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ABSTRACT

Current alignment methods for Large Language Models (LLMs) rely on com-
pressing vast amounts of human preference data into static, absolute reward func-
tions, leading to data scarcity, noise sensitivity, and training instability. We in-
troduce Elo-Evolve, a co-evolutionary framework that redefines alignment as dy-
namic multi-agent competition within an adaptive opponent pool. Our approach
makes two key innovations: (1) eliminating Bradley-Terry model dependencies
by learning directly from binary win/loss outcomes in pairwise competitions,
and (2) implementing Elo-orchestrated opponent selection that provides auto-
matic curriculum learning through temperature-controlled sampling. We ground
our approach in PAC learning theory, demonstrating that pairwise comparison
achieves superior sample complexity (O(1/ε) vs O(1/ε2)) and empirically val-
idate a 4.5× noise reduction compared to absolute scoring approaches. Exper-
imentally, we train a Qwen2.5-7B model using our framework with opponents
including Qwen2.5-14B, Qwen2.5-32B, and Qwen3-8B models. Results demon-
strate a clear performance hierarchy: point-based methods < static pairwise train-
ing < Elo-Evolve across Alpaca Eval 2.0 and MT-Bench, validating the progres-
sive benefits of pairwise comparison and dynamic opponent selection for LLM
alignment.

1 INTRODUCTION

Current alignment methods for Large Language Models (LLMs) predominantly rely on a two-stage
process that compresses vast amounts of human preference data into a static, absolute reward func-
tion (Christiano et al., 2017; Ziegler et al., 2019; Ouyang et al., 2022). This paradigm begins by
training a reward model to distill human preferences into scalar scores, then optimizes a policy via
reinforcement learning to maximize these absolute reward signals. While this approach has proven
effective, it suffers from several fundamental limitations that create bottlenecks in scalability and
performance.

These limitations manifest in three key areas that constrain alignment effectiveness. First, training
effective reward models requires vast amounts of high-quality preference data, which is expensive
and difficult to collect at scale, often resulting in poor generalization and reward hacking behaviors.
Second, the Bradley-Terry (BT) model commonly used for preference modeling suffers from sub-
optimal sample complexity and high sensitivity to label noise (Bradley & Terry, 1952; Sun et al.,
2024), propagating low-fidelity signals throughout the training process. Third, static reward models
struggle to provide discriminative feedback as policies improve, creating optimization challenges in
advanced training stages (Stiennon et al., 2020).

To address these limitations, we introduce Elo-Evolve, a dynamic multi-agent competition frame-
work that redefines alignment by eliminating BT model dependencies and learning directly from
competitive interactions. Rather than compressing preferences into static absolute scores, our ap-
proach maintains an adaptive opponent pool where policies learn through real-time pairwise com-
parisons against strategically selected opponents.

Our framework makes two key innovations: (1) Direct competitive learning that eliminates the need
for static reward model intermediaries by learning directly from win/loss outcomes in pairwise com-
petitions; and (2) Elo-orchestrated opponent selection that implements adaptive curriculum learning,

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

automatically adjusting training difficulty as the policy evolves by maintaining a pool of opponents
tracked through Elo ratings (Elo, 1961).

Elo-Evolve builds upon Group Relative Policy Optimization (GRPO) (Shao et al., 2024), replacing
static training data with a dynamic competitive environment. The policy learns by competing against
opponents selected through a temperature-controlled Elo-based sampling strategy that ensures opti-
mal training challenge—initially facing similar-strength opponents, then gradually transitioning to
stronger challengers as its rating improves.

This competitive framework offers several theoretical and practical advantages. By eliminating
the BT bottleneck, our method avoids the sample complexity and noise sensitivity issues inherent
in absolute reward modeling. Theoretical results suggest that pairwise comparisons offer superior
sample efficiency and noise resilience compared to absolute scoring approaches. The binary nature
of competitive outcomes provides consistently strong training signals, while the dynamic opponent
selection ensures that training challenge scales appropriately with the policy’s evolving capabilities.

Our contributions are threefold: (1) We introduce a co-evolutionary alignment framework that re-
places static reward modeling with dynamic multi-agent competition, eliminating both BT model
dependencies and the need for explicit reward model training by leveraging LLM judges directly;
(2) We develop an Elo-based opponent selection mechanism that implements automatic curriculum
learning through temperature-controlled sampling; and (3) We provide empirical validation showing
progressive improvements from point-based methods to pairwise comparison to Elo-orchestrated se-
lection across multiple benchmarks. Through extensive experiments on Alpaca Eval and MT-Bench,
we demonstrate a clear performance hierarchy: traditional point-based reward methods < static pair-
wise comparison < Elo-Evolve’s dynamic opponent selection, validating both the benefits of com-
petitive learning and adaptive curriculum design. Our framework opens new directions for scalable
alignment that bypasses reward model training entirely while providing strong reinforcement signals
through direct competitive evaluation.

2 THE ELO-EVOLVE FRAMEWORK

2.1 FROM STATIC REWARD MODELS TO DYNAMIC COMPETITION

Traditional RLHF can be formalized as optimizing:

π∗ = argmax
π

Ex∼D,y∼π(·|x)[rθ(x, y)] (1)

where D is the prompt distribution and rθ is a fixed reward model. The policy is updated by maxi-
mizing the scalar score predicted by this reward model.

This objective suffers from the limitations discussed above. Elo-Evolve addresses these issues by
reframing alignment as competitive learning within a dynamic multi-agent environment: instead of
predicting an absolute score, the policy is directly compared to opponents on the same prompt and
learns from its win rate.

Definition 1 (Co-evolutionary Objective). Given a competitive environment E = {π} ∪M where
M = {M1,M2, ...,MK} is a set of opponent models, the co-evolutionary objective is:

π∗ = argmax
π

EM∼p(M |π)[P (π(x) ≻M(x))] (2)

where p(M |π) is an adaptive opponent sampling distribution orchestrated by the Elo system, and
P (π(x) ≻M(x)) represents the probability that the policy’s response to prompt x is preferred over
the opponent’s response.

2.2 ELO-ORCHESTRATED OPPONENT SELECTION

The Elo rating system serves as the coordination mechanism of our competitive environment, dy-
namically tracking the relative strength of all agents and guiding the co-evolutionary process.

Elo Rating Updates. Each agent maintains an Elo rating R(·) that evolves through competition.
After a batch of competitions where policy π faces various opponents with outcomes {Si}, the
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policy’s rating is updated as:

Rt+1(π) = Rt(π) +

N∑
i=1

K · (Si − Eπ,Mi
) (3)

where K is the K-factor controlling how strongly each match outcome shifts the rating. A larger
K makes the rating respond quickly to wins/losses but also increases variance. Si ∈ {0, 1} denotes
the match outcome (1 if the policy wins, 0 otherwise). Eπ,Mi =

(
1+ 10(R(Mi)−R(π))/400

)−1
is the

expected win-rate reflecting the theoretical strength gap between the policy and opponent Mi.

Adaptive Curriculum Learning Through Temperature-Controlled Sampling. The opponent
selection follows a temperature-controlled softmax distribution:

p(Mk|π) ∝ exp

(
−|R(π)−R(Mk)|

T

)
(4)

where T is a temperature coefficient controlling diversity in opponent selection:

• Small T yields a sharp distribution, focusing training on opponents whose Elo ratings are
closest to the policy, thus providing a narrow, curriculum-like progression.

• Large T flattens the distribution, increasing opponent diversity but reducing the focus on
near-optimal challenge.

This implements an automatic curriculum-learning mechanism: early in training the policy mainly
faces similar-strength opponents, and as its Elo rating increases, it automatically transitions to
stronger opponents, ensuring training difficulty remains in the optimal challenge regime.

2.3 BINARY COMPETITIVE REWARDS WITH GRPO

We adopt the GRPO objective, which removes the value function/critic and estimates advantages
from group-normalized rewards. For each question q, we sample a group of G outputs {oi}Gi=1 from
the old policy πold. Each output receives a scalar reward ri (defined below). GRPO maximizes a
PPO-style (Schulman et al., 2017) clipped objective with a KL regularizer to a reference policy πref :

JGRPO(θ) = Eq, {oi}∼πold

[
1

G

G∑
i=1

min
( πθ(oi | q)
πold(oi | q)

Ai, clip(
πθ(oi | q)
πold(oi | q)

, 1− ϵ, 1 + ϵ)Ai

)
− β DKL

(
πθ ∥πref

)]
(5)

where ϵ controls the clipping range to prevent large policy updates, and β regulates the KL diver-
gence penalty to maintain proximity to the reference policy.

Binary Competitive Rewards. In our competitive setting, we define the per-output reward ri
using an LLM judge that compares oi against an opponent’s response on the same prompt:

ri = 1
{
J
(
q, oi, o

(opp)) = policy wins
}
∈ {0, 1}. (6)

These binary rewards are then group-normalized within each batch to compute advantages:

Ai =
ri −mean({rj}Gj=1)

std({rj}Gj=1)
(7)

3 THEORETICAL ANALYSIS

Our framework, Elo-Evolve, is motivated by two fundamental theoretical advantages of relative
comparison over absolute scoring.

Superior Sample Complexity. Foundational results in PAC (Probably Approximately Correct)
learning theory establish that learning from pairwise comparisons is significantly more sample-
efficient than learning from absolute scores (Valiant, 1984; Vapnik & Chervonenkis, 1971; Anthony
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Algorithm 1 Elo-Evolve Framework

Require: Base policy π0, Opponent poolM = {M1, ...,MK}, RM model J , Prompts D, Temper-
ature T

1: Initialize Elo ratings: R(π0) = 1350, R(Mk) based on initial capability estimates
2: for each training iteration t = 0, 1, ... do
3: Sample batch of prompts {qi}Bi=1 from D
4: for each prompt qi in batch do
5: Generate policy outputs: {oi,j}Gj=1 ∼ πt(·|qi)
6: Select opponent via temperature-controlled sampling: Mi ∼ p(M |πt) using Eq. (4)
7: Retrieve opponent response: oM,i from precomputed cache
8: for each policy output oi,j do
9: Evaluate pairwise comparison: ri,j = 1{J(qi, oi,j , oM,i) = policy wins}

10: end for
11: Compute group-normalized advantages: Ai,j =

ri,j−r̄i
σri

12: end for
13: Update policy via GRPO objective (Eq. 5) using advantages {Ai,j}
14: Update Elo ratings: Rt+1(π)← Rt(π) +K ·

∑
i(Si − Eπ,Mi

)
15: end for

& Bartlett, 1999). To achieve a desired ranking error tolerance of ϵ, pairwise learning requires
samples on the order of O(1/ϵ), whereas learning to regress absolute scores to the same precision
requires samples on the order of O(1/ϵ2) . This quadratic improvement is especially critical in
the large-scale, high-precision regime of LLM alignment, enabling faster convergence and more
efficient use of high-quality comparison data.

Inherent Noise Resilience. Beyond sample efficiency, direct comparison offers superior resilience
to the noise inherent in reward signals. We can model the noise characteristics of both paradigms
under an idealized, unbiased assumption:

• An absolute reward model provides a noisy score r(y) = q(y) + ϵabs, where q(y) is
the true quality and the scoring noise ϵabs ∼ N (0, σ2

abs). Ranking derived from two such
independent scores, r(yA) and r(yB), is subject to an effective comparison noise with
variance 2σ2

abs.
• A direct comparison model makes a probabilistic judgment P (yA ≻ yB) =

Φ
(

q(yA)−q(yB)
σcomp

)
, where Φ(·) is the standard normal CDF and σcomp is the intrinsic com-

parison noise.

Under these models, the ranking error rate of the absolute method is determined by the signal-to-
noise ratio ∆q√

2σabs
, while the relative method is determined by ∆q

σcomp
. Consequently, direct comparison

yields a lower ranking error and is considered superior if its intrinsic noise is less than the effective
noise of the indirect method. This yields the superiority condition:

σcomp <
√
2σabs (8)

This inequality provides a direct, empirically verifiable criterion for the superiority of relative learn-
ing. In Section 5.2, we will experimentally measure both the intrinsic comparison noise (σcomp) and
the absolute scoring noise (σabs) for a 14B RM, providing strong evidence that our direct comparison
approach offers a higher-fidelity training signal in practice.

4 ALGORITHM

Our practical implementation addresses the computational challenges of dynamic multi-agent train-
ing through several key design choices:

Pre-computed Response Cache: To mitigate computational overhead from concurrent opponent
model inference, we pre-generate and cache responses from all opponents across the training prompt

4
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set. This transforms expensive model queries into fast dictionary lookups while maintaining the
diversity of opponent responses.

Per-Sample Opponent Selection: Rather than using a single opponent for the entire batch, we
implement per-sample opponent selection within each batch. This enables fine-grained curriculum
adaptation and smoother opponent transitions, as different prompts are paired with different oppo-
nents based on the current Elo-based sampling distribution, improving both learning efficiency and
training stability.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

5.1.1 MODELS AND COMPETITIVE ENVIRONMENT SETUP

Policy Model: We use Qwen2.5-7B-Instruct (Hui et al., 2025) as our base policy model π0, provid-
ing a strong foundation for alignment training while maintaining computational efficiency.

Opponent Pool: We construct a diverse competitive environment with opponents of varying capa-
bilities: Qwen2.5-14B-Instruct (initial Elo: 1400), Qwen2.5-32B-Instruct (initial Elo: 1700), and
Qwen3-8B-Instruct (Yang et al., 2025) (initial Elo: 2000). Initial Elo ratings are assigned based
on model size and capability estimates, providing appropriate starting points for the adaptive rating
system.

RM Model: All pairwise comparisons are evaluated using Qwen3-14B-Instruct with carefully de-
signed prompts to ensure reliable and consistent win/loss decisions across different response types.

5.1.2 DATASET

We train on the Ultra-Feedback dataset (Cui et al., 2023), which contains diverse prompts spanning
instruction-following, reasoning, and creative writing tasks, providing comprehensive coverage for
evaluating alignment capabilities. Model performance is assessed using Alpaca Eval 2.0 (Dubois
et al., 2023), which measures instruction-following quality and response helpfulness through both
win-rate and length-controlled metrics, and MT-Bench (Zheng et al., 2023), which evaluates multi-
turn dialogue and complex reasoning capabilities across diverse conversational scenarios.

5.1.3 TRAINING STRATEGIES COMPARED

We design our experiments to provide progressive validation of our approach through four train-
ing paradigms. Point-based Training uses the traditional BT model to convert human preferences
into absolute scalar scores, with policy optimization via GRPO maximizing these scores (WorldPM
(Binghai Wang & Lin, 2025) as the RM in our implementation). DNO (Rosset et al., 2024)
compares self-generated responses against a fixed strong opponent (Qwen2.5-14B in our imple-
mentation), using winning responses as positive examples and losing responses as negative ex-
amples, optimized with contrastive loss. Note that we implemented DNO ourselves as the origi-
nal work did not evaluate on Qwen2.5-7B. Static Pairwise Training employs competitive learning
against a single fixed opponent throughout the entire training process, using binary win/loss rewards
from pairwise comparisons optimized via GRPO. Elo-Evolve represents our proposed framework
with Elo-orchestrated adaptive opponent selection, dynamically adjusting training difficulty through
temperature-controlled sampling. This experimental design isolates the contributions of pairwise
comparison over absolute scoring, optimization methodology within pairwise frameworks, and dy-
namic opponent selection over fixed opponents.

5.1.4 IMPLEMENTATION DETAILS

Training Configuration: We implement our approach using the VerL framework with GRPO opti-
mization. Key hyperparameters include: batch size 128, learning rate 1×10−6, maximum sequence
length 4096, KL coefficient β = 0.001, and Elo K-factor 32.
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Table 1: Performance comparison at different training steps. Results show Alpaca Eval 2.0 (WR/LC)
and MT-Bench scores. All Qwen models are Instruct versions. Numbers in italics indicate training
steps. Bold: best results; underlined: second-best results.

Method Alpaca Eval 2.0 (WR/LC) MT-Bench
Qwen2.5-7B (base model) 33.35/33.59 7.84

100 300 500 100 300 500

Point GRPO 41.30/34.95 47.76/33.23 49.01/37.41 7.81 7.91 7.79
DNO (replicated) 32.55/31.74 33.23/33.18 32.48/32.20 7.95 7.92 7.97

vs. Qwen2.5-14B 46.40/35.11 45.84/34.98 48.20/35.84 7.98 7.99 7.99
vs. Qwen2.5-32B 45.90/36.18 47.20/34.46 51.18/35.55 7.79 7.96 7.89
vs. Qwen3-8B 44.04/35.90 44.22/32.63 46.46/34.26 7.81 8.15 7.86

Elo-Evolve 46.21/36.07 48.07/35.02 51.18/38.03 8.03 8.04 7.82

Computational Optimizations: To ensure training efficiency, we pre-compute and cache all oppo-
nent responses, transforming expensive model inference into fast dictionary lookups. We implement
distributed training across 8 GPUs with tensor parallelism.

Length Bias Mitigation: To ensure fair evaluation and prevent length-based gaming strategies,
we implement a length constraint mechanism: when the policy’s response exceeds the opponent’s
response by more than 300 words, the reward is automatically set to 0. This prevents the policy from
exploiting potential judge biases toward longer responses and ensures that improvements reflect
genuine quality gains rather than superficial length inflation.

5.1.5 MAIN RESULTS: PROGRESSIVE PERFORMANCE GAINS

Tables 1 demonstrate clear performance improvements across our three-tier experimental design,
providing strong empirical validation for both the theoretical benefits of pairwise comparison and
the practical advantages of dynamic opponent selection.

Point-based vs Pairwise Baselines: Point GRPO represents traditional BT absolute scoring, show-
ing moderate but unstable performance (49.01/37.41 at Step 500 declining from 47.76/33.23 at Step
300). DNO shows consistently lower performance (32.48/32.20 at Step 500), illustrating that static
opponent selection limits learning potential even within the pairwise paradigm.

Static Pairwise Training: Single-opponent configurations demonstrate clear advantages over point-
based methods but with significant variability. vs. Qwen2.5-14B maintains stable performance
(46.40→48.20 WR across steps), while vs. Qwen2.5-32B shows strong peak performance (51.18
WR at Step 500). However, individual static opponents cannot consistently excel across all metrics
and training phases.

Elo-Evolve: Our dynamic multi-opponent approach achieves the best or second-best performance
in most categories. Notably, Elo-Evolve reaches 51.18/38.03 (WR/LC) at Step 500, matching the
best static configuration while maintaining superior consistency. In MT-Bench, our method leads
at Steps 100 (8.03) and 300 (8.04) but shows a decline at Step 500 (7.82). This decline reflects
our adaptive opponent selection mechanism: at Step 500, our primary opponent became Qwen3-
8B, which itself degraded significantly (8.15→7.86), causing our model to adapt to this weakened
opponent. This demonstrates both the responsiveness of our system and suggests potential improve-
ments in opponent pool management. Excluding the Step 500 MT-Bench anomaly explained above,
Elo-Evolve maintains remarkable consistency and leadership across different training phases and
evaluation metrics. This stability, combined with peak performance achievements, validates the
effectiveness of dynamic opponent selection over fixed strategies.

5.1.6 SCALABILITY AND GENERALIZATION ANALYSIS

Table 2 demonstrates the broad applicability of competitive learning across varying opponent capa-
bilities and model families, establishing our framework’s versatility for diverse scenarios.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Scalability analysis: Pairwise training against diverse opponents. Results demonstrate
consistent improvements across different opponent capabilities and model families.

Opponent Configuration Alpaca Eval 2.0 (WR/LC) MT-Bench

Qwen2.5-7B (base model) 33.35/33.59 7.84

100 300 500 100 300 500

Training against weaker opponents
vs. Qwen2.5-1.5B 38.45/37.18 39.75/37.52 37.64/35.72 7.98 8.13 7.76

Training against same-capacity opponents
vs. Qwen2.5-7B 44.47/33.29 47.83/33.92 49.19/33.07 7.94 8.09 8.05

Training against different model families
vs. Llama-3.1-70B 43.54/36.22 46.58/35.41 47.83/31.86 7.89 8.02 7.90
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Figure 1: AlpacaEval WR perfor-
mance for different T values.

Figure 2: Comparison of opponent sampling probabilities and Elo rating evolution for three tem-
perature settings (T = 20, T = 200, T = 2000). Each row shows a different temperature setting;
columns show 14B, 32B, 8B opponent probabilities and policy Elo.

Weaker Opponents: Competition with Qwen2.5-1.5B consistently improves over baseline perfor-
mance (38.45/37.18 vs base 33.35/33.59), proving that even substantially weaker opponents provide
valuable learning signals. This occurs through encouraging clearer articulation, more confident re-
sponses, and basic competency validation—essential for robust policy development.

Same-Capacity Opponents: Training against Qwen2.5-7B yields exceptionally strong WinRate
performance (44.47→49.19 across steps), suggesting same-capacity competition drives nuanced
policy refinements. Equal-strength opponents expose subtle weaknesses and encourage sophisti-
cated improvements that larger capability gaps might mask.

Cross-Family Opponents: Results with Llama-3.1-70B validate our framework’s architecture-
agnostic nature. Despite the 10× parameter disadvantage and different training methodologies, com-
petitive learning produces substantial improvements (43.54/36.22 vs baseline), confirming cross-
family applicability and robustness to architectural differences.

Each opponent configuration demonstrates distinct advantages: weaker opponents (1.5B) provide
foundational improvements, same-capacity opponents (7B) excel in nuanced refinements, and cross-
family opponents (Llama-70B) validate architectural generalization. This diversity of benefits sug-
gests that different opponent types contribute complementary learning signals, supporting our multi-
opponent competitive framework.

5.1.7 TEMPERATURE PARAMETER ANALYSIS

Figure 2 provides comprehensive insights into how temperature parameter T affects both opponent
selection dynamics and learning outcomes. The left panel shows opponent sampling probabilities
and Elo evolution across training. Figure 1 demonstrates the corresponding performance trajectories.

Greedy Selection (T=20): The low temperature creates sharp, deterministic opponent transitions.
At Step 500, the selection abruptly switches from 14B (probability 1→0) to 32B (0→1→0 by Step
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600), then exclusively focuses on Qwen3-8B. While this achieves the highest final Elo rating (2400),
it leads to catastrophic performance degradation at Step 900 (50.8→43.6), when the dominant oppo-
nent (Qwen3-8B) itself deteriorates. This demonstrates the brittleness of overly focused opponent
selection.

Optimal Balance at T=200: The moderate temperature enables smooth, gradual transitions
between opponents. The 14B probability slowly decreases (0.78→0.03), 32B rises then falls
(0.1→0.7→0.1), and Qwen3-8B gradually increases (0.03→0.78). This balanced progression
achieves strong performance throughout training and reaches a competitive final Elo (2300), val-
idating our temperature-controlled sampling mechanism. The smooth transitions prevent over-
dependence on any single opponent while maintaining curriculum learning benefits.

Random Selection (T=2000): High temperature maintains the same opponent transition trends as
T=200 (14B decreasing, 32B rising then falling, Qwen3-8B increasing) but with severely dampened
amplitude—all probabilities are constrained to oscillate within 0.3-0.4 range. This flattened selec-
tion distribution prevents the system from sufficiently focusing on appropriate-difficulty opponents
during critical learning phases, resulting in the lowest final Elo (2000) and consistently suboptimal
performance. While the overall curriculum progression is preserved, the reduced selection intensity
fails to provide adequate learning signals.

The temperature parameter critically balances curriculum learning focus with opponent diversity.
T=20 maximizes Elo progression but creates fragility; T=2000 provides stability but sacrifices learn-
ing efficiency; T=200 achieves the optimal trade-off between adaptive curriculum and robust per-
formance. The smooth opponent transitions at T=200 demonstrate how proper calibration enables
natural learning progression without catastrophic failures when individual opponents degrade.These
results confirm that effective adaptive opponent selection requires careful temperature calibration to
achieve both strong learning dynamics and robust performance maintenance.

5.1.8 FUTURE APPLICATIONS TO VERIFIABLE TASKS

Our competitive framework shows particular promise for tasks with verifiable rewards, such as math-
ematical reasoning, code generation, and formal verification (RLVR scenarios). Traditional GRPO
training faces a fundamental limitation: when all sampled responses are uniformly correct or incor-
rect, gradient signals vanish, wasting valuable training data.

Our competitive approach addresses this limitation elegantly. Even when responses achieve identical
correctness, pairwise comparison can evaluate nuanced quality dimensions—reasoning clarity, solu-
tion elegance, computational efficiency, or explanation completeness. For instance, in mathematical
problem-solving, two correct solutions can be differentiated by proof conciseness, pedagogical clar-
ity, or methodological sophistication.

This capability transforms binary correctness into rich, multi-dimensional feedback, maximizing
data utilization and enabling continuous improvement even in high-accuracy regimes. Future work
should explore this application to complex reasoning domains where solution quality extends far
beyond mere correctness.

5.2 NOISE ANALYSIS IN REWARD SIGNALS

To ground our theoretical claims, we empirically analyzed the noise levels in both absolute and rela-
tive reward signals using a rigorously constructed dataset of creative writing responses. Our dataset
consists of responses with expert-annotated quality scores, where three domain experts participated
in the annotation process: two experts performed initial independent annotations on a 1-5 quality
scale, and a third expert conducted secondary validation. The inter-annotator agreement reached
81.5%, indicating high annotation reliability for this inherently subjective creative writing task.

Using this expert-validated dataset, we prompted Qwen3-14B-Instruct to perform two evaluation
tasks: (1) absolute scoring of individual responses and (2) direct pairwise comparison of response
pairs across different quality gaps.

We estimated the noise parameters for both approaches:
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• Effective Absolute Ranking Noise (σabs,eff): This metric represents the equivalent noise
level when using absolute scores to perform ranking. It accounts for both signal compres-
sion and random noise in the LLM’s scoring behavior.

• Intrinsic Comparison Noise (σcomp): We estimated this parameter using maximum likeli-
hood estimation under the Thurstone model for different quality gaps.

Our analysis reveals a substantial difference in noise levels:

• Effective Absolute Ranking Noise: σabs,eff ≈ 35.65

• Intrinsic Comparison Noise (Gap 1): σcomp ≈ 7.85

The effective noise of ranking via absolute scores is 4.5 times higher than that of direct pairwise
comparison. This finding provides strong empirical evidence that direct comparison offers a sig-
nificantly higher-fidelity training signal, especially crucial for subjective tasks like creative writing
where quality assessment is inherently challenging.

6 RELATED WORK

The landscape of LLM alignment has rapidly evolved beyond traditional RLHF (Christiano et al.,
2017; Ouyang et al., 2022). Early approaches distilled human preferences into scalar reward mod-
els then optimized policies via reinforcement learning, showing promise but suffering from reward
hacking and instability. Subsequent work like Constitutional AI (Bai et al., 2022) and RLAIF (Lee
et al.) scaled supervision through AI judges but maintained absolute scoring paradigms.

Direct Preference Optimization (DPO) (Rafailov et al., 2023) eliminates explicit reward models by
directly optimizing policy preferences through a contrastive objective, avoiding the complexities of
two-stage RLHF. Later extensions explored listwise variants and improved sampling schemes (Liu
et al., 2024). Direct Nash Optimization (DNO) (Rosset et al., 2024) frames preference learning as
finding Nash equilibria in two-player zero-sum games, using self-play with large-margin win-loss
pairs and regression-based objectives rather than reinforcement learning. While DNO supports off-
policy data and provides theoretical convergence guarantees, it relies on a fixed preference oracle
(e.g., GPT-4), limiting adaptability as the student policy improves. Relative Preference Optimization
(RPO) (Yin et al., 2024) extends preference learning beyond single-prompt constraints by leveraging
semantic similarity to enable cross-prompt comparisons. RPO constructs offline contrast matrices
weighted by semantic similarity, but lacks dynamic difficulty adjustment mechanisms as the policy
evolves. Recent self-play approaches (Whitehouse et al., 2025; Wang et al., 2025) eliminate external
supervision entirely by generating win/loss labels from the learner’s own outputs. While appealingly
simple, these methods suffer from a fundamental ceiling effect: once the policy surpasses its own
best responses, the training distribution collapses and further progress stalls due to the absence of
stronger external anchors.

Elo-Evolve distinguishes itself by treating alignment as a multi-agent competition with adaptive
opponent management. Our framework maintains a diverse opponent pool with Elo-based sampling
that automatically adjusts difficulty while preserving strong external anchors, avoiding both the
rigidity of static approaches and the ceiling effects of pure self-play methods. Unlike fixed oracle
approaches, our dynamic mechanism ensures continuous challenge adaptation throughout training.

7 CONCLUSION

We introduced Elo-Evolve, a co-evolutionary framework that fundamentally redefines LLM align-
ment from static reward optimization to dynamic multi-agent competition. Our theoretical analysis
demonstrates that pairwise comparison enjoys superior sample complexity compared to absolute
scoring approaches, with empirical validation showing a 4.5× noise reduction. Experimental results
validate our progressive experimental design, demonstrating clear performance improvements from
absolute scoring through static pairwise training to our dynamic opponent selection approach.

Our framework demonstrates the potential of competitive learning approaches for LLM alignment,
opening directions for future work in multi-agent training and adaptive curriculum design.
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A USE OF LARGE LANGUAGE MODELS

In accordance with the conference guidelines, we disclose that Large Language Models were used to
assist in the preparation of this manuscript. Specifically, we employed LLMs for writing assistance,
including improving grammar, clarity, and academic writing style throughout the paper.

We emphasize that all LLM suggestions were carefully reviewed and manually edited by the au-
thors. LLM-generated content was not used verbatim; rather, LLM feedback served as input for
human-authored revisions. The authors take full responsibility for all technical content, experi-
mental design, results, and conclusions presented in this work. All core contributions, theoretical
analysis, experimental methodology, and scientific claims are the original work of the authors.

B EMPIRICAL NOISE ANALYSIS: DETAILED METHODOLOGY AND RESULTS

B.1 EXPERIMENTAL SETUP

To empirically validate our theoretical claims about the superior noise characteristics of pairwise
comparison over absolute scoring, we conducted a comprehensive noise analysis using expert-
annotated creative writing data and LLM evaluations.

Dataset Construction: Our evaluation focuses on creative writing responses, which represent one
of the most challenging domains for quality assessment due to their subjective nature. We con-
structed a dataset of 1,086 creative writing responses spanning various genres and complexity levels.
The quality annotation process involved three domain experts:
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• Primary Annotation: Two experts independently annotated each response on a 1-5 quality
scale, considering criteria such as creativity, coherence, language quality, and thematic
depth.

• Secondary Validation: A third expert reviewed all annotations, resolving discrepancies and
ensuring consistency.

• Quality Control: The inter-annotator agreement reached 81.5%, demonstrating high relia-
bility despite the inherent subjectivity of creative writing evaluation.

From this annotated dataset, we derived two evaluation datasets: (1) 1,086 responses for absolute
scoring analysis, and (2) 1,037 response pairs for pairwise comparison analysis across different
quality gaps (∆q ∈ {1, 2, 3, 4}).
All evaluations were performed by Qwen3-14B-Instruct using carefully designed prompts based on
expert annotation criteria. Each response received 5 independent absolute ratings and 5 independent
comparison judgments to ensure statistical reliability.

B.2 ABSOLUTE SCORING ANALYSIS

We analyzed the absolute scoring behavior using a comprehensive statistical model that accounts for
both random noise and systematic biases.

Using linear regression between expert quality scores and LLM ratings, we found:

• Signal compression factor (slope): a = 0.028

• Bias offset (intercept): b = 2.85

• R-squared: 0.003

The extremely low slope indicates severe signal compression—the LLM’s effective scoring range
is dramatically narrower than the true quality variation. The near-zero R² reveals that LLM scores
have virtually no correlation with expert-annotated quality.

The LLM’s scoring distribution shows severe bias:

• Score 1: 16.1% (880/5,430 ratings)

• Score 2: 15.1% (822/5,430 ratings)

• Score 3: 41.9% (2,275/5,430 ratings)

• Score 4: 14.0% (760/5,430 ratings)

• Score 5: 12.8% (693/5,430 ratings)

The concentration in middle scores (particularly score 3) demonstrates the model’s reluctance to
make discriminative judgments. Noise Estimation:

• Within-sample variance: σ2
within = 0.942

• Residual standard deviation: σresidual = 0.707

• Effective ranking noise: σabs,eff =
√
2·σresidual

a = 35.65

B.3 PAIRWISE COMPARISON ANALYSIS

We estimated comparison noise using maximum likelihood estimation under the Thurstone model,
analyzing performance across different quality gaps. Gap-Stratified Results:

• Gap 1 (∆q = 1): σcomp = 7.85, accuracy = 55.1% (288 pairs, 864 comparisons)

• Gap 2 (∆q = 2): σcomp = 5.80, accuracy = 63.5% (209 pairs, 627 comparisons)

• Gap 3 (∆q = 3): σcomp = 8.13, accuracy = 64.4% (125 pairs, 375 comparisons)

• Gap 4 (∆q = 4): σcomp = 25.53, accuracy = 56.2% (53 pairs, 159 comparisons)
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Even for the most challenging scenario (Gap 1, minimal quality difference), pairwise comparison
achieves 55.1% accuracy—above random chance and with substantially lower noise (σcomp = 7.85)
compared to absolute scoring. The performance peaks at Gap 2, suggesting an optimal discrimina-
tion range for the model.

B.4 COMPARATIVE ANALYSIS AND IMPLICATIONS

Comparing the most challenging pairwise scenario (Gap 1) with the effective absolute ranking noise:

σabs,eff

σcomp
=

35.65

7.85
= 4.54

This 4.5× noise reduction provides strong empirical support for our theoretical framework, demon-
strating the substantial advantage of pairwise comparison in noisy evaluation scenarios.

The absolute scoring method exhibits two critical failures:

1. Signal Compression: With a = 0.028, the effective scoring range is compressed by 97%,
discarding most quality information.

2. Discriminative Failure: The near-zero correlation (R2 = 0.003) with expert judgments
indicates the scores contain essentially no quality signal.

In contrast, pairwise comparison maintains discriminative power even in the most challenging con-
ditions, with accuracy consistently above random chance across all quality gaps.
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