0.0001
0

1

2

Sc
or

e

1e6
space_invaders

Mean Score
Highest Score

Figure 9: Ablation studies of temperature tuning with fixed temperature variable. Bars indicates the
mean episode returns over last 100 evaluations over 3 seeds.

E.2.2 ATARI GAMES

For Atari games, we use KL constraint schedule linearly decaying from 1 to 0.1 in the first 107
samples. The intuition behind this selection is that, in vast combinatorial discrete spaces, a larger
initial KL constraint allows the policy to deviate significantly from initialization, enabling the broad
exploration necessary to discover high-value actions.

We compare auto-tuning with other two temperature control scheme: Fixed KL constraints 1.0 and
0.1; The results are shown in Fig. 10, showing that smaller KL constraints like 0.1 fails to learn in
the initial phase. Large KL constraints like 1.0 will cause instabilities after 50M steps, which makes
the performance worse. The linear decay achieves initial fast learning and overall stability.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Samples 1e8

0

1

2

3

4

A
ve

ra
ge

 H
um

an

 N
or

m
al

iz
ed

 S
co

re

Ablations of Temperature Tuning with Hard KL Constraints

KL Cstr Schedule
1.0 -> 0.1 linear decay
1.0 fixed
0.1 fixed

Figure 10: Ablation studies of temperature tuning with hard KL constraints, compared with different
KL constraint schedules. The results shows averaged human normalized score over 10 Atari environ-
ments, each with 3 random seeds.

E.2.3 GOOGLE FOOTBALL

We compare three different KL constraint schedule in Google Football, 0.1, 1.0, and 10. the results
are shown in Fig. 11, which shows another failure mode of collapsing for larger KL constraints. The
reason might be that larger KL constraints push the policy to be highly deterministic. Therefore, the
collected data lost diversity, making the training failed.

0 1 2 3 4 5 6
Samples 1e8

0.00

0.25

0.50

0.75

W
in

 R
at

e

Sensitivity Analysis of KL Constraint on Google Football

KL Cstr
1.0
10.0
0.1

Figure 11: Sensitivity studies of temperature tuning with hard KL constraints on Google Football 11
vs 11. The results shows averaged win rate over 5 random seeds.

In summary, the temperature tuning is significant to the performance of RL-D2-FKL. When selecting
the KL constraints, we should consider two key factors: (1) The initial KL constraint should be large
so that the policy can start learning; (2) Avoid collapsing in the later training phase by enforcing not
too large KL constraints. Although not necessary, a decay schedule is very helpful to stabilize the
training and get better performance.

E.3 DISCRETE DIFFUSION AS PLANNER FOR CAUSAL ACTION SPACES

In applications of macro actions in Atari games, we can just commit to the first action rather than all
the macro actions. Therefore, it is common to plan for a longer trajectory and only commits to the
first action, such as model predictive control and Monte-Carlo tree search (Garcia et al., 1989; Silver
et al., 2016). However, if we would like to implement planning in online RL, the parameterization of
the planning trajectory is not trivial. If we use autoregressive models as our the parameterization to
generate the trajectory, the next action will depend only on the current state and not depend on the
planned trajectory, leaving future actions useless.

Benefiting from the non-casual unmasking of discrete diffusion models, we can directly use the
discrete diffusion to parameterize the planner. Note that this is a total different setup and algorithm
from the main text Sec. 5.2. We show the planner performance with the same set of hyperparameters
in Table 3 with varying planning steps shown in Fig. 12. The performance increase with increasing

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Samples 1e8

0

1

2

3

4

5

A
ve

ra
ge

 H
um

an
 N

or
m

al
iz

ed
 S

co
re

RL-D2

Using discrete diffusion as a planner with different planning steps

Planning steps
2
4
8

Figure 12: Performance with using discrete diffusion as a planner with different length of planning
steps, averaged over 10 Atari games with 3 random seed each game.

planning length, showcasing that only committing to the first action increase the robustness of
committing all macro actions. The planner is also scalable with respect to the increasing size of
action spaces.

Algorithm 1 Discrete Diffusion as Planners

Require: Planning length K, current policy πold, replay buffer D, current value function qπold .
1: # Policy updates in training.
2: For states s ∼ D, sample macro actions a = (a1, . . . , ak), compute LELBO with Eq. (5).
3: Take the first one to compute value function qπold(s, a1).
4: Optimize the policy by self-imitation loss Eq. (FKL Loss).
5: # Inference.
6: Sample macro actions (a1, . . . , ak) and only take a = a0.

E.4 ABLATION OF ON-POLICY DIFFUSION TRAINING.

We conduct ablation studies on the on-policy training discussed in Sec. 4.2 and the results are shown
in Fig. 13, which shown the on-policy diffusion training help improve the performance.

0.0 0.2 0.4 0.6 0.8 1.0
Samples 1e8

0

1

2

A
ve

ra
ge

 H
um

an

 N
or

m
al

iz
ed

 S
co

re

Use On-policy Diffusion
False
True

Figure 13: Ablation studies of on-policy diffusion training. The curves indicates mean reward using
macro length 8 over 10 representative Atari environments, 3 seed, and 10 consecutive evaluation
episodes.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

E.5 ABLATION OF NETWORK ARCHITECTURE.

We compare using multi-layer perceptrons (MLP) versus transformers (Vaswani et al., 2017) for
parameterization of the Q and policy networks. The two networks share the same amount of
parameters around 4× 105. We can see the transformer consistently outperform MLP.

0.0 0.5 1.0
Samples 1e8

0

2

4

A
ve

ra
ge

 H
um

an

 N
or

m
al

iz
ed

 S
co

re

Macro Action Length: 4

architecture
MLP
Transformer

0.0 0.5 1.0
Samples 1e8

0

1

2

3

A
ve

ra
ge

 H
um

an

 N
or

m
al

iz
ed

 S
co

re

Macro Action Length: 8

architecture
MLP
Transformer

0.0 0.5 1.0
Samples 1e8

0.0

0.5

1.0

1.5

A
ve

ra
ge

 H
um

an

 N
or

m
al

iz
ed

 S
co

re

Macro Action Length: 16

architecture
MLP
Transformer

Figure 14: Ablation studies of on-policy diffusion training. The curves indicates mean reward using
macro length 8 over 10 representative Atari environments, 3 seed, and 10 consecutive evaluation
episodes.

E.6 IMPORTANCE SAMPLING RATIO ESTIMATION

We compare two methods to handle the unknown log probabilities for RL-D2-RKL. (1) augmented
MDP in Sec. 4.1 and (2) ELBO-based estimation in Appendix B.3. The results are shown in Table 6.
The ELBO estimator does not show good performance due to estimating the importance sampling
ratio using the ratio of two lower bounds. Therefore, all the results in the main text are using the
augmented MDP approach and we defer the ELBO-based estimation to the Appendix B.3 just for
reference.

pass & shoot run pass & shot 3 vs 1 ct-easy ct-hard corner 5 vs 5 11 vs 11

Augmented MDP 100 ± 0.0 98.5 ± 1.6 98.6 ± 1.0 99.1 ± 0.6 97.7 ± 2.2 96.3 ± 3.4 99.6 ± 0.4 99.8 ± 0.2

ELBO 90.0 ± 10.0 62.6 ± 20.9 72.6 ± 14.0 7.9 ± 3.5 6.3 ± 0.6 13.4 ± 6.2 46.0 ± 13.4 0.0± 0.0

Table 6: Comparing two importance sampling ratio estimation for RL-D2-RKL on Google Football.
The augmented MDP approach performs much better than ELBO-based importance sampling ratio
estimation.

E.7 COMPARING FKL V.S. RKL WITH SAME COMPUTATION ON ATARI GAMES

The actual bottleneck of Atari games is computations due to using a deep residual network to handle
image inputs. Therefore, to compare the performance and stability of FKL and RKL in Atari games,
we align the training wall time while adapting the batch size. The results are showin in Fig. 15. We
can see that in general FKL has a better performance than RKL, further verifying the fact that FKL
learn faster than RKL we observed in Table 2. Moreover, FKL is less sensitive batch sizes, showing
only marginal increase when increasing batch sizes. RKL show large performance improvement when
increasing batch size from 256 to 5123, showing RKL favors larger batches because the high-variance
nature of augmented MDP method.

F BASELINE SELECTION PROTOCOL

Our baseline selection protocol was designed to rigorously evaluate the performance, scalability, and
versatility of RL−D2 across the distinct challenges presented by combinatorial action spaces. We
selected a diverse set of baselines, ranging from established standards in reinforcement learning to

3One sample in the batch is a 32-step trajectory rather than a transition pair, which is a common practice in
training pipelines used for Atari games. Therefore, the actual number of transition pairs is 32 times more.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

0 18 36 54 72 90
Wall time (hours)

0

2

4

A
ve

ra
ge

 H
um

an

 N
or

m
al

iz
ed

 S
co

re Algorithm and batch size
FKL 128
FKL 256 (default)
FKL 512
RKL 128
RKL 256 (default)
RKL 512

Figure 15: Comparing FKL and RKL, on-policy, in Atari games with different learner batch sizes.
The curves shows averaged human normalized score over 10 atari games with 3 random seeds each
game.

domain-specific state-of-the-art methods, ensuring that our comparisons were fair, comprehensive,
and directly addressed the central claims of our work.

The selection was tailored to the three specific experimental domains:

F.1 DNA SEQUENCE GENERATION

This domain tests the single-step policy optimization (combinatorial bandit) capabilities of our
framework. The baselines were chosen to cover two main categories:

• Controlled Generation Methods: We included standard guidance-based techniques (CG,
SMC, TDS, and CFG). These methods are not based on RL policy optimization but are
common for guiding generative models toward desired properties. This comparison validates
RL-D2 against non-RL finetuning approaches.

• State-of-the-Art RL Finetuning: We included DRAKES, a strong, recent baseline that
also uses RL to optimize a generative model for sequence generation. DRAKES employs
the Gumbel-Softmax trick to enable reward backpropagation through the generative process.
This provides a direct comparison against another RL-based approach for finetuning discrete
generative models.

F.1.1 MACRO ACTIONS

This domain tests the ability of RL-D2 to handle online RL in complex, long-horizon tasks by
modeling sequences of primitive actions.

• Standard RL Baselines: We first included strong, general-purpose RL algorithms (DQN,
IMPALA, PPO, R2D2) that operate on a single-action level. These baselines establish a
performance reference and demonstrate the inherent difficulty of the tasks without temporal
abstraction.

• Adapted Macro-Action Baselines: To create a direct comparison, we adapted standard
algorithms to handle macro-actions, as detailed in Appendix D.2:

– DQN-Macro: This baseline represents a "naive" approach, where the Q-network’s
output layer is expanded to |A|K . This directly exposes the challenge of exponential
scaling that RL-D2 is designed to overcome.

– IMPALA-Macro: This baseline represents a "factored" approach, where the policy
network outputs K × |A| logits, assuming conditional independence between actions
in the macro-action sequence.

These adaptations allow us to test our hypothesis that an expressive, non-causal generative
model (our diffusion policy) can outperform both naive exponential-space methods and
simple independent factorization methods.

F.2 COOPERATIVE MULTI-AGENT REINFORCEMENT LEARNING

This domain tests RL-D2 on modeling the combinatorial joint action of multiple agents.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

• Autoregressive (AR) Policy: We selected a strong autoregressive transformer policy as
our primary baseline. This is a dominant and highly effective paradigm for modeling joint
actions, where the action for each agent is sampled sequentially, conditioned on the actions
of previous agents.

• This comparison is central to our motivation. The introduction (Section 1) explicitly notes
that AR models impose an artificial causal ordering. By comparing RL-D2 (a non-causal
generative model) against a strong AR baseline, we directly test our claim that diffusion’s
flexible, non-causal generation process is a superior parameterization for modeling complex
inter-agent dependencies in MARL.

27

	Introduction
	Related Work
	Preliminaries
	Problem Setup
	Policy Mirror Descent
	Masked Discrete Diffusion Processes

	RL-D2: Reinforcement Learning with Discrete Diffusion
	Reverse and Forward KL
	On-Policy Diffusion Learning

	Experiments
	DNA Sequence Generation: Single-step Policy Optimization
	Reinforcement Learning with Macro Actions
	Cooperative Multi-Agent Reinforcement Learning
	Empirical Selection of FKL and RKL

	Summary
	Masked Discrete Diffusion Process
	Proofs and Derivations
	Proof to the Forward KL Loss eq:fklloss
	Proof to The Reverse KL Loss eq:rklloss
	Using ELBO as An Estimator of Importance Sampling Ratios

	Implementation Details
	RL-D2 Implementation Details for Atari
	Temperature Tuning By Hard KL Divergence Constraints
	Sampling Techniques.

	Experiments
	DNA Generation Setup
	Implementation of the Macro baselines
	Hyperparameter Search for the DQN-Macro

	Scalability and Horizon-Complexity Trade-off Setup
	RL-D2 Implementation of Google Research Football

	Additional Experimental Results
	Full Results for Atari Games
	Ablation of temperature tuning
	MinAtar
	Atari Games
	Google Football

	Discrete Diffusion as Planner for Causal Action Spaces
	Ablation of On-Policy Diffusion Training.
	Ablation of Network Architecture.
	Importance Sampling Ratio Estimation
	Comparing FKL v.s. RKL with Same Computation on Atari Games

	Baseline Selection Protocol
	DNA Sequence Generation
	Macro Actions

	Cooperative Multi-Agent Reinforcement Learning

