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(a) Jumping jacks (b) Stand up (c) NURBS

Figure 1: We propose SplineGS, which represents the trajectories in Gaussian splatting using non-
uniform rational B-spline (NURBS) to reconstruct dynamic scenes. The learned trajectories are
shown with rendering results in (a) and (b). (c) shows an example of a trajectory based on NURBS.

ABSTRACT

Reconstructing complex scenes with deforming objects for novel view synthe-
sis is a challenging task. Recent works have addressed this with 3D Gaussian
Splatting, which effectively reconstructs static scenes with high quality in short
training time, by adding specialized modules for the deformations of Gaussian
blobs. However, designing an effective deformation module that incorporates ap-
propriate spatiotemporal inductive biases still remains unresolved. To address this
issue, we propose SplineGS in this paper, which utilizes non-uniform rational B-
splines (NURBS), an extension of B-spline, to represent temporally smooth defor-
mation. A set of representative trajectories are learned based on NURBS, and the
individual trajectories of Gaussian blobs are represented as linear combinations
of these trajectories for spatial smoothness. The weights of the combinations are
trained based on a multi-resolution hash table and an MLP, with the positions of
the Gaussian blobs as the keys. Thanks to this design, the proposed method does
not need any regularizers for trajectories, which enables efficient training. Exper-
iments demonstrate that the proposed method provides competitive performance
over the existing methods with much shorter training time.

1 INTRODUCTION

3D reconstruction is a fundamental problem in computer vision and graphics that has been studied
for decades. Recently, neural radiance fields (NeRF) (Mildenhall et al., 2020) have achieved a re-
markable breakthrough in novel view synthesis (NVS) based on implicit representations. However,
NeRF still suffered from limited performance and, especially, slow training times, prompting the de-
velopment of various subsequent methods (Yu et al., 2021; Fridovich-Keil et al., 2022; Chen et al.,
2022; Barron et al., 2021; 2023). Recently, 3D Gaussian Splatting (3D-GS) (Kerbl et al., 2023) has
emerged as a successful alternative by representing scenes based on 3D Gaussian blobs and employ-
ing a differentiable tile rasterizer, resulting in fast, high-quality rendering and thus reduced training
time.
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Despite the success of 3D-GS in static scenes, applying it to dynamic scenes with deforming objects
remains a challenging task due to the difficulty in modeling effective trajectory representations. Re-
cent works have proposed various methods to model the trajectories of 3D Gaussian blobs over
time to reconstruct dynamic scenes. Approaches that expresses deformations based on neural rep-
resentations (Yang et al., 2024b; Wu et al., 2024) optimize canonical 3D Gaussian blobs as well
as a neural module to predict temporal deformations. Neural representations in these approaches,
however, do not provide enough inductive biases for deformations, and additional training mecha-
nisms or smoothness regularizers are utilized to handle these. Another approach directly optimizes
4D Gaussian blobs (Yang et al., 2024a; Duan et al., 2024), which introduces challenges in optimiza-
tion due to the higher dimensionality (4D). This results in reconstruction artifacts, such as floating
objects that do not align correctly with the scene. Even though these previous works have shown
impressive performance, the trajectory representations they use impose some limitations on either
performance, convergence speed, or both.

In this paper, we propose a novel method, i.e., SplineGS, that models the trajectories of 3D Gaus-
sian blobs as temporally smooth representations based on non-uniform rational B-splines (NURBS)
(Piegl & Tiller, 2012), an extension of B-splines (De Boor, 2001), to reconstruct dynamic scenes.
NURBS can represent continuous and smooth trajectories, similar to B-splines, while allowing for
more flexible and finer adjustments. Our approach specifically obtains a set of representative trajec-
tories for both positions and rotations through NURBS, of which the parameters are learned during
the training. To ensure spatial smoothness, the individual trajectory of each Gaussian blob is ex-
pressed as a linear combination of these representative trajectories. Inspired by Müller et al. (2022),
the weights for these combinations are obtained using a multi-resolution hash table and a multi-layer
perceptron (MLP), where the average position of each Gaussian blob serves as the key. The NURBS
representation and the linear combination strategy act as implicit regularizers embedded within the
structure. Based on this smooth representation, our approach achieves high-fidelity rendering and
fast training time without relying on any explicit smoothness regularizers, making it efficient for
complex dynamic scenes.

We evaluated the proposed method on two dynamic-scene datasets, i.e., D-NeRF (Pumarola et al.,
2021) and Neu3D (Li et al., 2022). Experimental results demonstrate that the proposed method
achieves highly competitive performance, even with shorter training time.

Our contributions are summarized as follows:

• We propose temporally smooth representations for the trajectories of Gaussian blobs based
on NURBS.

• We enforce spatial smoothness by introducing a low-rank assumption for the trajectories.
Each Gaussian blob’s trajectory is modeled as a weighted sum of representative trajectories,
where the weights are learned by a multi-resolution hash table and an MLP. This eliminates
the need for a separate smoothness regularizer.

• The proposed smooth representation exhibits physically plausible trajectories, which leads
to high-fidelity rendering and fast training times.

2 RELATED WORK

In this section, we briefly review the NeRF-based methods for dynamic scenes. Following this,
we introduce the original 3D-GS for static scenes and the methods that extend 3D-GS to dynamic
scenes.

2.1 NEURAL RADIANCE FIELDS FOR DYNAMIC SCENES

In recent years, NeRF-based methods have gained significant attention for solving the NVS prob-
lem of static scenes. This surge in interest was largely due to the impressive performance of vanilla
NeRF, which has inspired subsequent research efforts aimed at improving memory usage, training
speed, rendering quality, and rendering speed. In addition, many attempts have been made to ex-
tend it to dynamic scenes. D-NeRF (Pumarola et al., 2021) and Nerfies (Park et al., 2021a) utilize
the coordinates in a canonical space and time embedding vectors as inputs to the MLP to compute
the deformations. HyperNeRF (Park et al., 2021b) further enhanced this approach by embedding a
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template NeRF in a higher-dimensional space to better capture topological changes. However, these
methods often suffer from inefficiency in rendering due to the high number of queries required for
the MLP. Spline-NeRF (Knodt, 2022) takes all sampled points along a ray as inputs to an MLP,
which then outputs control points for Bézier curves. However, it is difficult to represent a complex
trajectory, e.g., one that has many temporally local changes, based on a Bézier curve. A Bézier curve
is a global representation, i.e., changes in some control points affect the entire shape of the curve.
Accordingly, it becomes challenging to apply this method to long video sequences. On the other
hand, K-Planes (Fridovich-Keil et al., 2023) and HexPlane (Cao & Johnson, 2023) represented
4D spacetime by combining multiple 2D planes, improving speed and interpretability through ex-
plicit representations. Nevertheless, the complexity of dynamic scenes and the inherent limitations
of ray-casting-based rendering prevent these methods from achieving high-fidelity and high-speed
rendering required for practical applications.

2.2 3D GAUSSIAN SPLATTING FOR DYNAMIC SCENES

Recently, 3D-GS has emerged as a successful solution for reconstructing static scenes, achieving
high-fidelity rendering, fast rendering speed, and fast training time. 3D-GS directly optimizes the
means, scales, rotations, opacities, and colors of 3D Gaussian blobs that compose a static scene
using a differentiable tile-based rasterizer. Inspired by this success, research efforts have begun to
explore the use of 3D-GS for reconstructing dynamic scenes (Wu et al., 2024; Yang et al., 2024b;
Huang et al., 2024; Yang et al., 2024a; Duan et al., 2024; Luiten et al., 2024; Bae et al., 2024). For
example, 4D-GS (Wu et al., 2024) introduces a spatial-temporal structure encoder, which is com-
posed of a multi-resolution HexPlane and a tiny MLP, along with additional MLPs to compute the
deformations. In another study (Yang et al., 2024b), purely implicit networks, i.e., MLPs, are used
to compute temporal deformations. In SC-GS (Huang et al., 2024), anchor-based spatial warping
and MLPs are learned to represent deformations of the overall 3D Gaussian blobs. However, these
approaches rely on neural representations, which do not provide enough inductive biases, so ad-
ditional training mechanisms or smoothness regularizers are utilized. On the other hand, there are
methods (Yang et al., 2024a; Duan et al., 2024) that directly optimize 4D Gaussian blobs. While
this approach allows for a flexible representation of complex dynamic scenes, it also introduces
challenges in optimization due to the increased dimensionality (4D). These challenges can lead to
reconstruction artifacts, such as floating objects, and achieving high-quality reconstructions requires
additional regularizers or extended training time. Alternatively, polynomial and Fourier bases (Lin
et al., 2024) can also be used to represent trajectories. However, since this approach must utilize all
the bases to calculate deformation at a specific time, it can be more challenging to model temporally
local deformations and the computational cost can increase significantly when reconstructing long
video sequences.

3 THE PROPOSED METHOD

In this section, we propose SplineGS, which represents deformations based on spatiotemporally
smooth representations. First, we review 3D Gaussian Splatting in Section 3.1. In Section 3.2, we
introduce the B-spline (non-uniform rational B-splines (NURBS), specifically) representations for
the trajectories of Gaussian blobs. Then, in Section 3.3, a multi-resolution hash table and an MLP
are utilized to enforce spatial smoothness based on linear combinations of representative trajectories.
Finally, in Section 3.4, we describe the objective function for optimization. The pipeline of SplineGS
is illustrated in Figure 2.

3.1 PRELIMINARY: 3D GAUSSIAN SPLATTING

3D-GS Kerbl et al. (2023) reconstructs a static scene by directly optimizing the means, covariance
matrices, opacities, and colors of 3D Gaussian blobs. Given N Gaussian blobs, the shape of each
Gaussian is represented by its mean xi and covariance matrix Σi:

Gi(µ) = e−
1
2 (µ−µi)

TΣ−1
i (µ−µi), (1)

The covariance matrix must be positive semi-definite, and this is ensured during optimization by
separately optimizing the corresponding scales and rotations, i.e., Si and Ri:

Σi = RiSiS
T
i R

T
i . (2)
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Figure 2: The pipeline of the proposed method. For each given 3D Gaussian blob, the positions
normalized into the range of [0, 1]3 are used as keys for the multi-resolution hash table. The features
derived from the position are then mapped to weights via an MLP for the linear combination of
representative trajectories. Meanwhile, the relative positions and rotations of the representative tra-
jectories at time t are calculated based on NURBS. Finally, the deformation of each Gaussian blob
is obtained by a linear combination.

To render the 3D Gaussian blobs in the scene onto a 2D image space, the 2D covariance matrix Σ′
i

in camera coordinates is derived using a given camera extrinsic transform W and the Jacobian of
the affine approximation matrix J (Zwicker et al., 2001):

Σ′
i = JWΣiW

TJ. (3)
Afterward, the pixel’s color C is computed by blending N ′-ordered blobs that overlap the pixel.

C =

N ′∑
k=1

cikαik

k−1∏
j=1

(1− αij ). (4)

where {ik} represents the indices of the overlapping blobs and ci denotes the color of each blob.
αi is determined by evaluating the 2D Gaussian with covariance Σ′

i and multiplying it by a learned
per-point opacity.

3.2 TRAJECTORY REPRESENTATIONS BASED ON B-SPLINES

We employ non-uniform rational B-splines (NURBS) (Piegl & Tiller, 2012) to represent smooth
trajectories over time. Here, we first explain the basic formulation based on B-splines, and then
extend it to NURBS.

B-splines. B-splines (De Boor, 2001) are defined as a set of piecewise polynomial functions, where
each polynomial has a specific degree denoted as p. These polynomial functions are connected con-
tinuously at specific points called knots, represented by t0, t1, . . . , tp+M+1. Here, M is the number
of control points which will be defined later. The curve’s shape is determined as a linear combina-
tion of control points and their corresponding basis functions. When p = 0, the influence of the i-th
control point at a given time is described by the basis function as follows:

Bi,0(t) :=

{
1 if ti ≤ t < ti+1,

0 otherwise.
(5)

The higher-degree B-splines, starting from p = 0, can be defined using the Cox-de Boor recursion
formula:

Bi,p(t) :=
t− ti

ti+p − ti
Bi,p−1(t) +

ti+p+1 − t

ti+p+1 − ti+1
Bi+1,p−1(t). (6)

Once the basis functions are determined, the position at any given time t is computed as a linear
combination of the control points, with these functions acting as weights.

S(t, P ) =

n∑
i=0

Bi,p(t)Pi (7)

4
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where S(t, P ) denotes the position of the B-spline curve at time t and P = {Pi} are the control
points that define the curve’s shape.

Non-uniform rational B-splines. To represent more complex trajectories, the trajectory of a Gaus-
sian blob can be modeled using non-uniform rational B-spline (NURBS), an extension of B-splines.
NURBS allows for finer controls of the trajectory by incorporating an additional weight for each
control point, and a NURBS curve is expressed as follows:

S(t, w, P ) =

∑M
i=0 Bi,p(t)wiPi∑M
i=0 Bi,p(t)wi

(8)

where wi denotes the weight associated with the control point Pi. Here, assigning uniform weights
makes it equivalent to plain B-splines. Assigning non-uniform weights allows for more flexible
adjustment over the control points that represent complex motion. Additionally, during simpler mo-
tions, simplification can be encouraged by adopting low weights.

In this paper, we utilize NURBS to represent the trajectory of a Gaussian blob (i.e., translation and
rotation), and P and wi are regarded as learnable parameters. Note that the NURBS trajectories in
this paper are defined as the differences from the canonical (or static) positions or rotations. In other
words, the trajectories must be combined with the static positions or rotations before use. The static
positions and rotations of blobs are separate learnable parameters in the proposed method, along
with colors defined as spherical harmonics, opacities, and scales. The degree p and the number of
control points M are hyperparameters, and the number of knots is determined as p + M + 1. The
locations of knots are defined as equally spaced points in the entire time frame.

3.3 BLENDING REPRESENTATIVE TRAJECTORIES FOR SPATIAL SMOOTHNESS

Optimizing B-splines for each 3D Gaussian blob separately has several drawbacks: First of all,
it requires a large memory space and can increase the overall complexity of optimization. More
importantly, spatial smoothness, which is expected in between the trajectories in proximity, is not
guaranteed. To resolve these issues all at once, we instead represent the individual trajectories as
weighted sums of a few representative trajectories, which only are defined based on NURBS. The
weights for these sums are obtained by a multi-resolution hash table and an MLP, which is inspired
by instantNGP (Müller et al., 2022), using the position of each Gaussian blob as the key:

βj = tanh(MLP(Hash(µj))) for j = 1, 2, . . . , N (9)

where µj ∈ R3 represents the center position of the j-th blob, N denotes the number of Gaussians,
βj ∈ RL is the weight vector of the corresponding Gaussian blob, and L is the number of represen-
tative trajectories. We apply tanh to the weights to limit their range to [−1, 1]. Note here that we
do not use any explicit spatial-proximity-based operations, such as kernel regression or K-nearest
neighbors (Huang et al., 2024), and instead learn the weights implicitly by the hash table and MLP.
This can effectively prevent the overall computational complexity of the training procedure from
increasing.

After obtaining the weights, the positions and rotations of the representative trajectories at time t,
calculated based on NURBS, are combined by the weights. The weighted sum operation is applied
in the original 3D space for the positions, while it is applied to the axis-angle representations for the
rotations and then converted to quaternions.

∆µj(t) =

L−1∑
k=0

βj,k · S(t, wk, P
pos
k ), (10)

∆Rj(t) = Q

(
L−1∑
k=0

βj,k · S(t, wk, P
rot
k )

)
, (11)

µj(t) = µj +∆µj(t), (12)
Rj(t) = Rj ·∆Rj(t), (13)

where P pos
k ∈ RM×3 and P rot

k ∈ RM×3 represent the control points for positions and rotations,
respectively, for the k-th representative trajectory, and wk ∈ RM denotes the corresponding weights

5
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(of the control points) in NURBS. Q denotes the axis-angle-to-quaternion conversion. The position
and rotation from the first two equations are relative ones (from the static position and rotation, re-
spectively), so they are combined with the static ones in the last two equations. The above technique
effectively suppresses unwanted, abrupt spatial variations and promotes gradual changes. Accord-
ingly, the proposed method can ensure spatial smoothness without increasing the overall computa-
tional complexity, and also has compact feature representations.

3.4 OPTIMIZATION

The proposed method incorporates the above spline module on top of the original 3D-GS to estimate
deformations. This process is performed end-to-end, and we term this method SplineGS.

Reconstruction loss. The reconstruction loss is defined as the difference between the ground truth
image and the rendered image. Similar to 3D-GS (Kerbl et al., 2023), we include both L1 and
LD-SSIM:

Lrecon = (1− λ)L1 + λLD-SSIM (14)
where λ is a predefined weight.

Sparsity. In complex scenes, particularly with real-world datasets, the diversity and complexity of
object structures lead to an increased number of Gaussian blobs to represent fine details. This, on
the other hand, generates artifacts, such as floating objects, and increases memory usage. To prevent
the creation of unnecessary 3D Gaussian blobs, we add L1 regularization on the opacity values:

L = Lrecon + λo

N∑
j=1

|oj | (15)

where λo is also a predefined weight and oj is the opacity of the jth blob.

4 EXPERIMENTS

In this section, we evaluate SplineGS on the D-NeRF (Pumarola et al., 2021) and Neu3D (Li et al.,
2022) datasets. Performance was measured using PSNR, D-SSIM, training time, and FPS, and com-
pared with existing NeRF-based and 3D-GS-based methods.

4.1 DATASETS

D-NeRF dataset. The D-NeRF dataset consists of monocular video frames with well-aligned cam-
era poses. This synthetic dataset includes 8 scenes: bouncingballs, hellwarrior, hook, jumpingjacks,
mutant, standup, trex and lego, each of which contains between 50 and 200 training images and 20
test images. The experiments were conducted at a resolution of 800×800.

Neu3D dataset. This is a real-world dataset that includes 6 scenes: coffee martini, cook spinach,
cut roasted beef, sear steak, flame steak and flame salmon. Each scene, except for flame salmon,
was recorded for 10 seconds at 30 fps using 15 to 20 fixed cameras, with one camera designated as
the test view. The experiments were conducted at half resolution, i.e., 1352×1014. We did not use
flame salmon, which consists of 1200 frames, in the experiments, following the practices of many
existing methods (Guo et al., 2024; Liu et al., 2024; Lu et al., 2024).

4.2 IMPLEMENTATION DETAILS

We implemented SplineGS by integrating the proposed spline-based deformation module, imple-
mented using PyTorch (Paszke et al., 2019), with the original 3D-GS (Kerbl et al., 2023). For the
D-NeRF dataset, we randomly sample 100,000 points within a 3D space, where each axis ranges
from -1.3 to 1.3, to initialize 3D Gaussian blobs. For the Neu3D dataset, the initial set of 3D Gaus-
sians is obtained by calculating structure-from-motion (Schönberger & Frahm, 2016) for the first
frames of each video and downsampling the results. The detailed settings for this were identical to
those in 4D-GS (Wu et al., 2024). The initialization of scales, rotations, colors, opacities, and their
respective learning rates follows the 3D-GS. Similarly, during training, we adopt the clone and split
strategies with a threshold of 2 × 10−4, as in 3D-GS. For the D-NeRF dataset, we also utilized the

6
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Table 1: Quantitative comparison for the D-NeRF dataset. We compared our method to existing
methods on 800×800 resolution test images. Here, “40K” and “80K” in the parentheses indicate
the numbers of training iterations. The asterisks (*) indicate that the results were adopted from the
4D-GS paper (Wu et al., 2024), while the daggers (†) indicate that those were from the original
papers. All the other results were reproduced in our experiments. The average PSNR and SSIM
are measured across all scenes, with some cells highlighted to represent the best , second best ,
and third best . Additionally, we report the average training time and rendering speed in frames per
second (FPS) for each method.

Method PSNR↑ SSIM↑ Training time↓ FPS↑

K-Planes* (Fridovich-Keil et al., 2023) 30.67 0.9672 52 mins 0.97
HexPlane* (Cao & Johnson, 2023) 31.02 0.9680 11 mins 2.5

TiNeuVox* (Fang et al., 2022) 31.35 0.9613 28 mins 1.5

D-3DGS.† (Yang et al., 2024b) 38.50 0.9857 22 mins 70
4D-GS* (Wu et al., 2024) 34.06 0.9787 13 mins 62
4DGS (Yang et al., 2024a) 32.87 0.9649 7.5 hours 135

CoGS† (Yu et al., 2024) 37.90 0.9842 - -
CompDynGS† (Katsumata et al., 2024) 33.21 0.9770 8 mins 150

SC-GS (Huang et al., 2024) 39.53 0.9906 1.1 hours 111

SplineGS (40K) 39.11 0.9866 17 mins 188
SplineGS (80K) 39.44 0.9868 35 mins 188

4D-GS (Wu et al., 2024) 4DGS (Yang et al., 2024a) D-3DGS (Yang et al., 2024b) SplineGS GT

Figure 3: Qualitative results for the D-NeRF dataset. We present the rendering results of various
methods, including ours, with the ground truth (GT) for standup scene in the D-NeRF dataset. Ad-
ditional rendering results for other scenes are provided in the appendix.

repeated opacity reset suggested in 3D-GS. The training process begins with initial 3K iterations
of static 3D-GS training (ignoring any deformations), followed by an end-to-end training with the
proposed spline module.

For the spline module, the number of control points (per trajectory) was set as one for every four
to eight frames collected from a single camera. These control points were initialized with a normal
distribution with a standard deviation 10−5. The number of representative trajectories was set to
either 64 or 128, depending on the dataset. The initial learning rate for the control points was set
to 10−3 for the D-NeRF dataset and 5 × 10−3 for the Neu3D dataset, with a decay factor of 0.99
for every 100 iterations. Similarly, the learning rate of wk was initialized to 10−3 for the D-NeRF
dataset and 5 × 10−4 for the Neu3D dataset, and also decayed by a factor of 0.99 for every 100
iterations. The multi-resolution hash table and MLP were implemented using tiny-cuda-nn (Müller,
2021), with 16 levels and 4 features per level. The maximum table size parameter, base resolution,
and per-level scale were set to 19, 8, and 2, respectively, for the D-NeRF dataset and 15, 16, and 1.5,
respectively, for the Neu3D dataset. The MLP consisted of 4 hidden layers with hidden dimensions
of 128 for all the layers. The optimization of the spline module, like 3D-GS, was performed using
Adam (Kingma, 2014).

The performance of SplineGS was evaluated after 40K and 80K iterations on the D-NeRF dataset,
and 20K and 40K iterations on the DyNeRF dataset, with results averaged over three runs. All the
experiments were conducted on a single Nvidia Geforce RTX 3090.
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Table 2: Quantitative comparison for the Neu3D dataset. We compared our method with existing
methods on 1352×1014 resolution test images. Here, “20K” and “40K” in the parentheses indicate
the numbers of training iterations. The conventions for typographical marks and color codes are
generally identical to Table 1. We measured the average PSNR and SSIM across all scenes except
flame salmon, following the practice of many existing works (Guo et al., 2024; Liu et al., 2024; Lu
et al., 2024). The double dagger (‡) denotes that the mean values were calculated across all scenes
in the respective work.

Method PSNR↑ SSIM↑ Training time↓ FPS↑

NeRFPlayer* (Song et al., 2023) 32.12 0.9206 5.5 hours 0.045
K-Planes* (Fridovich-Keil et al., 2023) 31.86 0.9658 1.8 hours 0.23

4D-GS* (Wu et al., 2024) 31.54 0.9444 40 mins 30
Gaussian-Flow‡ (Lin et al., 2024) 32.00 0.9700 42 mins -

4DGS† (Yang et al., 2024a) 32.53 - - 114
STG† (Li et al., 2024) 32.57 0.9740 42 mins×6 140

SplineGS (20K) 32.52 0.9484 27 mins 76
SplineGS (40K) 32.60 0.9496 55 mins 76

4D-GS (Wu et al., 2024) STG (Li et al., 2024) SplineGS GT

Figure 4: Qualitative results for the Neu3D dataset. We present the rendering results of various
methods, including ours, and the ground truth (GT) for coffee martini in the Neu3D dataset. We
also provide zoomed-in results in the second row of the figure. Additional results for other scenes
are provided in the appendix.

4.3 RESULTS

Results on synthetic scenes. Here, we compared the proposed model with various NeRF-based
methods: K-Planes (Fridovich-Keil et al., 2023), HexPlane (Cao & Johnson, 2023), and TiNeuVox
(Fang et al., 2022); as well as 3D-GS-based methods: Yang et al. (2024b), 4D-GS (Wu et al., 2024),
4DGS (Yang et al., 2024a), CoGS (Yu et al., 2024), Katsumata et al. (2024), SC-GS (Huang et al.,
2024)) on the D-NeRF dataset. A quantitative evaluation of average PSNR, SSIM, training time, and
FPS is shown in Table 1. Here, the proposed method ranks second best, but with significantly shorter
training time compared to the best performing one while having a very small performance gap.
This observation suggests that the proposed spline representation is well suited for dynamic scene
reconstruction. More detailed qualitative and quantitative comparisons for each scene are provided
in the appendix. Figure 3 shows the qualitative comparison for standup. Here, we can confirm that
the proposed method yields more accurate rendering compared to the existing methods.

Results on Neu3D. For the Neu3D dataset, we compared with the following NeRF-based methods:
NeRFPlayer (Kerbl et al., 2023), K-Planes Fridovich-Keil et al. (2023); as well as 3D-GS-based
methods: 4D-GS (Wu et al., 2024), 4DGS (Yang et al., 2024a) and STG (Li et al., 2024). Table 2
presents the quantitative comparison. For this dataset, the proposed method achieves the best average
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Table 3: Effect of the degree of NURBS. We quantitatively evaluated the effect of the degree of
NURBS in our method on synthetic and real-world scenes.

Bouncing Balls Hook Coffee Martini Sear Steak
Degree p PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

p = 0 36.03 0.9915 28.43 0.9441 28.42 0.9127 33.61 0.9606
p = 1 40.93 0.9951 38.09 0.9879 28.56 0.9154 33.49 0.9610
p = 2 41.26 0.9954 38.59 0.9890 29.01 0.9178 33.66 0.9621
p = 3 41.81 0.9956 38.71 0.9891 29.26 0.9189 33.82 0.9624
p = 4 39.97 0.9946 26.98 0.9311 28.64 0.9184 33.59 0.9621

Table 4: Ablation study. We quantitatively evaluated the effect of different components of the pro-
posed method on synthetic and real-world scenes.

Bouncing Balls Hook Coffee Martini Sear Steak
Method PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

w/o hash 41.20 0.9949 36.39 0.9813 27.98 0.9041 30.87 0.9473
w/o MLP 38.33 0.9927 37.80 0.9879 28.80 0.9160 33.19 0.9605

w/o NURBS 39.83 0.9944 26.82 0.9306 28.85 0.9181 32.08 0.9559
proposed 41.81 0.9956 38.71 0.9891 29.26 0.9189 33.82 0.9624

PSNR after 40K iterations. Moreover, the proposed method always achieves better performance per
training time than the existing methods. Here, STG divides the entire video frames (300 frames)
into 6 parts (50 frames each) and then processes them separately, which is why the training time is
described as “42 mins × 6”. Again, the detailed results for each scene are provided in the appendix.
Figure 4 shows the qualitative comparisons on the coffee martini scene. Here, the proposed method
provides crisper details for the coffee martini.

SplineGS concentrates on the temporal changes of position and rotation, without modeling those
of density and color unlike some recent methods (Yang et al., 2024a; Li et al., 2024; Lin et al.,
2024). Nevertheless, it achieves high-fidelity rendering and fast convergence, which suggests that
the proposed spline representation provides a better alternative for modeling deformations.

4.4 ANALYSES AND ABLATION STUDY

Effect of the degree of NURBS. In NURBS, the value of a trajectory at a specific time instance
is influenced by surrounding p + 1 control points. Accordingly, as the degree increases, the curve
becomes less sensitive to the changes in control points, which makes the trajectory smoother but
also increases the computational cost. Table 3 shows the performance variations according to the
changes in the degree for bouncing balls, hook, coffee martini, sear steak. The results indicate that
p = 3 generally provides optimal performance for dynamic scenes.

Ablation study on the module components. We provide an ablation study on the spline module
in Table 4. Here, “w/o hash” indicates that the multiresolution hash table was replaced with a
positional encoding γ(p) =

(
sin
(
2kπp

)
, cos

(
2kπp

))L−1

k=0
with L = 10. In this case, performance

generally decreases except for bouncingballs, which contains less complex motions. In the case of
“w/o MLP”, the hash table directly outputted the weights for the linear combination, which generally
resulted in lower performance. In the “w/o NURBS” scenario, the MLP directly outputs the values
of a trajectory given a time instance t: the features generated by the hash table are concatenated
with the positional encoding (with L = 6) of t, and then go through the MLP to output the values.
This variation leads to lower performance, which suggests that the neural representation alone lacks
sufficient spatiotemporal inductive biases.
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5 CONCLUSION

We proposed SplineGS, which utilizes a smooth representation in both space and time for the tra-
jectory of each 3D Gaussian blob, to reconstruct dynamic scenes. Thanks to this representation,
the proposed method achieves state-of-the-art or at least competitive performance without the need
for a regularizer on the trajectories. The proposed spline representation is an explicit representa-
tion, in that the NURBS directly represents the trajectories of Gaussian blobs. This is well suited
for dynamic scene reconstruction, providing fast convergence. The proposed model only handles
deformations in positions and rotations, so it has limitations in reconstructing objects that appear
or disappear in scenes, as well as objects with rapidly changing colors due to lighting variations.
Incorporating advanced light reflections and accounting for changes in blob density will be explored
in future work.
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APPENDIX

A EXCLUSION OF SCALE VARIATIONS IN SPLINEGS

SplineGS does not model the scale variations of Gaussian blobs. This can prohibit certain objects,
such as jelly- or smoke-like structures. However, for most types of objects, their parts exhibit mini-
mal scaling changes. It is also reported in the literature that most non-rigid deformations are likely
rigid transforms at infinitesimal levels (Lee et al., 2016). This perspective is also adequate for Gaus-
sian splatting, considering that the blobs represent some small parts forming the objects in the scene.
Therefore, we concentrate on modeling deformations in positions and rotations only. In reality, mod-
eling scale variations tend to induce overfitting in our experience due to the additional degrees of
freedom. We believe that scaling variations should be addressed with careful consideration as a
separate research focus.

B MORE RESULTS

Table 5 shows the per-scene attributes of SplineGS, such as training time, FPS, and number of
blobs, for the D-NeRF and Neu3D datasets. Table 6 presents quantitative comparisons of PSNR
and SSIM across all scenes in the D-NeRF dataset. In each scene, the proposed method achieves
highly competitive results. Table 7 presents quantitative comparisons of LPIPS across all scenes in
the D-NeRF dataset. Here, we can confirm that SplineGS also achieves the best LPIPS performance
in most cases. Figure 5 shows a scatter plot comparing the number of blobs, FPS, training time,
and PSNR of various methods for the D-NeRF dataset. Here, SplineGS has a high average FPS
even though its average number of Gaussian blobs is relatively large compared to those of the other
methods. This confirms that the core design of the proposed method is indeed quite efficient, and it
still achieves high performance. As illustrated in Figure 6, our method produces more accurate ren-
derings than existing approaches. Similarly, Table 8 shows the quantitative comparisons of PSNR
and SSIM across five scenes in the Neu3D dataset. Notably, our model achieves the best average
performance. Figure 7 provides the rendering results for every 75 frames. Table 9 presents a quan-
titative comparison of PSNR for three vrig scenes in the HyperNeRF (Park et al., 2021b) dataset.
Similar to Neu3D, the HyperNeRF dataset provides real-world scenes. Here, SplineGS achieves
performance comparable to other methods. A critical problem with the HyperNeRF dataset is that
the provided camera pose information is not accurate. An additional camera pose optimization is
required to handle this problem, which is another set of problems left as future work.

Table 5: Per-scene attributes of SplineGS for the D-NeRF and Neu3D datasets. We present the
training time, FPS, and number of blobs for each scene. The number of representative trajectories L
was L = 64 for mutant and bouncing balls, while that was L = 128 for the other scenes.

D-NeRF Neu3D

Scene Time (min) FPS #Blobs Scene Time (min) FPS #Blobs

Trex 41 133 250K Coffee Martini 67 62 386K
Jumping Jack 33 197 126K Spinach 53 81 140K
Hell Warrior 28 263 52K Cut Beef 52 79 167K

Stand Up 31 227 98K Sear Steak 52 84 138K
Bouncing balls 38 176 167K Flame Steak 50 76 143K

Mutant 34 192 165K
Hook 33 186 161K
Lego 42 133 320K
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Table 6: Quantitative comparison for the D-NeRF dataset. We compared our method to existing
methods on 800×800 resolution test images. Here, “40K” and “80K” in the parentheses indicate
the numbers of training iterations. The asterisks (*) indicate that the results were adopted from the
4D-GS paper (Wu et al., 2024), while the daggers (†) indicate that those were from the original
papers. All the other results were reproduced in our experiments. The average PSNR and SSIM are
measured across all scenes, with some cells highlighted to represent the best , second best , and
third best .

Trex Jumping Jacks Hell Warrior
Method PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

K-Planes* (Fridovich-Keil et al., 2023) 30.43 0.9737 31.11 0.9708 24.58 0.9520
HexPlane* (Cao & Johnson, 2023) 30.67 0.9749 31.31 0.9729 24.55 0.9443

TiNeuVox* (Fang et al., 2022) 31.25 0.9666 33.49 0.9771 27.10 0.9638

D-3DGS† (Yang et al., 2024b) 38.10 0.9933 37.72 0.9897 41.54 0.9873
4D-GS* (Wu et al., 2024) 34.23 0.9850 35.42 0.9857 28.71 0.9733
4DGS (Yang et al., 2024a) 30.38 0.9743 32.10 0.9639 34.32 0.9536

CoGS† (Yu et al., 2024) 37.25 0.9923 37.48 0.9891 40.43 0.9812
NPGs† (Das et al., 2024) 32.10 0.9818 33.97 0.9828 38.68 0.9780

CompDynGS† (Katsumata et al., 2024) 28.17 0.9740 32.93 0.9840 35.36 0.9650
SC-GS (Huang et al., 2024) 39.61 0.9981 39.43 0.9964 42.20 0.9925

SplineGS (40K) 37.96 0.9925 38.29 0.9906 42.26 0.9890
SplineGS (80K) 38.77 0.9931 38.66 0.9908 42.52 0.9893

Stand up Bouncing Balls Mutant
Method PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

K-Planes* (Fridovich-Keil et al., 2023) 33.10 0.9793 40.05 0.9934 32.50 0.9713
HexPlane* (Cao & Johnson, 2023) 34.40 0.9839 39.86 0.9915 33.67 0.9802

TiNeuVox* (Fang et al., 2022) 34.61 0.9797 40.23 0.9926 30.87 0.9607

D-3DGS† (Yang et al., 2024b) 44.62 0.9951 41.01 0.9953 42.63 0.9951
4D-GS* (Wu et al., 2024) 38.11 0.9898 40.62 0.9942 37.59 0.9880
4DGS (Yang et al., 2024a) 38.83 0.9857 33.28 0.9842 37.43 0.9842

CoGS† (Yu et al., 2024) 43.35 0.9929 40.98 0.9958 42.14 0.9937
NPGs† (Das et al., 2024) 38.20 0.9889 - - 36.02 0.9840

CompDynGS† (Katsumata et al., 2024) 40.21 0.9940 33.29 0.9840 38.04 0.9940
SC-GS (Huang et al., 2024) 46.47 0.9989 41.39 0.9960 43.42 0.9989

SplineGS (40K) 45.50 0.9940 41.71 0.9956 43.29 0.9960
SplineGS (80K) 46.00 0.9944 41.81 0.9956 43.73 0.9962

Hook Lego Mean
Method PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

K-Planes* (Fridovich-Keil et al., 2023) 28.12 0.9489 25.49 0.9483 30.67 0.9672
HexPlane* (Cao & Johnson, 2023) 28.63 0.9572 25.10 0.9388 31.02 0.9680

TiNeuVox* (Fang et al., 2022) 28.63 0.9433 24.65 0.9063 31.35 0.9613

D-3DGS† (Yang et al., 2024b) 37.42 0.9867 24.94 0.9432 38.50 0.9857
4D-GS* (Wu et al., 2024) 32.73 0.9760 25.03 0.9378 34.06 0.9787
4DGS (Yang et al., 2024a) 31.92 0.9546 24.70 0.9189 32.87 0.9649

CoGS† (Yu et al., 2024) 36.43 0.9838 25.16 0.9451 37.90 0.9842
NPGs† (Das et al., 2024) 33.39 0.9735 24.63 0.9312 - -

CompDynGS† (Katsumata et al., 2024) 33.43 0.9810 24.26 0.9400 33.21 0.9770
SC-GS (Huang et al., 2024) 38.88 0.9956 24.92 0.9485 39.53 0.9906

SplineGS (40K) 38.61 0.9891 25.29 0.9457 39.11 0.9866
SplineGS (80K) 38.71 0.9891 25.29 0.9457 39.44 0.9868
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Table 7: LPIPS comparison for the D-NeRF dataset. We compared our method to existing meth-
ods on 800× 800 resolution images based on LPIPS. The daggers (†) indicate that those were from
the original papers.

Method Trex Jumping Jakcs Hell Warrior

4D-GS† 0.0131 0.0128 0.0369
D-3DGS† 0.0098 0.0126 0.0234

SC-GS 0.0119 0.0115 0.0280
SplineGS 0.0047 0.0065 0.0091
Method Stand up Bouncing Balls Mutant

4D-GS† 0.0074 0.0155 0.0167
D-3DGS† 0.0063 0.0093 0.0052

SC-GS 0.0072 0.0216 0.0069
SplineGS 0.0027 0.0025 0.0019
Method Hook Lego Mean

4D-GS† 0.0272 0.0382 0.0210
D-3DGS† 0.0144 0.0183 0.0124

SC-GS 0.0139 0.0499 0.0119
SplineGS 0.0065 0.0298 0.0080

Figure 5: A scatter plot of various methods based on the number of blobs, FPS, training time,
and PSNR. We compared SplineGS to existing methods on a scatter plot for the D-NeRF dataset.
The x-axis represents the average number of blobs, and the y-axis represents the average FPS. The
size of each circle indicates the average training time, while the color represents the average PSNR.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

4D-GS (Wu et al., 2024) 4DGS (Yang et al., 2024a) D-3DGS (Yang et al., 2024b) SplineGS GT

B
ou

nc
in

g
B

al
ls

H
el

lw
ar

ri
or

H
oo

k
Ju

m
pi

ng
Ja

ck
s

L
eg

o
M

ut
an

t
Tr

ex

Figure 6: Qualitative results on the D-NeRF dataset. We present the rendering results of various
methods, including ours, for all scenes in the D-NeRF dataset. The first to third columns show the
results of existing methods, while the fourth and fifth columns show those of the proposed method
and the ground truth, respectively. Each row shows the results of a different scene.
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Table 8: Quantitative comparison for the Neu3D dataset. We compared our method with existing
methods on 1352×1014 resolution test images. Here, “20K” and “40K” in the parentheses indicate
the numbers of training iterations. The conventions for typographical marks and color codes are
generally identical to Table 1. We measured the average PSNR and SSIM across all scenes except
flame salmon, following the practice of many existing works (Guo et al., 2024; Liu et al., 2024; Lu
et al., 2024).

Coffee Martini Spinach Cut Beef
Method PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

NeRFPlayer* (Song et al., 2023) 32.05 0.9380 32.06 0.9300 31.83 0.9280
K-Planes* (Fridovich-Keil et al., 2023) 29.99 0.9530 32.60 0.9660 31.82 0.9660

HexPlane* (Cao & Johnson, 2023) - - 31.86 0.9830 32.71 0.9850

4D-GS* (Wu et al., 2024) 27.34 0.9050 32.46 0.9490 32.90 0.9570
4DGS† (Yang et al., 2024a) 28.33 - 32.93 - 33.85 0.9800

STG† (Li et al., 2024) 28.61 0.9585 33.18 0.9785 33.52 0.9795

SplineGS (20K) 29.16 0.9171 33.04 0.9538 33.42 0.9541
SplineGS (40K) 29.26 0.9189 33.09 0.9542 33.49 0.9544

Sear Steak Flame Steak Mean
Method PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

NeRFPlayer* (Song et al., 2023) 32.31 0.9400 27.36 0.8670 32.12 0.9206
K-Planes* (Fridovich-Keil et al., 2023) 32.52 0.9740 32.39 0.9700 31.86 0.9658

HexPlane* (Cao & Johnson, 2023) 32.09 0.9860 31.92 0.9880 - -

4D-GS* (Wu et al., 2024) 32.49 0.9570 32.51 0.9540 31.54 0.9444
4DGS† (Yang et al., 2024a) 33.51 - 34.03 - 32.53 -

STG† (Li et al., 2024) 33.89 0.9826 33.64 0.9824 32.57 0.9740

SplineGS (20K) 33.75 0.9621 33.23 0.9578 32.52 0.9484
SplineGS (40K) 33.82 0.9624 33.33 0.9582 32.60 0.9496
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Figure 7: Qualitative results on the Neu3D dataset. We show the qualitative results of SplineGS
on the Neu3D datasets except for flame salmon. We provide the ground truth and the results of
SplineGS for the 75th, 150th, and 225th frames. Each row shows the results of a different scene.
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Table 9: Quantitative comparison for the HyperNeRF dataset. We compared our method to ex-
isting methods on half-resolution test images and measured PSNR for three vrig scenes. The daggers
(†) indicate that those were from the original papers.

Method 3D Printer Chicken Broom
D-3DGS (Yang et al., 2024b) 20.28 22.76 20.47

4D-GS† (Wu et al., 2024) 22.10 28.70 22.00
SplineGS 21.97 29.13 20.56
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