
DuSA: Fast and Accurate Dual-Stage Sparse Attention
Mechanism Accelerating Both Training and Inference

Chong Wu∗

Dept of Electrical Eng
City University of Hong Kong

chongwu2-c@my.cityu.edu.hk
imroxaswc@gmail.com

Jiawang Cao∗
Opus AI Research

gavin.cao@opus.pro

Renjie Xu∗

Dept of Electrical Eng
City University of Hong Kong
harryxu950510@gmail.com

Zhuoheng Ran
Dept of Electrical Eng

City University of Hong Kong
zhuoheran2-c@my.cityu.edu.hk

Maolin Che†
School of Mathematics and Statistics

Guizhou University
chncml@outlook.com

Wenbo Zhu
Opus AI Research

vito.zhu@opus.pro

Hong Yan
Dept of Electrical Eng

City University of Hong Kong
h.yan@cityu.edu.hk

Abstract

This paper proposes the Dual-Stage Sparse Attention (DuSA) mechanism for at-
tention acceleration of transformers. In the first stage, DuSA performs intrablock
sparse attention to aggregate local inductive biases. In the second stage, DuSA
performs interblock sparse attention to obtain long-range dependencies. Both
stages have low computational complexity and can be further accelerated by mem-
ory acceleration attention mechanisms directly, which makes DuSA faster than
some extremely fast attention mechanisms. The dual-stage sparse attention design
provides a lower error in approximating vanilla scaled-dot product attention than
the basic single-stage sparse attention mechanisms and further advances the ba-
sic sparse attention mechanisms to match or even outperform vanilla scaled-dot
product attention. Even in some plug and play situations, DuSA can still maintain
low performance loss. DuSA can be used in both training and inference acceler-
ation. DuSA achieves leading performance in different benchmarks: long range
arena, image classification, semantic segmentation, object detection, text to video
generation, and long context understanding, and accelerates models of different
sizes.

1 Introduction

The vanilla scaled-dot product attention (VSA) mechanism [1] is a core technique in transformers
due to its ability to capture and model long-range dependencies [2]. However, the softmax operation
after the scaled-dot product becomes the main bottleneck that makes the computational complexity
of VSA the square of the sequence length and significantly limits efficiency of VSA [3].

∗Equal contribution
†Corresponding author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

To improve efficiency, various attention acceleration methods have been proposed. Among them,
FlashAttention [4] is a milestone in attention acceleration that provides an exact method of attention
acceleration by optimizing memory input/output (I/O) operations. Its successors [5, 6] further improve
memory efficiency. In addition to these memory acceleration attention mechanisms, other methods
focus on optimizing the computation bound by using the kernel trick to find a linear approximation
[2, 3, 7–19] or utilizing the sparsity of attention matrices to perform local attention operations [18, 20–
30]. These methods are usually called computation acceleration attention mechanisms. Memory
acceleration attention mechanisms can usually provide an exact attention operation to replace the
vanilla scaled-dot product attention mechanism directly. However, they are usually hardware-aware
and their computational complexity is still quadratic with respect to the sequence length [18].
Computation acceleration attention mechanisms are usually faster than memory acceleration attention
mechanisms, and some of them [18, 29, 30] can be further accelerated by memory acceleration
attention mechanisms. However, most of them have inferior performance compared to VSA and
cannot directly replace VSA without training or tuning.

𝑨1 ∈ ℝ
6×6

𝑨2 ∈ ℝ
6×6

𝑯1 ∈ ℝ
6×1

𝑯2 ∈ ℝ
6×1

𝑽 ∈ ℝ6×1

𝑲 ∈ ℝ6×1

𝑸 ∈ ℝ6×1

Stage 1

softmax

softmax

Stage 2

Figure 1: The overview of DuSA. Boxes with grey color denote zeros. Figs. 2 and 3 shows two
examples for obtaining A2.

𝑨′ ∈ ℝ20×20 𝑯1 ∈ ℝ
20×1 𝑯2 ∈ ℝ

20×1𝑨1 ∈ ℝ
20×20 𝑽 ∈ ℝ20×1 𝑯1 ∈ ℝ

20×1

Stage 1: Intrablock

sparse attention

Stage 2: Interblock sparse

attention (Strategy 1)

𝑏 = 4, 𝑚 = 20

Figure 2: DuSA performs intrablock sparse attention within each block to obtain local inductive
biases in Stage 1. DuSA performs interblock sparse attention to obtain global information in Stage 2.
Here the blockify strategy is Strategy 1 in Remark 1. The different colors in attention matrices (A1

and A2 = A′) denote the different blocks. The color changes between V and H1 and between H1 and
H2 denote the information aggregation process.

𝑨1
′′ ∈ ℝ20×20 𝑨2

′′ ∈ ℝ20×20 𝑨3
′′ ∈ ℝ20×20 𝑨4

′′ ∈ ℝ20×20 𝑨′′ ∈ ℝ20×20 𝑯1 ∈ ℝ
20×1 𝑯2 ∈ ℝ

20×1𝑏 = 4, 𝑚 = 20

Figure 3: DuSA using Strategy 2 in interblock sparse attention can aggregate more information.
A2 = A′′. A′′

1 = A′ and A′′
k (k ̸= 1) can be obtained using the rolling indices introduced in Remark 2.

This paper proposes Dual-Stage Sparse Attention (DuSA), a novel attention mechanism, for attention
acceleration of transformers. This work builds on the basic single-stage sparse attention mechanisms
[25] and advances the field further through the novel accurate dual-stage sparse attention mechanism
design as shown in Fig. 1. DuSA performs intrablock sparse attention in the first stage and interblock
sparse attention in the second stage, which makes DuSA capable of obtaining intrablock information
(local inductive biases) and interblock information (long-range dependencies) at the same time and
is significantly different from commonly used sparse attention mechanisms [23–25, 27–30]. Both

2

stages have low computational complexity and can be further accelerated by memory acceleration
attention mechanisms directly. In summary, this paper has the following contributions.

(i) A novel and effective dual-stage sparse attention (DuSA) mechanism is proposed to signifi-
cantly accelerate training and inference processes.

(ii) A mathematical relationship between DuSA and VSA is given: 1. The theoretical upper
bound using DuSA to approximate VSA is derived. 2. The numerical results demonstrate
that the dual-stage design has a lower approximation error than the single-stage design,
despite the higher theoretical upper bound.

(iii) DuSA can approximate VSA with a low error: DuSA can maintain 97%+ performance using
75%-94% sparsity ratios by replacing VSA in vision transformers (ViTs) directly without
training, and surpasses VSA after training.

(iv) DuSA surpasses state-of-the-art methods in terms of better performance and faster speed in
different tasks.

2 Related work

Efficient attention mechanisms have been extensively studied to mitigate the quadratic complexity of
attention. These methods can be classified into two categories based on their optimization focus: (1)
memory acceleration methods and (2) computation acceleration methods.

2.1 Memory acceleration methods

Memory acceleration methods are usually hardware-aware and focus on minimizing memory I/O
access to reduce complexity for some certain types of GPU architectures. FlashAttention [4] is the
milestone for memory acceleration in attention computation. FlashAttention-2 (FA2) [5] is a major
update version of FlashAttention, which further improves efficiency. FlashAttention-3 is a version
that supports new features or characteristics of the new Hopper GPU architectures. Inspired by
FlashAttention, some variants of FlashAttention have been proposed. FlashSigmoid [31] implements
a memory efficient sigmoid attention mechanism based on FA2. Native sparse attention (NSA) [29]
and SpargeAttn [30] implement memory efficient selective sparse attention based on FlashAttention.
Different to NSA, SpargeAttn is designed only for inference acceleration, which cannot be used to
accelerate the training process.

2.2 Computation acceleration methods

Computation acceleration methods can be classified into two types: (1) the linear kernelized attention
mechanism; (2) the sparse/local attention mechanism according to whether or not the sparse property
of the attention matrices is utilized.

2.2.1 Linear kernelized attention mechanisms

Linear kernelized attention mechanisms use the kernel trick to approximate the softmax normalization
of the vanilla scaled-dot product of the query matrix and the key matrix into a linear product of two
independent feature maps. Powerful feature map design becomes the key problem in this kind of
efficient attention mechanism. Rectified linear unit (ReLU) [32] based feature maps are commonly
used to approximate softmax normalization of the vanilla scaled-dot product of the query matrix
and the key matrix, such as the ReLU-based feature map dividing by sequence length [9], the cubic
ReLU-based feature map [7], the convolution-enhanced ReLU-based feature map [33], and the
exponential linear unit (ELU) [34] based feature map [10]. In addition to ReLU-based feature maps,
there are some other types of feature maps, such as the cos-based nonlinear feature map [14] and the
independent softmax-based feature map [8, 15, 18]. The attention matrix is approximately low-rank
[17], therefore, another kind of feature map design is based on low-rank decomposition methods,
such as the Nyström approximation [2, 3, 12, 35], the CUR decomposition [17], the singular value
decomposition (SVD) [36], and matrix decomposition [37].

3

2.2.2 Sparse/local attention mechanisms

Sparse/local attention mechanisms are based on the sparse property of attention matrices and usually
use blockify methods, such as sliding windows, to partition the original sequences into smaller blocks
[18]. Attention computation is limited within these blocks. Computational complexity can be reduced
to almost sublinear complexity with an increasing number of blocks. Blockify methods based on
sliding windows were first introduced by Longformer [24] and Swin [20]. Due to the local nature of
the blocks, global information is easily lost. Different compensation strategies have been proposed,
and most existing methods are based on the combination of different sparse attention mechanisms.
CSWin [21] introduces two different cross-shaped sliding windows in two parallel attention heads
and combines the attention results of two heads to reduce global information loss. Some methods
use several fixed-step or randomly selected tokens to introduce long-range dependencies [25, 27].
Reformer [28] proposes a locality-sensitive-hashing (LSH) algorithm for selecting tokens to perform
sparse attention, while the explicit sparse transformer [23] proposes top-k selective attention. NSA
[29] combines compressed attention, top-k selective attention, and sliding window-based attention to
propose a hierarchical sparse attention mechanism to obtain different levels of information. Unlike
these hierarchical sparse attention mechanisms, ELFATT [18] proposes a hybrid head architecture
which combines simple sparse blockify attention with global kernelized linear attention in two
parallel heads to obtain global information. XAttention [38] uses the sum of antidiagonal values of
the attention matrix to select blocks for a further sparse attention computation within these blocks.

This work is significantly different from the above sparse attention mechanisms. DuSA introduces a
novel dual-stage sparse attention mechanism design as shown in Fig. 1. The first stage (intrablock
sparse attention) is used to obtain intrablock information (local inductive biases) and the second stage
(interblock sparse attention) is used to aggregate all blocks according to their similarities (attention
scores) to obtain interblock information (long-range dependencies). Hence, DuSA can approximate
VSA with a low error. Both stages have low computational complexity and are compatible with mem-
ory efficient methods, which can be further accelerated. As an enhanced alternative for basic sparse
attention, DuSA can further improve and accelerate some advanced sparse attention mechanisms.

3 Methods

3.1 Vanilla scaled-dot product attention

For an input embedding matrix H ∈ Rm×c, after three linear transformations, we can obtain the
following,

Q = HWQ, K = HWK , V = HWV , (1)
where WQ ∈ Rc×c, WK ∈ Rc×c, and WV ∈ Rc×c are three scaling transformation matrices,
Q ∈ Rm×c, K ∈ Rm×c, and V ∈ Rm×c are the query matrix, key matrix, and value matrix,
respectively. Vanilla scaled-dot product attention (VSA) obtains the attention matrix A ∈ Rm×m and
the updated embedding matrix H as follows,

A = softmax

(
QK⊤
√
c

)
, H← AV. (2)

Since m ≫ c, the softmax operation for the scaled-dot product of Q and K makes VSA quadratic
computational complexity with respect to m and becomes the main bottleneck of efficiency.

3.2 Dual-stage sparse attention

Dual-Stage Sparse Attention (DuSA) can be expressed as a two-stage sparse attention process as Figs.
2 and 3 show. In the first stage, DuSA performs local attention (intrablock sparse attention) within
each block as follows,

A1 = softmax

(
QK⊤
√
c
⊙ Z1

)
, H1 ← A1V, (3)

where⊙ denotes the Hadamard product [39] and Z1 = D(m/b)⊗U(b) with⊗ denoting the Kronecker
product [39], b being the block size, D(m/b) ∈ R(m/b)×(m/b) being a matrix of which diagonal
elements are 1 and all the other elements are −∞, and U(b) ∈ Rb×b being the all-ones matrix.

4

Before considering the second stage of DuSA, we need to consider the mathematical expressions for
blockify Strategies 1 and 2 in Figs. 2 and 3.
Remark 1. Let Jj = {j, j+b, . . . , j+(m/b−1)b} with j = 1, 2, . . . , b. Hence, for blockify Strategy
1, the matrix Z2 ∈ Rm×m is defined as Z2(Jj , Jj)1= U(m/b) with j = 1, 2, . . . , b, and all the other
elements of Z2 are −∞. Therefore, one has

A′ = softmax

(
QK⊤
√
c
⊙ Z2

)
, H′ ← A′H1. (4)

Remark 2. We also introduce several notations (rolling indices) as follows:

{J(1)1 , J(1)2 , . . . , J(1)b−1, J
(1)
b } = {J1, J2, . . . , Jb},

{J(2)1 , J(2)2 , . . . , J(2)b−1, J
(2)
b } = {J2, . . . , Jb, J1},

. . .

{J(b)1 , J(b)2 , . . . , J(b)b−1, J
(b)
b } = {Jb, J1, . . . , Jb−1}.

For each k, the matrix A′′
k is defined as A′′

k(Jj , Jj) = A(J(k)j , J(k)j) with j = 1, 2, . . . , b, and
A′′
k(Jj , Jj′) = 0(m/b) with 0(m/b) ∈ R(m/b)×(m/b) being the all-zeros matrix and j ̸= j′. Note that

A′′
1 = A′. Therefore, for blockify Strategy 2, we have

A′′ =

b∑
k=1

A′′
k , H′′ ← A′′H1. (5)

The upper bounds of Eqs. (3-5) are discussed in Section A1 in Appendix. Based on Remarks 1 and 2,
the second stage of DuSA performs interblock sparse attention as follows,

A2 = A′′, H2 ← H′′ = A′′H1 = A2(A1V), (6)

or
A2 = A′, H2 ← H′ = A′H1 = A2(A1V). (7)

4 Experiments and results

4.1 Experiment settings

DuSA is evaluated in image classification (ImageNet-1K [40]), long range arena (LRA [41]), text to
video generation (Open-Sora 2.0 [42] prompt sets2), semantic segmentation (ADE20K [43]), object
detection (MS COCO 2017 [44]), and long context understanding (LongBench [45]) tasks. DuSA0
denotes DuSA (without using Strategies 1 and 2), DuSA1 denotes DuSA (Strategy 1), and DuSA2
denotes DuSA (Strategy 2). If not specified, all results of DuSA were obtained using DuSA2. For
image classification, semantic segmentation, and object detection tasks, we compared DuSA with
Agent [16], cross-shaped sliding window attention (CSW) [21], EFFATT [15], ELFATT [18], FA2
[5], FLatten [7], sliding window attention (SW) [20], and VSA [1]. The ViT backbones used for
image classification, semantic segmentation, and object detection tasks are: CSWin-T/B [7, 21] and
Swin-T/B [20]. The original backbones using CSW or SW are named with the suffix “LOCAL”:
CSWin-T/B-LOCAL and Swin-T/B-LOCAL. The naming scheme for backbones using other attention
mechanisms to replace CSW or SW is to add the corresponding attention mechanism name as a
suffix after the backbone name, for example, CSWin-T-DuSA. We followed the training protocol of
[18, 21, 46] to adopt the same training settings and data augmentation methods to train all methods.
Some advanced non-ViT architectures: ConvNeXt-T [47] and VMamba-T [46] are selected for
comparison. The experiments were conducted using 8 NVIDIA vGPU (32GB) GPUs. For LRA, we
compared DuSA with FA2, Linformer [22], Nyströmformer [3], Primal [36], Reformer [28], and VSA.
We followed the training protocol and the settings of [18, 36] and performed the experiments using 1

1For a given matrix B ∈ Rm×n, and two index sets I = {i1, . . . , is} ⊂ {1, 2, . . . ,m} with 1 ≤ i1 <
· · · < is ≤ m and J = {j1, . . . , jt} ⊂ {1, 2, . . . , n} with 1 ≤ j1 < · · · < jt ≤ n, we let B(I, J) denote the
submatrix ∈ Rs×t of B with entries {bij}i∈I,j∈J.

2https://github.com/hpcaitech/Open-Sora/blob/main/assets/texts

5

NVIDIA A100 (40GB) GPU. We followed the settings of [30] to run text to video generation using
DuSA. The backbone used is CogVideoX-2B [48]. We compared DuSA with FA2 and SpargeAttn
[30]. Complexity analysis, the ablation study about different block sizes, and more experiments
(plug and play examples, the use of DuSA in vanilla ViT architectures [49], memory consumption
patterns, and the comparison of DuSA with FlashAttention of FlashInfer [50] and XAttention [38]
in accelerating the prefilling stage of Llama-3.1-8B-Instruct [51] on LongBench) are available in
Appendix. The source code of DuSA is available in Supplementary Material. For ImageNet-1K,
ADE20K and MS COCO 2017, all methods including DuSA that are compatible with FA2, are
accelerated by FA2. For text to video generation, DuSA is further accelerated by SpargeAttn.

Table 1: The test accuracy comparison of different methods on LRA. The best values are in bold.
Dataset (sequence length) Linformer Nyströmformer Primal Reformer VSA DuSA

ListOps (2K) 37.3 37.2 37.3 19.1 37.1 38.1
Text (4K) 55.9 65.5 61.2 64.9 65.0 65.3
Retrieval (4K) 79.4 79.6 77.8 78.6 79.4 81.4
Image (1K) 37.8 41.6 43.0 43.3 38.2 42.7
Pathfinder (1K) 67.6 70.9 68.3 69.4 74.2 73.3

Average accuracy (%) 55.6 59.0 57.5 55.1 58.8 60.2

Table 2: The comparison of running time (s) per 1K training steps and peak memory consumption of
different methods on LRA using 1 NVIDIA H20 (96GB) GPU.

Dataset (sequence length) FA2 Linformer Nyströmformer Primal Reformer VSA DuSA

Time (s) | Memory (GB)

ListOps (2K) 24.2 | 0.4 19.6 | 1.1 28.3 | 0.6 21.2 | 0.5 34.9 | 1.4 71.2 | 4.3 16.8 | 0.5
Text (4K) 63.7 | 0.8 35.1 | 2.2 50.4 | 1.2 33.9 | 0.9 69.3 | 2.8 263.2 | 16.5 30.7 | 1.3
Retrieval (4K) 126.3 | 1.4 69.1 | 4.1 96.0 | 2.4 66.5 | 1.9 137.8 | 5.4 523.0 | 17.2 66.1 | 2.2
Image (1K) 48.9 | 0.8 45.8 | 2.2 69.7 | 1.4 49.8 | 1.0 82.9 | 2.9 109.2 | 4.5 44.8 | 1.2
Pathfinder (1K) 63.8 | 0.8 63.4 | 2.2 91.0 | 1.4 64.6 | 1.0 113.5 | 2.9 144.2 | 4.5 52.2 | 1.1

4.2 Long range arena

DuSA is compared with state-of-the-art attention mechanisms in LRA as Table 1 shows. It can be
seen that DuSA achieves state-of-the-art performance in LRA. DuSA significantly outperforms VSA
in long hierarchically structured data modeling (ListOps (2K)), text classification (Text (4K)), image
classification on sequences of pixels (Image (1K)), and document retrieval (Retrieval (4K)) tasks.
Only in long-range spatial dependency learning (Pathfinder (1K)), DuSA is slightly inferior to VSA,
but it is significantly better than other efficient attention mechanisms in this task. Furthermore, DuSA
is faster than all comparison methods and offers 2.4-8.6× speedups over VSA and 1.1-2.1× speedups
over FA2 and achieves the third lowest memory consumption as shown in Table 2.

Speedup 2.2×,

accuracy 0.1% ↑

Speedup 4.3×, accuracy 0.0% ↑

Speedup 1.3×,

accuracy 0.1% ↑

Speedup 1.8×,

accuracy 0.0% ↑

(a) Backbone: CSWin-T/B

Speedup 2.5×,

accuracy 0.3% ↑

Speedup 1.2×,

accuracy 0.3% ↑

Speedup 3.6×, accuracy 0.2% ↑

Speedup 1.5×,

accuracy 0.2% ↑

(b) Backbone: Swin-T/B

Figure 4: Accuracy-efficiency (inference throughput) curves of different methods on ImageNet-1K.

4.3 Image classification performance

Fig. 4 presents a comprehensive performance comparison of various methods in the image classi-
fication task (ImageNet-1K). The experimental results demonstrate that DuSA achieves superior

6

https://openreview.net/forum?id=tM5mjMfFmS

classification accuracy compared to all methods in different model sizes and input resolutions. In
addition, DuSA is faster than all comparison methods and offers 2.2-4.3× speedups over VSA and
1.2-1.8× speedups over FA2 using CSWin/Swin backbones. More detailed results can be found in
Table A1 in Appendix. Fig. 5 shows the visual comparison of class activation maps (CAMs) of
DuSA, ELFATT, and VSA. Compared to ELFATT and VSA, CAMs of DuSA (Strategy 2) are more
accurate than theirs. DuSA2 focuses on the groudtruth objects more accurately than DuSA0/DuSA1.

Barracouta

Kite

Arabian camel

Skunk

DuSA0 DuSA1 DuSA2

DuSA0 DuSA1 DuSA2

DuSA0 DuSA1 DuSA2

DuSA0 DuSA1 DuSA2

VSAELFATT

VSAELFATT

VSAELFATT

VSAELFATT

Cabbage butterfly DuSA0 DuSA1 DuSA2VSAELFATT

VSAELFATT DuSA0 DuSA1 DuSA2Black footed ferret

Figure 5: Class activation maps (CAMs) comparison of CSWin-T-DuSA, CSWin-T-ELFATT, and
CSWin-T-VSA using Score-CAM [52]. Note: CAMs obtained by DuSA2 and DuSA1 focus on the
groudtruth objects more accurately than those of DuSA0 which further demonstrates the effectiveness
of the dual-stage spase attention design. In most cases, CAMs of DuSA2 cover more area of the
groudtruth objects and less area of the background than those of DuSA1. Compared to ELFATT and
VSA, CAMs of DuSA2 are even more accurate than theirs.

4.4 Semantic segmentation performance

Table 3 presents a comprehensive performance comparison of various methods on ADE20K. DuSA
significantly outperforms all comparison methods in terms of mean class accuracy (mAcc) and mean
intersection over union (mIoU). As for inference speed, DuSA matches the speed of some extremely

7

Table 3: ADE20K semantic segmentation comparison. Note: Number of floating point operations
(FLOPs) are based on an input size of 512× 2048. # is parameter numbers.

UperNet [53] using 160K fine-tuning iterations. Inference throughput (FPS) was measured on 1 NVIDIA H20 with a batch size of 1 and mixed precision.

Method mAcc mIoU FPS (imgs/s) # FLOPs

CSWin-T | Swin-T

Agent 60.8 | 58.5 48.5 | 46.7 17 | 4 50M | 61M 929.64G | 957.50G
EFFATT 60.6 | 58.3 48.8 | 46.7 33 | 39 50M | 60M 930.34G | 939.35G
ELFATT 61.2 | 59.3 49.6 | 47.7 32 | 38 50M | 62M 929.53G | 943.94G
FLatten 61.4 | 57.0 49.3 | 44.8 27 | 35 51M | 61M 930.19G | 944.62G
LOCAL 61.1 | 55.6 49.6 | 44.5 28 | 38 50M | 60M 928.68G | 945.66G
VSA 61.1 | 59.3 48.8 | 47.8 6/14 (FA2) | 5/14 (FA2) 50M | 60M 2458.75G/928.67G (FA2) | 2873.79G/937.84G (FA2)
DuSA 61.4 | 59.8 49.6 | 48.0 32 | 37 50M | 62M 928.69G | 942.98G

Others

ConvNeXt-T 58.3 46.1 37 60M 939.69G
VMamba-T 59.3 47.9 34 62M 948.78G

fast methods: EFFATT and ELFATT, and offers 5.3-7.4× speedups over VSA and 2.3-2.6× speedups
over FA2. Both backbones using DuSA significantly outperform ConvNeXt-T and VMamba-T.
Swin-T-DuSA is as fast as ConvNeXt-T and faster than VMamba-T in semantic segmentation.

4.5 Object detection performance

Table 4 compares the object detection performance of various methods on MS COCO 2017. DuSA
matches the state-of-the-art performance of ELFATT and significantly outperforms other attention
mechanisms with higher box/mask average precision (APb/APm) in both ‘1×’ fine-tuning training
schedule and ‘3×’ multiscale (MS) fine-tuning training schedule. DuSA offers 5.6-8.3× speedups
over VSA and 2.2-2.9× speedups over FA2. CSWin-T-DuSA significantly outperforms VMamba-T
in object detection with higher box/mask average precision and faster speed. Swin-T-DuSA also
significantly outperforms ConvNeXt-T in terms of both performance and speed.

Table 4: MS COCO 2017 object detection comparison. Note: FLOPs are based on an input size of
1280× 800. FPS was measured on 1 NVIDIA H20 with a batch size of 1 and mixed precision.

Mask R-CNN [54] 1× schedule | 3×MS schedule

Method APb APb50 APb75 APm APm50 APm75 FPS (imgs/s) # GFLOPs

CSWin-T

Agent 46.8 | 49.3 68.9 | 70.8 51.3 | 53.9 42.3 | 43.9 65.9 | 67.9 45.3 | 47.3 20 40M 254.51
EFFATT 46.1 | 48.5 68.3 | 70.0 50.5 | 53.2 41.9 | 43.4 65.5 | 67.3 45.3 | 46.9 36 40M 255.20
ELFATT 47.0 | 49.4 69.2 | 70.9 51.4 | 54.4 42.6 | 44.0 66.4 | 68.0 45.9 | 47.5 33 40M 254.40
FLatten 46.6 | 48.9 68.8 | 70.8 51.0 | 53.5 42.2 | 43.9 65.7 | 67.9 45.3 | 47.3 28 41M 255.05
LOCAL 46.5 | 49.3 68.5 | 70.8 51.0 | 54.3 42.1 | 44.0 65.6 | 67.8 45.3 | 47.5 28 40M 253.57
VSA 47.0 | 48.8 69.1 | 70.0 51.9 | 53.5 42.6 | 43.6 66.1 | 67.4 45.9 | 47.1 7/18 (FA2) 40M 1712.76/253.56 (FA2)
DuSA 46.9 | 49.4 69.2 | 70.9 51.7 | 54.4 42.7 | 44.1 66.4 | 67.8 45.9 | 47.6 39 40M 253.58

Swin-T

Agent 44.6 | 47.3 67.5 | 69.5 48.7 | 51.9 40.7 | 42.7 64.4 | 66.4 43.4 | 46.2 5 48M 278.42
EFFATT 44.7 | 47.6 67.0 | 69.4 48.9 | 52.6 41.1 | 42.7 64.0 | 65.9 44.4 | 46.1 46 48M 261.95
ELFATT 46.1 | 48.5 68.3 | 70.4 50.8 | 53.4 42.1 | 43.6 65.4 | 67.3 45.3 | 47.3 45 50M 266.43
FLatten 44.2 | 46.5 67.3 | 68.5 48.5 | 50.8 40.2 | 42.1 63.8 | 65.4 43.0 | 45.1 41 49M 266.43
LOCAL 42.7 | 46.0 65.2 | 68.1 46.8 | 50.3 39.3 | 41.6 62.2 | 65.1 42.2 | 44.9 45 48M 267.01
VSA 45.4 | 48.0 67.9 | 70.0 49.7 | 52.7 41.6 | 43.3 65.0 | 67.0 44.8 | 46.8 6/17 (FA2) 48M 2106.75/260.48 (FA2)
DuSA 46.0 | 48.4 68.2 | 70.3 50.9 | 53.0 42.2 | 43.8 65.3 | 67.5 45.5 | 47.5 50 50M 265.50

Others tiny models

ConvNeXt 44.2 | 46.2 66.6 | 67.9 48.3 | 50.8 40.1 | 41.7 63.3 | 65.0 42.8 | 44.9 44 48M 262.29
VMamba 47.4 | 48.9 69.5 | 70.6 52.0 | 53.6 42.7 | 43.7 66.3 | 67.7 46.0 | 46.8 35 50M 271.16

Table 5: The comparison of text to video generation using CogVideoX-2B (sequence length: 17K)
as the backbone. Note: The speed metric, TOPS (tera operations per second) [30], is the attention
kernel speed. The speed was obtained using 1 NVIDIA vGPU (32GB) with BF16 precision.

Method TOPS ↑ CLIPSIM ↑ CLIP-T ↑ VQA-a ↑ VQA-t ↑ Flow-score ↑

FA2 103 0.2022 0.9971 51.6921 48.3386 5.6719
SpargeAttn (sparsity: 0.46) 198 0.2015 0.9968 51.5676 48.2785 5.7631
DuSA (sparsity: 0.50) 258 0.2024 0.9966 51.6049 48.3379 6.0482

8

(a) FA2 (CLIPSIM: 0.2161, CLIP-T: 0.9983, VQA-a: 53.4576, VQA-t: 48.9721, Flow-score: 12.3805)

(b) SpargeAttn (CLIPSIM: 0.2109, CLIP-T: 0.9984, VQA-a: 52.9862, VQA-t: 48.3282, Flow-score: 10.4248)

(c) DuSA (CLIPSIM: 0.2108, CLIP-T: 0.9986, VQA-a: 53.5017, VQA-t: 48.7888, Flow-score: 8.7635)

Figure 6: DuSA achieves noninferior video generation quality compared to VSA using FA2 for
acceleration and outperforms SpargeAttn.

(a) FA2 (CLIPSIM: 0.1955, CLIP-T: 0.9992, VQA-a: 54.6491, VQA-t: 49.1951, Flow-score: 6.6526)

(b) SpargeAttn (CLIPSIM: 0.2044, CLIP-T: 0.9991, VQA-a: 53.2634, VQA-t: 48.8170, Flow-score: 6.1444)

(c) DuSA (CLIPSIM: 0.2065, CLIP-T: 0.9982, VQA-a: 53.5948, VQA-t: 49.1732, Flow-score: 6.7921)

Figure 7: DuSA achieves noninferior video generation quality compared to VSA using FA2 for
acceleration and outperforms SpargeAttn.

9

4.6 Text to video generation performance

Table 5 compares DuSA, FA2, and SpargeAttn in text to video generation (Open-Sora 2.0 prompt
sets) using CogVideoX-2B as the backbone. We followed [30] to use CLIPSIM [55], CLIP-T
[55], VQA-a [56], VQA-t [56], and Flow-score [57] to evaluate text-video alignment, aesthetic
and technical quality of the video, and temporal consistency. Using a similar sparsity ratio, DuSA
obtains better text-video alignment (CLIPSIM), higher video aesthetic and technical quality (VQA-a
and VQA-t), and better temporal consistency (Flow-score) than SpargeAttn and its performance is
almost at the same level compared to VSA using FA2 for acceleration. DuSA is faster than FA2 and
SpargeAttn using BF16 precision. DuSA uses 98s, while FA2 uses 147s and SpargeAttn uses 106s
on 1 NVIDIA vGPU (32GB) with BF16 precision for end-to-end generation. Figs. 6 and 7 show the
visual comparison of DuSA, SpargeAttn, and VSA (FA2) in text to video generation. DuSA achieves
better video generation quality than SpargeAttn and noninferior quality compared to VSA.

Table 6: Effect of different blockify strategies or stage execution orders of DuSA on ImageNet-1K.
Note: FPS was measured on 1 NVIDIA H20 using a batch size of 512 and mixed precision.

Method Resolution Accuracy (%) FPS (imgs/s) # FLOPs

CSWin-T

DuSA0 2242 82.9 3197 20M 4.09G
DuSA1 (1st: Intrablock; 2nd: Interblock) 2242 83.0 2909 20M 4.09G
DuSA1 (1st: Interblock; 2nd: Intrablock) 2242 82.9 2880 20M 4.09G
DuSA2 (1st: Intrablock; 2nd: Interblock) 2242 83.2 2908 20M 4.09G
DuSA2 (1st: Interblock; 2nd: Intrablock) 2242 83.0 2866 20M 4.09G

Swin-T

DuSA0 2242 82.5 3481 30M 4.63G
DuSA1 (1st: Intrablock; 2nd: Interblock) 2242 82.6 3136 30M 4.63G
DuSA1 (1st: Interblock; 2nd: Intrablock) 2242 82.6 3095 30M 4.63G
DuSA2 (1st: Intrablock; 2nd: Interblock) 2242 82.7 3154 30M 4.63G
DuSA2 (1st: Interblock; 2nd: Intrablock) 2242 82.6 3062 30M 4.63G

4.7 Ablation studies about different blockify strategies and different stage execution orders

Table 6 shows the comparison of DuSA using different blockify strategies on ImageNet-1K. Without
using any blockify strategies, the speed is the fastest; however, its performance is also the lowest.
Strategy 2 (DuSA2) obtains the highest accuracy because it includes more token information for
each token in token mixing, as Fig. 3 shows. And its speed is almost the same as that of Strategy 1.
Additionally, as illustrated in the visual comparison of Fig. 5, CAMs obtained using Strategies 1 and
2 focus more accurately on the ground-truth objects than those obtained without using Strategies 1
and 2, further demonstrating the effectiveness of the dual-stage sparse attention design. In most cases,
CAMs of Strategy 2 cover more area of the groudtruth objects and less area of the background than
those of Strategy 1. Table 6 also shows the comparison of DuSA using different execution orders of
two stages on ImageNet-1K. Due to the change in execution order, the speed is slightly different due
to the different reshaping operations and convolutions for different value matrices used for position
encoding. Performing intrablock sparse attention first usually outperforms performing interblock
sparse attention first in terms of both speed and accuracy.

5 Conclusions

In this paper, we propose DuSA for attention acceleration of transformers. DuSA further advances
single-stage sparse attention mechanisms through the novel dual-stage sparse attention mechanism
design. Both stages are designed to have low computational complexity and can be further accelerated
by memory acceleration methods. The dual-stage sparse attention design provides a lower error
in approximating vanilla scaled-dot product attention than the basic single-stage sparse attention
mechanisms. DuSA can still maintain low performance loss in some plug and play situations. DuSA
can be used in both training and inference acceleration. After training, DuSA can even outperform
VSA. DuSA achieves state-of-the-art performance in different benchmarks: long range arena, image
classification, semantic segmentation, object detection, text to video generation, and long context
understanding, and accelerates models of different sizes.

10

Acknowledgements

This work is supported by the Hong Kong Innovation and Technology Commission (InnoHK Project
CIMDA), the Institute of Digital Medicine, City University of Hong Kong (Projects 9229503 and
9610460), the National Natural Science Foundation of China (No. 12561095), and the Special Posts
of Guizhou University (No. [2025]06).

References
[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and

I. Polosukhin, “Attention is all you need,” in Advances in Neural Information Processing
Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, Eds., vol. 30. Curran Associates, Inc., 2017, pp. 5998–6008.

[2] J. Han, L. Zeng, L. Du, X. Ye, W. Ding, and J. Feng, “Modify self-attention via skeleton
decomposition for effective point cloud transformer,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 36, no. 1, 2022, pp. 808–816.

[3] Y. Xiong, Z. Zeng, R. Chakraborty, M. Tan, G. Fung, Y. Li, and V. Singh, “Nyströmformer:
A Nyström-based algorithm for approximating self-attention,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 35, no. 16, 2021, pp. 14 138–14 148.

[4] T. Dao, D. Fu, S. Ermon, A. Rudra, and C. Ré, “FlashAttention: Fast and memory-efficient
exact attention with io-awareness,” in Advances in Neural Information Processing Systems,
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, Eds., vol. 35. Curran
Associates, Inc., 2022, pp. 16 344–16 359.

[5] T. Dao, “FlashAttention-2: Faster attention with better parallelism and work partitioning,”
in International Conference on Learning Representations, 2024. [Online]. Available:
https://openreview.net/forum?id=mZn2Xyh9Ec

[6] J. Shah, G. Bikshandi, Y. Zhang, V. Thakkar, P. Ramani, and T. Dao, “FlashAttention-3: Fast
and accurate attention with asynchrony and low-precision,” in Advances in Neural Information
Processing Systems, A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and
C. Zhang, Eds., vol. 37. Curran Associates, Inc., 2024, pp. 68 658–68 685.

[7] D. Han, X. Pan, Y. Han, S. Song, and G. Huang, “FLatten transformer: Vision transformer
using focused linear attention,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), 2023, pp. 5961–5971.

[8] K. M. Choromanski, V. Likhosherstov, D. Dohan, X. Song, A. Gane, T. Sarlos, P. Hawkins,
J. Q. Davis, A. Mohiuddin, L. Kaiser, D. B. Belanger, L. J. Colwell, and A. Weller, “Rethinking
attention with performers,” in International Conference on Learning Representations, 2021.
[Online]. Available: https://openreview.net/forum?id=Ua6zuk0WRH

[9] M. Wortsman, J. Lee, J. Gilmer, and S. Kornblith, “Replacing softmax with ReLU in vision
transformers,” arXiv preprint arXiv:2309.08586, 2023.

[10] A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret, “Transformers are RNNs: Fast
autoregressive transformers with linear attention,” in Proceedings of the 37th International
Conference on Machine Learning, ser. Proceedings of Machine Learning Research, H. D.
III and A. Singh, Eds., vol. 119. PMLR, 2020, pp. 5156–5165. [Online]. Available:
https://proceedings.mlr.press/v119/katharopoulos20a.html

[11] D. Bolya, C.-Y. Fu, X. Dai, P. Zhang, and J. Hoffman, “Hydra attention: Efficient attention
with many heads,” in Computer Vision – ECCV 2022 Workshops, L. Karlinsky, T. Michaeli, and
K. Nishino, Eds. Cham: Springer Nature Switzerland, 2023, pp. 35–49.

[12] J. Lu, J. Yao, J. Zhang, X. Zhu, H. Xu, W. Gao, C. Xu, T. Xiang, and L. Zhang, “SOFT: Softmax-
free transformer with linear complexity,” in Advances in Neural Information Processing Systems,
M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, Eds., vol. 34. Curran
Associates, Inc., 2021, pp. 21 297–21 309.

[13] H. Peng, N. Pappas, D. Yogatama, R. Schwartz, N. Smith, and L. Kong, “Random feature
attention,” in International Conference on Learning Representations, 2021. [Online]. Available:
https://openreview.net/forum?id=QtTKTdVrFBB

11

https://openreview.net/forum?id=mZn2Xyh9Ec
https://openreview.net/forum?id=Ua6zuk0WRH
https://proceedings.mlr.press/v119/katharopoulos20a.html
https://openreview.net/forum?id=QtTKTdVrFBB

[14] Z. Qin, W. Sun, H. Deng, D. Li, Y. Wei, B. Lv, J. Yan, L. Kong, and Y. Zhong, “cosFormer:
Rethinking softmax in attention,” in International Conference on Learning Representations,
2022. [Online]. Available: https://openreview.net/forum?id=Bl8CQrx2Up4

[15] Z. Shen, M. Zhang, H. Zhao, S. Yi, and H. Li, “Efficient attention: Attention with linear
complexities,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision (WACV), 2021, pp. 3531–3539.

[16] D. Han, T. Ye, Y. Han, Z. Xia, S. Pan, P. Wan, S. Song, and G. Huang, “Agent attention: On the
integration of softmax and linear attention,” in Computer Vision – ECCV 2024, A. Leonardis,
E. Ricci, S. Roth, O. Russakovsky, T. Sattler, and G. Varol, Eds. Cham: Springer Nature
Switzerland, 2025, pp. 124–140.

[17] C. Wu, M. Che, and H. Yan, “The CUR decomposition of self-attention matrices in
vision transformers,” TechRxiv, 2024. [Online]. Available: https://doi.org/10.36227/techrxiv.
171392846.60982484/v4

[18] C. Wu, M. Che, R. Xu, Z. Ran, and H. Yan, “ELFATT: Efficient linear fast attention for vision
transformers,” in Proceedings of the 33rd ACM International Conference on Multimedia, ser.
MM ’25. New York, NY, USA: Association for Computing Machinery, 2025. [Online].
Available: https://doi.org/10.1145/3746027.3754825

[19] Z. Ran, Z. Ye, C. Wu, R. C. Cheung, and H. Yan, “FastViT: Real-time linear
attention accelerator for dense predictions of vision transformer (ViT),” in 2025 IEEE
International Symposium on Circuits and Systems (ISCAS), 2025. [Online]. Available:
https://doi.org/10.1109/ISCAS56072.2025.11043624

[20] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin transformer:
Hierarchical vision transformer using shifted windows,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), 2021, pp. 10 012–10 022.

[21] X. Dong, J. Bao, D. Chen, W. Zhang, N. Yu, L. Yuan, D. Chen, and B. Guo, “CSWin transformer:
A general vision transformer backbone with cross-shaped windows,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022, pp. 12 124–
12 134.

[22] S. Wang, B. Z. Li, M. Khabsa, H. Fang, and H. Ma, “Linformer: Self-attention with linear
complexity,” arXiv preprint arXiv:2006.04768, 2020.

[23] G. Zhao, J. Lin, Z. Zhang, X. Ren, Q. Su, and X. Sun, “Explicit sparse transformer:
Concentrated attention through explicit selection,” CoRR, vol. abs/1912.11637, 2019. [Online].
Available: http://arxiv.org/abs/1912.11637

[24] I. Beltagy, M. E. Peters, and A. Cohan, “Longformer: The long-document transformer,” CoRR,
vol. abs/2004.05150, 2020. [Online]. Available: https://arxiv.org/abs/2004.05150

[25] R. Child, S. Gray, A. Radford, and I. Sutskever, “Generating long sequences
with sparse transformers,” CoRR, vol. abs/1904.10509, 2019. [Online]. Available:
http://arxiv.org/abs/1904.10509

[26] Y. Tay, D. Bahri, L. Yang, D. Metzler, and D.-C. Juan, “Sparse Sinkhorn attention,” in
Proceedings of the 37th International Conference on Machine Learning, ser. Proceedings of
Machine Learning Research, H. D. III and A. Singh, Eds., vol. 119. PMLR, 2020, pp.
9438–9447. [Online]. Available: https://proceedings.mlr.press/v119/tay20a.html

[27] M. Zaheer, G. Guruganesh, K. A. Dubey, J. Ainslie, C. Alberti, S. Ontanon, P. Pham, A. Ravula,
Q. Wang, L. Yang, and A. Ahmed, “Big Bird: Transformers for longer sequences,” in Advances
in Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan,
and H. Lin, Eds., vol. 33. Curran Associates, Inc., 2020, pp. 17 283–17 297.

[28] N. Kitaev, L. Kaiser, and A. Levskaya, “Reformer: The efficient transformer,”
in International Conference on Learning Representations, 2020. [Online]. Available:
https://openreview.net/forum?id=rkgNKkHtvB

[29] J. Yuan, H. Gao, D. Dai, J. Luo, L. Zhao, Z. Zhang, Z. Xie, Y. Wei, L. Wang,
Z. Xiao, Y. Wang, C. Ruan, M. Zhang, W. Liang, and W. Zeng, “Native sparse
attention: Hardware-aligned and natively trainable sparse attention,” in Proceedings of the
63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), W. Che, J. Nabende, E. Shutova, and M. T. Pilehvar, Eds. Vienna, Austria:

12

https://openreview.net/forum?id=Bl8CQrx2Up4
https://doi.org/10.36227/techrxiv.171392846.60982484/v4
https://doi.org/10.36227/techrxiv.171392846.60982484/v4
https://doi.org/10.1145/3746027.3754825
https://doi.org/10.1109/ISCAS56072.2025.11043624
http://arxiv.org/abs/1912.11637
https://arxiv.org/abs/2004.05150
http://arxiv.org/abs/1904.10509
https://proceedings.mlr.press/v119/tay20a.html
https://openreview.net/forum?id=rkgNKkHtvB

Association for Computational Linguistics, 2025, pp. 23 078–23 097. [Online]. Available:
https://aclanthology.org/2025.acl-long.1126/

[30] J. Zhang, C. Xiang, H. Huang, J. Wei, H. Xi, J. Zhu, and J. Chen, “SpargeAttention:
Accurate and training-free sparse attention accelerating any model inference,” in Proceedings
of the 42nd International Conference on Machine Learning, ser. Proceedings of Machine
Learning Research, A. Singh, M. Fazel, D. Hsu, S. Lacoste-Julien, F. Berkenkamp, T. Maharaj,
K. Wagstaff, and J. Zhu, Eds., vol. 267. PMLR, 2025, pp. 76 397–76 413. [Online]. Available:
https://proceedings.mlr.press/v267/zhang25ch.html

[31] J. Ramapuram, F. Danieli, E. G. Dhekane, F. Weers, D. Busbridge, P. Ablin, T. Likhomanenko,
J. Digani, Z. Gu, A. Shidani, and R. Webb, “Theory, analysis, and best practices for sigmoid
self-attention,” in International Conference on Learning Representations, 2025. [Online].
Available: https://openreview.net/forum?id=Zhdhg6n2OG

[32] V. Nair and G. E. Hinton, “Rectified linear units improve restricted Boltzmann machines,”
in Proceedings of the 27th International Conference on Machine Learning, ser. ICML’10.
Madison, WI, USA: Omnipress, 2010, pp. 807–814.

[33] H. Cai, J. Li, M. Hu, C. Gan, and S. Han, “EfficientViT: Lightweight multi-scale attention for
high-resolution dense prediction,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), 2023, pp. 17 302–17 313.

[34] D.-A. Clevert, “Fast and accurate deep network learning by exponential linear units (ELUs),”
arXiv preprint arXiv:1511.07289, 2015.

[35] H. Kang, M.-H. Yang, and J. Ryu, “Interactive multi-head self-attention with linear complexity,”
arXiv preprint arXiv:2402.17507, 2024.

[36] Y. Chen, Q. Tao, F. Tonin, and J. Suykens, “Primal-Attention: Self-attention through asymmetric
kernel SVD in primal representation,” in Advances in Neural Information Processing Systems,
A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, Eds., vol. 36. Curran
Associates, Inc., 2023, pp. 65 088–65 101.

[37] Z. Geng, M.-H. Guo, H. Chen, X. Li, K. Wei, and Z. Lin, “Is attention better than matrix
decomposition?” in International Conference on Learning Representations, 2021. [Online].
Available: https://openreview.net/forum?id=1FvkSpWosOl

[38] R. Xu, G. Xiao, H. Huang, J. Guo, and S. Han, “XAttention: Block sparse attention with
antidiagonal scoring,” in Proceedings of the 42nd International Conference on Machine
Learning, ser. Proceedings of Machine Learning Research, A. Singh, M. Fazel, D. Hsu,
S. Lacoste-Julien, F. Berkenkamp, T. Maharaj, K. Wagstaff, and J. Zhu, Eds., vol. 267. PMLR,
2025, pp. 69 819–69 831. [Online]. Available: https://proceedings.mlr.press/v267/xu25ag.html

[39] R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed. Cambridge University Press, 2012.

[40] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet large scale visual recognition
challenge,” International Journal of Computer Vision (IJCV), vol. 115, no. 3, pp. 211–252,
2015.

[41] Y. Tay, M. Dehghani, S. Abnar, Y. Shen, D. Bahri, P. Pham, J. Rao, L. Yang,
S. Ruder, and D. Metzler, “Long range arena : A benchmark for efficient transformers,”
in International Conference on Learning Representations, 2021. [Online]. Available:
https://openreview.net/forum?id=qVyeW-grC2k

[42] X. Peng, Z. Zheng, C. Shen, T. Young, X. Guo, B. Wang, H. Xu, H. Liu, M. Jiang, W. Li et al.,
“Open-Sora 2.0: Training a commercial-level video generation model in $200k,” arXiv preprint
arXiv:2503.09642, 2025.

[43] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba, “Scene parsing through
ADE20K dataset,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). Los Alamitos, CA, USA: IEEE Computer Society, 2017, pp. 5122–5130.

[44] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick,
“Microsoft COCO: Common objects in context,” in Computer Vision – ECCV 2014, D. Fleet,
T. Pajdla, B. Schiele, and T. Tuytelaars, Eds. Cham: Springer International Publishing, 2014,
pp. 740–755.

13

https://aclanthology.org/2025.acl-long.1126/
https://proceedings.mlr.press/v267/zhang25ch.html
https://openreview.net/forum?id=Zhdhg6n2OG
https://openreview.net/forum?id=1FvkSpWosOl
https://proceedings.mlr.press/v267/xu25ag.html
https://openreview.net/forum?id=qVyeW-grC2k

[45] Y. Bai, X. Lv, J. Zhang, H. Lyu, J. Tang, Z. Huang, Z. Du, X. Liu, A. Zeng, L. Hou,
Y. Dong, J. Tang, and J. Li, “LongBench: A bilingual, multitask benchmark for long
context understanding,” in Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), L.-W. Ku, A. Martins, and V. Srikumar,
Eds. Bangkok, Thailand: Association for Computational Linguistics, 2024, pp. 3119–3137.
[Online]. Available: https://aclanthology.org/2024.acl-long.172/

[46] Y. Liu, Y. Tian, Y. Zhao, H. Yu, L. Xie, Y. Wang, Q. Ye, J. Jiao, and Y. Liu, “VMamba: Visual
state space model,” in Advances in Neural Information Processing Systems, A. Globerson,
L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang, Eds., vol. 37. Curran
Associates, Inc., 2024, pp. 103 031–103 063.

[47] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie, “A ConvNet for the 2020s,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2022, pp. 11 976–11 986.

[48] Z. Yang, J. Teng, W. Zheng, M. Ding, S. Huang, J. Xu, Y. Yang, W. Hong, X. Zhang, G. Feng,
D. Yin, Y. Zhang, W. Wang, Y. Cheng, B. Xu, X. Gu, Y. Dong, and J. Tang, “CogVideoX: Text-
to-video diffusion models with an expert transformer,” in International Conference on Learning
Representations, 2025. [Online]. Available: https://openreview.net/forum?id=LQzN6TRFg9

[49] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, “An image is worth 16x16
words: Transformers for image recognition at scale,” in International Conference on Learning
Representations, 2021. [Online]. Available: https://openreview.net/forum?id=YicbFdNTTy

[50] Z. Ye, R. Lai, B.-R. Lu, C.-Y. Lin, S. Zheng, L. Chen, T. Chen, and L. Ceze, “Cascade
inference: Memory bandwidth efficient shared prefix batch decoding,” February 2024. [Online].
Available: https://flashinfer.ai/2024/02/02/cascade-inference.html

[51] A. Grattafiori, A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur,
A. Schelten, A. Vaughan et al., “The Llama 3 herd of models,” arXiv preprint arXiv:2407.21783,
2024.

[52] H. Wang, Z. Wang, M. Du, F. Yang, Z. Zhang, S. Ding, P. Mardziel, and X. Hu, “Score-CAM:
Score-weighted visual explanations for convolutional neural networks,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2020,
pp. 111–119.

[53] T. Xiao, Y. Liu, B. Zhou, Y. Jiang, and J. Sun, “Unified perceptual parsing for scene understand-
ing,” in Computer Vision – ECCV 2018, V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss,
Eds. Cham: Springer International Publishing, 2018, pp. 432–448.

[54] K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN,” in 2017 IEEE International
Conference on Computer Vision (ICCV). Los Alamitos, CA, USA: IEEE Computer Society,
2017, pp. 2980–2988.

[55] Y. Liu, X. Cun, X. Liu, X. Wang, Y. Zhang, H. Chen, Y. Liu, T. Zeng, R. Chan, and Y. Shan,
“EvalCrafter: Benchmarking and evaluating large video generation models,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024, pp.
22 139–22 149.

[56] H. Wu, E. Zhang, L. Liao, C. Chen, J. Hou, A. Wang, W. Sun, Q. Yan, and W. Lin, “Exploring
video quality assessment on user generated contents from aesthetic and technical perspectives,”
in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023,
pp. 20 144–20 154.

[57] T. Zhao, T. Fang, H. Huang, R. Wan, W. Soedarmadji, E. Liu, S. Li, Z. Lin, G. Dai, S. Yan,
H. Yang, X. Ning, and Y. Wang, “ViDiT-Q: Efficient and accurate quantization of diffusion
transformers for image and video generation,” in International Conference on Learning
Representations, 2025. [Online]. Available: https://openreview.net/forum?id=E1N1oxd63b

14

https://aclanthology.org/2024.acl-long.172/
https://openreview.net/forum?id=LQzN6TRFg9
https://openreview.net/forum?id=YicbFdNTTy
https://flashinfer.ai/2024/02/02/cascade-inference.html
https://openreview.net/forum?id=E1N1oxd63b

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Section A8 in Appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

15

Justification: Each theoretical result in Section 3 of the main text and Section A1 of Appendix
is provided with a complete (and correct) proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Subsection 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

16

Answer: [Yes]
Justification: See Supplementary Material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Subsection 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper does not include such experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

17

https://openreview.net/forum?id=tM5mjMfFmS
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Section 4 and Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Section A7 in Appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

18

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the existing assets used are properly cited or credited in the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

19

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

20

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

A1 Upper bounds analysis

The following derivations omit the normalization term of the softmax operation for convenience.
To characterize the difference between H and H1, we set Ii = {(i− 1)b+ 1, (i− 1)b+ 2, . . . , ib}
with i = 1, 2, . . . ,m/b. Then the entries of A1 can also be defined as A1(Ii, Ii) = A(Ii, Ii) with
i = 1, 2, . . . ,m/b, and A1(Ii, Ii′) = 0b with i ̸= i′, where 0b ∈ Rb×b is the all-zeros matrix. Hence,
we have

∥A1 − A∥F ≤
m/b∑

i,i′=1,i̸=i′

∥A(Ii, Ii′)∥F ,

which implies that

∥H1 −H∥F = ∥A1V− AV∥F ≤
m/b∑

i,i′=1,i̸=i′

∥A(Ii, Ii′)∥F ∥V∥F . (A1)

For ∥A′ − A∥F and ∥A′′ − A∥F , according to Remarks 1 and 2 we have

∥A′ − A∥F ≤
b∑

j,j′=1,j ̸=j′

∥A(Jj , Jj′)∥F ; (A2)

∥A′′ − A∥F ≤
b∑

k=2

∥A′′
k∥F +

b∑
j,j′=1,j ̸=j′

∥A(Jj , Jj′)∥F

≤
b∑

k=2

b∑
j=1

∥A(J(k)j , J(k)j)∥F +

b∑
j,j′=1,j ̸=j′

∥A(J(1)j , J(1)j′)∥F .

(A3)

Remark 3. Based on the above descriptions and Eqs. (6) and (7), the upper bound for ∥H2 −H∥F
can be discussed in following two cases.

Case (6) corresponding to Eq. (6): an upper bound for ∥H2 −H∥F is deduced as
∥H2 −H∥F = ∥A′′A1V− AV∥F = ∥A′′A1V− A1V + A1V− AV∥F
≤ ∥A′′A1V− A1V∥F + ∥A1V− AV∥F

≤ ∥A′′ − Im∥max∥A1V∥F +

m/b∑
i,i′=1,i̸=i′

∥A(Ii, Ii′)∥F ∥V∥F

≤ ∥A′′ − Im∥max∥AV∥F + (∥A′′ − Im∥max + 1)

m/b∑
i,i′=1,i̸=i′

∥A(Ii, Ii′)∥F ∥V∥F ; (A4)

Case (7) corresponding to Eq. (7): similar to Case (6), an upper bound for ∥H2 −H∥F is
given as

∥H2 −H∥F ≤∥A′ − Im∥max∥AV∥F

+ (∥A′ − Im∥max + 1)

m/b∑
i,i′=1,i̸=i′

∥A(Ii, Ii′)∥F ∥V∥F , (A5)

where for any matrix B ∈ Rm×n, the symbol ∥B∥max is defined as
∥B∥max = max{|bij | : i = 1, 2, . . . ,m; j = 1, 2, . . . , n}.

We now estimate two terms ∥A′′ − Im∥max and ∥A′ − Im∥max in Remark 3 based on Inequalities
(A2) and (A3) as follows:
∥A′′ − Im∥max = ∥A′′ − A + A− Im∥max ≤ ∥A′′ − A∥max + ∥A− Im∥max ≤ ∥A′′ − A∥F

+ ∥A− Im∥max ≤
b∑

k=2

b∑
j=1

∥A(J(k)j , J(k)j)∥F +

b∑
j,j′=1,j ̸=j′

∥A(J(1)j , J(1)j′)∥F + ∥A− Im∥max,

(A6)

22

and

∥A′ − Im∥max ≤
b∑

j,j′=1,j ̸=j′

∥A(Jj , Jj′)∥F + ∥A− Im∥max. (A7)

Therefore, the upper bound for ∥H2 −H∥F in Case (6) is obtained by combining Inequalities (A4)
and (A6):

∥H2 −H∥F ≤ α∥AV∥F + β

m/b∑
i,i′=1,i̸=i′

∥A(Ii, Ii′)∥F ∥V∥F (A8)

with

α =

b∑
k=2

b∑
j=1

∥A(J(k)j , J(k)j)∥F +

b∑
j,j′=1,j ̸=j′

∥A(J(1)j , J(1)j′)∥F + ∥A− Im∥max, β = α+ 1,

and the upper bound for ∥H2 − H∥F in Case (7) is obtained by combining Inequalities (A5) and
(A7):

∥H2 −H∥F ≤ α′∥AV∥F + β′
m/b∑

i,i′=1,i̸=i′

∥A(Ii, Ii′)∥F ∥V∥F (A9)

with

α′ =

b∑
j,j′=1,j ̸=j′

∥A(Jj , Jj′)∥F + ∥A− Im∥max, β′ = α′ + 1.

0 50 100 150 200 250

Epoch

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
el

at
iv

e
er

ro
r

Strategy 1

Strategy 2

Without using Strategies 1 and 2

(a) Backbone: CSWin-T

0 50 100 150 200 250

Epoch

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
el

at
iv

e
er

ro
r

Strategy 1

Strategy 2

Without using Strategies 1 and 2

(b) Backbone: Swin-T

Figure A1: The comparison of relative error of DuSA using Strategy 1 (its relative approximation
error is: ∥H2−H∥F

∥H∥F
and the upper bound of the term ∥H2 − H∥F can be obtained using Inequality

(A9)), DuSA using Strategy 2 (its relative approximation error is: ∥H2−H∥F

∥H∥F
and the upper bound of

the term ∥H2 −H∥F can be obtained using Inequality (A8)), and DuSA without using Strategies 1
and 2 (its relative approximation error is: ∥H1−H∥F

∥H∥F
and the upper bound of the term ∥H1 −H∥F can

be obtained using Inequality (A1)) in approximating VSA during the training of CSWin-T/Swin-T on
ImageNet-1K. The approximation error shows a decreasing trend. Strategy 1 shows a lower error
curve at the beginning of training which is consistent with the analysis of the relationship between the
upper bound Inequality (A8) and the upper bound Inequality (A9). As the training process progresses,
the actual approximation error of Strategy 2 becomes even smaller than the actual approximation
error of Strategy 1 which is also consistent with more token information introduced by Strategy 2 in
token mixing to enhance performance. Even the backbone is untrained, DuSA using Strategy 1 or 2
still provides significantly lower approximation error than DuSA without using Strategies 1 and 2
which further demonstrates that DuSA is more similar to VSA than simple sliding window based
sparse attention.

23

Remark 4. For the term ∥H2 − H∥F , its upper bound (A8) or (A9) may be relatively rough. In
the future, a key issue is to obtain a tighter upper bound for ∥H2 −H∥F in Cases (6) and (7). Fig.
A1 shows the comparison of the actual relative error of DuSA using blockify Strategy 1, DuSA
using blockify Strategy 2, and DuSA without using blockify Strategies 1 and 2 in approximating
VSA. Blockify Strategy 1 shows a lower error curve at the beginning of training which is consistent
with the analysis of the relationship between the upper bound Inequality (A8) and the upper bound
Inequality (A9). As the training process progresses, the actual approximation error of blockify
Strategy 2 becomes even smaller than the actual approximation error of blockify Strategy 1 which
is also consistent with more token information introduced by blockify Strategy 2 in token mixing
to enhance performance. Even the backbone is untrained, DuSA using blockify Strategy 1 or 2 still
provides significantly lower approximation error than DuSA without using blockify Strategies 1 and
2 which further demonstrates that DuSA is more similar to VSA than simple sliding window based
sparse attention (DuSA without using blockify Strategies 1 and 2).

Table A1: ImageNet-1K classification comparison. Note: FPS was measured on 1 NVIDIA H20
using a batch size of 512 for tiny models and 256/32 for base models with a resolution of 2242/3842
and mixed precision.

Method Resolution Accuracy (%) FPS (imgs/s) # FLOPs

CSWin-B

Agent 2242 | 3842 84.7 | 85.8 994 | 276 73M 14.49G | 42.57G
EFFATT 2242 | 3842 84.4 | 85.7 1059 | 331 73M 14.53G | 42.69G
ELFATT 2242 | 3842 84.7 | 85.8 1187 | 355 73M 14.46G | 42.48G
FLatten 2242 | 3842 84.5 | 85.5 864 | 266 75M 14.52G | 42.67G
LOCAL 2242 | 3842 84.4 | 85.5 1037 | 323 73M 14.39G | 42.28G
VSA 2242 | 3842 84.7 | 85.9 478/879 (FA2) | 82/201 (FA2) 73M 22.33G/14.39G (FA2) | 110.89G/42.28G (FA2)
DuSA 2242 | 3842 84.7 | 85.9 1203 | 356 73M 14.39G | 42.28G

CSWin-T

Agent 2242 83.1 2425 20M 4.14G
EFFATT 2242 82.6 2526 20M 4.17G
ELFATT 2242 83.1 2856 20M 4.13G
FLatten 2242 83.1 2025 21M 4.16G
LOCAL 2242 82.7 2519 20M 4.09G
VSA 2242 83.1 1303/2210 (FA2) 20M 7.60G/4.09G (FA2)
DuSA 2242 83.2 2908 20M 4.09G

Swin-B

Agent 2242 | 3842 84.0 | 84.9 1367 | 372 88M 15.44G | 46.34G
EFFATT 2242 | 3842 84.2 | 85.3 1536 | 481 88M 15.33G | 45.04G
ELFATT 2242 | 3842 84.5 | 85.5 1497 | 457 91M 15.68G | 46.08G
FLatten 2242 | 3842 83.8 | 85.0 1226 | 353 89M 15.46G | 46.49G
LOCAL 2242 | 3842 83.5 | 84.5 1351 | 357 88M 15.47G | 47.19G
VSA 2242 | 3842 84.2 | 85.3 743/1325 (FA2) | 134/313 (FA2) 88M 21.57G/15.19G (FA2) | 99.76G/44.64G (FA2)
DuSA 2242 | 3842 84.5 | 85.5 1568 | 485 91M 15.61G | 45.88G

Swin-T

Agent 2242 82.6 2847 29M 4.53G
EFFATT 2242 82.1 3282 28M 4.45G
ELFATT 2242 82.7 3159 30M 4.67G
FLatten 2242 82.1 2502 29M 4.50G
LOCAL 2242 81.4 2943 28M 4.51G
VSA 2242 82.4 1269/2571 (FA2) 28M 8.81G/4.38G (FA2)
DuSA 2242 82.7 3154 30M 4.63G

Others

ConvNeXt-T 2242 82.1 3911 29M 4.47G
VMamba-T 2242 82.5 1837 30M 4.84G

A2 Complexity analysis

For VSA, the nature of the scaled-dot product attention calculation leads to the complexity of
O(m2 × c). For blockify Strategy 1, the complexity of DuSA is determined by Eqs. (3) and (4).
In Eq. (3), the complexity of the computation of the attention matrix A1 is O(m × b × c) and the
complexity of the token mixing to obtain H′ is also O(m× b× c). Hence, the total complexity of
Eq. (3) is O(m× b× c). Similarly, for the complexity of Eq. (4), its complexity is O((m2/b)× c).
The total complexity of DuSA using blockify Strategy 1 is O(m×b2+m2

b × c), and it can achieve the

24

minimum O(m×
√
m× c) when b =

√
m. For blockify Strategy 2, compared to blockify Strategy 1,

it only has one more attention score aggregation process, as shown in Eq. (5) of which the complexity
is O(m2/b)≪ O((m2/b)× c). Hence, the total complexity of DuSA using blockify Strategy 2 is
also O(m×b2+m2

b × c) and its minimum is also O(m ×
√
m × c) when b =

√
m. If m ≫ c, the

complexity of DuSA is O(m×
√
m), which is less than O(m2) of VSA. Our method is designed for

acceleration when m≫ c. The larger m is than c, the more obvious the acceleration effect is.

Table A2: The effect of different block sizes at each level (L1-L4) on the performance of DuSA
and some plug and play (PP) examples using DuSA to replace VSA directly without training in the
ImageNet-1K classification task. Note: FPS was measured on 1 NVIDIA H20 using a batch size of
512 and mixed precision. “PT” denotes the models pre-trained from scratch. CSWin-T-VSA here
is the same as CSWin-T-VSA in Table A1 while Swin-T-VSA here uses the enhanced version from
[18] which replaces the concatenation operations for partition/merging with convolutions to enhance
performance, hence it is a little different from Swin-T-VSA in Table A1.

Block size of each level Resolution Accuracy (PT/PP) FPS (imgs/s) # FLOPsL1 L2 L3 L4

CSWin-T

49 49 196 49 2242 82.7/78.8 2989 20M 4.09G
196 196 196 49 2242 83.2/82.0 2908 20M 4.09G
784 784 196 49 2242 83.2/83.1 2860 20M 4.09G

VSA (full sequence length)
2242 83.1/ — 1303/2210 (FA2) 20M 7.60G/4.09G (FA2)3136 784 196 49

Swin-T

49 49 196 49 2242 82.5/73.1 3223 30M 4.63G
196 196 196 49 2242 82.7/80.3 3154 30M 4.63G
784 784 196 49 2242 82.8/82.4 2958 30M 4.63G

VSA (full sequence length)
2242 82.7/ — 1188/2257 (FA2) 30M 9.06G/4.63G (FA2)3136 784 196 49

A3 The effect of different block sizes and plug and play examples

Table A2 shows the effect of different block sizes at each level (L1-L4) on the performance of DuSA
and some plug and play (PP) examples using DuSA to replace VSA directly without training in the
ImageNet-1K classification task. The sequence lengths of VSA in 4 levels of CSWin-T/Swin-T are
[3136, 784, 196, 49]. The sequence lengths of the last two levels are too short to affect ViT speed
[7, 16–18]. Hence, we only modified the block sizes of the first two levels. As the block sizes
increase, the inference speed is reduced and the accuracy is improved. Even using the 75% sparsity
ratio of the first level, DuSA still offers a 1.3× speedup over FA2 in Table A2 and outperforms VSA.
Also, as Table A2 shows, when using the 75%-94% sparsity ratios of the first two levels, DuSA can
almost maintain 97%+ accuracy in a plug and play application. The current version of DuSA is a
static sparse attention mechanism, which cannot preserve the accuracy of VSA without loss in a
plug and play application. It is designed for accelerating both the training and inference processes.
After training, it can match or even outperform VSA. Inspired by XAttention, we have provided a
training-free dynamic sparse attention version of DuSA for accelerating the prefilling stage of large
language models (LLMs). The dynamic version of DuSA can match the performance of VSA in plug
and play applications and provides a significant acceleration effect. Details are available in Section
A6.

A4 The use of DuSA in simple and general architectures

Table A3 shows the performance comparison of vanilla ViT architectures and the versions using DuSA
to replace VSA. The sequence length m of the vanilla ViT architecture is relatively short (for the
input resolution of 2242/3842 using a constant input patch size of 16, m = 197/577 with a constant
embedding dimension c = 64), which limits the acceleration effect of DuSA and cannot completely
show the superiority of DuSA for acceleration. Because DuSA is designed for acceleration when
m≫ c.

25

Table A3: The performance comparison of vanilla ViT architectures and the versions using DuSA
to replace VSA. All models are trained from scratch on ImageNet-1K. Block size b is 14/24 for
tiny(T)/large(L) models. Padding is used to make the sequence length divisible by b. FPS and the
inference memory are obtained on 1 NVIDIA H20 using a batch size of 512/32 for the T/L models.

Method Resolution Accuracy (%) FPS (imgs/s) # FLOPs Inference memory (GB)

ViT-L/16-VSA 3842 76.5 179/272 (FA2) 307M 191.21G/174.85G (FA2) 3.7/2.9 (FA2)
ViT-L/16-DuSA 3842 77.2 230 307M 174.54G 3.0
ViT-T/16-VSA 2242 72.6 10644/15350 (FA2) 6M 1.26G/1.08G (FA2) 2.2/2.0 (FA2)
ViT-T/16-DuSA 2242 72.9 10718 6M 1.07G 2.0

A5 Memory consumption patterns of DuSA

Tables A4 and A5 show the memory comparison results. Compared to ELFATT and FA2, DuSA still
has the overall lowest memory usage and its memory usage is significantly lower than that of VSA.

Table A4: Peak memory usage comparison on ImageNet-1K using 1 NVIDIA H20 (96GB). The
batch size used is 32 in both inference and training. “OOM” denotes out of memory (MEM).

Method Resolution Inference MEM (GB) Training MEM (GB)

CSWin-B-ELFATT 3842 2.5 18.8
CSWin-B-VSA 3842 62.3/2.4 (FA2) OOM/17.9 (FA2)
CSWin-B-DuSA 3842 2.3 21.0

Table A5: Peak memory usage comparison on ADE20K and MS COCO 2017 using 1 NVIDIA H20
(96GB). The batch size used is 1 for inference and 2 for training. “OOM” denotes out of memory.

Method ADE20K inference MEM (GB) COCO inference MEM (GB) ADE20K training MEM (GB) COCO training MEM (GB)

Swin-T

ELFATT 2.8 1.6 5.6 8.2
VSA 49.2/2.8 (FA2) 71.9/1.5 (FA2) 20.1/5.5 (FA2) OOM/8.4 (FA2)
DuSA 2.5 1.4 5.5 8.1

CSWin-T

ELFATT 2.7 1.4 5.5 8.8
VSA 33.2/2.7 (FA2) 48.2/1.4 (FA2) 16.7/5.4 (FA2) OOM/8.8 (FA2)
DuSA 2.7 1.4 5.4 8.7

4K 8K 16K 32K 64K 128K

Sequence length

0

2

4

6

8

10

12

S
p

ee
d

u
p
 r

at
io

 (
)

1.9

1.0 1.1

2.8

1.6

2.4

4.1

2.3

4.7
5.1

2.8

6.6

6.0

3.4

9.1

5.6

3.1

11.2
XAttention (stride=8, antidiagonal patterns)
DuSA (stride=8, antidiagonal patterns)
DuSA (stride=16, antidiagonal patterns)

Figure A2: Speedup relative to FlashAttention of FlashInfer obtained by different methods across
different sequence lengths using Llama-3.1-8B-Instruct on 1 NVIDIA H20.

A6 The application of DuSA in accelerating the prefilling stage of LLMs

Based on XAttention, we introduce DuSA (Strategy 2: Rolling indices-based attention scores fusion)
to search antidiagonal/diagonal patterns of attention matrices to filter important or unimportant blocks
for further dynamic sparse attention performed within important blocks only. As Fig. A2 and Table

26

A6 show, DuSA can use a larger stride (larger sparsity) to achieve similar or higher performance than
XAttention, further accelerating FlashAttention of FlashInfer. By introducing antidiagonal patterns
of XAttention, the performance of DuSA can be further improved.

Table A6: The performance comparison of different attention methods on LongBench using the
Llama-3.1-8B-Instruct model. Note: Higher scores mean better performance.

N
ar

ra
tiv

eQ
A

Q
as

pe
r

M
ul

tiF
ie

ld
Q

A
-e

n

M
ul

tiF
ie

ld
Q

A
-z

h

H
ot

po
tQ

A

2W
ik

iM
ul

tih
op

Q
A

M
uS

iQ
ue

D
uR

ea
de

r

G
ov

R
ep

or
t

Q
M

Su
m

M
ul

tiN
ew

s

V
C

SU
M

T
R

E
C

Tr
iv

ia
Q

A

SA
M

Su
m

L
SH

T

Pa
ss

ag
eC

ou
nt

Pa
ss

ag
eR

et
ri

ev
al

-e
n

Pa
ss

ag
eR

et
ri

ev
al

-z
h

L
C

C

R
ep

oB
en

ch
-P

A
ve

ra
ge

VSA (FlashAttention of FlashInfer)

31
.4

4

25
.0

7

29
.4

0

61
.6

8

16
.8

9

17
.0

0

11
.7

9

34
.9

3

34
.2

2

23
.2

5

26
.6

9

15
.9

1

72
.5

0

91
.6

5

43
.7

4

46
.0

0

5.
95

98
.2

0

77
.1

1

52
.1

9

49
.1

4

41
.1

8

XAttention (stride=8, antidiagonal patterns)

30
.4

8

26
.0

4

29
.2

8

61
.6

7

17
.3

3

16
.3

4

11
.8

8

34
.6

4

34
.6

0

23
.2

4

27
.0

8

16
.1

1

71
.5

0

90
.9

7

44
.1

3

46
.5

0

5.
23

88
.6

8

74
.4

0

53
.2

3

50
.9

4

40
.6

8

DuSA (stride=8, antidiagonal patterns)

30
.8

1

24
.2

8

28
.8

8

58
.2

8

18
.0

9

16
.0

3

10
.2

1

35
.4

0

34
.6

8

23
.2

1

26
.9

2

15
.7

7

72
.5

0

92
.1

5

43
.2

7

47
.0

0

7.
25

96
.8

4

76
.6

7

52
.2

8

48
.9

7

40
.9

2

DuSA (stride=8, diagonal patterns)

31
.3

4

25
.9

6

28
.7

8

61
.6

5

16
.9

2

16
.3

5

11
.8

6

35
.6

0

34
.5

4

23
.4

3

27
.1

7

16
.2

1

73
.0

0

90
.6

2

43
.5

9

46
.5

0

6.
38

89
.2

6

75
.0

6

53
.2

4

50
.1

6

40
.8

4

DuSA (stride=16, antidiagonal patterns)

30
.2

1

27
.5

7

29
.0

0

60
.9

9

17
.3

4

17
.0

2

12
.0

4

36
.1

3

34
.5

9

23
.1

8

26
.9

6

15
.7

3

71
.5

0

90
.9

0

43
.6

7

46
.0

0

6.
39

97
.7

6

73
.7

6

53
.3

6

49
.5

6

41
.1

3

A7 Broader impacts

DuSA provides an efficient attention mechanism to accelerate training and inference of long-context
transformers, and it is not hardware-aware, which will benefit academia and startups to reduce
deployment costs using medium-performance GPUs and unlock cross-disciplinary breakthroughs.
DuSA can be used in advanced hierarchical sparse attention mechanisms to improve their performance
and speed as a novel alternative for basic sparse attention. Although the enhanced efficiency of
long-context transformers may increase risks such as misuse in generating fake/harmful contents, the
benefits brought by efficient long-context transformers outweigh the risks in general.

A8 Limitations

As Remark 4 shows, for the term ∥H2 −H∥F , its upper bound (Inequality (A8) or (A9)) provides a
worst-case guarantee and may be relatively rough: In the current version, the upper bound (Inequality
(A8) or (A9)) for Strategy 1 or 2 is larger than the upper bound (Inequality (A1)) for simple block
sparse attention. However, as shown in Fig. A1, the actual approximation error of DuSA (Strategy
1) or DuSA (Strategy 2) is usually much lower than that of DuSA without using Strategies 1 and
2. In the future, a key issue is to obtain a tighter upper bound for Strategy 1 or 2. In addition, the
acceleration effect of DuSA may be limited when m is not significantly larger than c.

27

	Introduction
	Related work
	Memory acceleration methods
	Computation acceleration methods
	Linear kernelized attention mechanisms
	Sparse/local attention mechanisms

	Methods
	Vanilla scaled-dot product attention
	Dual-stage sparse attention

	Experiments and results
	Experiment settings
	Long range arena
	Image classification performance
	Semantic segmentation performance
	Object detection performance
	Text to video generation performance
	Ablation studies about different blockify strategies and different stage execution orders

	Conclusions
	Upper bounds analysis
	Complexity analysis
	The effect of different block sizes and plug and play examples
	The use of DuSA in simple and general architectures
	Memory consumption patterns of DuSA
	The application of DuSA in accelerating the prefilling stage of LLMs
	Broader impacts
	Limitations

