
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SPLINEGS: LEARNING SMOOTH TRAJECTORIES
IN GAUSSIAN SPLATTING FOR DYNAMIC SCENE RE-
CONSTRUCTION

Anonymous authors
Paper under double-blind review

(a) Jumping jacks (b) Stand up (c) NURBS

Figure 1: We propose SplineGS, which represents the trajectories in Gaussian splatting using non-
uniform rational B-spline (NURBS) to reconstruct dynamic scenes. The learned trajectories are
shown with rendering results in (a) and (b). (c) shows an example of a trajectory based on NURBS.

ABSTRACT

Reconstructing complex scenes with deforming objects for novel view synthe-
sis is a challenging task. Recent works have addressed this with 3D Gaussian
Splatting, which effectively reconstructs static scenes with high quality in short
training time, by adding specialized modules for the deformations of Gaussian
blobs. However, designing an effective deformation module that incorporates ap-
propriate spatiotemporal inductive biases still remains unresolved. To address this
issue, we propose SplineGS in this paper, which utilizes non-uniform rational B-
splines (NURBS), an extension of B-spline, to represent temporally smooth defor-
mation. A set of representative trajectories are learned based on NURBS, and the
individual trajectories of Gaussian blobs are represented as linear combinations
of these trajectories for spatial smoothness. The weights of the combinations are
trained based on a multi-resolution hash table and an MLP, with the positions of
the Gaussian blobs as the keys. Thanks to this design, the proposed method does
not need any regularizers for trajectories, which enables efficient training. Exper-
iments demonstrate that the proposed method provides competitive performance
over the existing methods with much shorter training time.

1 INTRODUCTION

3D reconstruction is a fundamental problem in computer vision and graphics that has been studied
for decades. Recently, neural radiance fields (NeRF) (Mildenhall et al., 2020) have achieved a re-
markable breakthrough in novel view synthesis (NVS) based on implicit representations. However,
NeRF still suffered from limited performance and, especially, slow training times, prompting the de-
velopment of various subsequent methods (Yu et al., 2021; Fridovich-Keil et al., 2022; Chen et al.,
2022; Barron et al., 2021; 2023). Recently, 3D Gaussian Splatting (3D-GS) (Kerbl et al., 2023) has
emerged as a successful alternative by representing scenes based on 3D Gaussian blobs and employ-
ing a differentiable tile rasterizer, resulting in fast, high-quality rendering and thus reduced training
time.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Despite the success of 3D-GS in static scenes, applying it to dynamic scenes with deforming objects
remains a challenging task due to the difficulty in modeling effective trajectory representations. Re-
cent works have proposed various methods to model the trajectories of 3D Gaussian blobs over
time to reconstruct dynamic scenes. Approaches that expresses deformations based on neural rep-
resentations (Yang et al., 2024b; Wu et al., 2024) optimize canonical 3D Gaussian blobs as well
as a neural module to predict temporal deformations. Neural representations in these approaches,
however, do not provide enough inductive biases for deformations, and additional training mecha-
nisms or smoothness regularizers are utilized to handle these. Another approach directly optimizes
4D Gaussian blobs (Yang et al., 2024a; Duan et al., 2024), which introduces challenges in optimiza-
tion due to the higher dimensionality (4D). This results in reconstruction artifacts, such as floating
objects that do not align correctly with the scene. Even though these previous works have shown
impressive performance, the trajectory representations they use impose some limitations on either
performance, convergence speed, or both.

In this paper, we propose a novel method, i.e., SplineGS, that models the trajectories of 3D Gaus-
sian blobs as temporally smooth representations based on non-uniform rational B-splines (NURBS)
(Piegl & Tiller, 2012), an extension of B-splines (De Boor, 2001), to reconstruct dynamic scenes.
NURBS can represent continuous and smooth trajectories, similar to B-splines, while allowing for
more flexible and finer adjustments. Our approach specifically obtains a set of representative trajec-
tories for both positions and rotations through NURBS, of which the parameters are learned during
the training. To ensure spatial smoothness, the individual trajectory of each Gaussian blob is ex-
pressed as a linear combination of these representative trajectories. Inspired by Müller et al. (2022),
the weights for these combinations are obtained using a multi-resolution hash table and a multi-layer
perceptron (MLP), where the average position of each Gaussian blob serves as the key. The NURBS
representation and the linear combination strategy act as implicit regularizers embedded within the
structure. Based on this smooth representation, our approach achieves high-fidelity rendering and
fast training time without relying on any explicit smoothness regularizers, making it efficient for
complex dynamic scenes.

We evaluated the proposed method on two dynamic-scene datasets, i.e., D-NeRF (Pumarola et al.,
2021) and Neu3D (Li et al., 2022). Experimental results demonstrate that the proposed method
achieves highly competitive performance, even with shorter training time.

Our contributions are summarized as follows:

• We propose temporally smooth representations for the trajectories of Gaussian blobs based
on NURBS.

• We enforce spatial smoothness by introducing a low-rank assumption for the trajectories.
Each Gaussian blob’s trajectory is modeled as a weighted sum of representative trajectories,
where the weights are learned by a multi-resolution hash table and an MLP. This eliminates
the need for a separate smoothness regularizer.

• The proposed smooth representation exhibits physically plausible trajectories, which leads
to high-fidelity rendering and fast training times.

2 RELATED WORK

In this section, we briefly review the NeRF-based methods for dynamic scenes. Following this,
we introduce the original 3D-GS for static scenes and the methods that extend 3D-GS to dynamic
scenes.

2.1 NEURAL RADIANCE FIELDS FOR DYNAMIC SCENES

In recent years, NeRF-based methods have gained significant attention for solving the NVS prob-
lem of static scenes. This surge in interest was largely due to the impressive performance of vanilla
NeRF, which has inspired subsequent research efforts aimed at improving memory usage, training
speed, rendering quality, and rendering speed. In addition, many attempts have been made to ex-
tend it to dynamic scenes. D-NeRF (Pumarola et al., 2021) and Nerfies (Park et al., 2021a) utilize
the coordinates in a canonical space and time embedding vectors as inputs to the MLP to compute
the deformations. HyperNeRF (Park et al., 2021b) further enhanced this approach by embedding a

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

template NeRF in a higher-dimensional space to better capture topological changes. However, these
methods often suffer from inefficiency in rendering due to the high number of queries required for
the MLP. Spline-NeRF (Knodt, 2022) takes all sampled points along a ray as inputs to an MLP,
which then outputs control points for Bézier curves. However, it is difficult to represent a complex
trajectory, e.g., one that has many temporally local changes, based on a Bézier curve. A Bézier curve
is a global representation, i.e., changes in some control points affect the entire shape of the curve.
Accordingly, it becomes challenging to apply this method to long video sequences. On the other
hand, K-Planes (Fridovich-Keil et al., 2023) and HexPlane (Cao & Johnson, 2023) represented
4D spacetime by combining multiple 2D planes, improving speed and interpretability through ex-
plicit representations. Nevertheless, the complexity of dynamic scenes and the inherent limitations
of ray-casting-based rendering prevent these methods from achieving high-fidelity and high-speed
rendering required for practical applications.

2.2 3D GAUSSIAN SPLATTING FOR DYNAMIC SCENES

Recently, 3D-GS has emerged as a successful solution for reconstructing static scenes, achieving
high-fidelity rendering, fast rendering speed, and fast training time. 3D-GS directly optimizes the
means, scales, rotations, opacities, and colors of 3D Gaussian blobs that compose a static scene
using a differentiable tile-based rasterizer. Inspired by this success, research efforts have begun to
explore the use of 3D-GS for reconstructing dynamic scenes (Wu et al., 2024; Yang et al., 2024b;
Huang et al., 2024; Yang et al., 2024a; Duan et al., 2024; Luiten et al., 2024; Bae et al., 2024). For
example, 4D-GS (Wu et al., 2024) introduces a spatial-temporal structure encoder, which is com-
posed of a multi-resolution HexPlane and a tiny MLP, along with additional MLPs to compute the
deformations. In another study (Yang et al., 2024b), purely implicit networks, i.e., MLPs, are used
to compute temporal deformations. In SC-GS (Huang et al., 2024), anchor-based spatial warping
and MLPs are learned to represent deformations of the overall 3D Gaussian blobs. However, these
approaches rely on neural representations, which do not provide enough inductive biases, so ad-
ditional training mechanisms or smoothness regularizers are utilized. On the other hand, there are
methods (Yang et al., 2024a; Duan et al., 2024) that directly optimize 4D Gaussian blobs. While
this approach allows for a flexible representation of complex dynamic scenes, it also introduces
challenges in optimization due to the increased dimensionality (4D). These challenges can lead to
reconstruction artifacts, such as floating objects, and achieving high-quality reconstructions requires
additional regularizers or extended training time. Alternatively, polynomial and Fourier bases (Lin
et al., 2024) can also be used to represent trajectories. However, since this approach must utilize all
the bases to calculate deformation at a specific time, it can be more challenging to model temporally
local deformations and the computational cost can increase significantly when reconstructing long
video sequences.

3 THE PROPOSED METHOD

In this section, we propose SplineGS, which represents deformations based on spatiotemporally
smooth representations. First, we review 3D Gaussian Splatting in Section 3.1. In Section 3.2, we
introduce the B-spline (non-uniform rational B-splines (NURBS), specifically) representations for
the trajectories of Gaussian blobs. Then, in Section 3.3, a multi-resolution hash table and an MLP
are utilized to enforce spatial smoothness based on linear combinations of representative trajectories.
Finally, in Section 3.4, we describe the objective function for optimization. The pipeline of SplineGS
is illustrated in Figure 2.

3.1 PRELIMINARY: 3D GAUSSIAN SPLATTING

3D-GS Kerbl et al. (2023) reconstructs a static scene by directly optimizing the means, covariance
matrices, opacities, and colors of 3D Gaussian blobs. Given N Gaussian blobs, the shape of each
Gaussian is represented by its mean xi and covariance matrix Σi:

Gi(µ) = e−
1
2 (µ−µi)

TΣ−1
i (µ−µi), (1)

The covariance matrix must be positive semi-definite, and this is ensured during optimization by
separately optimizing the corresponding scales and rotations, i.e., Si and Ri:

Σi = RiSiS
T
i R

T
i . (2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: The pipeline of the proposed method. For each given 3D Gaussian blob, the positions
normalized into the range of [0, 1]3 are used as keys for the multi-resolution hash table. The features
derived from the position are then mapped to weights via an MLP for the linear combination of
representative trajectories. Meanwhile, the relative positions and rotations of the representative tra-
jectories at time t are calculated based on NURBS. Finally, the deformation of each Gaussian blob
is obtained by a linear combination.

To render the 3D Gaussian blobs in the scene onto a 2D image space, the 2D covariance matrix Σ′
i

in camera coordinates is derived using a given camera extrinsic transform W and the Jacobian of
the affine approximation matrix J (Zwicker et al., 2001):

Σ′
i = JWΣiW

TJ. (3)
Afterward, the pixel’s color C is computed by blending N ′-ordered blobs that overlap the pixel.

C =

N ′∑
k=1

cikαik

k−1∏
j=1

(1− αij). (4)

where {ik} represents the indices of the overlapping blobs and ci denotes the color of each blob.
αi is determined by evaluating the 2D Gaussian with covariance Σ′

i and multiplying it by a learned
per-point opacity.

3.2 TRAJECTORY REPRESENTATIONS BASED ON B-SPLINES

We employ non-uniform rational B-splines (NURBS) (Piegl & Tiller, 2012) to represent smooth
trajectories over time. Here, we first explain the basic formulation based on B-splines, and then
extend it to NURBS.

B-splines. B-splines (De Boor, 2001) are defined as a set of piecewise polynomial functions, where
each polynomial has a specific degree denoted as p. These polynomial functions are connected con-
tinuously at specific points called knots, represented by t0, t1, . . . , tp+M+1. Here, M is the number
of control points which will be defined later. The curve’s shape is determined as a linear combina-
tion of control points and their corresponding basis functions. When p = 0, the influence of the i-th
control point at a given time is described by the basis function as follows:

Bi,0(t) :=

{
1 if ti ≤ t < ti+1,

0 otherwise.
(5)

The higher-degree B-splines, starting from p = 0, can be defined using the Cox-de Boor recursion
formula:

Bi,p(t) :=
t− ti

ti+p − ti
Bi,p−1(t) +

ti+p+1 − t

ti+p+1 − ti+1
Bi+1,p−1(t). (6)

Once the basis functions are determined, the position at any given time t is computed as a linear
combination of the control points, with these functions acting as weights.

S(t, P) =

n∑
i=0

Bi,p(t)Pi (7)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where S(t, P) denotes the position of the B-spline curve at time t and P = {Pi} are the control
points that define the curve’s shape.

Non-uniform rational B-splines. To represent more complex trajectories, the trajectory of a Gaus-
sian blob can be modeled using non-uniform rational B-spline (NURBS), an extension of B-splines.
NURBS allows for finer controls of the trajectory by incorporating an additional weight for each
control point, and a NURBS curve is expressed as follows:

S(t, w, P) =

∑M
i=0 Bi,p(t)wiPi∑M
i=0 Bi,p(t)wi

(8)

where wi denotes the weight associated with the control point Pi. Here, assigning uniform weights
makes it equivalent to plain B-splines. Assigning non-uniform weights allows for more flexible
adjustment over the control points that represent complex motion. Additionally, during simpler mo-
tions, simplification can be encouraged by adopting low weights.

In this paper, we utilize NURBS to represent the trajectory of a Gaussian blob (i.e., translation and
rotation), and P and wi are regarded as learnable parameters. Note that the NURBS trajectories in
this paper are defined as the differences from the canonical (or static) positions or rotations. In other
words, the trajectories must be combined with the static positions or rotations before use. The static
positions and rotations of blobs are separate learnable parameters in the proposed method, along
with colors defined as spherical harmonics, opacities, and scales. The degree p and the number of
control points M are hyperparameters, and the number of knots is determined as p + M + 1. The
locations of knots are defined as equally spaced points in the entire time frame.

3.3 BLENDING REPRESENTATIVE TRAJECTORIES FOR SPATIAL SMOOTHNESS

Optimizing B-splines for each 3D Gaussian blob separately has several drawbacks: First of all,
it requires a large memory space and can increase the overall complexity of optimization. More
importantly, spatial smoothness, which is expected in between the trajectories in proximity, is not
guaranteed. To resolve these issues all at once, we instead represent the individual trajectories as
weighted sums of a few representative trajectories, which only are defined based on NURBS. The
weights for these sums are obtained by a multi-resolution hash table and an MLP, which is inspired
by instantNGP (Müller et al., 2022), using the position of each Gaussian blob as the key:

βj = tanh(MLP(Hash(µj))) for j = 1, 2, . . . , N (9)

where µj ∈ R3 represents the center position of the j-th blob, N denotes the number of Gaussians,
βj ∈ RL is the weight vector of the corresponding Gaussian blob, and L is the number of represen-
tative trajectories. We apply tanh to the weights to limit their range to [−1, 1]. Note here that we
do not use any explicit spatial-proximity-based operations, such as kernel regression or K-nearest
neighbors (Huang et al., 2024), and instead learn the weights implicitly by the hash table and MLP.
This can effectively prevent the overall computational complexity of the training procedure from
increasing.

After obtaining the weights, the positions and rotations of the representative trajectories at time t,
calculated based on NURBS, are combined by the weights. The weighted sum operation is applied
in the original 3D space for the positions, while it is applied to the axis-angle representations for the
rotations and then converted to quaternions.

∆µj(t) =

L−1∑
k=0

βj,k · S(t, wk, P
pos
k), (10)

∆Rj(t) = Q

(
L−1∑
k=0

βj,k · S(t, wk, P
rot
k)

)
, (11)

µj(t) = µj +∆µj(t), (12)
Rj(t) = Rj ·∆Rj(t), (13)

where P pos
k ∈ RM×3 and P rot

k ∈ RM×3 represent the control points for positions and rotations,
respectively, for the k-th representative trajectory, and wk ∈ RM denotes the corresponding weights

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(of the control points) in NURBS. Q denotes the axis-angle-to-quaternion conversion. The position
and rotation from the first two equations are relative ones (from the static position and rotation, re-
spectively), so they are combined with the static ones in the last two equations. The above technique
effectively suppresses unwanted, abrupt spatial variations and promotes gradual changes. Accord-
ingly, the proposed method can ensure spatial smoothness without increasing the overall computa-
tional complexity, and also has compact feature representations.

3.4 OPTIMIZATION

The proposed method incorporates the above spline module on top of the original 3D-GS to estimate
deformations. This process is performed end-to-end, and we term this method SplineGS.

Reconstruction loss. The reconstruction loss is defined as the difference between the ground truth
image and the rendered image. Similar to 3D-GS (Kerbl et al., 2023), we include both L1 and
LD-SSIM:

Lrecon = (1− λ)L1 + λLD-SSIM (14)
where λ is a predefined weight.

Sparsity. In complex scenes, particularly with real-world datasets, the diversity and complexity of
object structures lead to an increased number of Gaussian blobs to represent fine details. This, on
the other hand, generates artifacts, such as floating objects, and increases memory usage. To prevent
the creation of unnecessary 3D Gaussian blobs, we add L1 regularization on the opacity values:

L = Lrecon + λo

N∑
j=1

|oj | (15)

where λo is also a predefined weight and oj is the opacity of the jth blob.

4 EXPERIMENTS

In this section, we evaluate SplineGS on the D-NeRF (Pumarola et al., 2021) and Neu3D (Li et al.,
2022) datasets. Performance was measured using PSNR, D-SSIM, training time, and FPS, and com-
pared with existing NeRF-based and 3D-GS-based methods.

4.1 DATASETS

D-NeRF dataset. The D-NeRF dataset consists of monocular video frames with well-aligned cam-
era poses. This synthetic dataset includes 8 scenes: bouncingballs, hellwarrior, hook, jumpingjacks,
mutant, standup, trex and lego, each of which contains between 50 and 200 training images and 20
test images. The experiments were conducted at a resolution of 800×800.

Neu3D dataset. This is a real-world dataset that includes 6 scenes: coffee martini, cook spinach,
cut roasted beef, sear steak, flame steak and flame salmon. Each scene, except for flame salmon,
was recorded for 10 seconds at 30 fps using 15 to 20 fixed cameras, with one camera designated as
the test view. The experiments were conducted at half resolution, i.e., 1352×1014. We did not use
flame salmon, which consists of 1200 frames, in the experiments, following the practices of many
existing methods (Guo et al., 2024; Liu et al., 2024; Lu et al., 2024).

4.2 IMPLEMENTATION DETAILS

We implemented SplineGS by integrating the proposed spline-based deformation module, imple-
mented using PyTorch (Paszke et al., 2019), with the original 3D-GS (Kerbl et al., 2023). For the
D-NeRF dataset, we randomly sample 100,000 points within a 3D space, where each axis ranges
from -1.3 to 1.3, to initialize 3D Gaussian blobs. For the Neu3D dataset, the initial set of 3D Gaus-
sians is obtained by calculating structure-from-motion (Schönberger & Frahm, 2016) for the first
frames of each video and downsampling the results. The detailed settings for this were identical to
those in 4D-GS (Wu et al., 2024). The initialization of scales, rotations, colors, opacities, and their
respective learning rates follows the 3D-GS. Similarly, during training, we adopt the clone and split
strategies with a threshold of 2 × 10−4, as in 3D-GS. For the D-NeRF dataset, we also utilized the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Quantitative comparison for the D-NeRF dataset. We compared our method to existing
methods on 800×800 resolution test images. Here, “40K” and “80K” in the parentheses indicate
the numbers of training iterations. The asterisks (*) indicate that the results were adopted from the
4D-GS paper (Wu et al., 2024), while the daggers (†) indicate that those were from the original
papers. All the other results were reproduced in our experiments. The average PSNR and SSIM
are measured across all scenes, with some cells highlighted to represent the best , second best ,
and third best . Additionally, we report the average training time and rendering speed in frames per
second (FPS) for each method.

Method PSNR↑ SSIM↑ Training time↓ FPS↑

K-Planes* (Fridovich-Keil et al., 2023) 30.67 0.9672 52 mins 0.97
HexPlane* (Cao & Johnson, 2023) 31.02 0.9680 11 mins 2.5

TiNeuVox* (Fang et al., 2022) 31.35 0.9613 28 mins 1.5

D-3DGS.† (Yang et al., 2024b) 38.50 0.9857 22 mins 70
4D-GS* (Wu et al., 2024) 34.06 0.9787 13 mins 62
4DGS (Yang et al., 2024a) 32.87 0.9649 7.5 hours 135

CoGS† (Yu et al., 2024) 37.90 0.9842 - -
CompDynGS† (Katsumata et al., 2024) 33.21 0.9770 8 mins 150

SC-GS (Huang et al., 2024) 39.53 0.9906 1.1 hours 111

SplineGS (40K) 39.11 0.9866 17 mins 188
SplineGS (80K) 39.44 0.9868 35 mins 188

4D-GS (Wu et al., 2024) 4DGS (Yang et al., 2024a) D-3DGS (Yang et al., 2024b) SplineGS GT

Figure 3: Qualitative results for the D-NeRF dataset. We present the rendering results of various
methods, including ours, with the ground truth (GT) for standup scene in the D-NeRF dataset. Ad-
ditional rendering results for other scenes are provided in the appendix.

repeated opacity reset suggested in 3D-GS. The training process begins with initial 3K iterations
of static 3D-GS training (ignoring any deformations), followed by an end-to-end training with the
proposed spline module.

For the spline module, the number of control points (per trajectory) was set as one for every four
to eight frames collected from a single camera. These control points were initialized with a normal
distribution with a standard deviation 10−5. The number of representative trajectories was set to
either 64 or 128, depending on the dataset. The initial learning rate for the control points was set
to 10−3 for the D-NeRF dataset and 5 × 10−3 for the Neu3D dataset, with a decay factor of 0.99
for every 100 iterations. Similarly, the learning rate of wk was initialized to 10−3 for the D-NeRF
dataset and 5 × 10−4 for the Neu3D dataset, and also decayed by a factor of 0.99 for every 100
iterations. The multi-resolution hash table and MLP were implemented using tiny-cuda-nn (Müller,
2021), with 16 levels and 4 features per level. The maximum table size parameter, base resolution,
and per-level scale were set to 19, 8, and 2, respectively, for the D-NeRF dataset and 15, 16, and 1.5,
respectively, for the Neu3D dataset. The MLP consisted of 4 hidden layers with hidden dimensions
of 128 for all the layers. The optimization of the spline module, like 3D-GS, was performed using
Adam (Kingma, 2014).

The performance of SplineGS was evaluated after 40K and 80K iterations on the D-NeRF dataset,
and 20K and 40K iterations on the DyNeRF dataset, with results averaged over three runs. All the
experiments were conducted on a single Nvidia Geforce RTX 3090.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Quantitative comparison for the Neu3D dataset. We compared our method with existing
methods on 1352×1014 resolution test images. Here, “20K” and “40K” in the parentheses indicate
the numbers of training iterations. The conventions for typographical marks and color codes are
generally identical to Table 1. We measured the average PSNR and SSIM across all scenes except
flame salmon, following the practice of many existing works (Guo et al., 2024; Liu et al., 2024; Lu
et al., 2024). The double dagger (‡) denotes that the mean values were calculated across all scenes
in the respective work.

Method PSNR↑ SSIM↑ Training time↓ FPS↑

NeRFPlayer* (Song et al., 2023) 32.12 0.9206 5.5 hours 0.045
K-Planes* (Fridovich-Keil et al., 2023) 31.86 0.9658 1.8 hours 0.23

4D-GS* (Wu et al., 2024) 31.54 0.9444 40 mins 30
Gaussian-Flow‡ (Lin et al., 2024) 32.00 0.9700 42 mins -

4DGS† (Yang et al., 2024a) 32.53 - - 114
STG† (Li et al., 2024) 32.57 0.9740 42 mins×6 140

SplineGS (20K) 32.52 0.9484 27 mins 76
SplineGS (40K) 32.60 0.9496 55 mins 76

4D-GS (Wu et al., 2024) STG (Li et al., 2024) SplineGS GT

Figure 4: Qualitative results for the Neu3D dataset. We present the rendering results of various
methods, including ours, and the ground truth (GT) for coffee martini in the Neu3D dataset. We
also provide zoomed-in results in the second row of the figure. Additional results for other scenes
are provided in the appendix.

4.3 RESULTS

Results on synthetic scenes. Here, we compared the proposed model with various NeRF-based
methods: K-Planes (Fridovich-Keil et al., 2023), HexPlane (Cao & Johnson, 2023), and TiNeuVox
(Fang et al., 2022); as well as 3D-GS-based methods: Yang et al. (2024b), 4D-GS (Wu et al., 2024),
4DGS (Yang et al., 2024a), CoGS (Yu et al., 2024), Katsumata et al. (2024), SC-GS (Huang et al.,
2024)) on the D-NeRF dataset. A quantitative evaluation of average PSNR, SSIM, training time, and
FPS is shown in Table 1. Here, the proposed method ranks second best, but with significantly shorter
training time compared to the best performing one while having a very small performance gap.
This observation suggests that the proposed spline representation is well suited for dynamic scene
reconstruction. More detailed qualitative and quantitative comparisons for each scene are provided
in the appendix. Figure 3 shows the qualitative comparison for standup. Here, we can confirm that
the proposed method yields more accurate rendering compared to the existing methods.

Results on Neu3D. For the Neu3D dataset, we compared with the following NeRF-based methods:
NeRFPlayer (Kerbl et al., 2023), K-Planes Fridovich-Keil et al. (2023); as well as 3D-GS-based
methods: 4D-GS (Wu et al., 2024), 4DGS (Yang et al., 2024a) and STG (Li et al., 2024). Table 2
presents the quantitative comparison. For this dataset, the proposed method achieves the best average

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Effect of the degree of NURBS. We quantitatively evaluated the effect of the degree of
NURBS in our method on synthetic and real-world scenes.

Bouncing Balls Hook Coffee Martini Sear Steak
Degree p PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

p = 0 36.03 0.9915 28.43 0.9441 28.42 0.9127 33.61 0.9606
p = 1 40.93 0.9951 38.09 0.9879 28.56 0.9154 33.49 0.9610
p = 2 41.26 0.9954 38.59 0.9890 29.01 0.9178 33.66 0.9621
p = 3 41.81 0.9956 38.71 0.9891 29.26 0.9189 33.82 0.9624
p = 4 39.97 0.9946 26.98 0.9311 28.64 0.9184 33.59 0.9621

Table 4: Ablation study. We quantitatively evaluated the effect of different components of the pro-
posed method on synthetic and real-world scenes.

Bouncing Balls Hook Coffee Martini Sear Steak
Method PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

w/o hash 41.20 0.9949 36.39 0.9813 27.98 0.9041 30.87 0.9473
w/o MLP 38.33 0.9927 37.80 0.9879 28.80 0.9160 33.19 0.9605

w/o NURBS 39.83 0.9944 26.82 0.9306 28.85 0.9181 32.08 0.9559
proposed 41.81 0.9956 38.71 0.9891 29.26 0.9189 33.82 0.9624

PSNR after 40K iterations. Moreover, the proposed method always achieves better performance per
training time than the existing methods. Here, STG divides the entire video frames (300 frames)
into 6 parts (50 frames each) and then processes them separately, which is why the training time is
described as “42 mins × 6”. Again, the detailed results for each scene are provided in the appendix.
Figure 4 shows the qualitative comparisons on the coffee martini scene. Here, the proposed method
provides crisper details for the coffee martini.

SplineGS concentrates on the temporal changes of position and rotation, without modeling those
of density and color unlike some recent methods (Yang et al., 2024a; Li et al., 2024; Lin et al.,
2024). Nevertheless, it achieves high-fidelity rendering and fast convergence, which suggests that
the proposed spline representation provides a better alternative for modeling deformations.

4.4 ANALYSES AND ABLATION STUDY

Effect of the degree of NURBS. In NURBS, the value of a trajectory at a specific time instance
is influenced by surrounding p + 1 control points. Accordingly, as the degree increases, the curve
becomes less sensitive to the changes in control points, which makes the trajectory smoother but
also increases the computational cost. Table 3 shows the performance variations according to the
changes in the degree for bouncing balls, hook, coffee martini, sear steak. The results indicate that
p = 3 generally provides optimal performance for dynamic scenes.

Ablation study on the module components. We provide an ablation study on the spline module
in Table 4. Here, “w/o hash” indicates that the multiresolution hash table was replaced with a
positional encoding γ(p) =

(
sin
(
2kπp

)
, cos

(
2kπp

))L−1

k=0
with L = 10. In this case, performance

generally decreases except for bouncingballs, which contains less complex motions. In the case of
“w/o MLP”, the hash table directly outputted the weights for the linear combination, which generally
resulted in lower performance. In the “w/o NURBS” scenario, the MLP directly outputs the values
of a trajectory given a time instance t: the features generated by the hash table are concatenated
with the positional encoding (with L = 6) of t, and then go through the MLP to output the values.
This variation leads to lower performance, which suggests that the neural representation alone lacks
sufficient spatiotemporal inductive biases.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5 CONCLUSION

We proposed SplineGS, which utilizes a smooth representation in both space and time for the tra-
jectory of each 3D Gaussian blob, to reconstruct dynamic scenes. Thanks to this representation,
the proposed method achieves state-of-the-art or at least competitive performance without the need
for a regularizer on the trajectories. The proposed spline representation is an explicit representa-
tion, in that the NURBS directly represents the trajectories of Gaussian blobs. This is well suited
for dynamic scene reconstruction, providing fast convergence. The proposed model only handles
deformations in positions and rotations, so it has limitations in reconstructing objects that appear
or disappear in scenes, as well as objects with rapidly changing colors due to lighting variations.
Incorporating advanced light reflections and accounting for changes in blob density will be explored
in future work.

REFERENCES

Jeongmin Bae, Seoha Kim, Youngsik Yun, Hahyun Lee, Gun Bang, and Youngjung Uh. Per-gaussian
embedding-based deformation for deformable 3d gaussian splatting. In European Conference on
Computer Vision (ECCV), 2024.

Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla, and
Pratul P. Srinivasan. Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields.
ICCV, 2021.

Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman. Zip-nerf:
Anti-aliased grid-based neural radiance fields. ICCV, 2023.

Ang Cao and Justin Johnson. Hexplane: A fast representation for dynamic scenes. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 130–141, 2023.

Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. Tensorf: Tensorial radiance fields.
In European Conference on Computer Vision (ECCV), 2022.

Devikalyan Das, Christopher Wewer, Raza Yunus, Eddy Ilg, and Jan Eric Lenssen. Neural para-
metric gaussians for monocular non-rigid object reconstruction. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 10715–10725, 2024.

Carl De Boor. A practical guide to splines; rev. ed. Applied mathematical sciences. Springer, Berlin,
2001. URL https://cds.cern.ch/record/1428148.

Yuanxing Duan, Fangyin Wei, Qiyu Dai, Yuhang He, Wenzheng Chen, and Baoquan Chen. 4d-
rotor gaussian splatting: Towards efficient novel view synthesis for dynamic scenes. In ACM
SIGGRAPH 2024 Conference Papers, pp. 1–11, 2024.

Jiemin Fang, Taoran Yi, Xinggang Wang, Lingxi Xie, Xiaopeng Zhang, Wenyu Liu, Matthias
Nießner, and Qi Tian. Fast dynamic radiance fields with time-aware neural voxels. In SIGGRAPH
Asia 2022 Conference Papers, 2022.

Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and Angjoo
Kanazawa. Plenoxels: Radiance fields without neural networks. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 5501–5510, 2022.

Sara Fridovich-Keil, Giacomo Meanti, Frederik Rahbæk Warburg, Benjamin Recht, and Angjoo
Kanazawa. K-planes: Explicit radiance fields in space, time, and appearance. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12479–12488, 2023.

Zhiyang Guo, Wengang Zhou, Li Li, Min Wang, and Houqiang Li. Motion-aware 3d gaussian
splatting for efficient dynamic scene reconstruction. arXiv preprint arXiv:2403.11447, 2024.

Yi-Hua Huang, Yang-Tian Sun, Ziyi Yang, Xiaoyang Lyu, Yan-Pei Cao, and Xiaojuan Qi. Sc-
gs: Sparse-controlled gaussian splatting for editable dynamic scenes. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4220–4230, 2024.

10

https://cds.cern.ch/record/1428148

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Kai Katsumata, Duc Minh Vo, and Hideki Nakayama. A compact dynamic 3d gaussian representa-
tion for real-time dynamic view synthesis. In ECCV, 2024.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM Transactions on Graphics, 42(4), July 2023.
URL https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Julian Knodt. Continuous dynamic-nerf: Spline-nerf, 2022. URL https://arxiv.org/abs/
2203.13800.

Minsik Lee, Jungchan Cho, and Songhwai Oh. Consensus of non-rigid reconstructions. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4670–4678,
2016.

Tianye Li, Mira Slavcheva, Michael Zollhoefer, Simon Green, Christoph Lassner, Changil Kim,
Tanner Schmidt, Steven Lovegrove, Michael Goesele, Richard Newcombe, et al. Neural 3d video
synthesis from multi-view video. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 5521–5531, 2022.

Zhan Li, Zhang Chen, Zhong Li, and Yi Xu. Spacetime gaussian feature splatting for real-time
dynamic view synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 8508–8520, 2024.

Youtian Lin, Zuozhuo Dai, Siyu Zhu, and Yao Yao. Gaussian-flow: 4d reconstruction with dynamic
3d gaussian particle. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pp. 21136–21145, 2024.

Qingming Liu, Yuan Liu, Jiepeng Wang, Xianqiang Lv, Peng Wang, Wenping Wang, and Junhui
Hou. Modgs: Dynamic gaussian splatting from causually-captured monocular videos. arXiv
preprint arXiv:2406.00434, 2024.

Zhicheng Lu, Xiang Guo, Le Hui, Tianrui Chen, Ming Yang, Xiao Tang, Feng Zhu, and Yuchao Dai.
3d geometry-aware deformable gaussian splatting for dynamic view synthesis. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024.

Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and Deva Ramanan. Dynamic 3d gaussians:
Tracking by persistent dynamic view synthesis. In 3DV, 2024.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.

Thomas Müller. tiny-cuda-nn, 4 2021. URL https://github.com/NVlabs/
tiny-cuda-nn.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics prim-
itives with a multiresolution hash encoding. ACM transactions on graphics (TOG), 41(4):1–15,
2022.

Keunhong Park, Utkarsh Sinha, Jonathan T. Barron, Sofien Bouaziz, Dan B Goldman, Steven M.
Seitz, and Ricardo Martin-Brualla. Nerfies: Deformable neural radiance fields. ICCV, 2021a.

Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T. Barron, Sofien Bouaziz, Dan B Gold-
man, Ricardo Martin-Brualla, and Steven M. Seitz. Hypernerf: A higher-dimensional representa-
tion for topologically varying neural radiance fields. ACM Trans. Graph., 40(6), dec 2021b.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Processing Systems 32, pp.
8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/

11

https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://arxiv.org/abs/2203.13800
https://arxiv.org/abs/2203.13800
https://github.com/NVlabs/tiny-cuda-nn
https://github.com/NVlabs/tiny-cuda-nn
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

Les Piegl and Wayne Tiller. The NURBS book. Springer Science & Business Media, 2012.

Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer. D-nerf: Neural
radiance fields for dynamic scenes. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10318–10327, 2021.

Johannes L. Schönberger and Jan-Michael Frahm. Structure-from-motion revisited. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4104–4113, 2016. doi:
10.1109/CVPR.2016.445.

Liangchen Song, Anpei Chen, Zhong Li, Zhang Chen, Lele Chen, Junsong Yuan, Yi Xu, and An-
dreas Geiger. Nerfplayer: A streamable dynamic scene representation with decomposed neural
radiance fields. IEEE Transactions on Visualization and Computer Graphics, 29(5):2732–2742,
2023. doi: 10.1109/TVCG.2023.3247082.

Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian,
and Xinggang Wang. 4d gaussian splatting for real-time dynamic scene rendering. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 20310–
20320, June 2024.

Zeyu Yang, Hongye Yang, Zijie Pan, and Li Zhang. Real-time photorealistic dynamic scene rep-
resentation and rendering with 4d gaussian splatting. In International Conference on Learning
Representations (ICLR), 2024a.

Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing Zhang, and Xiaogang Jin. Deformable
3d gaussians for high-fidelity monocular dynamic scene reconstruction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20331–20341, 2024b.

Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. PlenOctrees for
real-time rendering of neural radiance fields. In ICCV, 2021.

Heng Yu, Joel Julin, Zoltán Á Milacski, Koichiro Niinuma, and László A Jeni. Cogs: Controllable
gaussian splatting. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 21624–21633, 2024.

Matthias Zwicker, Hanspeter Pfister, Jeroen Van Baar, and Markus Gross. Ewa volume splatting. In
Proceedings Visualization, 2001. VIS’01., pp. 29–538. IEEE, 2001.

12

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

APPENDIX

A EXCLUSION OF SCALE VARIATIONS IN SPLINEGS

SplineGS does not model the scale variations of Gaussian blobs. This can prohibit certain objects,
such as jelly- or smoke-like structures. However, for most types of objects, their parts exhibit mini-
mal scaling changes. It is also reported in the literature that most non-rigid deformations are likely
rigid transforms at infinitesimal levels (Lee et al., 2016). This perspective is also adequate for Gaus-
sian splatting, considering that the blobs represent some small parts forming the objects in the scene.
Therefore, we concentrate on modeling deformations in positions and rotations only. In reality, mod-
eling scale variations tend to induce overfitting in our experience due to the additional degrees of
freedom. We believe that scaling variations should be addressed with careful consideration as a
separate research focus.

B MORE RESULTS

Table 5 shows the per-scene attributes of SplineGS, such as training time, FPS, and number of
blobs, for the D-NeRF and Neu3D datasets. Table 6 presents quantitative comparisons of PSNR
and SSIM across all scenes in the D-NeRF dataset. In each scene, the proposed method achieves
highly competitive results. Table 7 presents quantitative comparisons of LPIPS across all scenes in
the D-NeRF dataset. Here, we can confirm that SplineGS also achieves the best LPIPS performance
in most cases. Figure 5 shows a scatter plot comparing the number of blobs, FPS, training time,
and PSNR of various methods for the D-NeRF dataset. Here, SplineGS has a high average FPS
even though its average number of Gaussian blobs is relatively large compared to those of the other
methods. This confirms that the core design of the proposed method is indeed quite efficient, and it
still achieves high performance. As illustrated in Figure 6, our method produces more accurate ren-
derings than existing approaches. Similarly, Table 8 shows the quantitative comparisons of PSNR
and SSIM across five scenes in the Neu3D dataset. Notably, our model achieves the best average
performance. Figure 7 provides the rendering results for every 75 frames. Table 9 presents a quan-
titative comparison of PSNR for three vrig scenes in the HyperNeRF (Park et al., 2021b) dataset.
Similar to Neu3D, the HyperNeRF dataset provides real-world scenes. Here, SplineGS achieves
performance comparable to other methods. A critical problem with the HyperNeRF dataset is that
the provided camera pose information is not accurate. An additional camera pose optimization is
required to handle this problem, which is another set of problems left as future work.

Table 5: Per-scene attributes of SplineGS for the D-NeRF and Neu3D datasets. We present the
training time, FPS, and number of blobs for each scene. The number of representative trajectories L
was L = 64 for mutant and bouncing balls, while that was L = 128 for the other scenes.

D-NeRF Neu3D

Scene Time (min) FPS #Blobs Scene Time (min) FPS #Blobs

Trex 41 133 250K Coffee Martini 67 62 386K
Jumping Jack 33 197 126K Spinach 53 81 140K
Hell Warrior 28 263 52K Cut Beef 52 79 167K

Stand Up 31 227 98K Sear Steak 52 84 138K
Bouncing balls 38 176 167K Flame Steak 50 76 143K

Mutant 34 192 165K
Hook 33 186 161K
Lego 42 133 320K

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 6: Quantitative comparison for the D-NeRF dataset. We compared our method to existing
methods on 800×800 resolution test images. Here, “40K” and “80K” in the parentheses indicate
the numbers of training iterations. The asterisks (*) indicate that the results were adopted from the
4D-GS paper (Wu et al., 2024), while the daggers (†) indicate that those were from the original
papers. All the other results were reproduced in our experiments. The average PSNR and SSIM are
measured across all scenes, with some cells highlighted to represent the best , second best , and
third best .

Trex Jumping Jacks Hell Warrior
Method PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

K-Planes* (Fridovich-Keil et al., 2023) 30.43 0.9737 31.11 0.9708 24.58 0.9520
HexPlane* (Cao & Johnson, 2023) 30.67 0.9749 31.31 0.9729 24.55 0.9443

TiNeuVox* (Fang et al., 2022) 31.25 0.9666 33.49 0.9771 27.10 0.9638

D-3DGS† (Yang et al., 2024b) 38.10 0.9933 37.72 0.9897 41.54 0.9873
4D-GS* (Wu et al., 2024) 34.23 0.9850 35.42 0.9857 28.71 0.9733
4DGS (Yang et al., 2024a) 30.38 0.9743 32.10 0.9639 34.32 0.9536

CoGS† (Yu et al., 2024) 37.25 0.9923 37.48 0.9891 40.43 0.9812
NPGs† (Das et al., 2024) 32.10 0.9818 33.97 0.9828 38.68 0.9780

CompDynGS† (Katsumata et al., 2024) 28.17 0.9740 32.93 0.9840 35.36 0.9650
SC-GS (Huang et al., 2024) 39.61 0.9981 39.43 0.9964 42.20 0.9925

SplineGS (40K) 37.96 0.9925 38.29 0.9906 42.26 0.9890
SplineGS (80K) 38.77 0.9931 38.66 0.9908 42.52 0.9893

Stand up Bouncing Balls Mutant
Method PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

K-Planes* (Fridovich-Keil et al., 2023) 33.10 0.9793 40.05 0.9934 32.50 0.9713
HexPlane* (Cao & Johnson, 2023) 34.40 0.9839 39.86 0.9915 33.67 0.9802

TiNeuVox* (Fang et al., 2022) 34.61 0.9797 40.23 0.9926 30.87 0.9607

D-3DGS† (Yang et al., 2024b) 44.62 0.9951 41.01 0.9953 42.63 0.9951
4D-GS* (Wu et al., 2024) 38.11 0.9898 40.62 0.9942 37.59 0.9880
4DGS (Yang et al., 2024a) 38.83 0.9857 33.28 0.9842 37.43 0.9842

CoGS† (Yu et al., 2024) 43.35 0.9929 40.98 0.9958 42.14 0.9937
NPGs† (Das et al., 2024) 38.20 0.9889 - - 36.02 0.9840

CompDynGS† (Katsumata et al., 2024) 40.21 0.9940 33.29 0.9840 38.04 0.9940
SC-GS (Huang et al., 2024) 46.47 0.9989 41.39 0.9960 43.42 0.9989

SplineGS (40K) 45.50 0.9940 41.71 0.9956 43.29 0.9960
SplineGS (80K) 46.00 0.9944 41.81 0.9956 43.73 0.9962

Hook Lego Mean
Method PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

K-Planes* (Fridovich-Keil et al., 2023) 28.12 0.9489 25.49 0.9483 30.67 0.9672
HexPlane* (Cao & Johnson, 2023) 28.63 0.9572 25.10 0.9388 31.02 0.9680

TiNeuVox* (Fang et al., 2022) 28.63 0.9433 24.65 0.9063 31.35 0.9613

D-3DGS† (Yang et al., 2024b) 37.42 0.9867 24.94 0.9432 38.50 0.9857
4D-GS* (Wu et al., 2024) 32.73 0.9760 25.03 0.9378 34.06 0.9787
4DGS (Yang et al., 2024a) 31.92 0.9546 24.70 0.9189 32.87 0.9649

CoGS† (Yu et al., 2024) 36.43 0.9838 25.16 0.9451 37.90 0.9842
NPGs† (Das et al., 2024) 33.39 0.9735 24.63 0.9312 - -

CompDynGS† (Katsumata et al., 2024) 33.43 0.9810 24.26 0.9400 33.21 0.9770
SC-GS (Huang et al., 2024) 38.88 0.9956 24.92 0.9485 39.53 0.9906

SplineGS (40K) 38.61 0.9891 25.29 0.9457 39.11 0.9866
SplineGS (80K) 38.71 0.9891 25.29 0.9457 39.44 0.9868

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 7: LPIPS comparison for the D-NeRF dataset. We compared our method to existing meth-
ods on 800× 800 resolution images based on LPIPS. The daggers (†) indicate that those were from
the original papers.

Method Trex Jumping Jakcs Hell Warrior

4D-GS† 0.0131 0.0128 0.0369
D-3DGS† 0.0098 0.0126 0.0234

SC-GS 0.0119 0.0115 0.0280
SplineGS 0.0047 0.0065 0.0091
Method Stand up Bouncing Balls Mutant

4D-GS† 0.0074 0.0155 0.0167
D-3DGS† 0.0063 0.0093 0.0052

SC-GS 0.0072 0.0216 0.0069
SplineGS 0.0027 0.0025 0.0019
Method Hook Lego Mean

4D-GS† 0.0272 0.0382 0.0210
D-3DGS† 0.0144 0.0183 0.0124

SC-GS 0.0139 0.0499 0.0119
SplineGS 0.0065 0.0298 0.0080

Figure 5: A scatter plot of various methods based on the number of blobs, FPS, training time,
and PSNR. We compared SplineGS to existing methods on a scatter plot for the D-NeRF dataset.
The x-axis represents the average number of blobs, and the y-axis represents the average FPS. The
size of each circle indicates the average training time, while the color represents the average PSNR.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

4D-GS (Wu et al., 2024) 4DGS (Yang et al., 2024a) D-3DGS (Yang et al., 2024b) SplineGS GT

B
ou

nc
in

g
B

al
ls

H
el

lw
ar

ri
or

H
oo

k
Ju

m
pi

ng
Ja

ck
s

L
eg

o
M

ut
an

t
Tr

ex

Figure 6: Qualitative results on the D-NeRF dataset. We present the rendering results of various
methods, including ours, for all scenes in the D-NeRF dataset. The first to third columns show the
results of existing methods, while the fourth and fifth columns show those of the proposed method
and the ground truth, respectively. Each row shows the results of a different scene.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 8: Quantitative comparison for the Neu3D dataset. We compared our method with existing
methods on 1352×1014 resolution test images. Here, “20K” and “40K” in the parentheses indicate
the numbers of training iterations. The conventions for typographical marks and color codes are
generally identical to Table 1. We measured the average PSNR and SSIM across all scenes except
flame salmon, following the practice of many existing works (Guo et al., 2024; Liu et al., 2024; Lu
et al., 2024).

Coffee Martini Spinach Cut Beef
Method PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

NeRFPlayer* (Song et al., 2023) 32.05 0.9380 32.06 0.9300 31.83 0.9280
K-Planes* (Fridovich-Keil et al., 2023) 29.99 0.9530 32.60 0.9660 31.82 0.9660

HexPlane* (Cao & Johnson, 2023) - - 31.86 0.9830 32.71 0.9850

4D-GS* (Wu et al., 2024) 27.34 0.9050 32.46 0.9490 32.90 0.9570
4DGS† (Yang et al., 2024a) 28.33 - 32.93 - 33.85 0.9800

STG† (Li et al., 2024) 28.61 0.9585 33.18 0.9785 33.52 0.9795

SplineGS (20K) 29.16 0.9171 33.04 0.9538 33.42 0.9541
SplineGS (40K) 29.26 0.9189 33.09 0.9542 33.49 0.9544

Sear Steak Flame Steak Mean
Method PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

NeRFPlayer* (Song et al., 2023) 32.31 0.9400 27.36 0.8670 32.12 0.9206
K-Planes* (Fridovich-Keil et al., 2023) 32.52 0.9740 32.39 0.9700 31.86 0.9658

HexPlane* (Cao & Johnson, 2023) 32.09 0.9860 31.92 0.9880 - -

4D-GS* (Wu et al., 2024) 32.49 0.9570 32.51 0.9540 31.54 0.9444
4DGS† (Yang et al., 2024a) 33.51 - 34.03 - 32.53 -

STG† (Li et al., 2024) 33.89 0.9826 33.64 0.9824 32.57 0.9740

SplineGS (20K) 33.75 0.9621 33.23 0.9578 32.52 0.9484
SplineGS (40K) 33.82 0.9624 33.33 0.9582 32.60 0.9496

Frame 75 Frame 150 Frame 225
GT SplineGS GT SplineGS GT SplineGS

C
of

fe
e

M
ar

tin
i

C
ut

B
ee

f
Fl

am
e

St
ea

k
Se

ar
St

ea
k

Sp
in

ac
h

Figure 7: Qualitative results on the Neu3D dataset. We show the qualitative results of SplineGS
on the Neu3D datasets except for flame salmon. We provide the ground truth and the results of
SplineGS for the 75th, 150th, and 225th frames. Each row shows the results of a different scene.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 9: Quantitative comparison for the HyperNeRF dataset. We compared our method to ex-
isting methods on half-resolution test images and measured PSNR for three vrig scenes. The daggers
(†) indicate that those were from the original papers.

Method 3D Printer Chicken Broom
D-3DGS (Yang et al., 2024b) 20.28 22.76 20.47

4D-GS† (Wu et al., 2024) 22.10 28.70 22.00
SplineGS 21.97 29.13 20.56

18

	Introduction
	Related work
	Neural radiance fields for dynamic scenes
	3D Gaussian splatting for dynamic scenes

	The proposed method
	Preliminary: 3D Gaussian splatting
	Trajectory representations based on B-splines
	Blending representative trajectories for spatial smoothness
	Optimization

	Experiments
	Datasets
	Implementation details
	Results
	Analyses and ablation study

	Conclusion
	Exclusion of scale variations in SplineGS
	More results

