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Abstract

We analyze the global convergence of the single-timescale actor-critic (AC) algo-1

rithm for the infinite-horizon discounted Markov Decision Processes (MDPs) with2

finite state spaces. To this end, we introduce an elegant analytical framework for3

handling complex, coupled recursions inherent in the algorithm. Leveraging this4

framework, we establish that the algorithm converges to an ϵ-close globally opti-5

mal policy with a sample complexity of O(ϵ−3). This significantly improves upon6

the existing complexity of O(ϵ−2) to achieve ϵ-close stationary policy, which is7

equivalent to the complexity of O(ϵ−4) to achieve ϵ-close globally optimal policy8

using gradient domination lemma. Furthermore, we demonstrate that to achieve9

this improvement, the step sizes for both the actor and critic must decay as O(k−
2
3 )10

with iteration k, diverging from the conventional O(k−
1
2 ) rates commonly used in11

(non)convex optimization.12

1 Introduction13

Actor-critic algorithm, initially introduced in Konda and Tsitsiklis (1999), consist of two key com-14

ponents: the actor, which refines the policy towards an optimal solution based on feedback from15

the critic, and the critic, which evaluates the value of the current policy (specifically the Q-value).16

It has been adapted in various forms Schulman et al. (2017) and have emerged as one of the most17

successful methods in reinforcement learning (Mnih et al., 2015; Silver et al., 2017; OpenAI et al.,18

2019; Schrittwieser et al., 2020).19

Despite their remarkable empirical success, the theoretical convergence of actor-critic algorithms20

remains not well understood. One line of research explores a two-timescale version where the actor21

and the critic are effectively decoupled, greatly simplifying the analyses. This can either be achieved22

via a double-loop version, where the critic evaluates the policy in the inner loop, and the actor updates23

the policy in the outer loop (Yang et al., 2019; Agarwal et al., 2020; Wang et al., 2022; Kumar et al.,24

2023; Wang et al., 2019), or via single-loop structure but the critic updates much faster than the25

actor (Borkar, 2022). In the later setup, the ratio of the learning rates of the actor and critic tends to26

zero with the number of iterations. Essentially, the critic perceives the actor as nearly stationary, while27

the actor views the critic as almost converged. Konda and Tsitsiklis (1999); Bhatnagar et al. (2009a);28

Chen et al. (2023); Hong et al. (2022); Wu et al. (2022); Xu et al. (2020b). It is important to note that29

both frameworks are artificial constructs to ease the analysis, but they are often sample-inefficient30

and therefore seldom used in practical implementations (Olshevsky and Gharesifard, 2023).31

In this work, we focus on a single time-scale actor-critic framework where both the actor and the critic32

are updated with each sample using similar step sizes Sutton and Barto (2018). While this framework33

is more versatile and practical, but the theoretical analysis of single-time actor-critic algorithms faces34

significant challenges due to the strong coupling between the actor and critic. Since both components35

evolve inseparably together with similar rates, the analytical challenge lies in understanding a stable36

error propagation schedule.37
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For the first time, Castro and Meir (2009) established asymptotic convergence of the single time scale38

actor critic to a neighborhood of an optimal value. This was followed by the recent works Chen39

et al. (2021); Olshevsky and Gharesifard (2023); Chen and Zhao (2024) demonstrating a sample40

complexity of O(ϵ−2) for achieving an ϵ-close stationary policy, where the squared norm of the41

gradient of the return is less than ϵ, under various settings. This corresponds to a sample complexity42

of O(ϵ−4) for achieving an ϵ-close globally optimal policy (see Proposition 3.2). The question of43

whether this O(ϵ−4) complexity can be further improved remains open, and this paper provides a44

favorable answer.45

In this work, we first formulate the recursions for actor and critic errors which are quite complex.46

None of the actor and critic errors are monotonically decreasing. We then identify a Lyaponov term47

(sum of actor error and squared of critic error), and obtain its recursions independent of all the other48

terms. This Lyapunov recursion is monotonically decreasing but more challenging than in the exact49

gradient case found in Xiao (2022a); Zhang et al. (2020b), due to the presence of a time-dependent50

learning rate. To address this, we develop an elegant ODE tracking methodology for solving these51

recursions, yielding significantly improved bounds. Additionally, when this ODE tracking method is52

applied to the recursion for the exact gradient case, it produces better results compared to existing53

bounds, such as those in Mei et al. (2022).54

Our contributions are summarized as follows:55

1. Improved Global Convergence Rate: We establish a sharper global convergence result for56

single-timescale actor-critic algorithms in softmax-parameterized discounted MDPs. Our57

analysis shows a sample complexity of O(ϵ−3) to compute an ϵ-optimal policy, improving58

upon the prior best rate of O(ϵ−4).59

2. ODE-Based Methodology with Direct Global Guarantees: Our core technical innovation60

is a streamlined ODE-based analysis for resolving the interdependent actor and critic updates.61

Unlike previous approaches that first bound convergence to stationary points (e.g., O(ϵ−2)62

for ϵ-stationary policies), we directly bound the global sub-optimality gap J∗ − Jπk .63

3. Broad Applicability of Techniques: The techniques developed are concise and modular,64

and may extend naturally to related settings such as minimax optimization, bi-level opti-65

mization, robust MDPs, and multi-agent reinforcement learning and could be of independent66

interest.67

1.1 Related works68

Policy gradient has been used in practice with many empirical success, for a long time now Sutton69

and Barto (2018); Schulman et al. (2015); Mnih et al. (2015). Naturally, its convergence properties of70

policy gradient has been of a great interests. Only, asymptotic convergence of policy gradient has71

been well-established in Williams (1992); Sutton et al. (1999); Kakade (2001b); Baxter and Bartlett72

(2001) until very recently as summarized below.73

Projected Policy Gradient (PPG): Given oracle access to gradient, Bhandari and Russo (2024);74

Agarwal et al. (2020) established global convergence of the projected policy gradient (tabular setting)75

with an iteration complexity of O(ϵ−2) in discounted reward setting. Following up, an improved76

recursion analysis, led to complexity of O(ϵ−1) Xiao (2022a). Recently, Liu et al. (2024a) obtained77

an linear convergence was obtained for an large enough learning rate and also for aggressively78

increasing step sizes. Further, PPG is proven to find global optimal policy in finite steps Liu et al.79

(2024b).80

Softmax Parametrized Policy Gradient Often in practice, parametrized policies are used and81

softmax is an one of the most popular parametrization. Softmax policy gradient (1) enjoys iteration82

complexity of O(ϵ−1) for global convergence Mei et al. (2022); Liu et al. (2024a). This complexity83

is matching with lower bound of O(ϵ−1) established in Mei et al. (2022); Liu et al. (2024a).84

Stochastic Policy Gradient Descent Often the gradient is not available in practice, and is es-85

timated via samples. Vanilla SGD (stochastic gradient descent) and stochastic variance reduced86

gradient descent (SVRGD) has sample complexity of O(ϵ−2) and O(ϵ−
5
3 ) respectively, for achieving87

∥∇Jπ∥22 ≤ ϵ (where Jπ is return of the policy π) Xu et al. (2020a). This local convergence yields88
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global convergence of iteration complexity of O(ϵ−4), O(ϵ−
10
3 ) for SGD and SVRGD respectively us-89

ing Proposition 3.2. Further, SGD achieves second order stationary point with an iteration complexity90

of O(ϵ−9) Zhang et al. (2020a).91

Single Time Scale Actor-critic Algorithm: It is a class of algorithms where critic (gradient, value92

function) and actor (policy) is updated simultaneously. This is arguably the most popular algorithms93

used in many variants in practice Konda and Tsitsiklis (1999); Bhatnagar et al. (2009a); Schulman94

et al. (2015, 2017). Castro and Meir (2009) first established asymptotic convergence of the single95

time scale actor-critic algorithm. Later, Olshevsky and Gharesifard (2023); Chen and Zhao (2024);96

Olshevsky and Gharesifard (2023) established the local convergence of single time-scale actor-critic97

algorithm with ( see Table 1) sample complexity of O(ϵ−2) for achieving ∥∇Jπ∥22 ≤ ϵ. This yields98

global convergence (J∗ − Jπ ≤ ϵ , where J∗ optimal return) with sample complexity of O(ϵ−4)99

using Gradient Domination Lemma as shown in Proposition 3.2 Olshevsky and Gharesifard (2023).100

Two Time Scale (/Double Loop) Actor Critic Algorithm. First, Konda and Tsitsiklis (1999)101

showed convergence of actor-critic algorithm to a stationary point using two time scale analysis of102

Borkar (2022). The work Gaur et al. (2024) establishes O(ϵ−3) sample complexity of a actor-critic103

algorithm variant (see Algorithm 1 Gaur et al. (2024)). The algorithm uses O(ϵ−3) new samples for104

the global convergence. However, it maintains the buffer of O(ϵ−2) samples at each iteration. For105

achieving ϵ-close global optimal policy, the algorithm requires O(ϵ−1) iteration, and each iteration106

repeatedly uses the samples from the buffer, O(ϵ−4) many times. In conclusion, the algorithm uses107

O(ϵ−3) new samples, using them O(ϵ−5) times in total, thereby significantly inflating the memory108

requirements and computational complexity. In comparison, our algorithm does not use any buffer109

and use new sample in each iteration.110

Natural Actor Critic (NAC) Algorithms. NAC algorithm is another class of algorithms Amari111

(1998); Kakade (2001a); Bagnell and Schneider (2003); Peters and Schaal (2008); Bhatnagar et al.112

(2009c) proposed to make the gradient updates independent of different policy parameterizations.113

It has linear convergence rate (iteration complexity of O(log ϵ−1)) under exact gradient setting114

Bhatnagar et al. (2009a) which is much faster the vanilla gradient descent. Similarly, the sample115

based NAC algorithms Ganesh et al. (2024) also enjoys better sample complexity of O(ϵ−2). Xu116

et al. (2020c) establishes the global convergence of the natural actor-critic algorithm with a sample117

complexity of O(ϵ−4) in discounted reward MDPs. However, the natural actor-critic algorithm118

demands additional computations, which can be challenging. Yuan et al. (2022) too establishes119

global convergence with sample complexity of O(ϵ−3), however, it requires an additional structural120

assumption on the problem which is highly restrictive. However, NAC requires the inversion121

of the Fisher Information Matrix (FIM) in the update rule. This inverse computation makes the122

implementation difficult and sometimes unfeasible (for an instance, FIM is not invertible in direct123

parametrization, if dπ(s) = 0 for some s). We note that actor-critic is a very different algorithm than124

NAC, arguably the most useful and versatile, hence deserving its own independent study.125

2 Preliminaries126

We consider the class of infinite horizon discounted reward MDPs with finite state space S and127

finite action space A with discount factor γ ∈ [0, 1) Sutton and Barto (2018); Puterman (1994). The128

underlying environment is modeled as a probability transition kernel denoted by P . We consider the129

class of randomized policies Π = {π : S → ∆A}, where a policy π maps each state to a probability130

vector over the action space. The transition kernel corresponding to a policy π is represented by131

Pπ : S → S, where Pπ(s′|s) =
∑

a∈A π(a|s)P (s′|s, a) denotes the single step probability of132

moving from state s to s′ under policy π. Let R(s, a) denote the single step reward obtained by taking133

action a ∈ A in state s ∈ S. The single-step reward associated with a policy π at state s ∈ S is134

defined as Rπ(s) =
∑

a∈A π(a|s)R(s, a). The discounted average reward (or return) Jπ associated135

with a policy π is defined as:136

Jπ = E

[ ∞∑
n=0

γnRπ(sk) | π, P, s0 ∼ µ

]
= µT (I − γPπ)−1Rπ,

where µ ∈ ∆S denotes the initial state distribution. It can be alternatively expressed as Jπ =137

(1− γ)−1
∑

s∈S dπ(s)Rπ(s), where dπ = (1− γ)µT (I − γPπ)−1 is the stationary measure under138
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Table 1: Related Work: Sample Complexity of Single Time Scale Actor Critic
Work Convergence Sample

Complexity
Actor
Step
size ηk

Critic
Step
size βk

Sampling

Olshevsky and
Gharesifard (2023)

∥∇Jπ∥ ≤ ϵ O(ϵ−4) k−
1
2 k−

1
2 i.i.d.

Chen et al. (2021) ∥∇Jπ∥ ≤ ϵ O(ϵ−4) k−
1
2 k−

1
2 i.i.d.

Chen and Zhao
(2024)

∥∇Jπ∥ ≤ ϵ O(ϵ−4) k−
1
2 k−

1
2 Markovian

Ours J∗ − Jπ ≤ ϵ O(ϵ−3) k−
2
3 k−

2
3 i.i.d.

∥∇Jπ∥ ≤ ϵ =⇒ J∗ − Jπ ≤ cϵ for some constant c, see Proposition 3.2. These works
are for different settings such average reward, discounted reward, finite state space,

and infinite state space, please refer to the individual work for more details.

the transition kernel Pπ. Value function vπ := (I − γPπ)−1Rπ satisfies the following Bellman139

equation vπ = Rπ + γPπvπ(Puterman, 1994; Bertsekas, 2007). The Q-value function Qπ ∈ RS ×A140

associated with a policy π is defined as Qπ(s, a) = R(s, a) + γ
∑

s′∈S P (s′|s, a)vπ(s′) for all141

(s, a) ∈ S ×A. For simplicity, we will also assume ∥R∥∞ ≤ 1.142

In this paper, we consider soft-max policy parameterized by θ ∈ RS ×A as πθ(a|s) = eθ(s,a)∑
a eθ(s,a)143

Mei et al. (2022). The objective is to obtain an optimal policy π∗ that maximizes the return Jπ . We144

denote J∗ as a shorthand for the optimal return Jπ∗
. The exact policy gradient update is given as145

θk+1 := θk + ηk∇Jπθk , (1)

where ηk is the learning rate, in most vanilla form Sutton and Barto (2018). The policy gradient can146

be derived as147

∂Jπθ

∂θ(s, a)
= (1− γ)−1dπθ (s)πθ(a|s)Aπθ (s, a),

where Aπ(s, a) := Qπ(s, a) − vπ(s) is advantage function Mei et al. (2022). The return Jπθ is a148

highly non-concave function, making global convergence guarantees for the above policy gradient149

method very challenging. However, the return Jπθ is L = 8
(1−γ)3 -smooth with respect to θ Mei et al.150

(2022), leading to the following result.151

Lemma 2.1. (Gradient Domination Lemma, Mei et al. (2022)) The sub-optimality is upper bounded152

by the norm of the gradient as153

∥∇Jπθk ∥2 ≥ c√
SCPL

[
J∗ − Jπθk

]
,

where CPL = maxk∥ dπ∗

d
πθk

∥∞ is mismatch coefficient and c = mink mins πθk(a
∗(s)|s),154

The result states that the norm of the gradient vanishes only when the sub-optimality is zero. In other155

words, the gradient is zero only at the optimal policies. This, combined with the Sufficient Increase156

Lemma, directly leads to the global convergence of the policy gradient update rule in (1).157

However, the above lemma requires the mismatch coefficient CPL to be bounded, which can be158

ensured by setting the initial distribution µ(s) > 0 for all states. Unfortunately, failure to ensure159

µ ≻ 0 may lead to local solutions Kumar et al. (2024). Additionally, the result requires the constant c160

to be strictly greater than zero. This condition can be satisfied by initializing the parameterization161

with θ0 = 0 or by ensuring it remains bounded. Furthermore, as the iterates progress towards an162

optimal policy, the constant c remains bounded away from zero.163
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3 Main164

In this work, we focus on the convergence of the widely used single time-scale actor-critic algorithm165

(1), where the actor (policy) and critic (value function) are updated simultaneously Konda and166

Tsitsiklis (1999); Sutton and Barto (2018); Chen et al. (2021); Olshevsky and Gharesifard (2023);167

Chen and Zhao (2024). Notably, this algorithm operates with a single sample per iteration, without168

relying on batch processing or maintaining an experience replay buffer.169

Algorithm 1 Single Time Scale Actor Critic Algorithm
Input: Stepsizes ηk, βk

1: while not converged; k = k + 1 do
2: Sample s ∼ dπθk , a ∼ πθk(·|s) and get the next state-action s′ ∼ P (·|s, a), a′ ∼ πθk(·|s′) .

3: Policy update:
θk+1(s, a) = θk(s, a) + ηk(1− γ)−1A(s, a),

where A(s, a) = Q(s, a)− v(s) and v(s) =
∑

a πθk(a|s)Q(s, a).

4: Q-value update:

Q(s, a) = Q(s, a) + βk

[
R(s, a) + γQ(s′, a′)−Q(s, a)

]
.

5: end while

Our objective is to derive a policy π that maximizes the expected discounted return Jπ using sampled170

data. However, due to the stochastic nature of Algorithm 1, we focus on analyzing the expected return171

E[Jπθk ] at each iteration k.172

Note that the algorithm requires samples sk ∼ dπθk from the occupation measure at each iteration,173

which is a common assumption in most works on the discounted reward setting Zhang et al. (2020b);174

Konda and Tsitsiklis (1999); Bhatnagar et al. (2009a); Chen et al. (2021); Kumar et al. (2023);175

Olshevsky and Gharesifard (2023). This can be achieved by initializing the Markov chain with176

s0 ∼ µ, and at each step i, continuing the chain with probability γ by sampling si+1 ∼ Pπθk (·|si),177

or terminating the chain with probability (1 − γ). Once the chain terminates, we randomly select178

a state uniformly as sk. This process ensures that the state sk is sampled from dπθk . However, this179

approach increases the average computational complexity by a factor of 1
1−γ . There are potentially180

more efficient approaches to achieve this sampling, and several studies Xu et al. (2020b); Wu et al.181

(2022); Chen and Zhao (2024) have investigated convergence analysis using Markovian sampling.182

However, we omit these considerations here for simplicity.183

Assumption 3.1. [Sufficient Exploration Assumption] There exists a λ > 0 such that:184

⟨Qπ −Q,Dπ(I − γPπ)Q
π −Q⟩ ≥ λ∥Qπ −Q∥22,

where Pπ((s
′, a′), (s, a)) = P (s′|s, a)π(a′|s′) and Dπ((s′, a′), (s, a)) = 1

(
(s′, a′) = (s, a)

)
185

dπ(s)π(a|s).186

Throughout this paper, we adopt the exploration assumption mentioned above, which is standard and,187

to the best of our knowledge, has been made in all prior works Olshevsky and Gharesifard (2023);188

Chen et al. (2021); Chen and Zhao (2024); Bhatnagar et al. (2009a); Konda and Tsitsiklis (1999);189

Zhang et al. (2020b). Note that the both actor and critic evolving simultaneously, with actor updating190

the policy with the imprecise critic’s feedback (Q-value) and critic tracking the Q-value of the191

changing policies. This complex interdependent analysis of error is the core subject of investigation192

of this paper. However, the above assumption provides the bare minimum condition that the critic193

convergence to the Q-value of any fixed policy in expectation.Specifically, for any fixed policy π, the194

Q-value update given by (line 4 of Algorithm 1):195

Qm+1(s, a) = Qm(s, a) + βk

[
R(s, a) + γQm(s′, a′)−Qm(s, a)

]
, (2)

where s ∼ dπ, a ∼ π(·|s), s′ ∼ P (·|s, a), a′ ∼ π(·|s′), Qm converges to the true Q-value Qπ in196

expectation, under this exploration assumption, More precisely, ∥EQm −Qπ∥ ≤ cm for some c < 1197
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(see Lemma A.1).The above assumption is satisfied if all the coordiantes of Q-values are updated198

often enough. This can be ensured by having strictly positive support of initial state-distribution on199

all the states (mins µ(s) > 0) and having sufficient exploratory policies.200

Local Convergence To Global Convergence. Convergence of single time-scale actor-critic (Al-201

gorithm 1) has been studied for a long time, Konda and Tsitsiklis (1999); Bhatnagar et al. (2009b);202

Zhang et al. (2020b); Olshevsky and Gharesifard (2023); Chen et al. (2021); Chen and Zhao (2024).203

These works establish local convergence bounding the average expected square of gradient of the204

return, with following state-of-the-art rate205

K∑
k=1

1

K
E∥∇Jπk∥2 ≤ O(K− 1

2 ).

This local sample complexity of O(ϵ−2) translates to global sample complexity of O(ϵ−4), as shown206

in the result below.207

Proposition 3.2. A local ϵ-close stationary policy is equivalent to an
√
ϵ-close global optimal policy.208

That is209

E∥∇Jπθk ∥2 ≤ O(k−
1
2 ) =⇒ J∗ − EJπθk ≤ O(k−

1
4 ).

Proof. The proof follows directly from Gradient Domination Lemma 2.1 and Jensen’s inequality,210

with more details in the appendix.211

Now we present below the main result of the paper that proves the convergence of the Algorithm 1212

with sample complexity of O(ϵ−3) to achieve ϵ-close global optimal policy.213

Theorem 3.3 (Main Result). For step size βk, ηk = O(k−
2
3 ) in Algorithm 1, we have214

J∗ − EJπθk ≤ O(k−
1
3 ), ∀k ≥ 0.

The above result significant improves upon the existing sample complexity of O(ϵ−4) Olshevsky215

and Gharesifard (2023); Chen et al. (2021); Chen and Zhao (2024) as summarized in Table 1. The216

convergence analysis consists of following three main components, discussed in details in the section217

next.218

1. Deriving Recursions for Actor and Critic Errors: The first step involves formulating the219

recursions for the actor and critic errors, which are inherently complex and interconnected.220

This step is inspired by the approach outlined in Chen and Zhao (2024).221

2. Identifying a well behaved Lyapunov Term: While prior works utilize the standard222

convex-optimization technique to rearrange the recursion, expressing the “norm of the223

gradient” through a telescoping sum to establish local convergence Chen and Zhao (2024),224

this work takes a novel direction. Specifically, it leverages the additional problem structure,225

encapsulated in the Gradient Domination Lemma, to identify a Lyapunov term—defined226

as the sum of the actor error and the square of the critic error—and derive a Lyapunov227

recursion.228

3. Developing an elegant ODE Tracking Method to Bound the Lyapunov Recursion: The229

derived Lyapunov recursion poses significant challenges compared to the exact gradient case230

studied in Xiao (2022b), primarily due to the presence of time-decaying learning rates. To231

address this, we develop an elegant ODE tracking methodology that enables us to establish232

bounds on the Lyapunov recursion. These bounds, in turn, yield precise characterizations of233

both the actor and critic errors.234

4 Convergence Analysis235

In this section, we present the convergence analysis of Algorithm 1, but first, we introduce some236

shorthand notations for clarity. Throughout the paper, we use the following conventions:237

Jk = Jπθk , Ak = Aπθk , Qk = Qπθk , dk = dπθk .

Additionally, we define:238
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• ak := E[J∗ − Jk], which represents the expected sub-optimality.239

• zk :=
√
E∥Qk −Qk∥2, which denotes the expected critic tracking error.240

• yk :=
√
E∥∇Jk∥2, which denotes the expected norm of the gradient.241

We summarize all the useful constants in the Table 4. We begin by deriving an actor recursion,242

which is essentially a sufficient increase lemma for our noisy and biased gradient ascent (Line 3 of243

Algorithm 1). This recursion arises from the smoothness properties of the return and serves as an244

extension of its non-noisy version presented in Mei et al. (2022).245

Lemma 4.1. [Actor Recursion] Let θk be the iterates from Algorithm 1, then the sub-optimality246

decreases as247

ak+1 ≤ ak − c1ηky
2
k + c2ηkykzk + c3η

2
k.

The recursion above illustrates the dependence of sub-optimality progression on various terms. The248

second term, ηky
2
k

1−γ , indicates that the sub-optimality decreases proportionally to the square of the249

gradient norm and the learning rate, which is consistent with the expected behavior of gradient ascent250

on a smooth function in standard optimization. The term 2ηkykzk
1−γ represents the bias arising from251

the error in Q-value estimation (critic error), implying that higher critic estimation error reduces the252

improvement in the policy. Finally, the term 2Lη2
k

(1−γ)4 accounts for the variance in the stochastic update253

of the policy .254

Now, we shift our focus to the critic error. The exploration Assumption 3.1 ensures the evaluation255

of the policy (Q-value estimation in expectation) through samples with respect to a fixed policy.256

However, in Algorithm 1, the policy changes at every iteration, which makes the derivation of the257

result below somewhat more challenging.258

Lemma 4.2. [Critic Recursion] In Algorithm 1, critic error follows the following recursion259

z2k+1 ≤ (1− c4βk)z
2
k + c5β

2
k + c6η

2
k + c7ηkykzk,

where constants ci are defined in the appendix.260

The term (1 − c4βk)z
2
k represents the geometric decrease of the critic error, as the Q-value is a261

contraction operator. The terms c5β2
k and c6η

2
k arise from the variance in the critic and policy updates.262

Finally, the term c7ηkykzk reflects the effect of the "moving goalpost," where the critic evaluates a263

policy that changes in each iteration by an amount proportional to yk.264

Lemma 4.3 (Gradient Domination). The sub-optimlaity is upper bound by gradient as265

ak ≤ c8yk.

The result anove upper bounds the sub-optimality with the gradient, which follows Lemma 2.1 and266

Jensen’s inequality. To summarize, we have the following recursions:267

Actor: ak+1 ≤ ak − c1ηky
2
k + c2ηkykzk + c3η

2
kzk (3)

Critic: z2k+1 ≤ z2k − c4βkz
2
k + c5β

2
k + c6η

2
k + c7ηkykzk

GDL: ak ≤ c8yk.

Solving these interdependent recursions is highly challenging and constitutes the core technical268

contribution of this paper. It is important to note that the gradient norm yk is lower bounded by ak,269

allowing us to ensure an upper bound on ak+1 using the lower bound of yk. However, we lack an270

upper bound on the gradient norm yk, which means we cannot upper bound the critic error z2k+1. In271

other words, we cannot guarantee that the critic error will decrease at all.272

Observe that ak+1 decreases while z2k+1 increases with the rise in yk. A crucial observation is that273

the Lyapunov term xk+1 := ak+1 + z2k+1 exhibits a consistent decrease as yk increases, as shown in274

Figure 1. In contrast, ak does not demonstrate well-behaved monotonicity (i.e., it is not consistently275

decreasing). This highlights the stability and utility of the Lyapunov term in characterizing the276

system’s behavior. Now to formally prove this, we combine the actor and critic recursions, assume277

βk = cβηk, and apply additional algebraic manipulations (detailed in the appendix). This leads to the278

following recursion:279

ak+1 + z2k+1 ≤ ak + z2k − c12ηk

(
yk + z2k

)2
+ c11η

2
k.
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Figure 1: Actor- Critic recursion in (3): Random ci, 10ηk = βk = (1 + k)−
2
3 , a0, z0 = 2.

Using the Gradient Domination Lemma (GDL), we derive the Lyapunov recursion:280

xk+1 ≤ xk − c13ηkx
2
k + c11η

2
k,

which can be solved as stated in the following result.281

Lemma 4.4 (ODE Tracking Lemma). Given ηk = c14(
1

1

x3
0
+c15k

)
2
3 , the recursion xk+1 ≤ xk −282

c13ηkx
2
k + c11η

2
k satisfies the bound:283

xk ≤

(
1

1
x3
0
+ c15k

) 1
3

,

Proof. The detailed steps of the proof are provided in the appendix. The key idea in solving the284

recursion is to establish that xk lies below the trajectory of the following ODE:285

duk

dk
= −c13ηku

2
k + c11η

2
k.

We simplify this by appropriately choosing ηk = c14u
2
k, leading to the reduced ODE: duk

dk = −c15u
4
k,286

whose solution is: uk =
(

1
1

u3
0
+c15k

) 1
3

.287

Using the above result, we conclude that ak = O(k−
1
3 ) and ηk, βk = O(k−

2
3 ), thus completing the288

convergence analysis. Although, we retrospectively chose the best learning rates βk, ηk = O(k−
2
3 )289

for the presentation simplifications. But we have developed a general framework in the appendix that290

gives the rates for different possible step-sizes schedules.291

One surprising finding is that while the actor error (sub-optimality) in our algorithm decreases as292

O(k−
1
3 ), which is faster than the O(k−

1
4 ) rate reported in Chen and Zhao (2024), the critic error293

decreases much more slowly. Specifically, our critic error follows zk = O(k−
1
6 ), compared to the294

O(k−
1
4 ) rate achieved in Chen and Zhao (2024).295

5 Discussion296

We establish the global convergence of actor-critic algorithms with a significantly improved sample297

complexity of O(ϵ−3) for obtaining ϵ-close global optimal policy, compared to the existing rate of298

O(ϵ−4) derived from O(ϵ−2) complexity for ϵ-close stationary policy Chen and Zhao (2024). This299

brings us closer to the lower bound complexity of O(ϵ−2) for reinforcement learning Auer et al.300

(2008). The framework we propose is quite general and could potentially be extended to other settings,301

such as average reward, function approximation, or Markovian noise. We leave these extensions for302

future work.303
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Constant Definition Remark

Jk Jπθk Return at iterate k

Ak Aπθk Advantage value at iterate k

Qk Qπθk Q-value at iterate k

dk dπθk Occupation measure at iterate k

ak E[J∗ − Jk] Sub-optimality at iterate k

zk
√
E∥Qk −Qk∥ Critic mean squared error at iterate k

yk
√
E∥∇Jk∥2 Expected squared norm of the return at iterate k

xk ak + z2k Lyapunov value at iterate k

uk

(
1

1

u3
0
+c15k

) 1
3

Solution to the ODE duk

dk = −c15u
4
k

ci Place holder constants for clarity See appendix
Table 2: Definitions of Useful Constants: Iterate k is generated from Algorithm 1

Moreover, this framework for addressing the two-time-scale coupling, combined with our novel304

and elegant methodology for bounding the recursions, can serve as a foundation for analyzing other305

two-time-scale algorithms.306

Can we improve the complexity further? Our work proposes a learning rate schedule for both307

the critic and actor, decaying as k−
2
3 with iteration k, which we believe through our investigation,308

achieves the optimal sample complexity of O(ϵ−3) that these recursions can possible yield. Conse-309

quently, we need to shift our approach in deriving these recursions for improvement in the sample310

complexity. All prior approaches, including our own, focus on bounding the variance of the critic311

error
√
E∥Qk −Qk∥2. However, for the analysis of the actor’s recursion, it suffices to bound the312

bias ∥Qk − EQk∥. Through careful investigation, we have come to believe that our current analysis,313

which relies on variance bounds, has reached the sample complexity limit of O(ϵ−3). In contrast,314

an analysis based on bias has the potential to achieve further improvements, possibly reducing the315

complexity to the theoretical lower bound of O(ϵ−2).316

A key insight lies in the fundamental difference between variance and bias: even for a fixed policy,317

variance remains non-zero, whereas bias vanishes. Specifically, current variance-based approaches318

necessitate diminishing learning rates for both the actor and the critic to ensure decreasing variance.319

In contrast, the bias term can tend to zero even with a constant critic learning rate, requiring only a320

diminishing learning rate for the actor. This observation suggests that focusing on bias may be a more321

promising direction, but it also presents significant analytical challenges that remain unexplored.322

In summary, we hypothesize that the current sample complexity of O(ϵ−3) could be improved to323

O(ϵ−2) by focusing on bias rather than variance. This shift in focus may allow for a constant (or324

very slowly decaying) critic step size, only requiring diminishing actor step size. Further, we believe325

our new methodology for solving recursions may play crucial role in unlocking these new research326

directions and opportunities.327
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A Supporting Results432

A.1 Sufficient Exploration433

Lemma A.1. Under the Assumption 3.1, the update rule (2), converges as434

∥EQk −Qπ∥2 → αk∥EQ0 −Qπ∥2,

where α =
√
1− λ2

2 taking βk = λ
2 .435

Proof. From Proposition A.3, we have ∥EQk+1 −Qπ∥ ≤ α∥EQk+1 −Qπ∥, from which the result436

follows.437

We define Pπ((s
′, a′), (s, a)) = P (s′|s, a)π(a′|s′) and Dπ((s′, a′), (s, a)) = 1

(
(s′, a′) = (s, a)

)
438

(1− γ)
∑∞

n=0 γ
nµT (Pπ)n(s).439

Proposition A.2. cγ = maxπ,Q
∥Dπ(I−γPπ)Q∥

∥Q∥ ≤ 1 + γ.440

Proof.
∥Dπ(I − γPπ)Q∥ ≤ ∥DπQ∥+ γ∥DπPπQ∥ (4)

≤ ∥Q∥+ γ∥DπPπQ∥, (as
∑
s,a

|D((s, a), (s, a))| = 1) (5)

= ∥Q∥+ γ

√∑
s,a

(
d(s, a)⟨Pπ(·|(s, a)), Q⟩

)2
, (6)

≤ ∥Q∥+ γ

√∑
s,a

(
d(s, a)∥Pπ(·|(s, a))∥∥Q∥

)2
, (7)

≤ ∥Q∥+ γ∥Q∥
√∑

s,a

(
d(s, a)

)2 ∥Pπ(·|(s, a))∥2, (8)

≤ ∥Q∥+ γ∥Q∥
√∑

s,a

d(s, a)∥Pπ(·|(s, a))∥21, (9)

= (1 + γ)∥Q∥. (10)
441

Proposition A.3. For any policy π, given Tπ
β Q = Q+ βDπ

[
R+ γPπQ−Q

]
, we have442

∥Qπ − Tπ
β Q∥ ≤

√
1− λ2

2
∥Qπ −Q∥2.

Proof.

U := Dπ
[
R− (I − γPπ)Q

]
(11)

= Dπ
[
Qπ − γPπQ

π − (I − γPπ)Q
]
, (using Qπ = R+ γPπQ

π) (12)

= Dπ
(
I − γPπ

)(
Qπ −Q

)
(13)

Lets look at443

∥Qπ − Tπ
β Q∥2 = ∥Qπ −Q− βU∥2, (definition of Tπ

β Q = Q+ βU )

= ∥Qπ −Q∥2 + β2∥U∥2 − 2β⟨Qπ −Q,U⟩
≤ ∥Qπ −Q∥2 + β2∥U∥2 − 2βλ∥Qπ −Q∥2, (from Assumption 3.1)

≤ (1 + 2β2 − 2βλ)∥Qπ −Q∥22, (from Proposition A.2)

≤ (1− λ2

2
)∥Qπ −Q∥22, (taking β =

λ

2
).

13



444

A.2 Local to Global445

Proposition A.4. If E∥∇Jk∥22 ≤ O(k−
1
2 ) then J∗ − EJπk ≤ O(k−

1
4 ).446

Proof. From Gradient Domination Lemma 2.1 and Jensen’s inequality, we have447

E∥∇Jk∥22 ≥ E
[
J∗ − Jk

]
≥ c2

SC2
PL

[
J∗ − EJk

]2
.

Hence if E∥∇Jπk∥22 ≤ O(k−
1
2 ) then

[
J∗ − EJπk

]2
≤ O(k−

1
2 ), implying J∗ − EJk ≤ O(k−

1
4 ).448

449

B Deriving Recursions450

Notations. Recall that Jk = Jπθk , Ak = Aπθk , Qk = Qπθk , dk = dπθk , ak = E[J∗ − Jk], yk =451 √
E∥∇Jk∥2, zk =

√
E∥Qk −Qk∥2 are used as shorthands. Further Qk, Ak are iterates from452

Algorithm 1, and 1k ∈ {0, 1}S ×A is indicator for (sk, ak) in the Algorithm 1. We refer Hadamard453

product by ⊙, defined as (a⊙ b)(i) = a(i)b(i).454

Constant Definition Remark

λ Sufficient Exploration constant

L 8
(1−γ)3 Smoothness constant

cg
√
SCPL

c GDL constant

Lπ
1 = 2 ∥πθk+1

− πθk∥ ≤ Lπ
1∥θk+1 − θk∥ Lipschitz constant of policy w.r.t. θ

cq =
2SALLπ

1

(1−γ)2 ∥Qk −Qk+1∥ ≤ cqηk Lipschitz constant

cu = 1 + 2
1−γ |Uk| ≤ cu

Lq
2 ∥Qk −Qk+1 +∇Qk(θk+1 − θk)∥ ≤ 1

2L
q
2∥θk+1 − θk∥2 smoothness of Q

cz = 2SA
1−γ ∥Qk −Qk∥ ≤ cz Upper bound on zk

cβ = βk

ηk

1−γ
2λ

(
2γ

√
SA

(1−γ)3 + 2
(1−γ)

)2
Actor-critic scale ratio

cη 2c2uc
2
β + 4L

(1−γ)4 + 2c2q +
2Lq

2cz
(1−γ)4

cl 4min{ a2
k

c2g(1−γ) ,
2λcβ
c2z

} ODE constant

Table 3: Constants

In this section, we derive the following recursions:455

ak+1 ≤ ak − ηk
1− γ

y2k +
2ηk
1− γ

ykzk +
4Lη2k

(1− γ)4

ak ≤ cgyk

z2k+1 ≤ (1− 2λβk)z
2
k + 2c2uβ

2
k + 2c2qη

2
k +

2Lq
2

(1− γ)4
η2kzk +

2γ
√
SA

(1− γ)3
ηkykzk,

where the constants are described in Table 3.456
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B.1 Actor Recursion457

Lemma B.1 (Sufficient Increase Lemma). Let θk be the iterate obtained Algorithm 1. Then,458

E[Jk+1 − Jk] ≥ ηk
1− γ

E
[
∥∇Jk∥2 + ⟨∇Jk, dk ⊙ (Ak −Ak)⟩ − 2Lηk

(1− γ)3

]
.

Proof. From the smoothness of the return, we have459

E
[
Jk+1 − Jk

]
≥ E

[
⟨∇Jk, θk+1 − θk⟩ −

L

2
∥θk+1 − θk∥2

]
,

≥ E
[ ηk
1− γ

⟨∇Jk, Ak ⊙ 1k⟩ −
Lη2k

2(1− γ)2
A2

k1k

]
, (from update rule in Algorithm 1

≥ ηk
1− γ

E
[
⟨∇Jk, dk ⊙Ak⟩ −

2Lηk
(1− γ)3

]
, ( as (sk, ak) ∼ dk⊙ and ∥Ak∥∞ ≤ 2

1− γ
)

≥ ηk
1− γ

E
[
∥∇Jk∥22 + ⟨∇Jk, dk ⊙ (Ak −Ak)⟩ − 2Lηk

(1− γ)3

]
, ( as ∇Jk = dk ⊙Ak).

460

Proposition B.2. We have461

E
∣∣∣ ⟨∇Jk, dk ⊙ (Ak −Ak)⟩

∣∣∣≤ 2
√

E∥∇Jk∥2
√

E∥Qk −Qk∥2.

Proof. We have462 ∣∣∣ ⟨∇Jk, dk ⊙ (Ak −Ak)⟩
∣∣∣≤ ∥∇Jk∥∥dk ⊙ (Ak −Ak)∥, (from Cauchy inequlaity) (14)

≤ ∥∇Jk∥∥dk∥∥(Ak −Ak)∥∞, (as
∑
i

(aibi)
2 ≤ (max

i
a2i )(

∑
i

b2i )) (15)

≤ ∥∇Jk∥∥Ak −Ak∥∞, ( as 1 = ∥dk∥1 ≥ ∥dk∥2) (16)
(17)

Additionally, from definition, we have463

|Ak(s, a)−Ak(s, a)| = |Qk(s, a)−
∑
a

π(a|s)Qk(s, a)−Qk(s, a) +
∑
a

π(a|s)Qk(s, a)| (18)

≤ |Qk(s, a)−Qk(s, a)|+ |
∑
a

π(a|s)Qk(s, a)−
∑
a

π(a|s)Qk(s, a)|, (Triangle inequality)

(19)

≤ ∥Qk −Qk∥∞ +
∑
a

π(a|s)|Qk(s, a)−Qk(s, a)|, (20)

≤ 2∥Qk −Qk∥∞. (21)

Putting this back, we get464

E
∣∣∣ ⟨dk ⊙Ak, dk ⊙ (Ak −Ak)⟩

∣∣∣≤ 2E
[
∥∇Jk∥∥Qk −Qk∥∞

]
, (22)

≤ 2E
[
∥∇Jk∥∥Qk −Qk∥

]
, (as ∥x∥2 ≥ ∥x∥∞) (23)

≤ 2
√
E∥∇Jk∥22

√
E∥Qk −Qk∥22, (from Cauchy (E⟨x, y⟩)2 ≤ E∥x∥2E∥y∥2). (24)

465

Lemma B.3. [Actor Recursion] We have466

ak − ak+1 ≥ ηk
1− γ

[
y2k − 2ykzk − 2Lηk

(1− γ)3

]
.
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Proof. From Sufficient Increase Lemma B.1, we have467

E[Jk+1 − Jk] ≥ ηk
1− γ

E
[
∥∇Jk∥2 + ⟨∇Jk, dk ⊙ (Ak −Ak)⟩ − 2Lηk

(1− γ)3

]
,

≥ ηk
1− γ

[
E∥∇Jk∥2 − E|⟨∇Jk, dk ⊙ (Ak −Ak)⟩| − 2Lηk

(1− γ)3

]
, (as E[a] ≥ −E[|a|])

≥ ηk
1− γ

[
E∥∇Jk∥2 − 2

√
E∥∇Jk∥2

√
E∥Qk −Qk∥2 − 2Lηk

(1− γ)3

]
, (from Lemma B.2).

468

Proposition B.4. [Gradient Domination] We have469

ak ≤
√
SCPL

c
yk.

Proof. From GDL, we have470

J∗ − Jk ≤
√
SCPL

c
∥∇Jk∥ (25)

=⇒ E[J∗ − Jk] ≤
√
SCPL

c
E∥∇Jk∥ (26)

≤
√
SCPL

c

√
E∥∇Jk∥2, (27)

where the last inequality comes from the Jensen’s inequality (E[x])2 ≤ E[x2].471

B.2 Critic Recursion472

Recall that in the Algorithm 1, we have the following updates: (s, a) ∼ dk s′ ∼ P k(·|s, a), a′ ∼473

πk(·|s′), and474

Qk+1(s, a) = Qk(s, a) + βkUk+1,

where ∥πk+1 − πk∥ ≤ 2Lπ
1

(1−γ)2 ηk, ηk → 0, and Uk+1 =
[
R(s, a) + γQk(s

′, a′)−Qk(s, a)
]
.475

Lemma B.5 (Critic Recursion). In Algorithm 1, the critic error follows the following recursion476

z2k+1 ≤ (1− 2λβk)z
2
k + 2c2uβ

2
k + 2c2qη

2
k +

2Lq
2

(1− γ)4
η2kzk +

2γ
√
SA

(1− γ)3
ηkykzk.

Proof. We have477

E∥Qk+1 −Qk+1∥2 = E
∥∥∥ Qk + βkUk+1 −Qk+1

∥∥∥2, (from update rule of Qk)

=E
∥∥∥ Qk −Qk + βkUk+1 +Qk −Qk+1

∥∥∥2, (plus-minus Qk)

=E
(
∥Qk −Qk∥2 + β2

k∥Uk+1∥2 + ∥Qk −Qk+1∥2 + 2βk⟨Uk+1, Q
k −Qk+1⟩

+ 2βk⟨Qk −Qk, Uk+1⟩+ 2⟨Qk −Qk, Qk −Qk+1⟩
)
, (expansion of (a+ b+ c)2)

≤E
(
(1− 2βkλ)∥Qk −Qk∥2 + β2

k∥Uk+1∥2 + ∥Qk −Qk+1∥2 + 2βk⟨Uk+1, Q
k −Qk+1⟩

+ 2⟨Qk −Qk, Qk −Qk+1⟩
)
, (using sufficient exploration assumption)

≤E
(
(1− 2βkλ)∥Qk −Qk∥2 + 2β2

k∥Uk+1∥2 + 2∥Qk −Qk+1∥2 + 2⟨Qk −Qk, Qk −Qk+1⟩
)
,

(using ∥a∥2 + ∥b∥2 ≥ 2⟨a, b⟩)

≤E
(
(1− 2βkλ)∥Qk −Qk∥2 + 2β2

kc
2
u + 2η2kc

2
q + 2⟨Qk −Qk, Qk −Qk+1⟩

)
,

( as ∥Qk −Qk+1∥ ≤ cqηk and ∥Uk∥ ≤ cu )
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Now, we only focus on478

E⟨Qk −Qk, Qk −Qk+1⟩
≤E⟨Qk −Qk, Qk −Qk+1 +∇Qk(θk+1 − θk)⟩+ E⟨Qk −Qk,∇Qk(θk+1 − θk)⟩, (plus-minus )

≤E
[
∥Qk −Qk∥∥Qk −Qk+1 +∇Qk(θk+1 − θk)∥+ ⟨Qk −Qk,∇Qk(θk+1 − θk)⟩

]
, (Cauchy Schwartz )

≤E
[ 1

2
Lq
2∥Qk −Qk∥∥θk+1 − θk∥2 + ⟨Qk −Qk,∇Qk(θk+1 − θk)⟩

]
, (smoothness of Qπ , see Table 3 )

≤E
[ 2Lq

2η
2
k

(1− γ)4
∥Qk −Qk∥+ ηk

1− γ
⟨Qk −Qk,∇Qk(1k ⊙Ak)⟩

]
, (from Algorithm 1)

≤E
[ 2Lq

2η
2
k

(1− γ)4
∥Qk −Qk∥+ ηk

1− γ
⟨Qk −Qk,∇Qk(dk ⊙Ak)⟩

]
, (Conditional expectation, (sk, ak) ∼ dk )

≤E
[ 2Lq

2η
2
k

(1− γ)4
∥Qk −Qk∥+ ηk

1− γ
∥Qk −Qk∥∥∇Qk(dk ⊙Ak)∥

]
, (Cauchy Schwartz)

≤ 2Lq
2η

2
k

(1− γ)4

√
E∥Qk −Qk∥2 + ηk

1− γ

√
E∥Qk −Qk∥2

√
E∥∇Qk(dk ⊙Ak)∥2, (Jensen and Cauchy inequalities )

≤ 2Lq
2η

2
k

(1− γ)4

√
E∥Qk −Qk∥2 + 2γ

√
SAηk

(1− γ)3

√
E∥Qk −Qk∥2

√
E∥∇Jk∥2, (using Proposition B.6 )

To summarize, we have the following recursion:479

z2k+1 ≤ (1− 2λβk)z
2
k + 2c2uβ

2
k + 2c2qη

2
k +

2Lq
2

(1− γ)4
η2kzk +

2γ
√
SA

(1− γ)3
ηkykzk.

480

Proposition B.6.

∥∇Qk(dk ⊙Ak)∥2 ≤ 4γ2SA2

(1− γ)4
∥∇Jk∥2.

Proof. From definition, we have481

Qπ(s, a) = R(s, a) + γ
∑
s′

P (s′|s, a)vπ(s′) (28)

=⇒ d

dθ(s”, a”)
Qπ(s, a) = γ

∑
s′

P (s′|s, a) d

dθ(s”, a”)
vπ(s′) (29)

=
γ

1− γ

∑
s′

P (s′|s, a)dπs′(s”)Aπ(s”, a”). (30)
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This implies that482

∥∇Qk(dk ⊙Ak)∥2 =
∑
s,a

( ∑
s”,a”

dQk(s, a)

dθ(s”, a”)
dk(s”, a”)Ak(s”, a”)

)2
(31)

=
1

(1− γ)2

∑
s,a

( ∑
s”,a”

γ
∑
s′

P (s′|s, a)dks′(s”)Ak(s”, a”)dk(s”, a”)Ak(s”, a”)
)2

, (putting back the value )

(32)

≤ γ2

(1− γ)2

∑
s,a

( ∑
s”,a”

∑
s′

P (s′|s, a)dks′(s”)dk(s”, a”)|Ak(s”, a”)||Ak(s”, a”)|
)2

, (taking absolute values)

(33)

=
4γ2SA

(1− γ)4

( ∑
s”,a”,s′

P (s′|s, a)dks′(s”)dk(s”, a”)|Ak(s”, a”)|
)2

(34)

≤ 4γ2SA2

(1− γ)4

∑
s”,a”,s′

P (s′|s, a)dks′(s”)
(
dk(s”, a”)Ak(s”, a”)

)2
, (35)

(from Jensen, as
∑

s”,a”,s′

P (s′|s, a)dks′(s”) = A) (36)

≤ 4γ2SA2

(1− γ)4

∑
s”,a”

(
dk(s”, a”)Ak(s”, a”)

)2
, ( as P (s′|s, a)dks′(s”) ≤ 1) (37)

=
4γ2SA2

(1− γ)4
∥∇Jk∥2. (38)

483

C Solving Recursions484

In this section, we solve the following recursions:485

Lemma C.1. The following recursions486

ak+1 ≤ ak − ηk
1− γ

y2k +
2ηk
1− γ

ykzk +
4Lη2k

(1− γ)4

ak ≤ cgyk

z2k+1 ≤ (1− 2λβk)z
2
k + 2c2uβ

2
k + 2c2qη

2
k +

2Lq
2

(1− γ)4
η2kzk +

2γ
√
SA

(1− γ)3
ηkykzk,

implies487

ak ≤ c
− 2

3

l

(
max{cη, 2c2l u3

0}
) 1

3
( 1

1
α3

0
+ 2k

) 1
3

,

with constants α0, cl, c2 defined in Table 3.488
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Proof. Adding the first and last recursions, and using zk ≤ cz from Table 3, we get489

ak+1 + z2k+1

≤ ak + z2k − ηky
2
k

1− γ
− 2λβkz

2
k + 2c2uβ

2
k+
( 4L

(1− γ)4
+ 2c2q +

2Lq
2cz

(1− γ)4

)
η2k+

( 2γ
√
SA

(1− γ)3
+

2

1− γ

)
ηkykzk

≤ ak + z2k − ηk

[ y2k
1− γ

+ 2λcβz
2
k−
( 2γ

√
SA

(1− γ)3
+

2

1− γ

)
ykzk

]
+
(
2c2uc

2
β +

4L

(1− γ)4
+ 2c2q +

2Lq
2cz

(1− γ)4︸ ︷︷ ︸
:=cη

)
η2k, (as

βk

ηk
= cβ)

≤ ak + z2k − ηk
2

[ y2k
(1− γ)

+ 2λcβz
2
k

]
+cηη

2
k, (using

a2 + b2

2
≥ ab with defn of cβ)

= ak + z2k − ηk
2

[ y2k
(1− γ)

+ 2λcβc
2
z(
zk
cz

)2
]
+cηη

2
k, (divide-multiply)

= ak + z2k − ηk
2

[ y2k
(1− γ)

+ 2λcβc
2
z(
zk
cz

)4
]
+cηη

2
k, (as

zk
cz

≤ 1 by defn of cz , see Table 3)

≤ ak + z2k − ηk
2

[ a2k
c2g(1− γ)

+
2λcβ
c2z

z4k

]
+cηη

2
k, (using ak ≤ cgyk)

≤ ak + z2k − 2ηkcl

[
a2k + z4k

]
+cηη

2
k, (as cl := 4min{ a2k

c2g(1− γ)
,
2λcβ
c2z

})

≤ ak + z2k − clηk

(
ak + z2k

)2
+cηη

2
k, (using (a+ b)2 ≤ 2(a2 + b2)).

Taking uk = ak + z2k, ωk =
√
ηk, the above recursion is of the form:490

uk ≤ uk − clηku
2
k +

1

2
cηη

2
k. (39)

Taking c1 = cl and c2 = max{cη, 2c21u3
0} to ensure α0 = c

2
3
1 c

− 1
3

2 u0 ≤ 2−
1
3 in Lemma C.2, we get491

uk ≤ c
− 2

3

l

(
max{cη, 2c2l u3

0}
) 1

3
( 1

1
α3

0
+ 2k

) 1
3

. (40)

Note that ak ≤ uk as z2k ≥ 0, yielding the desired result.492

Lemma C.2. [ODE Tracking for Recursion] Given dαx

dx = − 1
2α

4
x, αk =

(
1

1

α3
0
+2k

) 1
3

, and ηk =493

c
− 1

3
1 c

− 1
3

2 α2
k the recursion,494

uk+1 ≤ uk − c1ηku
2
k +

1

2
c2η

2
k,

then uk ≤ c
− 2

3
1 c

1
3
2 αk for all k ≥ 0, where α0 = c

2
3
1 c

− 1
3

2 u0 ≤ 2−
1
3495

Proof. Let νk = c
2
3
1 c

− 1
3

2 uk and αk = c
1
6
1 c

1
6
2

√
ηk. Then, multiplying both sides with c

2
3
1 c

− 1
3

2 , we get496

c
2
3
1 c

− 1
3

2 uk+1 ≤ c
2
3
1 c

− 1
3

2 uk − c
1
3
1 c

1
3
2 ηk

(
c

2
3
1 c

− 1
3

2 uk

)2
+
1

2
c

2
3
1 c

2
3
2 η

2
k (41)

=⇒ νk+1 ≤ νk − α2
kν

2
k +

1

2
α4
k. (42)
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Now let fk(ν) = ν − α2
kν

2 and assume, νk ≤ αk, then497

νk+1 ≤ fk(νk) +
1

2
α4
k (43)

≤ fk(αk) +
1

2
α4
k, (as fk(ν) is increasing for ν ≤ 1

2α2
k

, and νk ≤ αk ≤ 1

2α2
0

≤ 1

2α2
k

)

(44)

= αk − 1

2
α4
k, (putting the value back of f ) (45)

≤ αk −
∫ k+1

x=k

1

2
α4
kdx, (dummy integral) (46)

= αk −
∫ k+1

x=k

1

2
α4
xdx, (as αx is decreasing) (47)

≤ αk −
∫ k+1

x=k

1

2
α4
kdx, (dummy integral) (48)

= αk +

∫ k+1

x=k

dαx

dx
dx, (as

dαx

dx
= −1

2
α4
x) (49)

≤ αk+1, (basic calculus). (50)

From induction arguments, we get νk ≤ αk for all k ≥ 0 given the base condition ν0 ≤ α0 is498

satisfied. In other words,499

c
2
3
1 c

− 1
3

2 uk ≤ αk =
( 1

1
ν3
0
+ 2k

) 1
3

. (51)

500

D Numerical Simulations501

This section numerically illustrate with convergence rate of single-time-scale Algorithm 1 with502

different step size schedule. All MDPs have randomly generated transition kernel and reward function,503

with codes available at https://anonymous.4open.science/r/AC-C43E/. For simplicity, the504

samples are generated uniformly instead of discounted occupation measure.505

Figure 2 illustrates that the learning rate ηk = βk = k−
2
3 has the best performance. Notably, slow506

decaying learning rates such as ηk = βk = 0.01k0, k−
1
3 , k−

1
2 have better performance in the starting,507

and eventually they surpassed by ηk = βk = k−
2
3 . In addition, ηk = βk = k−1 has the worst508

performance.509
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Figure 2: Convergence Rate of Algorithm 1, on random MDP with state space =50, action space = 5,
learning rate ηk = βk = k−a

Figure 3: Convergence Rate of Algorithm 1, on random MDP with state space =5, action space = 2,
learning rate 10ηk = βk = k−a
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Figure 4: Convergence Rate of Algorithm 1, on random MDP with state space =20, action space = 5,
learning rate ηk = βk = k−a.
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