
Parallel-in-Time Probabilistic Numerical ODE Solvers

Nathanael Bosch nathanael.bosch@uni-tuebingen.de
University of Tübingen

Adrien Corenflos adrien.corenflos@aalto.fi
Department of Electrical Engineering and Automation, Aalto University

Fatemeh Yaghoobi fatemeh.yaghoobi@aalto.fi
Department of Electrical Engineering and Automation, Aalto University

Filip Tronarp filip.tronarp@matstat.lu.se
Center for Mathemtaical Sciences, Lund University

Philipp Hennig philipp.hennig@uni-tuebingen.de
Tübingen AI Center, University of Tübingen

Simo Särkkä simo.sarkka@aalto.fi

Department of Electrical Engineering and Automation, Aalto University

Abstract

Probabilistic numerical solvers for ordinary differential equations (ODEs) treat the numerical
simulation of dynamical systems as problems of Bayesian state estimation. Aside from
producing posterior distributions over ODE solutions and thereby quantifying the numerical
approximation error of the method itself, one less-often noted advantage of this formalism is
the algorithmic flexibility gained by formulating numerical simulation in the framework of
Bayesian filtering and smoothing. In this paper, we leverage this flexibility and build on the
time-parallel formulation of iterated extended Kalman smoothers to formulate a parallel-
in-time probabilistic numerical ODE solver. Instead of simulating the dynamical system
sequentially in time, as done by current probabilistic solvers, the proposed method processes
all time steps in parallel and thereby reduces the span cost from linear to logarithmic in
the number of time steps. We demonstrate the effectiveness of our approach on a variety of
ODEs and compare it to a range of both classic and probabilistic numerical ODE solvers.

Keywords: probabilistic numerics, ordinary differential equations, numerical analysis,
parallel-in-time methods, Bayesian filtering and smoothing.

1. Introduction

Ordinary differential equations (ODEs) are used throughout the sciences to describe the
evolution of dynamical systems over time. In machine learning, ODEs provide a continuous
description of certain neural networks (Chen et al., 2018) and optimization procedures
(Helmke et al., 2012; Su et al., 2016), and are used in generative modeling with normalizing
flows (Papamakarios et al., 2021) and diffusion models (Song et al., 2021), among others.
Unfortunately, all but the simplest ODEs are too complex to be solved analytically. Therefore,
numerical methods are required to obtain a solution. While a multitude of numerical solvers
has been developed over the last century (Hairer et al., 1993; Deuflhard and Bornemann,
2012; Butcher, 2016), most commonly-used methods do not provide a quantification of their
own inevitable numerical approximation error.

©2023 Nathanael Bosch, Adrien Corenflos, Fatemeh Yaghoobi, Filip Tronarp, Philipp Hennig and Simo Särkkä.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/.

ar
X

iv
:2

31
0.

01
14

5v
1

 [
m

at
h.

N
A

]
 2

 O
ct

 2
02

3

https://creativecommons.org/licenses/by/4.0/

Bosch, Corenflos, Yaghoobi, Tronarp, Hennig, Särkkä

Probabilistic numerics provides a framework for treating classic numerical problems as
problems of probabilistic inference (Hennig et al., 2015; Oates and Sullivan, 2019; Hennig
et al., 2022). In the context of ODEs, methods based on Gaussian process regression
(Skilling, 1992; Hennig and Hauberg, 2014) and in particular Gauss–Markov regression
(Schober et al., 2019; Kersting et al., 2020; Tronarp et al., 2019) provide an efficient and
flexible approach to compute posterior distributions over the solution of ODEs (Bosch et al.,
2021; Krämer and Hennig, 2020), and even partial differential equations (Krämer et al.,
2022) and differential-algebraic equations (Bosch et al., 2022). These so-called ODE filters
typically scale cubically in the ODE dimension (as do most implicit ODE solvers) and
specific approximations enable linear scaling (shared by most explicit solvers) (Krämer et al.,
2022). But to date, their linear scaling with the number of time steps remains.

For very large-scale simulations with very long time horizons, the sequential processing
in time of most ODE solvers can become a bottleneck. This motivates the development of
parallel-in-time methods: By leveraging the ever-increasing parallelization capabilities of
modern computer hardware, parallel-in-time methods can achieve sub-linear scaling in the
number of time steps (Gander, 2015). One well-known method of this kind is Parareal (Lions
et al., 2001). It achieves temporal parallelism by combining an expensive, accurate solver
with a cheap, coarse solver, in such a way that the fine solver is only ever applied to individual
time slices in a parallel manner, leading to a square-root scaling (in ideal conditions). But,
due to its sequential coarse-grid solve, Parareal still has only limited concurrency (Gander
and Vandewalle, 2007), and while it has recently been extended probabilistically by Pentland
et al. (2021, 2022) to improve its performance and convergence, these methods do not provide
probabilistic solutions to ODEs per se.

In this paper, we leverage the time-parallel formulation of Gaussian filters and smoothers
(Särkkä and Garćıa-Fernández, 2021; Yaghoobi et al., 2021, 2023) to formulate a parallel-
in-time probabilistic numerical ODE solver. The paper is structured as follows. Section 2
formulates numerical ODE solutions as Bayesian state estimation problems and presents the
established, sequential, filtering-based probabilistic ODE solvers. Section 3 then presents our
proposed parallel-in-time probabilistic ODE solver; first as exact inference for affine ODEs,
then as an iterative, approximate algorithm for general nonlinear ODEs. Section 4 then
presents experiments on a variety of ODEs and compares the performance of our proposed
method to that of existing, both probabilistic and non-probabilistic, ODE solvers. Finally,
Section 5 concludes with a discussion of our results and an outlook on future work.

2. Numerical ODE Solutions as Bayesian State Estimation

Consider an initial value problem (IVP) of the form

ẏ(t) = f(y(t), t), t ∈ [0, T], y(0) = y0, (1)

with vector field f : Rd × R→ Rd and initial value y0 ∈ Rd. To capture the numerical error
that arises from temporal discretization, the quantity of interest in probabilistic numerics
for ODEs is the probabilistic numerical ODE solution, defined as

p
(
y(t)

∣∣∣ y(0) = y0, {ẏ(tn) = f(y(tn), tn)}Nn=1

)
, (2)

for some prior p (y(t)) and with {tn}Nn=1 ⊂ [0, T] the chosen time-discretisation.

2

Parallel-in-Time Probabilistic Numerical ODE Solvers

In the following, we pose the probabilistic numerical ODE solution as a problem of
Bayesian state estimation, and we define the prior, likelihood, data, and approximate
inference scheme. For a more detailed description of the transformation of an IVP into a
Gauss–Markov regression problem, refer to Tronarp et al. (2019).

2.1 Gauss–Markov Process Prior

We model the solution y of the IVP with a ν-times integrated Wiener process prior (IWP(ν)).
More precisely, let Y (t) =

[
Y (0)(t), Y (1)(t), . . . , Y (ν)(t)

]
be the solution of the following

linear, time-invariant stochastic differential equation with Gaussian initial condition

dY (i)(t) = Y (i+1)(t) dt, i = 0, . . . , ν − 1, (3a)

dY (ν)(t) = ΓdW (t), (3b)

Y (0) ∼ N (µ0,Σ0) , (3c)

with initial mean and covariance µ0 ∈ Rd(ν+1), Σ0 ∈ Rd(ν+1)×d(ν+1), diffusion Γ ∈ Rd×d,
and d-dimensional Wiener process W : R → Rd. Then, Y (i) is chosen to model the i-th
derivative of the IVP solution y. By construction, accessing the i-th derivative can be done
by multiplying the state Y with a projection matrix Ei := Id ⊗ ei, that is, Y

(i)(t) = EiY (t).
This continuous-time prior satisfies discrete transition densities (Särkkä and Solin, 2019)

Y (t+ h) | Y (t) ∼ N (Φ(h)Y (t), Q(h)) , (4)

with transition matrix and process noise covariance Φ(h), Q(h) ∈ Rd(ν+1)×d(ν+1) and step
h ∈ R+. For the IWP(ν) these can be computed in closed form (Kersting et al., 2020), as

Φ(h) = Id ⊗ Φ̆(h),
[
Φ̆(h)

]
ij
= 1i=j

hi−j

(j − i)!
, (5a)

Q(h) = Id ⊗ Q̆(h),
[
Q̆(h)

]
ij
=

h2η+1−i−j

(2ν + 1− i− j)(ν − i)!(ν − j)!
. (5b)

Remark 1 (Alternative Gauss–Markov priors). While ν-times integrated Wiener process
priors have been the most common choice for filtering-based probabilistic ODE solvers in
recent years, the methodology is not limited to this choice. Alternatives include the ν-times
integrated Ornstein–Uhlenbeck process and the class of Matérn processes, both of which have
a similar continuous-time SDE representation as well as Gaussian transition densities in
discrete time. Refer to Tronarp et al. (2021) and Särkkä and Solin (2019).

The initial distribution N (µ0,Σ0) is chosen such that it encodes the initial condition
y(0) = y0. Furthermore, to improve the numerical stability and the quality of the posterior,
we initialize not only on the function value Y (0)(0) = y0, but also the higher order derivatives,

that is, Y (i)(0) = diy
dti

(0) for all i ≤ ν (Krämer and Hennig, 2020). These terms can be
efficiently computed via Taylor-mode automatic differentiation (Griewank, 2000; Bettencourt
et al., 2019). As a result, we obtain an initial distribution with mean

µ0 =

[
y0,

dy

dt
(0), . . . ,

dνy

dtν
(0)

]T
, (6)

and zero covariance Σ0 = 0, since the initial condition has to hold exactly.

3

Bosch, Corenflos, Yaghoobi, Tronarp, Hennig, Särkkä

2.2 Observation Model and Data

To relate the introduced Gauss–Markov prior to the IVP problem from Equation (1), we
define an observation model in terms of the information operator

Z[y](t) := ẏ(t)− f (y(t), t) . (7)

By construction, Z maps the true IVP solution y exactly to the zero function, that is,
Z[y] ≡ 0. In terms of the continuous process Y , the information operator can be expressed
as

Z[Y](t) = E1Y (t)− f (E0Y (t), t) , (8)

where E0 and E1 are the projection matrices introduced in Section 2.1 which select the
zeroth and first derivative from the process Y , respectively. There again, if Y corresponds
to the true IVP solution (and its true derivatives), then Z[Y] ≡ 0.

Conversely, inferring the true IVP solution requires conditioning the process Y (t) on
Z(t) = 0 over the whole continuous interval t ∈ [0, T]. Since this is in general intractable, we
instead condition Y (t) only on discrete observations Z(tn) = 0 on a grid T = {tn}Nn=1. This
leads to the Dirac likelihood model commonly used in ODE filtering (Tronarp et al., 2019):

Z(tn) | Y (tn) ∼ δ
(
Y (1)(tn)− f

(
Y (0)(tn), tn

))
, (9)

with zero-valued data Z(tn) = 0 for all tn ∈ T.

Remark 2 (Information operators for other differential equation problems). Similar infor-
mation operators can be defined for other types of differential equations that are not exactly
of the first-order form as given in Equation (1), such as higher-order differential equations,
Hamiltonian dynamics, or differential-algebraic equations (Bosch et al., 2022).

2.3 Discrete-Time Inference Problem

The combination of prior, likelihood, and data results in a Bayesian state estimation problem

Y (0) ∼ N (µo,Σ0) , (10a)

Y (tn+1) | Y (tn) ∼ N (Φ(tn+1 − tn)Y (tn), Q(tn+1 − tn)) , (10b)

Z(tn) | Y (tn) ∼ δ
(
Y (1)(tn)− f

(
Y (0)(tn), tn

))
, (10c)

with zero data Z(tn) = 0 for all tn ∈ T. The posterior distribution over Y (0)(t) then provides
a probabilistic numerical ODE solution to the given IVP, as formulated in Equation (2).

This is a standard nonlinear Gauss–Markov regression problem, for which many approxi-
mate inference algorithms have previously been studied (Särkkä and Svensson, 2023). In the
context of probabilistic ODE solvers, a popular approach for efficient approximate inference
is Gaussian filtering and smoothing, where the solution is approximated with Gaussian
distributions

p
(
Y (t) | {Z(tn) = 0}Nn=1

)
≈ N (µ(t),Σ(t)) . (11)

This is most commonly performed with extended Kalman filtering (EKF) and smoothing
(EKS) (Schober et al., 2019; Tronarp et al., 2019; Kersting et al., 2020); though other methods

4

Parallel-in-Time Probabilistic Numerical ODE Solvers

have been proposed, for example based on numerical quadrature (Kersting and Hennig,
2016) or particle filtering (Tronarp et al., 2019). Iterated extended Kalman smoothing (e.g.
Bell, 1994; Särkkä and Svensson, 2023) computes the “maximum a posteriori” estimate of
the probabilistic numerical ODE solution (Tronarp et al., 2021). This will be the basis for
the parallel-in-time ODE filter proposed in this work, explained in detail in Section 3.

2.4 Practical Considerations for Probabilistic Numerical ODE Solvers

While Bayesian state estimation methods such as the extended Kalman filter and smoother
can, in principle, be directly applied to the formulated state estimation problem, there are a
number of modifications and practical considerations that should be taken into account:

• Square-root formulation: Gaussian filters often suffer from numerical stability issues
when applied to the ODE inference problem defined in Equation (10), in particular when
using high orders and small steps. To alleviate these issues, probabilistic numerical
ODE solvers are typically formulated in square-root form (Krämer and Hennig, 2020);
this is also the case for the proposed parallel-in-time method.

• Preconditioned state transitions: Krämer and Hennig (2020) suggest a coordinate
change preconditioner to make the state transition matrices step-size independent and
thereby improve the numerical stability of EKF-based probabilistic ODE solvers. This
preconditioner is also used in this work.

• Uncertainty calibration: The Gauss–Markov prior as introduced in Section 2.1 has a
free parameter, the diffusion Γ, which directly influences the uncertainty estimates
returned by the ODE filter. In this paper, we consider scalar diffusions Γ = σ · I
and compute a quasi-maximum likelihood estimate for the parameter σ post-hoc, as
suggested by Tronarp et al. (2019).

• Approximate linearization: Variants of the standard EKF/EKS-based inference have
been proposed in which the linearization of the vector-field is done only approximately.
Approximating the Jacobian of the ODE vector field with zero enables inference with
a complexity which scales only linearly with the ODE dimension (Krämer et al.,
2022), while still providing polynomial convergence rates (Kersting et al., 2020). A
diagonal approximation of the Jacobian preserves the linear complexity, but improves
the stability properties of the solver (Krämer et al., 2022). In this work, we only
consider the exact first-order Taylor linearization.

• Local error estimation and step-size adaptation: Rather than predefining the time
discretization grid, certain solvers employ an adaptive approach where the solver
dynamically constructs the grid while controlling an internal estimate of the numerical
error. Step-size adaptation based on local error estimates have been proposed for both
classic (Hairer et al., 1993, Chapter II.4) and probabilistic ODE solvers (Schober et al.,
2019; Bosch et al., 2021). On the other hand, global step-size selection is often employed
in numerical boundary value problem (BVP) solvers (Ascher et al., 1995, Chapter
9), and has been extended to filtering-based probabilistic BVP solvers (Krämer and
Hennig, 2021). For our purposes, we will focus on fixed grids.

5

Bosch, Corenflos, Yaghoobi, Tronarp, Hennig, Särkkä

3. Parallel-in-Time Probabilistic Numerical ODE Solvers

This section develops the main method proposed in this paper: a parallel-in-time probabilistic
numerical ODE solver.

3.1 Parallel-Time Exact Inference in Affine Vector Fields

Let us first consider the simple case: An initial value problem with affine vector field

ẏ(t) = L(t)y(t) + d(t), t ∈ [0, T], y(0) = y0. (12)

The corresponding information model of the probabilistic solver is then also affine, with

Z(t) | Y (t) ∼ δ (H(t)Y (t)− d(t)) , (13a)

H(t) := E1 − L(t)E0. (13b)

Let T = {tn}Nn=1 ⊂ [0, T] be a discrete time grid. To simplify the notation in the following,
we will denote a function evaluated at time tn by a subscript n, that is Y (tn) =: Yn, except
for the transition matrices where we will use Φn := Φ(tn+1 − tn) and Qn := Q(tn+1 − tn).
Then, the Bayesian state estimation problem from Equation (10) reduces to inference of
Y (t) in the model

Y0 ∼ N (µo,Σ0) , (14a)

Yn+1 | Yn ∼ N (ΦnYn, Qn) , (14b)

Zn | Yn ∼ δ (HnYn − dn) , (14c)

with zero data Zn = 0 for all n = 1, . . . , N . Since this is an affine Gaussian state estimation
problem, it can be solved exactly with Gaussian filtering and smoothing (Kalman, 1960;
Rauch et al., 1965; Särkkä and Svensson, 2023); see also (Tronarp et al., 2019, 2021) for
explicit discussions of probabilistic numerical solvers for affine ODEs.

Recently, Särkkä and Garćıa-Fernández (2021) presented a parallel-time formulation of
Bayesian filtering and smoothing, as well as a concrete algorithm for exact linear Gaussian
filtering and smoothing—which could be directly applied to the problem formulation in
Equation (14). But as mentioned in Section 2.4, the resulting ODE solver might suffer from
numerical instabilities. Therefore, we use the square-root formulation of the parallel-time
linear Gaussian filter and smoother by Yaghoobi et al. (2023). In the following, we review
the details of the algorithm.

3.1.1 Parallel-Time General Bayesian Filtering and Smoothing

First, we follow the presentation of Särkkä and Garćıa-Fernández (2021) and formulate
Bayesian filtering and smoothing as prefix sums. We define elements an = (fn, gn) with

fn(Yn | Yn−1) = p(Yn | Zn, Yn−1), (15a)

gn(Yn−1) = p(Zn | Yn−1), (15b)

6

Parallel-in-Time Probabilistic Numerical ODE Solvers

where for n = 1 we have p(Y1 | Z1, Y0) = p(Y1 | Z1) and p(Z1 | Y0) = p(Z1), together with a
binary operator ⊗f : (fi, gi)⊗f (fj , gj) 7→ (fij , gij) defined by

fij(x | z) :=
∫
gj(y)fj(x | y)fi(y | z) dy∫

gj(y)fi(y | z) dy
, (16a)

gij(z) := gi(z)

∫
gj(y)fi(y | z) dy. (16b)

Then, Särkkä and Garćıa-Fernández (2021, Theorem 3) show that ⊗f is associative and that

a1 ⊗f · · · ⊗f an =

[
p(Yn | Z1:n)
p(Z1:n)

]
, (17)

that is, the filtering marginals and the marginal likelihood of the observations at step n are
the results of a cumulative sum of the elements a1:n under ⊗f . Since the operator ⊗f is
associative, this quantity can be computed in parallel with prefix-sum algorithms, such as
the parallel scan algorithm by Blelloch (1989).

Remark 3 (On Prefix-Sums). Prefix sums, also known as cumulative sums or inclusive
scans, play an important role in parallel computing. Their computation can be efficiently
parallelized and, if enough parallel resources are available, their (span) computational cost
can be reduced from linear to logarithmic in the number of elements. One such algorithm is
the well-known parallel scan algorithm by Blelloch (1989) which, given N elements and N/2
processors, computes the prefix sum in 2⌈log2N⌉ sequential steps with 2N − 2 invocations of
the binary operation. This algorithm is implemented in both tensorflow (Abadi et al., 2015)
and JAX (Bradbury et al., 2018); the latter is used in this work.

The time-parallel smoothing step can be constructed similarly: We define elements
bn = p(Yn | Z1:n, Yn+1), with bN = p(YN | Z1:N), and a binary operator bi ⊗s bj = bij , with

bij(x | z) =
∫

bi(x | y)bj(y | z) dy. (18)

Then, ⊗s is associative and the smoothing marginal at time step n is the result of a reverse
cumulative sum of the elements bn:N under ⊗s (Särkkä and Garćıa-Fernández, 2021):

bn ⊗s · · · ⊗s bN = p(Yn | Z1:N). (19)

Again, since the smoothing operator ⊗s is associative, this cumulative sum can be computed
in parallel with a prefix-sum algorithm (Blelloch, 1989).

3.1.2 Parallel-Time Linear Gaussian Filtering in Square-Root Form

In the linear Gaussian case, the filtering elements an = (fn, gn) can be parameterized by a
set of parameters {An, bn, Cn, ηn, Jn} as follows:

fn(Yn | Yn−1) = p(Yn | Zn, Yn−1) = N (Yn;AnYn−1 + bn, Cn) , (20a)

gn(Yn−1) = p(Zn | Yn−1) ∝ NI (Yn−1; ηn, Jn) , (20b)

7

Bosch, Corenflos, Yaghoobi, Tronarp, Hennig, Särkkä

whereNI denotes a Gaussian density parameterized in information form, that is,NI(x; η, J) =
N (x; J−1η, J−1). The parameters {An, bn, Cn, ηn, Jn} can be computed explicitly from the
given state-space model (Särkkä and Garćıa-Fernández, 2021, Lemma 7). But since proba-
bilistic numerical ODE solvers require a numerically stable implementation of the underlying
filtering and smoothing algorithm (Krämer and Hennig, 2020), we formulate the parallel-time
linear Gaussian filtering algorithm in square-root form, following Yaghoobi et al. (2023).

To this end, let
√
M denote a left square-root of a positive semi-definite matrix M ,

that is,
√
M
√
M

T
= M ; the matrix

√
M is sometimes also called a “generalised Cholesky

factor” of M (S. Grewal and P. Andrews, 2014). To operate on square-root matrices, we
also define the triangularization operator: Given a wide matrix M ∈ Rn×m, m ≥ n, the
triangularization operator tria(M) first computes the QR decomposition of MT, that is,
MT = QR, with wide orthonormal Q ∈ Rm×n and square upper-triangular R ∈ Rn×n, and
then returns RT. This operator plays a central role in square-root filtering algorithms as it
enables the numerically stable addition of covariance matrices, provided square-roots are
available: Given two positive semi-definite matrices A,B ∈ Rn×n with square-roots

√
A,
√
B,

a square-root of the sum A+B can be computed as
√
A+B = tria

([√
A
√
B
])

. (21)

With these definitions in place, we briefly review the parallel-time linear Gaussian filtering
algorithm in square-root form as provided by Yaghoobi et al. (2023) in the following.

Parameterization of the filtering elements. Let m0 = µ0, P0 = Σ0, and mn = 0,
Pn = 0 for all n ≥ 1, and define

m−
n = Φn−1mn−1, (22a)√

P−
n = tria

([
Φn−1

√
Pn−1

√
Qn−1

])
. (22b)

Then, the square-root parameterization of the filtering elements an is given by

An = (I −KnHn)Φn−1, (23a)

bn = m−
n −Kn

(
Hnm

−
n − dn

)
, (23b)√

Cn = Ψ22, (23c)

ηn =
√
Jn
√
Sn

−1
dn, (23d)√

Jn = ΦT
n−1H

T
n

√
Sn

−T
, (23e)

where I is the identity matrix and Ψ22,
√
Sn and Kn are defined via[

Ψ11 0
Ψ21 Ψ22

]
= tria

([
Hn

√
P−
n
√
Rn√

P−
n 0

])
, (24a)√

Sn = Ψ11, (24b)

Kn = Ψ21Ψ
−1
11 . (24c)

For generality the formula includes an observation noise covariance Rn, but note that in the
context of probabilistic ODE solvers we have a noiseless measurement model with

√
Rn = 0.

8

Parallel-in-Time Probabilistic Numerical ODE Solvers

Associative filtering operator. Let ai, aj be two filtering elements, parameterized in
square-root form by ai = {Ai, bi,

√
Ci, ηi,

√
Ji} and aj = {Aj , bj ,

√
Cj , ηj ,

√
Jj}. Then, the

associative filtering operator ⊗f computes the filtering element aij = ai ⊗f aj as

Aij = AjAi −Aj

√
CiΞ

−T
11 ΞT

21Ai, (25a)

bij = Aj

(
I −

√
CiΞ

−T
11 ΞT

21

)
(bi +

√
Ci

√
Ci

T
ηj) + bj , (25b)√

Cij = tria
([
Aj

√
CiΞ

−T
11

√
Cj

])
, (25c)

ηij = AT
i

(
I − Ξ21Ξ

−1
11

√
Ci

T
)(

ηj −
√

Jj
√

Jj
T
bi

)
+ ηi, (25d)√

Jij = tria
([
AT

i Ξ22

√
Ji
])

, (25e)

where Ξ11, Ξ21, Ξ22 are defined via[
Ξ11 0
Ξ21 Ξ22

]
= tria

([√
Ci

T√
Jj I√

Jj 0

])
. (26)

See Yaghoobi et al. (2023) for the detailed derivation.

The filtering marginals. The filtering marginals are then given by

p(Yn|Z1:n) = N
(
Yn;m

f
n, P

f
n

)
, with mf

n := b1:n,

√
P f
n :=

√
C1:n. (27)

This concludes the parallel-time linear Gaussian square-root filter.

3.1.3 Parallel-Time Linear Gaussian Smoothing in Square-Root Form

Similarly to the filtering equations, the linear Gaussian smoothing can also be formulated in
terms of smoothing elements bn and an associative operator ⊗s, and the smoothing marginals
can also be computed with a parallel prefix-sum algorithm.

Parameterization of the smoothing elements. The smoothing elements bn can be
described by a set of parameters {En, gn,

√
Ln}, as

bn = p(Yn | Z1:n, Yn+1) = N
(
Yn;EnYn+1 + gn,

√
Ln

√
Ln

T
)
. (28)

The smoothing element parameters can be computed as

En = Π21Π
−1
11 , (29a)

gn = mf
n − EnΦnm

f
n, (29b)√

Ln = Π22, (29c)

(29d)

where I is the identity matrix and the matrices Π11, Π21, Π22 are defined via[
Π11 0
Π21 Π22

]
= tria

Φn

√
P f
n
√
Qn√

P f
n 0

 . (30)

9

Bosch, Corenflos, Yaghoobi, Tronarp, Hennig, Särkkä

Associative smoothing operator. Given two smoothing elements bi, bj be two filtering
elements, parameterized in square-root form by bi = {Ei, gi,

√
Li} and bj = {Ej , gj ,

√
Lj},

the associative smoothing operator ⊗s computes the smoothing element bij = bi ⊗s bj as

Eij = EiEj , (31a)

gij = Eigj + gi, (31b)√
Lij = tria

([
Ei

√
Lj

√
Li

])
. (31c)

The smoothing marginals. The smoothing marginals can then be retrieved from the
reverse cumulative sum of the smoothing elements as

p(Yn | Z1:N) = N (Yn;m
s
n, P

s
n) , (32a)

ms
n = gn:N , (32b)√

P s
n =

√
Ln:N . (32c)

Refer to Yaghoobi et al. (2023) for a thorough derivation. The full parallel-time Rauch–
Tung–Striebel smoother is summarized in Algorithm 1.

Algorithm 1 Parallel-time Rauch–Tung–Striebel Smoother (ParRTS)

Input: Initial distribution (µ0,Σ0), linear transition models {(Φn, Qn)}Nn=1, affine observa-
tion models {(Hn, dn)}Nn=1, data Z1:N .

1: Compute the filtering elements:
an = (An, bn,

√
Cn, ηn,

√
Jn) for all n = 1, . . . , N ▷ Eq. (23)

2: Run the time-parallel Kalman filter:{(
Af

n, b
f
n,

√
Cf
n , η

f
n,

√
Jf
n

)}N

n=1

← AssociativeScan
(
⊗f , (an)

N
n=1

)
▷ Eq. (25)

p (Yn | Z1:N) = N
(
Yn;µ

f
n,Σ

f
n

)
← N

(
Yn; b

f
n, C

f
n

)
▷ Filtering marginals

3: Compute the smoothing elements:
bn = (En, gn,

√
Ln) for all n = 0, . . . , N ▷ Eq. (28)

4: Run the time-parallel Rauch–Tung–Striebel smoother:{(
Es

n, g
s
n,
√
Ls
n

)}N
n=1
← ReverseAssociativeScan

(
⊗s, (bn)

N
n=1

)
▷ Eq. (31)

Output: Smoothing marginals p(Yn | Z1:N) = N (Yn; g
s
n, L

s
n)

This concludes the parallel-in-time probabilistic numerical ODE solver for affine ODEs:
since affine ODEs result in state-estimation problems with affine state-space models, as
discussed in the beginning of this section, the parallel-time Rauch–Tung–Striebel smoother
presented here can be used to solve affine ODEs in parallel time.

3.2 Parallel-Time Approximate Inference in Nonlinear Vector Fields

Let us now consider the general case: An IVP with nonlinear vector field

ẏ(t) = f(y(t), t), t ∈ [0, T], y(0) = y0. (33)

10

Parallel-in-Time Probabilistic Numerical ODE Solvers

As established in Section 2, the corresponding state estimation problem is

Y0 ∼ N (µo,Σ0) , (34a)

Yn+1 | Yn ∼ N (ΦnYn, Qn) , (34b)

Zn | Yn ∼ δ (E1Yn − f (E0Yn, tn)) , (34c)

with temporal discretization T = {tn}Nn=1 ⊂ [0, T] and zero data Zn = 0 for all n = 1, . . . , N .
In this section, we describe a parallel-in-time algorithm for solving this state estimation
problem: the iterated extended Kalman smoother (IEKS).

3.2.1 Globally Linearizing the State-Space Model

To make inference tractable, we will linearize the whole state-space model along a reference
trajectory. And since the observation model (specified in Equation (34c)) is the only nonlinear
part of the state-space model, it is the only part that requires linearization. In this paper,
we only consider linearization with a first-order Taylor expansion, but other methods are
possible; see Remarks 4 and 5.

For any time-point tn ∈ T, we approximate the nonlinear observation model

Zn | Yn ∼ δ (E1Yn − f (E0Yn, tn)) (35)

with an affine observation model by performing a first-order Taylor series expansion around
a linearization point ηn ∈ Rd(ν+1). We obtain the affine model

Zn | Yn ∼ δ (HnYn − dn) , (36)

with Hn and dn defined as

Hn := E1 − Fy(E0ηn, tn)E0, (37a)

dn := f(E0ηn, tn)− Fy(E0ηn, tn)E0ηn, (37b)

where Fy denotes the Jacobian of f with respect to y.
In the IEKS, this linearization is performed globally on all time steps simultaneously along

a trajectory of linearization points {ηn}Nn=1 ⊂ Rd(ν+1). We obtain the following linearized
inference problem:

Y0 ∼ N (µo,Σ0) , (38a)

Yn+1 | Yn ∼ N (ΦnYn, Qn) , (38b)

Zn | Yn ∼ δ (HnYn − dn) , (38c)

with zero data Zn = 0 for all n = 1, . . . , N . This is now a linear state-space model with
linear Gaussian observations. It can therefore be solved exactly with the numerically stable,
time-parallel Kalman filter and smoother presented in Section 3.1.

Remark 4 (Linearizing with approximate Jacobians (EK0 & DiagonalEK1)). To reduce the
computational complexity with respect to the state dimension of the ODE, the vector field
can also be linearized with an approximate Jacobian. Established choices include Fy ≈ 0
and Fy ≈ diag(∇yf), which result in probabilistic ODE solvers known as the EK0 and
DiagonalEK1, respectively. See Krämer et al. (2022) for more details.

11

Bosch, Corenflos, Yaghoobi, Tronarp, Hennig, Särkkä

Remark 5 (Statistical linear regression). Statistical linear regression (SLR) is a more general
framework for approximating conditional distributions with affine Gaussian distributions,
and many well-established filters can be understood as special cases of SLR. This includes
notably the Taylor series expansion used in the EKF/EKS, but also sigma-point methods
such as the unscented Kalman filter and smoother (Julier et al., 2000; Julier and Uhlmann,
2004; Särkkä, 2008), and more. For more information on SLR-based filters and smoothers
refer to Särkkä and Svensson (2023, Chapter 9).

3.2.2 Iterated Extended Kalman Smoothing

The IEKS (Bell, 1994; Särkkä and Svensson, 2023) is an approximate Gaussian inference
method for nonlinear state-space models, which iterates between linearizing the state-space
model along the current best-guess trajectory and computing a new state trajectory estimate
by solving the linearized model exactly. It can equivalently also be seen as an efficient
implementation of the Gauss–Newton method, applied to maximizing the posterior density
of the state trajectory (Bell, 1994). This also implies that the IEKS computes not just some
Gaussian estimate, but the maximum a posteriori (MAP) estimate of the state trajectory. In
the context of probabilistic numerical ODE solvers, the IEKS has been previously explored by
Tronarp et al. (2021), and the resulting MAP estimate has been shown to satisfy polynomial
convergence rates to the true ODE solution. Here, we formulate an IEKS-based probabilistic
ODE solver in a parallel-in-time manner, by exploiting the time-parallel formulation of the
Kalman filter and smoother from Section 3.1.

The IEKS is an iterative algorithm, which starts with an initial guess of the state
trajectory and then iterates between the following two steps:

1. Linearization step: Linearize the state-space model along the current best-guess
trajectory. This can be done independently for each time step and is therefore fully
parallelizable.

2. Linear smoothing step: Solve the resulting linear state-space model exactly with the
time-parallel Kalman filter and smoother from Section 3.1.

The algorithm terminates when a stopping criterion is met, for example when the change in
the MAP estimate between two iterations is sufficiently small. A pseudo-code summary of
the method is provided in Algorithm 2.

As with the sequential filtering-based probabilistic ODE solvers as presented in Section 2,
the mean and covariance of the initial distribution Y (0) ∼ N (µ0,Σ0) are chosen such that
µ0 corresponds to the exact solution of the ODE and its derivatives and Σ0 is set to zero;
see also Krämer and Hennig (2020). The initial state trajectory estimate {ηn}Nn=0 is chosen
to be constant, that is, ηn = µ0 for all n = 0, . . . , N . Note that since only E0ηn is required
to perform the linearization, it could equivalently be set to ηn = [y0, 0, . . . , 0] for all n.

Finally, the stopping criterion should be chosen such that the algorithm terminates when
the MAP estimate of the state trajectory has converged. In our experiments, we chose a
combination of two criteria: (i) the change in the state trajectory estimate between two
iterations is sufficiently small, or (ii) the change in the objective value between two iterations
is sufficiently small, where the objective value is defined as the negative log-density of the

12

Parallel-in-Time Probabilistic Numerical ODE Solvers

Algorithm 2 IEKS-based Parallel-in-Time Probabilistic ODE Solver

Input: ODE-IVP (f, y0), prior transition model {(Φn, Qn)}Nn=1, time grid {tn}Nn=0 ⊂ [0, T].
1: µ0 ← ComputeExactInitialState(f, y0) ▷ With automatic differentiation
2: Σ0 ← 0
3: ηn ← µ0 for all n = 0, . . . , N ▷ Constant initial guess of state trajectory
4: while stopping criterion not met do
5: for n = 1, . . . , N do ▷ Can be done fully in parallel
6: Hn, dn ← LinearizeObservationModel(f, ηn, tn) ▷ As in Sec. 3.2.1
7: end for
8: {µn,Σn}Nn=1 ← ParRTS

(
(µo,Σ0), {(Φn, Qn)}Nn=1, {(Hn, dn)}Nn=1

)
▷ As in Sec. 3.1

9: ηn ← µn for all n = 1, . . . , N
10: end while
Output: y(tn) ∼ N

(
E0µn, E0ΣnE

T
0

)
for n = 1, . . . , N .

state trajectory:

V(η0:N) =
1

2

N∑
n=1

∥ηn − Φ(hn)ηn−1∥2Q−1(h) . (39)

In our experiments, we use a relative tolerance of 10−13 for the first criterion and absolute
and relative tolerances of 10−9 and 10−6 for the second criterion, respectively.

3.3 Computational Complexity of the Time-Parallel Probabilistic ODE Solver

The standard, sequential formulation of a Kalman smoother has a computational cost that
scales linearly in the number of data points N , of the form

Cs
KS = N ·

(
Cs
predict + Cs

update + Cs
smooth

)
, (40)

where Cs
predict, C

s
update, C

s
smooth are the costs of the sequential formulation of the predict,

update, and smoothing steps, respectively. For nonlinear models, the extended Kalman
filter/smoother linearizes the observation model sequentially at each prediction mean. With
Clinearize the cost of linearization, which requires evaluating the vector field and computing
its Jacobian, the cost for a sequential extended Kalman smoother becomes

Cs
EKS = N ·

(
Cs
predict + Clinearize + Cs

update + Cs
smooth

)
. (41)

The proposed IEKS differs in two ways: (i) the prefix-sum formulation of the Kalman
smoother enables a time-parallel inference with logarithmic complexity, and (ii) the lin-
earization is not done locally in a sequential manner but can be performed globally, fully in
parallel. Assuming a large enough number of processors / threads, the span cost of a single
parallelized IEKS iteration becomes

Cp
EKS = Clinearize + log(N) ·

(
Cp
filter + Cp

smooth

)
, (42)

where Cp
filter, C

p
smooth are the costs of the associative filtering and smoothing operation as

used in the parallel Kalman filter formulation, respectively. They differ from the costs of
the sequential formulation in a constant manner.

13

Bosch, Corenflos, Yaghoobi, Tronarp, Hennig, Särkkä

4. Experiments

This section investigates the utility and performance of the proposed parallel IEKS-based
ODE filter on a range of experiments. It is structured as follows: First, Section 4.1 investigates
the runtime of a single IEKS step in its sequential and parallel formulation, over a range
of grid sizes and for different GPUs. Section 4.2 then compares the performance of both
ODE solver implementations on multiple test problems. Finally, Section 4.3 benchmarks
the proposed method against other well-established ODE solvers, including both classic and
probabilistic numerical methods.

Implementation All experiments are implemented in the Python programming language
with the JAX software framework (Bradbury et al., 2018). Reference solutions are computed
with SciPy (Virtanen et al., 2020) and Diffrax (Kidger, 2021). Unless specified otherwise,
experiments are run on an NVIDIA V100 GPU. Code for the implementation and experiments
is publicly available on GitHub.1

4.1 Runtime of a Single Extended Kalman Smoother Step

We first evaluate the runtime of the proposed method for only a single IEKS iteration,
which consists of one linearization of the model along a trajectory and one extended Kalman
smoother step. To this end, we consider the logistic ordinary differential equation

ẏ(t) = y(t) (1− y(t)) , t ∈ [0, 10], y(0) = 0.01; (43)

though, since here we only investigate the runtime of a single IEKS iteration and thus do not
actually solve the problem by iteratively re-linearizing, the precise choice of ODE is not very
important. We then compare the runtime of the sequential and parallel EKS formulation
for different grid sizes, resulting from time discretizations with step sizes h = 20, 21, . . . , 214,
and for multiple GPUs with varying numbers of CUDA cores. Figure 1 shows the results.

First, we observe the expected logarithmic scaling of the parallel EKS with respect to the
grid size, for grids of size up to around ∼ 5 ·103 (Figure 1a). For larger grid sizes the runtime
of the parallel EKS starts to grow linearly. This behaviour is expected: The NVIDIA V100
GPU used in this experiment has only 5120 CUDA cores, so for larger grids the filter and
smoother pass can not be fully parallelized anymore and additional grid points need to be
processed sequentially. But, the overall runtime of the parallel EKS is still significantly lower
than the runtime of the sequential EKS throughout all grid sizes.

Figure 1b. shows runtimes for different GPUs with varying numbers of CUDA cores for
a grid of size N = 81920. We observe that both the sequential EKS, as well as the classic
Dopri5 and Kvaerno5 solvers (Dormand and Prince, 1980; Shampine, 1986; Kværnø, 2004),
do not show a benefit from the improved GPU hardware. This is expected as these methods
do not explicitly aim to leverage parallelizaton. On the other hand, the runtime of the
parallel EKS decreases as the number of CUDA cores increases, and we observe speed-ups
of up to an order of magnitude by using a different GPU. Be reminded once more that
these evaluations only considered a single IEKS step, so they do not show the runtimes for
computing the actual probabilistic numerical ODE solutions—these will be the subject of
interest in the next sections.

1. https://github.com/nathanaelbosch/parallel-in-time-ode-filters

14

https://github.com/nathanaelbosch/parallel-in-time-ode-filters

Parallel-in-Time Probabilistic Numerical ODE Solvers

101 102 103 104 105 106

Number of gridpoints

10−3

10−2

10−1

100

101

102

103

R
u

n
ti

m
e

[s
]

a. Single-step runtime benchmark

Sequential EKS

Parallel EKS

Dopri5 (diffrax)

Kvaerno5 (diffrax)

∝ N

∝ log(N)

V100 CUDA cores

1000 2000 3000 4000 5000 6000

Number of CUDA cores

GTX 1060

GTX 1080 Ti

TITAN Xp

RTX 2080 Ti

V100

b. GPU comparison

Figure 1: The parallel EKS shows logarithmic scaling and benefits from GPU improvements.
In comparison, the sequential EKS and the classic Dopri5 and Kvaerno5 solvers
show the expected linear runtime complexity (left). They also do not show relevant
changes in runtime for GPUs with higher numbers of CUDA cores (right).

4.2 The Parallel-IEKS ODE Filter Compared to its Sequential Version

In this experiment we compare the proposed parallel-in-time ODE solver to a probabilistic
solver based on the sequential implementation of the IEKS. In addition to the logistic ODE
as introduced in Equation (43), we consider two more problems: An initial value problem
based on the rigid body dynamics (Hairer et al., 1993)

ẏ(t) =

 −2y2(t)y3(t)1.25y1(t)y3(t)
−0.5y1(t)y2(t)

 , t ∈ [0, 20], y(0) =

 1
0
0.9

 , (44)

and the Van der Pol oscillator (Van der Pol, 1920)

ẏ(t) =

[
y2(t)

µ
((
1− y1(t)

2
)
y2(t)− y1(t)

)] , t ∈ [0, 6.3], y(0) =

[
2
0

]
, (45)

here in a non-stiff version with parameter µ = 1.
We first solve the three problems with the parallel IEKS on grids of sizes 30, 200, and

100, respectively for the logistic, rigid body, and Van der Pol problem, with a two-times
integrated Wiener process prior. Reference solutions are computed with diffrax’s Kvaerno5

15

Bosch, Corenflos, Yaghoobi, Tronarp, Hennig, Särkkä

0.0

0.5

1.0
y
(t

)

a. Logistic

−1

0

1

b. Rigid Body

−2

0

2

c. Van der Pol

0 10

t

−0.0001

0.0000

0.0001

y
(t

)
−
y
∗ (
t)

0 20

t

−0.01

0.00

0.01

0.0 6.3

t

−0.05

0.00

0.05

Figure 2: Trajectories, errors, and error estimates computed by the parallel-in-time solver.
Top row: ODE solution trajectories. Visually, all three test problems seem to
be solved accurately. Bottom row: Numerical errors (lines) and error estimates
(shaded area). Ideally, for good calibration, the error should be of similar magnitude
than the error estimate. The posterior appears underconfident on the logistic and
Van der Pol ODE, and reasonably confident for the rigid body problem.

solver using adaptive steps and very low tolerances τ{abs,rel} = 10−12 (Kidger, 2021; Kværnø,
2004). Figure 2 shows the resulting solution trajectories, together with numerical errors and
error estimates. For these grid sizes, the parallel IEKS computes accurate solutions on all
three problems. Regarding calibration, the posterior appears underconfident for the logistic
and Van der Pol problems as it overestimates the numerical error by more than one order
of magnitude. This is likely not due to the proposed method itself as underconfidence of
ODE filters in low-error regimes has been previously observed (Bosch et al., 2021). For the
rigid body problem, the posterior appears reasonably confident and the error estimate is of
similar magnitude as the numerical error.

Next, we investigate the performance of the parallel IEKS and compare it to its sequential
implementation. We solve the three problems with the parallel and sequential IEKS on a
range of grid sizes, with both a one- and two-times integrated Wiener process prior. Reference
solutions are computed with diffrax’s Kvaerno5 solver using adaptive steps and very low
tolerances (τabs = 10−16, τrel = 10−13). Figure 3 shows the achieved root-mean-square errors
(RMSE) for different grid sizes in a work-precision diagram. As expected, both the parallel
and the sequential IEKS always achieve the same error for each problem and grid size, as
both versions compute the same quantities and only differ in their implementation. However,
the methods differ significantly in actual runtime, as shown in Figure 4. In our experiments
on an NVIDIA V100 GPU, the parallel IEKS is always strictly faster than the sequential
implementation across all problems, grid sizes, and priors, and we observe speed-ups of
multiple orders of magnitude. Thus, when working with a GPU, the parallel IEKS appears
to be strictly superior to the sequential IEKS.

16

Parallel-in-Time Probabilistic Numerical ODE Solvers

10−10 10−8 10−6

RMSE

102

103

104

G
ri

d
si

ze

a. Logistic

10−9 10−6 10−3 100

RMSE

b. Rigid Body

10−9 10−7 10−5 10−3

RMSE

c. Van der Pol

Parallel IEKS
(IWP(1))

Sequential IEKS
(IWP(1))

Parallel IEKS
(IWP(2))

Sequential IEKS
(IWP(2))

Figure 3: The sequential and parallel IEKS compute numerically identical solutions. For
all three problems and all considered grid sizes, the sequential and parallel IEKS
achieve (numerically) identical errors. This is expected, as both versions compute
the same quantities and only differ in their implementation.

10−1

100

101

102

R
u

n
ti

m
e

[s
]

a. Logistic b. Rigid Body c. Van der Pol

10−10 10−8 10−6

RMSE

100

101

102

P
a
ra

ll
el

sp
ee

d
-u

p

10−9 10−6 10−3 100

RMSE

10−9 10−7 10−5 10−3

RMSE

Parallel IEKS
(IWP(1))

Sequential IEKS
(IWP(1))

Parallel IEKS
(IWP(2))

Sequential IEKS
(IWP(2))

Figure 4: Work-precision diagrams for the sequential and parallel IEKS-based ODE solver.
Top row: Runtime in seconds per error (lower-left is better). Bottom row: Speed-
up of the parallel over the sequential IEKS (higher is better). Accross all problems,
grid sizes, and priors, the parallel IEKS outperforms the sequential IEKS.

17

Bosch, Corenflos, Yaghoobi, Tronarp, Hennig, Särkkä

10−2

10−1

100

101

102

R
u

n
ti

m
e

[s
]

a. Logistic b. Rigid Body c. Van der Pol

10−9 10−6 10−3 100

RMSE

102

103

104

105

G
ri

d
si

ze

10−9 10−6 10−3 100

RMSE

10−8 10−5 10−2

RMSE

ImplicitEuler

KV3

KV5

IEKS(1)

IEKS(2)

EKS(1)

EKS(2)

Figure 5: Benchmarking the parallel IEKS against other common numerical ODE solvers.
Top row: Work-precision diagrams showing runtimes per error for a range of
different ODE solvers (lower-left is better). Bottom row: Errors per specified
grid size (lower-left is better). Per grid size, the closely related EKS and IEKS
solvers often coincide; KV5 achieves the lowest error per step as it has the highest
order. In terms of runtime, the IEKS outperforms both the EKS and KV5 on
medium-to-high accuracy settings due to its logarithmic time complexity.

4.3 Benchmarking the Parallel-IEKS ODE Filter

Finally, we compare the proposed method to a range of well-established ODE solvers,
including both classic and probabilistic numerical methods: we compare against the implicit
Euler method, the Kvaerno3 (KV3) and Kvaerno5 (KV5) solvers (Kværnø, 2004) provided
by Diffrax (Kidger, 2021), as well as the sequential EKS with local linearization, which is
one of the currently most popular probabilistic ODE solvers. Note that since the IEKS is
considered to be an implicit solver (Tronarp et al., 2021), we only compare to other implicit
and semi-implicit methods, and therefore neither include explicit Runge–Kutta methods nor
the EKS with zeroth order linearization (also known as EK0) in our comparison. Reference
solutions are computed with diffrax’s Kvaerno5 solver with adaptive steps and a very low
error tolerance setting (τabs = 10−16, τrel = 10−13).

Figure 5 shows the results as work-precision diagrams. For small grid sizes (low accuracy),
the logarithmic time complexity of the parallel IEKS seems to not be very relevant and the
IEKS is outperformed by the non-iterated EKS. In the particular case of the logistic ODE,
it further seems that the MAP estimate differs significantly from ODE solution and thus the
error on coarse grids is high (lower left figure). However, for larger grid sizes (medium-to-high
accuracy), the parallel IEKS outperforms both its sequential, non-iterated counterpart, as

18

Parallel-in-Time Probabilistic Numerical ODE Solvers

10−1

101

103

R
u

n
ti

m
e

[s
]

a. Logistic b. Rigid Body c. Van der Pol

102 104

Number of grid points

100

101

102

N
u

m
b

er
o
f

it
er

a
ti

o
n

s

102 103 104 105

Number of grid points

102 103 104 105

Number of grid points

ImplicitEuler

KV3

KV5

IEKS(1)

IEKS(2)

EKS(1)

EKS(2)

sIEKS(1)

sIEKS(2)

ImplicitEuler

KV3

KV5

IEKS(1)

IEKS(2)

EKS(1)

EKS(2)

sIEKS(1)

sIEKS(2)

ImplicitEuler

KV3

KV5

IEKS(1)

IEKS(2)

EKS(1)

EKS(2)

sIEKS(1)

sIEKS(2)

Figure 6: Runtimes of the ODE solvers for each grid size, and number of IEKS iterations.
While all sequential solvers demonstrate linear scaling with the number of grid
points, the parallel IEKS shows sub-linear scaling up to a certain grid size (top).
The number of IEKS iterations until convergence can vary with the grid size and
the problem, but it seems that in many cases ˜10 iterations suffice (bottom). The
sequential methods solve the ODE in one sweep.

well as the classic methods. In particular, the parallel IEKS with IWP(2) prior often shows
runtimes lower than those of the classic KV5 method, even though it has a lower order of
convergence and is an iterative method; see also Figure 6 for runtimes per grid size and for
the number of iterations performed by the IEKS. Overall, the logarithmic time complexity
of the proposed parallel IEKS appears to be very beneficial for high accuracy settings on
GPUs and makes the parallel IEKS a very competitive ODE solver in this comparison.

5. Conclusion

In this work, we have developed a parallel-in-time probabilistic numerical ODE solver. The
method builds on iterated extended Kalman smoothing to compute the maximum a posteriori
estimate of the probabilistic ODE solution, and by using the time-parallel formulation of the
IEKS it is able to efficiently leverage modern parallel computer hardware such as GPUs to
parallelize its computations. Given enough processors or cores, the proposed algorithm shares
the logarithmic cost per time step of the parallel IEKS and the underlying parallel prefix-sum
algorithm, as opposed to the linear time complexity of standard, sequentially-operating ODE
solvers. We evaluated the performance of the proposed method in a number of experiments,
and have seen that the proposed parallel-in-time solver can provide speed-ups of multiple

19

Bosch, Corenflos, Yaghoobi, Tronarp, Hennig, Särkkä

orders of magnitude over the sequential IEKS-based solver. We also compared the proposed
method to a range of well-established, both probabilistic and classical ODE solvers, and we
have shown that the proposed parallel-in-time method is competitive with respect to the
state-of-the-art in both accuracy and runtime.

This work opens up a number of interesting avenues for future research in the intersection
of probabilistic numerics and parallel-in-time methods. Potential opportunities for improve-
ment include the investigation of other optimization algorithms, such as Levenberg–Marquart
or ADMM, or the usage of line search, all of which have been previously proposed for the se-
quential IEKS. Furthermore, combining the solver with adaptive grid refinement approaches
could also significantly improve its performance in practice. A different avenue would be
to extend the proposed method to other related differential equation problems for which
sequentially-operating probabilistic numerical methods already exist, such as higher-order
ODEs, differential-algebraic equations, or boundary value problems. Finally, the improved
utilization of GPUs by our parallel-in-time method could be particularly beneficial to appli-
cations in the field of machine learning, where GPUs are often required to accelerate the
computations of deep neural networks. In summary, the proposed parallel-in-time probabilis-
tic numerical ODE solver not only advances the efficiency of probabilistic numerical ODE
solvers, but also paves the way for a range of future research on parallel-in-time probabilistic
numerical methods and their application across various scientific domains.

Acknowledgments

The authors gratefully acknowledge financial support by the German Federal Ministry
of Education and Research (BMBF) through Project ADIMEM (FKZ 01IS18052B), and
financial support by the European Research Council through ERC StG Action 757275
/ PANAMA; the DFG Cluster of Excellence “Machine Learning - New Perspectives for
Science”, EXC 2064/1, project number 390727645; the German Federal Ministry of Education
and Research (BMBF) through the Tübingen AI Center (FKZ: 01IS18039A); and funds from
the Ministry of Science, Research and Arts of the State of Baden-Württemberg. The authors
would like to thank Research Council of Finland for funding. Filip Tronarp was partially
supported by the Wallenberg AI, Autonomous Systems and Software Program (WASP)
funded by the Knut and Alice Wallenberg Foundation. The authors thank the International
Max Planck Research School for Intelligent Systems (IMPRS-IS) for supporting Nathanael
Bosch. The authors are grateful to Nicholas Krämer for many valuable discussion and to
Jonathan Schmidt for feedback on the manuscript.

Individual Contributions

The original idea for this article came independently from SS and from discussions between
FT and NB. The joint project was initiated and coordinated by SS and PH. The methodology
was developed by NB in collaboration with AC, FT, PH, and SS. The implementation is
primarily due to NB, with help from AC. The experimental evaluation was done by NB with
support from FT and PH. The first version of the article was written by NB, after which all
authors reviewed the manuscript.

20

Parallel-in-Time Probabilistic Numerical ODE Solvers

References

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore,
D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,
Y. Yu, and X. Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems,
2015. Software available from tensorflow.org.

U. M. Ascher, R. M. M. Mattheij, and R. D. Russell. Numerical Solution of Boundary
Value Problems for Ordinary Differential Equations. Society for Industrial and Applied
Mathematics, 1995. doi: 10.1137/1.9781611971231.

B. M. Bell. The iterated Kalman smoother as a Gauss–Newton method. SIAM Journal on
Optimization, 4(3):626–636, 1994.

J. Bettencourt, M. J. Johnson, and D. Duvenaud. Taylor-mode automatic differentiation
for higher-order derivatives in JAX. In Program Transformations for ML Workshop at
NeurIPS 2019, 2019.

G. Blelloch. Scans as primitive parallel operations. IEEE Transactions on Computers, 38
(11):1526–1538, 1989. doi: 10.1109/12.42122.

N. Bosch, P. Hennig, and F. Tronarp. Calibrated adaptive probabilistic ODE solvers. In
A. Banerjee and K. Fukumizu, editors, Proceedings of The 24th International Conference
on Artificial Intelligence and Statistics, volume 130 of Proceedings of Machine Learning
Research, pages 3466–3474. PMLR, 2021.

N. Bosch, F. Tronarp, and P. Hennig. Pick-and-mix information operators for probabilistic
ODE solvers. In G. Camps-Valls, F. J. R. Ruiz, and I. Valera, editors, Proceedings of
The 25th International Conference on Artificial Intelligence and Statistics, volume 151 of
Proceedings of Machine Learning Research, pages 10015–10027. PMLR, 2022.

J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula,
A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable
transformations of Python+NumPy programs, 2018.

J. Butcher. Numerical Methods for Ordinary Differential Equations. Wiley, 2016. ISBN
9781119121503.

R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud. Neural ordinary
differential equations. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc., 2018.

P. Deuflhard and F. Bornemann. Scientific computing with ordinary differential equations,
volume 42. Springer Science & Business Media, 2012.

21

Bosch, Corenflos, Yaghoobi, Tronarp, Hennig, Särkkä

J. R. Dormand and P. J. Prince. A family of embedded Runge–Kutta formulae. Journal of
Computational and Applied Mathematics, 6:19–26, 1980.

M. J. Gander. 50 years of time parallel time integration. In T. Carraro, M. Geiger, S. Körkel,
and R. Rannacher, editors, Multiple Shooting and Time Domain Decomposition Methods,
pages 69–113, Cham, 2015. Springer International Publishing. ISBN 978-3-319-23321-5.

M. J. Gander and S. Vandewalle. Analysis of the parareal time-parallel time-integration
method. SIAM Journal on Scientific Computing, 29(2):556–578, 2007. doi: 10.1137/
05064607X.

A. Griewank. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentia-
tion. Frontiers in applied mathematics. Society for Industrial and Applied Mathematics,
2000. ISBN 9780898714517.

E. Hairer, S. Norsett, and G. Wanner. Solving Ordinary Differential Equations I: Nonstiff
Problems, volume 8. Springer-Verlag, 1993. ISBN 978-3-540-56670-0. doi: 10.1007/
978-3-540-78862-1.

U. Helmke, R. Brockett, and J. Moore. Optimization and Dynamical Systems. Communica-
tions and Control Engineering. Springer London, 2012. ISBN 9781447134671.

P. Hennig and S. Hauberg. Probabilistic solutions to differential equations and their
application to riemannian statistics. In S. Kaski and J. Corander, editors, Proceedings of
the Seventeenth International Conference on Artificial Intelligence and Statistics, volume 33
of Proceedings of Machine Learning Research, pages 347–355. PMLR, 2014.

P. Hennig, M. A. Osborne, and M. Girolami. Probabilistic numerics and uncertainty in
computations. Proceedings. Mathematical, physical, and engineering sciences, 471, 2015.

P. Hennig, M. A. Osborne, and H. P. Kersting. Probabilistic Numerics: Computation as
Machine Learning. Cambridge University Press, 2022. doi: 10.1017/9781316681411.

S. Julier and J. Uhlmann. Unscented filtering and nonlinear estimation. Proceedings of the
IEEE, 92(3):401–422, 2004. doi: 10.1109/JPROC.2003.823141.

S. Julier, J. Uhlmann, and H. Durrant-Whyte. A new method for the nonlinear transformation
of means and covariances in filters and estimators. IEEE Transactions on Automatic
Control, 45(3):477–482, 2000. doi: 10.1109/9.847726.

R. E. Kalman. A new approach to linear filtering and prediction problems. Journal of Basic
Engineering, 82(1):35–45, 1960. ISSN 0021-9223. doi: 10.1115/1.3662552.

H. Kersting and P. Hennig. Active uncertainty calibration in Bayesian ODE solvers. In
Proceedings of the 32nd Conference on Uncertainty in Artificial Intelligence (UAI), pages
309–318, 2016.

H. Kersting, T. J. Sullivan, and P. Hennig. Convergence rates of Gaussian ODE filters.
Statistics and computing, 30(6):1791–1816, 2020.

22

Parallel-in-Time Probabilistic Numerical ODE Solvers

P. Kidger. On Neural Differential Equations. PhD thesis, University of Oxford, 2021.

N. Krämer and P. Hennig. Stable implementation of probabilistic ODE solvers.
arXiv:2012.10106, 2020.

N. Krämer and P. Hennig. Linear-time probabilistic solution of boundary value problems. In
A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, editors, Advances in Neural
Information Processing Systems, 2021.

N. Krämer, N. Bosch, J. Schmidt, and P. Hennig. Probabilistic ODE solutions in millions of
dimensions. In K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu, and S. Sabato,
editors, Proceedings of the 39th International Conference on Machine Learning, volume
162 of Proceedings of Machine Learning Research, pages 11634–11649. PMLR, 2022.

N. Krämer, J. Schmidt, and P. Hennig. Probabilistic numerical method of lines for time-
dependent partial differential equations. In G. Camps-Valls, F. J. R. Ruiz, and I. Valera,
editors, Proceedings of The 25th International Conference on Artificial Intelligence and
Statistics, volume 151 of Proceedings of Machine Learning Research, pages 625–639. PMLR,
2022.

A. Kværnø. Singly diagonally implicit Runge–Kutta methods with an explicit first stage.
BIT Numerical Mathematics, 44(3):489–502, 2004.

J.-L. Lions, Y. Maday, and G. Turinici. Résolution d’EDP par un schéma en temps “pararéel”.
Comptes Rendus de l’Académie des Sciences - Series I - Mathematics, 332(7):661–668,
2001. ISSN 0764-4442.

C. J. Oates and T. J. Sullivan. A modern retrospective on probabilistic numerics. Statistics
and Computing, 29, 2019.

G. Papamakarios, E. Nalisnick, D. J. Rezende, S. Mohamed, and B. Lakshminarayanan.
Normalizing flows for probabilistic modeling and inference. Journal of Machine Learning
Research, 22(1), 2021. ISSN 1532-4435.

K. Pentland, M. Tamborrino, D. Samaddar, and L. C. Appel. Stochastic parareal: An
application of probabilistic methods to time-parallelization. SIAM Journal on Scientific
Computing, 0(0):S82–S102, 2021. doi: 10.1137/21M1414231.

K. Pentland, M. Tamborrino, T. J. Sullivan, J. Buchanan, and L. C. Appel. GParareal: a
time-parallel ODE solver using Gaussian process emulation. Statistics and Computing, 33
(1):23, 2022. ISSN 1573-1375. doi: 10.1007/s11222-022-10195-y.

H. E. Rauch, F. Tung, and C. T. Striebel. Maximum likelihood estimates of linear dynamic
systems. AIAA Journal, 3(8):1445–1450, 1965. ISSN 1533-385X. doi: 10.2514/3.3166.

M. S. Grewal and A. P. Andrews. Kalman filtering. 2014. doi: 10.1002/9781118984987.

S. Särkkä and A. F. Garćıa-Fernández. Temporal parallelization of Bayesian smoothers. IEEE
Transactions on Automatic Control, 66(1):299–306, 2021. doi: 10.1109/TAC.2020.2976316.

23

Bosch, Corenflos, Yaghoobi, Tronarp, Hennig, Särkkä

S. Särkkä and L. Svensson. Bayesian Filtering and Smoothing. Institute of Mathematical
Statistics Textbooks. Cambridge University Press, 2023. ISBN 9781108912303.

M. Schober, S. Särkkä, and P. Hennig. A probabilistic model for the numerical solution of
initial value problems. Statistics and Computing, 29(1):99–122, 2019. ISSN 1573-1375.
doi: 10.1007/s11222-017-9798-7.

L. F. Shampine. Some practical Runge–Kutta formulas. Mathematics of Computation, 46
(173):135–150, 1986. doi: https://doi.org/10.2307/2008219.

J. Skilling. Bayesian Solution of Ordinary Differential Equations, pages 23–37. Springer,
1992. ISBN 978-94-017-2219-3. doi: 10.1007/978-94-017-2219-3 2.

Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-based
generative modeling through stochastic differential equations. In International Conference
on Learning Representations, 2021.

W. Su, S. Boyd, and E. J. Candès. A differential equation for modeling Nesterov’s accelerated
gradient method: Theory and insights. Journal of Machine Learning Research, 17(153):
1–43, 2016.

S. Särkkä. Unscented Rauch–Tung–Striebel smoother. IEEE Transactions on Automatic
Control, 53(3):845–849, 2008. doi: 10.1109/TAC.2008.919531.

S. Särkkä and A. Solin. Applied Stochastic Differential Equations. Institute of Mathematical
Statistics Textbooks. Cambridge University Press, 2019. doi: 10.1017/9781108186735.

F. Tronarp, H. Kersting, S. Särkkä, and P. Hennig. Probabilistic solutions to ordinary
differential equations as nonlinear Bayesian filtering: a new perspective. Statistics and
Computing, 29(6):1297–1315, 2019.

F. Tronarp, S. Särkkä, and P. Hennig. Bayesian ODE solvers: The maximum a posteriori
estimate. Statistics and Computing, 31(3):1–18, 2021.

B. Van der Pol. Theory of the amplitude of free and forced triode vibrations. Radio Review,
1:701–710, 1920.

P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson,
K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey,
İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman,
I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa,
P. van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms
for Scientific Computing in Python. Nature Methods, 17:261–272, 2020. doi: 10.1038/
s41592-019-0686-2.

F. Yaghoobi, A. Corenflos, S. Hassan, and S. Särkkä. Parallel iterated extended and
sigma-point Kalman smoothers. In ICASSP 2021 - 2021 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 5350–5354, 2021. doi:
10.1109/ICASSP39728.2021.9413364.

24

Parallel-in-Time Probabilistic Numerical ODE Solvers

F. Yaghoobi, A. Corenflos, S. Hassan, and S. Särkkä. Parallel square-root statistical linear
regression for inference in nonlinear state space models. arXiv:2207.00426, 2023.

25

	Introduction
	Numerical ODE Solutions as Bayesian State Estimation
	Gauss–Markov Process Prior
	Observation Model and Data
	Discrete-Time Inference Problem
	Practical Considerations for Probabilistic Numerical ODE Solvers

	Parallel-in-Time Probabilistic Numerical ODE Solvers
	Parallel-Time Exact Inference in Affine Vector Fields
	Parallel-Time General Bayesian Filtering and Smoothing
	Parallel-Time Linear Gaussian Filtering in Square-Root Form
	Parallel-Time Linear Gaussian Smoothing in Square-Root Form

	Parallel-Time Approximate Inference in Nonlinear Vector Fields
	Globally Linearizing the State-Space Model
	Iterated Extended Kalman Smoothing

	Computational Complexity of the Time-Parallel Probabilistic ODE Solver

	Experiments
	Runtime of a Single Extended Kalman Smoother Step
	The Parallel-IEKS ODE Filter Compared to its Sequential Version
	Benchmarking the Parallel-IEKS ODE Filter

	Conclusion

