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GLOMA: GLOBAL VIDEO TEXT SPOTTING WITH
MORPHOLOGICAL ASSOCIATION

Han Wang Yanjie Wang Yang Li Can Huang
Bytedance Bytedance Bytedance Bytedance
ABSTRACT

Video Text Spotting (VTS) is a fundamental visual task that aims to predict the tra-
jectories and content of texts in a video. Previous works usually conduct local as-
sociations and apply IoU-based distance and complex post-processing procedures
to boost performance, ignoring the abundant temporal information and the mor-
phological characteristics in VTS. In this paper, we propose GLOMA to model
the tracking problem as global associations and utilize the Gaussian Wasserstein
distance to guide the morphological correlation between frames. Our main con-
tributions can be summarized as three folds. 1). We propose a Transformer-based
global tracking method GLOMA for VTS and associate multiple frames simulta-
neously. 2). We introduce a Wasserstein distance-based method to conduct po-
sitional associations between frames. 3). We conduct extensive experiments on
public datasets. On the ICDAR2015 video dataset, GLOMA achieves 56.0 MOTA
with 4.6 absolute improvement compared with the previous SOTA method and
outperforms the previous Transformer-based method by a significant 8.3 MOTA.

1 INTRODUCTION

Video Text Spotting is an essential topic in computer vision, which facilitates video understanding,
video retrieval, and video captioning. By simultaneously carrying out detection, recognition, and
tracking, VTS can locate and recognize the texts in each frame and build trajectories through time.
In Fig. [T] the expansion of the Multi-Object Tracking (MOT) framework, as seen in studies like
Wu et al.| (2022b)); Koo & Kim| (2013); [Tian et al.| (2016)); |(Cheng et al.| (2020); |Gao et al.[ (2021);
Feng et al.[(2021)); [Yu et al.| (2021)), involves a bilateral matching approach across two consecutive
frames. These studies leverage appearance and positional relations, with a notable emphasis on
the IoU score for text matching and trajectory construction. In case of trajectory interruptions,
they retain information solely from the final frame where the text is detected, in line with MOT
practices. We note that text characteristics in videos differ from those of pedestrians, cars, or other
common MOT objects. Text transformations evolve more slowly than those in MOT, with texts
experiencing minimal deformation from limb or pose changes, suggesting a more gradual visual
progression. This stability over time often results in more consistent text appearances, enabling
the use of global features to counter issues like blur. Additionally, text frequently undergoes swift
translations due to camera movements, leading to weaker positional associations compared to
MOT objects. Nonetheless, text shapes usually remain more stable than MOT objects, given the
static nature of texts themselves. These observations suggest the importance of relying on global
information rather than solely depending on features from individual frames, and highlight the
need to consider morphological details over positional relationships. Thus, how to explicitly utilize
temporal information and properly conduct morphological correlation in text scenarios remains a
question.

In this paper, we propose a novel model GLOMA with global associations to explicitly use
temporal information and a shape-aware distance to measure morphological similarity. We modify
the detector YOLOX |Ge et al.| (2021) to detect texts as polygons in each frame. The tracking
embeddings are extracted by Rotated RolAlign |[Liu et al.| (2018)) and supervised by recognition
loss to obtain semantic awareness. To utilize temporal information, a global embedding pool is
maintained during the whole inference process to hold the historical tracking embeddings and
trajectory information. Then a Transformer-based architecture is proposed to access long-range
temporal associations by conducting associations between texts in the current frame and texts in
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the global embedding pool for each frame. We also introduce a Wasserstein distance-based
method as the positional measurement, which takes both location and morphology into
account.

To prove the effectiveness of the proposed method, we conduct extensive experiments on several
datasets and achieve state-of-the-art performance. On ICDAR2015 video |[Karatzas et al.[ (2015)
dataset, our GLOMA obtains 56.0 MOTA on the test split, with 4.6 absolute improvement compared
with the previous SOTA method|[Wu et al.|(2022b), and outperforms the previous Transformer-based
method by 8.3 MOTA. On the ICDAR2013 [Karatzas et al| (2013) video and
Minetto Minetto et al.| (2011) datasets, our GLOMA also reaches leading performance. Our
GLOMA can run at around 20 FPS and the global association procedure takes 3.6 ms per frame on
a single Tesla V100 GPU.

2 RELATED WORK

2.1 SCENE TEXT DETECTION

Different from object detection, Scene Text Detection
aims to detect arbitrarily shaped texts in images. Benefit-
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2.2 MULTI-OBJECT TRACKING

Multi-Object Trackin Bewley et al.| (2016); [Wojke et al.
(2017); [Zhou et al. (2020); Zhang et al. (2021); Wang
let al.| (2020); Zhou et al.| (2022b)) aims to predict the coor-
dinates of each object in each frame. Most existing meth- 1 duct local At d
ods[Bewley et al.| (2016); Wojke et al.| (2017); [Zhou et al. usu.all yfc_(l)q uct focal as shogla 10fn S an
(2020);|Zhang et al.|(2021));|Wang et al.| (2020) model the castly dal " 1nlice?es TW it lmtet:lrl erencl?)e
tracking task as a bilateral matching problem between in- fzris lvf;illfti oc;fcz)' l(:)bz(l) :sesocei aﬁir(o)né
stances in two adjacent frames. [Wojke et al.|(2017) adopts 10 utilize temporal in%cormation t0 make
separate detection and tracking networks and a tracking- thod P bust t d h
by-detection pipeline, with an loU-based positional dis- our Method more robust towards suc
tance and cascaded matching procedures. To simplify the scenes.

pipeline,Wang et al.|(2020);Zhang et al.|(2021) introduce

a joint-detection-and-tracking protocol, which combines

both detection and tracking in a single network. How-

ever, they highly rely on complex post-processing procedures and require many handcrafted hyper-
parameters. Recently, some works [Sun et al.| (2020); [Zeng et al| (2021) model tracking as a query
problem, treating different trajectories as different queries and decoding the corresponding coor-
dinates with a Transformer-based architecture. Though a more precise pipeline, these approaches
usually fail in crowded scenes due to the absence of explicit positional awareness.

~J

Figure 1: Motivation. Previous works

2.3 VIDEO OBJECT DETECTION

Video Object Detection (VOD) aims to boost the detection performance by aggregating context

features. Attention blocks are widely used in [Chen et al) (2020); [Wu et al] (2019); [Deng et al.
(2019); [Shvets et al.| (2019); |Zhou et al.| (2022a); [Wang et al.[(2022); Zhu et al.|(2017) to conduct
correlations between reference images and the current image, achieving awareness of long-range
temporal information. Based on a two-stage detector, [Chen et al| (2020); [Wu et al.| (2019); [Deng
let al.| (2019); [Shvets et al.| (2019); Zhu et al.| (2017) aggregate features after Rols Girshick| (2015);
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Figure 2: Overview. A global embedding pool is maintained to store historical tracking embeddings
and trajectory information and is updated after each frame. With a shallow Transformer layer, we
conduct associations between embeddings of the current frame and embeddings in the global embed-
ding pool to obtain the global association score. Furthermore, a Wasserstein distance-based method
is applied to measure the positional similarity between texts in frames. Some detailed architectures
are ignored for clarity.

(2017) to gain enhanced features. In particular, [Chen et al.| (2020) designs a hierarchical
structure to aggregate local and global features. Based on Transformer, Wang et al.| (2022); [Zhou

(2022a) aggregate queries through time, also achieving temporal awareness.

2.4 VIDEO TEXT TRACKING AND VIDEO TEXT SPOTTING

Given a video clip, Video Text Tracking (VTT) aims to predict the coordinates of each text in each
frame and Video Text Spotting further requires recognition results. Existing methods (2021);
Wu et al.| (2022b%a; [2021); Cheng et al.|(2020); [Feng et al.|(2021) succeed in most common scenes by
conducting local associations. For example, a typical structure consists of a backbone, a detector and
an Rol to extract instance-level features. The appearance similarity between instances is measured
by a pairwise distance (e.g., cosine distance). The positional association score is calculated by the
IoU between instances in frames. A cascaded post-processing is applied to fully use the appearance
similarity and positional association. Motivated by [Zeng et al. (2021); [Sun et al] (2020), some
modelsWu et al.| (20224}, [2021)) directly apply Transformer-based architectures to VTS, with an extra
network for recognition. However, lacking JoU-based post-processing procedures and utilization of
temporal information, these methods struggle in many difficult VTS situations (e.g., crowded scenes,
fast movement, lighting change).

3 METHODS

3.1 OVERVIEW

GLOMA is an end-to-end framework for Video Text Spotting, which conducts global associations
and adopts morphology-aware measurements. The whole framework can be seen in Fig. 2] There
are three parallel heads: detection head, recognition head, and tracking head. Given a video, we
first detect the potential objects as 4-point coordinates in Frame F}, and then extract corresponding
tracking embeddings as e} for each object. We maintain a global embedding pool as G, and the
concatenated features of all the embeddings in G, are represented as G, € RM¢*? where M, =

Zﬁ;tl_ ;. IV; stands for the number of embeddings in G¢. NV, is the number of texts in frame F;, d is

the dimension of each embedding, and L is the sliding window size. Our tracking head calculates
association scores between objects in frame F} and objects in G, generating an association matrix
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Case 2
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Figure 3: Three cases to demonstrate the effectiveness of Wasserstein distance. loU-based distance
and Wasserstein distance both succeed in Case 1. But in Case 2 and Case 3, the fast movements
result in the poor performance of JoU-based distance, where Wasserstein distance produces more
steady results by considering both location and morphology.

P4, € RVeXM: and then P 4,4, is turned into a tracklet-level association matrix represented as
Prrackier € RNt where K is the number of tracklets in the global embedding pool G,. Besides,
we also calculate the morphological similarities between the two adjacent frames F'r_; and Frr and
output a distance matrix W, € RM*xKt  The two score matrices Pryackier and W, are united by
a simple max operation without any other post-processing and output the final scores depicted as
S; € RN+*K+ in Fig. 2l And a Hungarian algorithm is applied to assign IDs.

3.2 GLOBAL TRACKING

We adopt a Transformer-based network for global tracking similar to [Zhou et al.| (2022b). All the
previous embeddings in the global embedding pool are encoded by a Transformer encoder as global
memories. With an extraordinary long-range temporal modeling ability, Transformer is able to
capture global information. Transformer decoder inputs encoded historical information as memory,
with embeddings in the current frame as queries to calculate the similarity scores between the current
instances and trajectories. The whole procedure can be written as:

H; = Encoder(G,), ey

P 4550 = Decoder(Q,, H,)HY/ )
where H; € RM:*4 denotes the encoded historical temporal memory. P 4.5, € RY:*Mt ig the
output association matrix. @, € RV+*9 refers to the query embeddings (i.e., embeddings of the
current frame).

During training, we associate all the embeddings with themselves (i.e., @, = G), generating an

association matrix A € RM*M where M = Zf: 1 Ny is the number of all the texts within a batch
and B represents the number of images in a batch, which is fixed as 16 in our experiments. For
each text in each timestamp ¢, we have a vector a € RNt+1 which indicates the association scores
between one query embedding g, and embeddings in frame ¢. Note that the extra dimension in a
refers to the empty association (i.e., the query has no matched target in this frame, usually indicating
an occlusion or the end of the trajectory). A softmax function is used to transform the score into the
possibility P g5s0:

exp (a;) . 3)
je{0,1,..N,} EXP (a;)
Thus, we learn the scores by minimizing the log-likelihood of each possibility. For each tracklet set
Ty, k=1,2,..., K, we assume there are N, embeddings in T}, and for each query embedding e; in
the global embedding pool G, we calculate the loss only when e; € Tj. The loss writes as:

P 4550 (Qiaej) = Z

Ny,
étrack:let (Tkn ql) = - Z 1qi€Tk . log PAsso (qi7 ej) )
j=1
K 4)
etrack = Z Z etracklet (Tkv qz) )
k=11i=1
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where 14,7, is 1 if the query embedding belongs to the tracklet set T.

Semantic embeddings. To increase the discrimination of embeddings, we also introduce semantic
information to boost the performance of tracking. In detail, the embeddings fed into Transformer
are extracted by Rotated RolAlign with a shallow convolutional layer and an LSTM [Hochreiter &
Schmidhuber (1997) layer, followed by a fully connected layer to project features into the classes
of words. The architecture writes as:

e; = Istm(conv(r-roi(X4))),

_ (5)
o, = fc(ey),

where X, is the backbone feature map in frame F}, e; is the embedding fed into Transformer for

associations, and oy is the recognition output supervised by Connectionist Temporal Classification

(CTC)|Graves et al.| (2006) loss.

3.3 WASSERSTEIN DISTANCES IN CORRELATION

Concerning morphological information, we apply the Wasserstein distance to model both location
similarity and shape similarity. Previous methods usually measure the location similarity between
two adjacent frames by a pairwise calculation of IoU of each pair of bounding boxes and ignore the
shape similarity, just the same as the methods in MOT. However, considering the differences from
the scenes in MOT, the shapes of the texts are much more steady in a small time window, which can
also be a strong feature for tracking.

As demonstrated in Fig. [3] we use three cases to exhibit the advantage of Wasserstein distance over
the IoU. In Case 1, all texts are moving at a low speed, so the location information is enough for
associations, and both IoU and Wasserstein distance can conduct a correct match. In Case 2, the fast
movement of the camera leads to the fast drift of texts. In this situation, the loU scores give a false
positional association clue, leading to a false matching. However, the morphological differences are
obvious so that the Wasserstein distance can capture the incoherence. In Case 3, the IoU scores are
both 0 due to the fast movement of cars, while the Wasserstein distance can still perform the correct
positional association.

To obtain the awareness of both the locations and shapes, we model the polygons in different frames
as Gaussian distributions and measure the similarity via distribution distance. For each predicted
4-point coordinate b in two adjacent frames, we calculate pairwise Wasserstein distances between
the corresponding convex hull rotated bounding boxes b(x,y, w, h,8). The first step is to convert
the rotated box b into Gaussian distribution N'(p, o ):

n= (x,y),

o=RSR'
0 cosf@ siné
h > ( —sinf cosf > ©

_( cos@ —sind
~ \ sinf cosf 3

_ ( Y cos? 0 + 2 sin® 0 w=h cos 0 sin 0 )
- ’

owlg

“’Tf}lcosGsinﬁ %Sinzﬁ—l— %COSQG

where R is the rotated matrix and S is the diagonal matrix. The Wasserstein distance between two
Gaussian distributions is represented as:

1/2
d2:||l1,1—u2||§+Tr (014’022(0-}/20_20_1/2) ) (7)

With proper consideration of both the angles and the coordinates, Wasserstein distance can cap-
ture both location similarity and morphological similarity. Finally, to convert the distance into an
applicable positional score, we have:

W (b1,b2) = W (N (11,01) ;N (p2,02))
ad (3
f(o-lao-Q)’

where « is a hyper-parameter, and f is a function to normalize the distance. We set f(o1,02) =
(Tr(alag))1/4.

=1-
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3.4 LOSS FUNCTIONS

There are three tasks and three corresponding losses. For the detection head, we adopt L1 loss
to regress the 4-point polygons and other losses are set the same as losses in YOLOX |Ge et al.
(2021). For the recognition head, we adopt Connectionist Temporal Classification (CTC) |Graves
et al.| (20006) loss for texts. We also apply multi-task learning losses. The whole losses are written
as:

= e_algdet + 6_02£7‘ec + €_U3€track: + 01+ 02+ 03, (9)

where 01, 02, 03 are learnable parameters.

3.5 INFERENCE

During inference, we iteratively build the trajectories. For the initial frame Fj, we regard each text
as the start of a trajectory. For frame F}, we have a global embedding pool G; which stores all the
previous embeddings in a sliding window, and the corresponding embedding matrix writes as G
(i.e., the concatenated embeddings). Assume there are K; trajectories in G;, and each trajectory
has Nj embeddings. We regard embeddings in the current frame F; as @, and the corresponding
embedding matrix as @,. The association score A; is calculated between @, and G, and converted
to a possibility matrix P 44, by a softmax function. Then a tracklet-wise sum is applied to calculate
the possibility of each tracklet. For each g, € Q; we have:

Ny,
PTracklet(qiv Gt) = ZPAsso(qi» ej)a (10)
=1

where e; is the embedding in each trajectory. After calculating all the embeddings in Q;, we can
finally obtain a matrix Pryqerier € RY**Xt which refers to the possibility that the embedding
belongs to the tracklet. Also, Wasserstein distance between frame F;_; and F; is calculated as a
positional and morphological similarity score W, and the final output is max(Prrackict, Wt). A
Hungarian algorithm is applied to ensure the ID assignment is unique for each text.

4 EXPERIMENTS

4.1 IMPLEMENTED DETAILS

We adopt ResNet-50 He et al.|(2016) with FPN Lin et al.|(2017)) layers as our backbone and use the
checkpoint pretrained on ImageNet Deng et al.[(2009); [Russakovsky et al.|(2015)). The architecture
of the detection head is borrowed from YOLOX |Ge et al.|(2021)) with an extra branch to regress the
polygons. The tracking head is a lightweight architecture with only a one-layer Transformer. All ex-
periments are conducted on Tesla V100 GPUs. We first pretrain the model on COCOText |Veit et al.
(2016) and apply Random Crop, Random Resize, Random Color Jittering, and Pseudo Track [Zhou
et al.| (2020) for data augmentation. Then it is fine-tuned on other datasets. The batch size is fixed as
16 when training and random sampling within a clip is applied to make sure images in a batch are
from the same video clip. During inference, we resize the images with the shorter side fixed and the
ratio of images kept.

4.2 DATASETS AND METRICS

Following previous protocols, we evaluate our methods on several different datasets.

ICDAR2015 video and ICDAR2013 video. ICDAR2015 video contains 25 clips for training and
24 clips for testing. Most scenes are street views with tens of texts in one image. ICDAR2013 video
is a sub-dataset of ICDAR2015 video.

Minetto. Minetto is a small dataset that contains 5 videos harvested outdoors. Without a training
split, it is used as a test dataset in previous methods.

Metrics. Following previous protocols |Ristant et al| (2016)), we adopt the metrics inherited from
MOT. Different from MOT, metrics in Video Text Tracking adopt the IoU between polygons to
measure the similarity of two instances. Three metrics, MOTA, MOTP, and IDF1, are mainly used
to evaluate performance. MOTA measures a comprehensive performance of both the detection and
tracking performance, and MOTP mainly concerns the ability to fit the bounding boxes. IDF1 only
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Table 1: Video Text Tracking on different datasets. Our proposed method outperforms previous
methods by a large margin.

Dataset Methods MOTAt MOTPt IDFI+ MM? MLJ
AJOU Koo & Kim| (2013) 16.4 727 361 141 62.0
Free (Cheng et al.| (2020) 43.2 76.7 579 36.6 444
SAVTD [Feng et al|(2021)) 44.1 752 582 448 29.0
ICDARZOLS SVReplLiet al] (2021) 495 739 661 449 27.1
video CoText[Wu et al. (2022b) 51.4 736  68.6 49.6 235
TransVTSpotter|Wu et al.[(2021)  44.1 75.8 573 343 337
TransDETR [Wu et al.| (2022a) 47.7 74.1 655 42.0 32.1
Ours 56.0 774 705 497 273
YORO [Cheng et al] (2019) 473 737 625 331 453
SVRep|Li et al ] (2021) 53.2 767 651 382 332
IV%Z’;‘RZOB CoText Wu et al, (2022) 55.8 764 681 446 287
TransDETR [Wu et al]| (20224) 54.7 766 672 435 332
Ours 56.3 787  68.6 46.0 28.6
SAVTD [Feng et al| (2021) 83.5 76.8 - - -
SVRep[Li et al| (2021) 86.3 810 839 964 0
Minetto CoText[Wu et al. (2022b) 86.9 806 839 877 0
TransVTSpotter|Wu et al.|(2021) 84.1 77.6 74.7 - -
TransDETR [Wu et al.| (2022a) 84.1 57.9 767 36.6 444
Ours 87.1 80.6 842 893 36

Table 2: Video Text Spotting on ICDAR2015 video dataset. Our GLOMA also achieves leading
performance.

T
=
o

Methods MOTA1T MOTP1 IDF11 MM1T ML|
Free (Cheng et al.|(2020) 53.0 749 619 455 359
CoText/Wu et al.[(2022b) 59.0 745 72.0 48.6 264
TransVTSpotter|Wu et al.[(2021) 53.2 749 61.5 - -
TransDETR |Wu et al.|(2022a)) 58.4 752 704 32.0 20.8
TransDETR (aug) Wu et al.[(2022a) 60.9 746 72.8 33.6 20.8
OURS 62.5 782 74.2 51.0 22.0
75 25
—— w. loU /
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Figure 4: Motion-aware evaluations on the ICDARI13 video dataset
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Table 3: Ablation study on the sliding window size. As the window size goes larger, the tracking
performance tends to improve.

Window size = MOTAtT MOTP{t IDF1t MM{T ML)  Asso. T (ms)]

2 55.1 71.5 63.0 46.8 30.1 3.1
4 55.9 77.4 68.3 494 28.2 32
8 56.0 77.4 70.5 49.7 273 3.6
16 55.7 77.4 71.0 49.1 271 39

Table 4: Experiments on positional distance (Row 1-3), self attention layer in decoder (Row 4-5),
max operation (Row 6-8), and semantic embeddings (Row 9-10).

Methods MOTAT MOTPtT IDFI1T MMT ML}
w/o. distance 55.5 77.4 70.0 47.3 28.1
w. ToU 55.8 77.4 70.6 49.0 27.1
w. Wasserstein 56.0 77.4 70.5 49.7 27.3
w. self-attn 53.2 77.1 69.8 52.8 25.4
w/o. self-attn 56.0 77.4 70.5 49.7 27.3
W. Prrackiet 55.5 77.4 70.0 47.3 28.1
w. W, 43.2 77.8 50.2 33.0 40.2
w. max(P, W) 56.0 77.4 70.5 49.7 273
w/o. semantic 53.9 77.4 66.9 47.7 28.0
w. semantic 56.0 77.4 70.5 49.7 27.3

measures the ability of tracking. Besides, we also adopt Mostly-Matched (MM) and Mostly-Lost
(ML) to evaluate the completeness of trajectories. In Video Text Spotting, we also use the same
metrics to measure the performance, but the similarity between instances is calculated by the edit
distance between texts.

4.3  STATE-OF-THE-ART COMPARISONS

To verify the effectiveness of the proposed GLOMA, we compare its performance with several
SOTA methods.

Video Text Tracking. Video Text Tracking is a core task to measure the performance of all methods.
Thus, we evaluate our method in VIT and compare with other methods on several public datasets.
On the most commonly used dataset ICDAR2015 video, we outperform previous works by a large
margin. We obtain 4.6 absolute improvement over the previous state-of-the-art method and 8.3
absolute improvement over the previous Transformer-based method, which proves the effectiveness
of the proposed GLOMA. Besides, our method also achieves leading performance on MOTP and
IDF1. On ICDAR2013 video, our GLOMA achieves top performance on all metrics. On a smaller
dataset Minetto, we also achieve SOTA results.

Video Text Spotting. Video Text Spotting concerns the tracking performance and the recognition
results. As shown in Tab. [2} compared with the previous SOTA method TransDETR (aug), Wu et al.
(2022a) our GLOMA obtains 1.6 absolute improvement on MOTA, 3.6 absolute improvement on
MOTP, and 1.4 absolute improvement on IDF1. Therefore, with a simple and shallow recognition
head, our GLOMA can also achieve great performance.

4.4 ABLATION STUDIES

To verify the effectiveness of the components of GLOMA, we conduct several ablation studies on
ICDAR2015 video, as shown in Tab. B}4]
Sliding window size. We study how the size of the sliding window impacts the final results during
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the inference stage. As shown in Tab. [3] we can see a trend that the tracking performance goes
up when the window length increases. When the window length is 2, the situation only involves
associations between the two adjacent frames (i.e., local associations), and the performance is
much worse than when using a larger window size. Note that the metric MOTA concerns both
the detection performance and tracking performance, and IDF1 only focuses on the tracking
performance. Besides the temporal awareness obtained in training process, a longer window during
inference stage also brings longer range of temporal information, leading to a sharp increase in
IDF1, which proves the contribution of global embeddings to the final tracking performance.
Therefore, we adopt 8 as the default sliding window size.

Distance measurement. We adopt Wasserstein distance for the measurement of positional
association instead of JoU. As mentioned above, Wasserstein distance pays attention to both
the location and morphological features so that it outperforms loU when applied as a positional
distance measurement in VTS. As shown in Tab. [ (Row 1-3), positional distance can improve
the performance, and with Wasserstein distance, the proposed GLOMA can achieve better results
than with foU. We also conduct motion-aware evaluation similar to that in Video Object Detection
(VOD) using motion IoU [Zhu et al| (2017) to indicate the motion speed of texts. We evaluate
GloTSFormer on the ICDAR13 video dataset, as the test labels of ICDAR15 video are on the
webdriver which are unavailable. As we evaluate the performance on data segments with different
motion IoUs, we use ID Recall (IDR) Ristani et al.| (2016) instead of other metrics involving
false positives because TPs of motion IoU range of [0.3,0.4) can be taken as FPs of [0.4,0.5).
As shown in Fig. [Z_f] (Overall IDR: 62.5% v.s. 62.9%), where W. refers to Wasserstein distance,
when the motion IoU decreases (indicating faster motion), Wasserstein distance brings out greater
improvements.

Attention layer. The encoder layer is one multi-head attention layer and the decoder layer includes
one cross-attention layer without a self-attention layer. As shown in Tab. [ (Row 4-5), we do not
observe obvious improvement of the overall performance when introducing self-attention layer and
we remove it.

Max operation. We show extra experiments in Tab. (Row 8-10). Both Py qckier and Wy
contribute to the performance.

Semantic embeddings. We use the embeddings before the final fully-connected layer for as-
sociations. The embeddings we select carry semantic information and can provide some prior
information and boost tracking performance. To verify the effectiveness, we only feed Transformer
the features after Rotated RolAlign to explore the influence of semantic information. As shown in
Tab. ] (Row 11-12), the ablation studies show the effectiveness of the proposed GLOMA.

Speed analysis. Our GLOMA runs at around 20 FPS on a single Tesla V100 GPU. The backbone,
FPN layers, detection head, and recognition head take about 48 ms per frame, and the tracking
procedure takes about 3.6 ms per frame. By maintaining a global embedding pool, we do not have
to repeatedly extract the embeddings from each frame. As shown in Tab. [3} Asso. T refers to the
time cost by the tracking procedure (i.e., the inference of Transformer and associations). When the
window size goes larger, we only observe a slight increment in the time consumed.

4.5 VISUALIZATION

As demonstrated in Fig. [5] we select two videos to show the advantage of our GLOMA. From an
overall perspective, our GLOMA performs fewer false assignments in tracking and fewer FNs in de-
tection. As presented in video (a), when facing crowded scenes with motion blur, TransVTSpotter
and TransDETR fail to perform the right assignments due to excessive interfering texts. We could
notice that the polygon colors of the texts (e.g., “CV”, “de”, “super”, “Tel”) are changed over time,
indicating many ID switches. On the contrary, our GLOMA has a much more steady performance
without any ID switch. As presented in video (b), the architecture of TransDETR and TransVTSpot-
ter have some limitations in detection, resulting in False Negatives in some frames. Without a global
view, TransVTSpotter and TransDETR tend to conduct incorrect assignments especially when the
fractures of trajectories take place. Our detection performance is relatively independent of tracking,
and our GLOMA has a global view of historical information, leading to better performance on both
detection and tracking.
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(@)

TransDETR  TransVTSpotter

Ours

(b)

TransDETR  TransVTSpotter

Ours

Figure 5: We demonstrate the results of previous Transformer-based methods
[2022a)) and our GLOMA. Different IDs are represented in different colors. Some of the false re-
sults (e.g., FNs, ID switches, and IDFs) are marked with a dotted red circle and pointed out by a red
arrow. Apparently, our GLOMA performs better than previous Transformer-based methods, espe-
cially in crowded scenes.

5 LIMITATIONS AND CONCLUSION

Limitations. Though GLOMA achieves great performance on VTS, we find the detector fails in
detecting texts when facing severe motion blur and extreme sizes, which leads to fractures of tra-
jectories. Our detector is less robust towards deterioration compared with our tracking method. We
would consider how to apply trajectory information to improve detection performance in our future
work.

Conclusion. In this work, we propose a Transformer-based global text spotting method GLOMA.
We explore how to fully exploit temporal information and morphological information with a global
association module and Wasserstein distance, respectively. We also conduct extensive experiments
on the public datasets to verify the effectiveness of our method. We hope our work can shed light on
future research on the utilization of temporal information and morphological information in Video
Text Spotting.
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