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Abstract

Cyclic peptides offer strong therapeutic potential due to their enhanced binding
affinity and protease resistance, but their design remains challenging due to limited
structural data and existing models that consider only ground states rather than
conformational ensembles. We introduce CYCLOPS, a model-agnostic framework
that conditions Boltzmann generators to sample valid cyclic conformations with-
out retraining. To address cyclic peptide data scarcity, we reformulate design as
conditional sampling over linear peptides via chemically informed loss functions;
CYCLOPS encompasses 18 inter-amino acid crosslinks across 6 diverse chemical
reactions and leverages tetrahedral geometry constraints through 6 interatomic
distances defining a kernel density-estimated joint distribution from MD simula-
tions. It is readily extensible to many more chemistries, too. We demonstrate the
versatility of CYCLOPS across two distinct generative model architectures—the
Sequential Boltzmann Generator [Tan et al.,|2025al] and the Equivariant Continu-
ous Normalizing Flow++ [Klein and Noé| |2024]]. CYCLOPS successfully biases
sampling toward chemically plausible macrocycles in both cases.

Figure 1: Cyclization of a linear peptide at two different stapling sites performed through CYCLOPS
conditioning of a Boltzmann Generator.

1 Introduction

Cyclic peptides offer therapeutic advantages including protease resistance, enhanced binding affinity,
and, in some cases, improved membrane permeability, through intramolecular crosslinking [Craik,
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Figure 2: Schematic of the CYCLOPS framework: (A) Automatic identification of cyclization sites
on peptide chains, and (B) Computation of cyclization probability via tetrahedral KDE fitted to
toy model simulations and evaluated on four shared atoms. Resonant losses between chemically
equivalent atoms within the same amino acids are set to their hard minimum prior to reweighting.

2006l [Zorzi et al., 2017, Hayes et al., [2021} [Mizuno-Kaneko et al., [2023| Ji et al., 2024]. Recent
generative approaches for cyclic peptide design [L1 et al., 2025| Rettie et al.,|2025, [Zhou et al., 2025,
Zhu et al.,|2025]] face several challenges: they only exploit a limited set of cyclization chemistries
[Bechtler and Lamers), 2021]], do not fully account for conformational flexibility and complex linkage
geometric constraints, consider average conformations rather than the conformational ensembles
peptides adopt in solution [Huang and Naul [2003], or require retraining to perform their conditioning
[Jiang et al.,|2025]]. Since conformational dynamics govern binding [Buch et al., 201 1f], and peptides
exhibit more disorder than proteins [Wang et al., [2022al |Ho and Dill, |2006], accounting for the
peptide’s conformational Boltzmann distribution may be advantageous. Boltzmann generators (BGs)
constitute a class of generative model which learn to sample from conformational ensembles by
mapping noise to approximate data points. BGs fall into two categories: discrete normalizing flows
(DNFs), which apply a fixed number of invertible transforms f, ' (z0) = fi. 911 o---of 1\7/,191\1 (o),
and continuous normalizing flows (CNFs), which integrate a neural ordinary differential equation

U(gt) (z;) = dx/dt over t € [0, 1], with g ~ N(0, I), to arrive at a final sample [Ho et al., 2019, |Chen
et al., [2018]]. Both DNFs and CNFs have shown promise for efficient conformational Boltzmann
sampling [Tan et al.,|2025al Klein and No¢, |2024]]. However, conditional Boltzmann-generator-based
peptide design remains largely unexplored.

Our contributions: This work introduces a Cyclic Loss for the Optimization of Peptide Structures
(CYCLOPS). (1) CYCLOPS is the first framework to condition Boltzmann generators for cyclic
peptide design, generating all-atom cyclic conformations by conditioning the Boltzmann ensemble.
(2) CYCLOPS overcomes limited cyclic peptide data by leveraging available linear peptide MD
simulations with chemically informed geometric constraints on 4 canonical atoms shared with the
crosslinks, incorporating 18 cyclization strategies via KDE-fitted tetrahedral conditioning from small
“toy” MD simulations. (3) CYCLOPS conditions any Boltzmann generator architecture without
retraining—demonstrated on both DNF and CNF models via latent space simulated annealing and
loss-based flow guidance, respectively.

2 Methods

We consider structure conditioning in terms of a constraint defining function (CDF), whose minima
represent samples which closely approximate the geometric constraints of cyclicality. The Boltzmann
micro-canonical ensemble yields an ideal CDF: &;(z) = —kpT log p(z|C;), where C; is the event
that the chain is subject to the constraints of a particular cyclization and x is the peptide’s conforma-
tionﬂ Our insight is that a chain’s degree of cyclicality under a given cyclization chemistry can be
characterized by four atoms it shares with a toy model of the linkage in question (see Appendix [A.6]
for the chemical composition of these models); these four atoms form a tetrahedron whose side
lengths capture the spatial relationships required for cyclization, given a sufficiently small linkageﬂ

Tiang et al.| [2025]] consider a similar formulation, though p(z) is implicitly learned during training. This
makes the framework not model agnostic and represents a significant limitation.

2Sufficiently small can be defined as small enough that atoms outside of this tetrahedron do not interact with
the linkage’s virtual atoms. This represents a significant limitation.



The toy models of each cyclization may then be simulated via Langevin molecular dynamics, but
how can the resulting data points be used to approximate p(x|C;)? One approach is to use generative
models, which have become increasingly popular for density estimation [Ho et al., 2019} [Dinh et all,
[2016]. However, these are prohibitively slow for our conditioning. As such, we employ Kernel
Density Estimation (KDE) [Rosenblatt, [1956] [Parzen} [T962]], to convert our data to approximate distri-
butions (see Appendix [A.2]for details). However, real peptides often admit multiple cyclizations. We

therefore desire an expected cyclic loss Leye = va P(C;|z)E&;(x) where N is our number of allowed
cyclizations. We make the maximum entropy assumption that P(C;|z) x exp(—a&;(z)) : a > 0
(see Appendix [A3] for a proof), which has the convenient property of becoming a soft minimum
if « >> 1/kgT. We may now sample from valid cyclic conformations, and look at the frequency
with which various cyclizations are chosen to determine the best ways to cyclize a given peptide
whilst minimally perturbing its native Boltzmann distribution. The functionality of the CYCLOPS
framework is summarized in Fig. 2]

3 Results

To test CYCLOPS DNF conditioning, we perform simulated annealing of latent space vectors using
the Sequential Boltzmann Generator (SBG) Tarflow architecture 2024]] of [Tan et al.
[20254], without their post-generation Langevin annealing (see Appendix [A.4|for details). Simulated
annealing of the CYCLOPS loss produces valid cyclic structures from a Boltzmann generator trained
only on linear peptide data, as demonstrated across three distinct sequences (Fig. [3).

A) Conditional Modified 2D Chemical B) Conditional Modified 2D Chemical
Samples 3D Structure Graph Samples 3D Structure Graph

Bl f*‘"

Q) Conditional Modified 2D Chemical
Samples 3D Structure Graph
s O
- b ‘ " LS SRV (Er\ ’i\( A
V':(fé J o, *E)
@ ‘F‘.;"- ,)5()—--'{ &&
2 ¥, 5

Figure 3: Conditional samples from CYCLOPS simulated annealing using SBG for peptides (A)
PVAAKKIKW, (B) CCAAAGACEP, and (C) Chignolin: (/eft) generated conformations with cycliza-
tion sites in pink, (center) 3D models with added cyclization atoms, (right) 2D skeletal representations.

The conditional samples correspond to valid 3D structures when cyclization atoms are added with
correct bond topology. Only the added atoms are relaxed using force field gradient descentEl The
conformations in Fig. 4] demonstrate genuine latent space exploration, as pre- and post-optimization
structures differ substantially. We test CYCLOPS’s ability to condition CNFs using the Equivariant

3Good initial guesses must be provided, however, as gradient descent is prone to kinetic traps.



Figure 4: Conformational changes before and after £y simulated annealing demonstrate latent space
exploration for sequences: (A) PVAAKKIKW, (B) CCAAAGACEP, (C) Chignolin.
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Figure 5: Guided flow conditioning vs. unconditional generation; in both cases, samples shown
represent the four lowest CYCLOPS loss conformations for peptides: (A) AAAA, (B) AAAAAA,
and (C) WLALL. Pink atoms indicate CYCLOPS tetrahedron atoms.

Normalizing Flow++ (ECNF++) of Klein and Noé|[2024], Tan et al.|[2025a]]. We generate samples,
filter out mixed chirality conformations, and select those with lowest L,.. Results in Fig. |§| show

guided flow conditioning plus filtering (left) versus just filtering (right). Low Ly corresponds to
cyclic conformations, with flow guidance showing additional improvement. However, this approach
yields lower sample quality, with C-terminal caps frequently separating from the molecule and bulky
sidechains becoming distorted during conditioning. This suggests head-to-tail amide cyclization
drives the flow out-of-distribution (see Appendix[B.2]for further discussion). Nevertheless, CYCLOPS
effectively drives conformational sampling toward cyclic structures.

4 Conclusion

We present CYCLOPS, the first model-agnostic framework that leverages linear peptide data to design
cyclic structures across diverse linkages formed through complex cyclization chemical reactions. Our
tetrahedral geometry approach, using KDE-fitted loss functions from toy linkage MD simulations,
successfully conditions Boltzmann generators to produce valid cyclic conformations.
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A Technical Details and Supplementary Material

A.1 Problem Formulation

A significant bottleneck in applying machine learning to science is the availability of large, high-
fidelity, and well-balanced datasets. This is also true of cyclic peptide design. Therefore, an essential
question is how one can identify cyclizations of a linear chain that do not perturb its ensemble
properties enough to affect its binding to a particular protein target. Moreover, can this be done
without additional cyclic-peptide MD simulations or per-cyclization retraining? This may be reframed
as a problem of statistical conditioning. First, we consider what a peptide’s linear conformations
reveal about (1) its binding and (2) its possible cyclizations. (1) is well-studied in the case of
structured targets. It has long been known that a protein’s structure is linked to its function. Hence,
conformational motifs that are preserved across most of the conformational ensemble of the bound
state play a crucial role in the binding interactions to a protein target. In fact, motif-constrained
design has become a standard approach for developing protein binders [[Yim et al., 2024| [Ingraham
et al.| 2023| Trippe et al.,[2022| [Wang et al., 2022b]. Yet (2) remains largely underexplored.

Consider the random variables S, a possible conformation of a linear amino acid chain, and S, a
possible cyclic conformation in any possible linkage, both implicitly conditioned on a particular
initial sequence of amino acids. Of course, the distribution of .S is not completely knowable given
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s|C

Figure 6: Schematic representation of peptide conformational spaces showing linear Boltzmann
space (.9), cyclic space (C), and bound (B) regions, with S| B, C representing the desired sampling
target. Note that S|B is equivalent to B, because a state can only be bound if it is already a valid
conformation of the chain. Similarly, it is trivial to arrive at cyclizations which completely perturb a
linear chain and whose constraints are never approximately satisfied. Thus C is not a subset of S.

the probability density function of S alone, since the chain never truly exists in a cyclic conformation;
at no point do any of the bonds involved exist. Therefore, we approximate this as a problem of
statistical conditioning.

Intuitively, nearly cyclic conformations—structures which almost satisfy typical bonding con-
straints—appearing with significant probability density suggest that the linear chain may be amenable
to a given cyclization. Let C' be the event the chain is approximately cyclic, i.e. the constraints of a
particular linkage are almost satisfied. The problem of cyclic peptide design then becomes sampling
from valid linear conformations conditioned on both binding feasibility and cyclizability, as shown in
the inner purple region of Fig.[6] We therefore seek to modulate the landscape of .S to increase the
probability of sampling approximately cyclic peptides, ideally whilst preserving the dynamics of a
binding region or motif. To sufficiently limit the scope of this paper, we shall principally consider
S|C, as conditioning on binding is somewhat well studied.

A.2 Kernel Density Estimator Implementation

Kernel density estimators are defined as

1 o
PEH) = - > Kn(@-9) (M
S€D
and
Ku(Z) = det(H)" 2K (H™Y27) 2)

where K is our kernel, D contains our simulated tetrahedral distances for the linkage in question, H
represents a positive definite bandwidth matrix and det(M) denotes the determinant of matrix M. In
this instance, a kernel is a positive function which integrates to one. We allow our data to be vectors
of 6 select interatomic distances which comprise a tetrahedron.

For ease of optimization, we additionally require K be unimodal, spherically symmetric, centered on
the origin, and smooth [Chac6n and Duong|, 2018, with heavy tails to ensure finite values once the
log is applied and non zero gradients far from the data. Thus the Cauchy distribution
T (4Lt
T) = ( 2 2) o 3)
(m (L[| Z]%))

is ideal for the reasons it is normally difficult to work with. We fit estimators with a bandwidth of
0.64A « I. Ideally, modern multivariate kernel smoothing techniques, like the multivariate extension
of the method of [Sheather and Jones| [1991]] proposed by [Chacén and Duong| [2010], should be
used; due to the non-triviality of developing a Python implementation, we leave this to future
work. For PyTorch compatible kernel density estimation, where loss calculations are automatically




differentiable and benefit from GPU acceleration, we use the implementation provided by Kladny
[2025]]. However, CYCLOPS should not only compute Ly (z), but also seamlessly handle the
identification of possible cyclizations. This functionality is implemented largely through the MDTraj
Python package [McGibbon et al., 2015]].

A.3 Proof of Maximum Entropy Reweighting

By Bayes rule:
P(Cilz) o p(z]Ci) P(Cy) O]
If one has a plethora of MD trajectories for diverse chains, one could compute P(C;) =
> ses. s) [ P(C;|z, s)p(x|s)dz where Sy is the set of all amino acid sequences. As there is

no such data w1dely avallable yet, we make the maximum entropy assumption that P(C;) is uniform
over its support. By &;(x) = kpT log p(x|C;), we get

P(Cilz) o< exp(=&i(x)/kpT) )

Note that the standard exponential maximum entropy result [Dowson and Wraggl |1973|] does not apply
here, since we are computing, rather than constraining, our mean. If we decouple the distribution
temperature, Ty, from that of each &;, notated T, we may define

exp(—a&;(z)) -
Sies, exp(—a&i(z)) T 1/kpTa (6)

If « is sufficiently large, this prevents optimal structures from being an unphysical superposition of
cyclizations. Hence we define

Pa(Ci|x) =

N—-1
SoftMing ([£o, ... En—1]) = Y Pu(Cil[€0, - En—1])E; (7
i=0

This is tantamount to renormalization, given a set of energies, according to what their probabilities
would have been if generated with temperature 7};. In practice, we take kg = 1 and a = 3.

A4 Model-Agnostic Conditioning

Given our cyclic loss Ly, how do we condition Boltzmann generators without retraining? A universal
method is to optimize over model latent space, searching for conformations which minimize our
CDF [Abdin and Kim| |2024}, No€ et al., 2019].. If the underlying network is differentiable, one could
use a stochastic gradient descent-based optimizer, like ADAM [Kingma and Bal 2014]]. A strategy
without this requirement, however, is simulated annealing, which has already seen success in cyclic
peptide design [Zhu et al.,2025]). This is a probabilistic optimization algorithm inspired by annealing
in metallurgy, where a material is heated and then slowly cooled to reach an energetic minimum (a
highly ordered crystal structure). Here, our system’s “energy” is some function of our state we seek
to minimize. As illustrated in Alg.[I} simulated annealing involves sequentially updating some state
x4 by proposing a new state x’, computing the difference between their energies, and switching states
as a function of some gradually cooling temperature and the change in energy. As the temperature
cools, the algorithm gets more greedy, therefore modulating between exploratory and exploitative
behavior as it runs its course. Thus it is not as prone to local minima as other optimization algorithms
if well tuned [[Press et al., [2002]].

Simulated annealing is, by nature, suited to discrete optimization. We adapt this to our continuous
usecase by assigning the system a velocity r; at each timestep, which then determines the radius of
a hypersphere from which a proposal state is sampled from. Inspired by the relationship between
temperature and mean particle velocity, we allow r; to scale with the square root of the ratio of the
current to initial temperature. Since the probability of switching between states depends directly on
AFE /Ty, care must be taken to pick an appropriate temperature; too large, and the system will “melt,”
switching between states with no regard for their energy. Too small, and the system will collapse
into whatever minimum is most proximal to its initial state. We therefore set an appropriate 7j based
on a calculated mean absolute initial A E, which is then scaled by a user set hyperparameter x that
determines the starting switching probability. We then exponentially cool the simulation to zero
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Algorithm 1: Generic Simulated Annealing

Input: Number of steps Nyep, initial temperature Ty, cooling schedule Cool(-, -), acceptance
probability function Pjecep (-, -), objective function E(-)

Qutput: Final state z; after simulated annealing

Initialize: Sample initial state xg ~ ¢(-);

Ty 4+ To;

t<+ 0;

while ¢ < Ny, do

Generate proposal state: 2’ ~ Proposal(x¢, T});

Compute energy difference: AE + E(x') — E(x;);

Compute acceptance probability: paccept <= Paccept(AE, T});

Sample u ~ Uniform(0, 1);

if u < puccepr then

|z a2’ // Accept proposal
else
|z xy s // Reject proposal
end
t+—t+1;
Update temperature: T3 +— Cool(T3,t);
end
return x;;

by multiplying the previous temperature at each timestep by a constant A < 1 to determine its new
temperature; this is so that the system is cooled sufficiently slowly, which, given enough steps, helps
the algorithm find a global minimum. Our specific implementation is shown in Alg.[2] In practice,
we set temperature determining & to 2, cooling rate A to 0.995, and define our objective function
E(-) = Leyc(-). It may be advantageous to construct the objective function more cleverly, such that
it considers additional desiderata. This may include binding motif preservation or OpenMM-based
conformational energy.

For continuous normalizing flows, direct latent optimization can be prohibitively slow. Instead, one
can guide a CNF to sample from an approximate conditional posterior. In its simplest incarnation,
this takes the form of Bayes rule [|[Chung et al.| 2022} [Jiang et al.| 2025]]:

Va, log pe(24|C) o< Va, log ps(x4) + Va, log pe(Clay) (®)

In many instances, the connection between z; and C' must be learned, which can be challenging;
in these cases, it is preferable to construct a differentiable CDF for the condition in question [Song
et al., [2023]]. For denoising diffusion probabilistic models [Ho et al., 2020]-since CDFs are naturally
defined over the final structure space rather than the noisy intermediate states—we can employ the
following approximation

. 1 _

21(my) = Blwq|z] = ﬁ(xt + (1= &)V, logp(zy)) 9)
where ¢ : ¢ € [0,1] — (0, 1] is some scheduler, & =[], 5.y Ss» and Seval is the set of discrete
evaluation timesteps in (0, 1) [Ho et al., 2020, [Komorowska et al., [2025]]. This has the intuitive
explanation of linearly interpolating between the current state and the final state based on the present
vector field of the neural ODE to arrive at an expected output. Thus, we get:

Va, logp(Clzy) = Vu, logp(C|E1(xt)) = =V, logexp Leye (Z1(x1)) = =V, Leye (T1(x1))
(10)
where L. enforces C at t = 1. Since diffusion is effectively optimal transport flow matching [Gao
et al.| 2024] we construct the heuristics:

78 = 7 (20) — W4, Loye (@1(22)) (11

“This is only rigorously true if the diffusion uses DDIM sampling [Song et al.l 2020] and the flow matching
ODE is solved with Eulerian integration. We direct the reader to|Gao et al.|[2024] for more details.
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Algorithm 2: Batch Simulated Annealing for Chemical Loss Optimization

Input: Number of steps Vg, batch size B, number of atoms Nyom, initial step size rg, cooling
rate A € (0, 1], initial temperature scaling x, objective function E(-)
Output: Final batch of states Sgpy € RBXNuonx3
Initialize temperature:;
Sample initial batch for calibration: Scgp ~ N (0, T)B* Naomx3,
Generate proposal batch: S, ., < Scaib + 70 - UnitSphere(B, Nyom X 3);
Compute energy differences: AEcyin < E(SL ) — E(Scaiib);
Set initial temperature: Tp < & - mean(|AE¢b|);
Initialize main algorithm:;
Sample initial batch: S ~ A/(0, T) B> Nuonx3;
St — So;
t<+ 0;
e« 1078 // Prevent division by zero
while ¢ < N, do
Update temperature: T; < T - Af;
Update step size: ¢ < 70 - \/1t/To;
for each sample v =1,..., B do
Generate proposal: s} ; <— s;; + r; - u; where u; ~ UnitSphere(Nyom X 3);
Compute energies: Eoq < E(s¢ ), Few < E(s;);
Compute energy difference: AFE; < Fyew — Fow;
-1
Compute acceptance probability: paccept,i < (1 + exp ( %)) ;
Sample u; ~ Uniform(0, 1);
if u; < DPaccept,i then

| Sty1i ¢St // Accept proposal
else
| St41i ¢St // Reject proposal
end
end
t+—t+1;
end
return Sy, ;
d1(we) = (1= )7 (20) + 2. (12)

where w > 0 represents our conditioning strength; greater values will help ensure the condition is
satisfied, but will contribute to lower sample quality. Additionally, by the chain rule:

. 01 .
thccyc(xl(mt)) = aixlvilﬁcyc(xl) (13)
Tt
iy o

oo = (10— +1 (14)

Komorowska et al.{[2025] note that this comprises of an easy to compute gradient V, Lyc(£1) and an
expensive Jacobian matrix 317? /Ox;, which can be empirically ignored (set to 0). Thus, CYCLOPS
provides a unified framework for conditioning any all-atom Boltzmann generator toward diverse cyclic

peptide conformations without retraining. This can be done in all cases via simulated-annealing-based
latent space optimization, or flow guidance if working with a CNF.

A.5 Boltzmann Generator Details

Conditioning is only as good as the underlying model. As such, we begin by discussing the details of
our Boltzmann generators. We approximately follow the training procedures enumerated in|Tan et al.
[2025a] to train our models, with the exception of the energy W, distance-based early stopping and
the restriction of our training set to the first 100,000 frames present in the MD simulation. This is
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Table 1: Training Data and Architecture Details

Training Set Details

Type Sequence Params  Epochs
T(K) Size(Frames) Data Src.
SBG GYDPETGTWG 340 4.6M ‘Wang et al.|[2023] 114M 80
(Chignolin)

SBG PVAAKKIKW 300 480K Zhu|[2021] 114M 300
SBG CCAAAGACP 300 480K Zhu|[2021] 114M 300
ECNF++ AAAA 300 10M Schopmans and Friederich|[[2025]] 2.3M 10
ECNF++ AAAAAA 300 10M Schopmans and Friederich|[2025] 2.3M 10
ECNF++ WLALL 300 100K Scherer et al.|[2015] 2.3M 1000

Table 2: Training Details and Computational Resources

Type Sequence Batch Size (cumulative) Number of GPUs  Total GPU Hours
SBG GYDPETGTWG 2048 8 3512
(Chignolin)
SBG PVAAKKIKW 2048 8 304.6
SBG CCAAAGACP 1024 4 241.2
ECNF++ AAAA 2048 4 359
ECNF++ AAAAAA 1024 4 81.2
ECNF++ WLALL 1024 8 165.6

because we do not perform importance-based annealing after generation, so our underlying model
must ideally be more robust. We perform no such annealing to avoid the costs associated with
SDE solvers. As substantially larger training sets are used, we reduce the maximum number of
epochs depending on the number of samples. We employ the Chignolin TarFlow [Zhai et al.| [2024]]
architecture, as used by |Tan et al.|[2025a]], to study DNFs (termed SBG for simplicity), and ECNF++,
an improved version of Klein and Noé| [2024]’s TBG, to study CNFs. As large MD trajectories
are very expensive to simulate, we use those provided in the literature when possible. This notably
includes ab initio Chignolin at DFT level [Wang et al.| 2023}, classical MD trajectories across diverse
sequences [Zhu, |[2021]], and alanine peptides of various lengths [[Schopmans and Friederichl 2025].
Training data and architecture specifics are provided in Table[I] while training implementation details
and resources consumed are included in Table

A.6 Linkage Simulation and Fitting Details

CYCLOPS relies on a knowledge of the approximate joint distributions of the edge lengths of a
tetrahedron which encodes the geometry of a given linkage. We must therefore simulate the toy
models of each of these linkages. In all cases, this was performed with the OpenMM python package
[Eastman et al.| 2013]] with initial configurations generated via PACKMOL Martinez et al.| [2009].
Forces were generated via the Amberff14SB forcefield [Maier et al.,|2015] and the TIP3 water model
[Jorgensen et al.,[1983]]. Molecules were parameterized via SMIRNOFF [Mobley et al., 2018]] using
OpenFF [Qiu et al.| 2021} Boothroyd et al., 2023, with volume calculations handled by CCTK
[Wagen and Kwan| [2020]]. Simulation code is adapted from |Wagen|[2024]]. Each small molecule was
simulated for 5 ns on one NVidia A100-80GB VRAM GPU over 10 seeds with a step size of 1 fs at
300K and with a friction coefficient of 1 ps~'. The first nanosecond of each simulation was discarded
for equilibration, leaving a total effective simulation time of 40 ns. The molecule used to model each
linkage constraint is shown in Fig. [/} along with the atoms used to define the tetrahedra on which the
KDE:s are fit. Given the small size of each system, we observe that this was quite computationally
inexpensive.

The joint distributions of the six distances defined by the four specified atoms (forming the vertexes
of the tetrahedron) were then fit with a KDE with a bandwidth of 0.64A * L Ideally, modern
multivariate kernel smoothing techniques, like the multivariate extension of the method of |Sheather
and Jones| [1991]] proposed by |(Chacén and Duong|[2010]], should be used; due to the non-triviality of
developing a Python implementation, we leave this to future work. For PyTorch compatible kernel
density estimation, where loss calculations are automatically differentiable and benefit from GPU
acceleration, we use the implementation provided by Kladny|[2025]]. However, CYCLOPS should
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Figure 7: Schematic of the toy models used to fit KDEs for each cyclization chemistry. Shown
are: (A) amide bond cyclization model, (B) disulfide bond cyclization model, (C) lysine—arginine
cyclization model, (D) lysine—tyrosine cyclization model, (E) carboxyl—carboxyl cyclization model,
and (F) cystine—carboxyl cyclization model. The atoms used to fit the tetrahedral KDE are highlighted
in yellow. Note that these need not correspond to atoms of the same species after the chemistry
is applied, highlighting the versatility of CYCLOPS. For instance, the nitrogens of (E) initially
corresponded to carboxyl oxygens in the linear peptide, formed of canonical amino acids.
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Figure 8: Box and whisker plot of the distribution of the CYCLOPS cyclic losses of 50 random sam-
ples before and after simulated annealing for representative peptides. In all cases, simulated annealing
significantly changes the distribution (p < 0.001 represented by ***, two-sample Kolmogorov—
Smirnov test). All mean-to-mean differences between pre- and post-annealing distributions are
significant up to 3 decimal places under a permutation test with 10,000 random permutations.

not only compute L.y, but also seamlessly handle the identification of possible cyclizations. This
functionality is implemented largely through the MDTraj Python package [McGibbon et al.l 2013].
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B Additional Experimental Results

B.1 Simulated Annealing
B.1.1 Statistical Validation of Loss Reduction

We examine not only individual samples produced by DNF CYCLOPS conditioning, but also the
effects this has on sample distributions. As shown in Fig. 8| for all peptides used, CYCLOPS
annealing guides samples toward statistically significant lower values of L. It should be noted
that most of these samples do not correspond to valid cyclic peptides: in practice, we find that only
about 10% of samples in each case do not have clashes. This sampling paradigm—generating many
candidates and selecting the best—is ubiquitous across protein generative Al, where the power lies
not in perfect individual samples but in the ability to rapidly explore chemical space and identify
top-performing designs. Much of this, we observe, has to do with the aforementioned assumption
of sufficiently small linkage chemistries being violated. For example, the inter-carboxyl benzene-
ring-based chemistry shown in Fig.[/|E) is large enough to interact with atoms of the peptide chain,
which is capped by the tetrahedral vertices. Unfortunately, we are unaware of an elegant solution to
this problem; the addition of virtual atoms to a model’s chemical graph is likely to cause significant
issues, since each network has only learned a singular topology. Furthermore, only one universally
transferable Boltzmann generator exists [Tan et al.| [2025b]], and it is trained on exclusively linear
trajectories. As such, we adhere to the previously described approach: generate many samples and
eliminate the problematic ones. Clashes are also observed, however less frequently, in regions far
from the linkage since conditioning drives latents somewhat out of distribution by definition.

B.1.2 Latent Space Exploration and Cyclization Preference Shifts

As seen in Fig. 0] DNF-simulated annealing appears to explore prior space since the distribution
of finally chosen cyclizations differs from that of the smallest loss before annealing. In the case of
PVAAKKIKW and CCAAAGACEP, this involves changing the most frequent smallest loss. This is
also apparent on a sample-wise level in Fig. 4] which shows the pre- and post-conditioning structures
of the samples from Fig.[3] All together, this suggests that the loss minimization observed in Fig. [§]
results from genuine latent space exploration rather than simply refining the initially generated
structure.

B.1.3 Chemistry-Restricted Cyclization Analysis

The CYCLOPS framework trivially enables specific cyclization chemistries to be removed from
consideration, which is useful when a particular cyclization is difficult to form or is prohibited.
Yet it also yields insights into the effect of P(C;|z) (our exponential reweighting) on our loss
minimization. Intuitively, the fewer allowed cyclizations, the greater the post-conditioning losses
should be; fewer considered cyclizations means fewer options for the framework when annealing
a given prior sample. As such, we condition DNF generation of the peptide chains used in Fig. 3
albeit restricted to just head-to-tail amide bonds, as this cyclization is common to all peptides. This
provides a useful sanity check: if this distribution of H2T-restricted L, is generally greater than
that of all cyclizations, this suggests our CYCLOPS annealing protocol may correspond to valid
cyclizations and that post annealing distributions of L., may reveal how amenable a peptide is to the
considered cyclizations. If, however, the underlying Boltzmann generator is not trained well, such
that it produces structures with little correspondence to valid conformations, we would expect these
distributions to be somewhat similar, as optima will be unrestrained by what is physically possible.
Fortunately, the expected distinction between restricted and unrestricted cyclization is observed in
Fig.[I0] For all tested peptides, restricting loss minimization to just H2T amide bonding significantly
increases the mean of the distribution and significantly alters the distribution itself under a two-sample
Kolmogorov-Smirnov test.

B.1.4 Optimization Dynamics and Convergence

While ablation and simulated annealing hyperparameter studies are left to future work, we do include
a brief examination of the latent dynamics during the optimization process below. Fig. [IT]displays the
progression of L. values throughout the 2000-step simulated annealing process for both unrestricted
and head-to-tail restricted cyclizations. Notably, the loss values appear to plateau in the latter stages
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Figure 9: Prior and posterior distributions of minimum chemical losses reveal that cyclization
preference shifts after simulated annealing. Histograms illustrate the lowest individual chemical
loss within L.y, before (prior) and after (posterior) simulated annealing of 50 samples for (A)
PVAAKKIKW, (B) CCAAAGACP, and (C) Chignolin. Each cyclization is labeled by its chemistry,
with bonded amino acid positions in parentheses. Simulated annealing systematically shifts the loss
distributions, with the most favorable cyclization changing for peptides A and B.
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Figure 10: Box plots of CYCLOPS cyclic loss distributions for 50 random samples of representative
peptides after simulated annealing, comparing all-cyclizations (samples from Fig.[8) versus head-
to-tail amide bonds only (H2T). H2T distributions show higher mean and median values, greater
variance, and are statistically distinct from unrestricted cyclization (* p < 0.05, *** p < 0.001,
Kolmogorov—Smirnov test). Mean differences are also significant under permutation test with 10,000
random permutations (p < 0.05).

of optimization. This either suggests that the simulation may be (1) converging rather quickly, and
hence cooling too fast, or (2) that more steps than necessary are used during the optimization. Given
Fig.[9)and Fig. d however, we suspect latent space is at least somewhat well explored. Still, this
suggests the need of thorough studies on the effects of the various simulated annealing parameters on
convergence and cyclization choice, which we leave for future work.

B.2 Conditional Normalizing Flow (ECNF++) Flow Guidance

We generally observe that, for the peptides tested, ECNF++ guided flow produces less satisfactory
conformational samples than SBG simulated annealing. Of particular significance is that the peptides
employed in this study are limited to those permitting only head-to-tail amide bond cyclization. This
constraint arises from the scarcity of suitable MD trajectories in the existing literature—a limitation
that is further exacerbated by the exponential scaling of inference time with system size for state-
of-the-art CNF-based Boltzmann generators 2025a]]. Consequently, only small peptides
are currently computationally feasible, which severely restricts the already limited pool of available
training data. Moreover, as loss guidance is inherently based on gradient descent, we suspect it may
be more prone to getting trapped in local minima than simulated annealing, as it lacks the explicit
exploratory potential of the latter.
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AAAAAA conditional - -~ {ee=—s

Category
¥
H
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WLALL conditional - — 5
0 5 10 15 20 25
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Figure 12: Box plots of CYCLOPS loss distributions for unconditioned vs. conditioned-with-
guided-flow ECNF++ samples across peptide sequences. The E(3)-equivariant ECNF++ is prone
to producing samples of the wrong-chirality. Generated samples of entirely the wrong chirality
are reflected, whilst those of mixed chirality are discarded. Conditioning used loss-flow guidance
(w = 1.06), significantly altered distributions (Kolmogorov—Smirnov test) and reduced mean loss
(permutation test, 10,000 permutations) for all sequences (p < 0.005, both tests).
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However, our flow guidance succeeds in significantly reducing distribution of CYCLOPS for all
tested peptides, as shown in Fig.[12] though not to the degree of the simulated annealing shown in
Fig.[8] In all cases, this increases the variance of the distributions, and produces apparent clusters of
datapoints at the lower extrema of our losses. It should be noted that since the ECNF++ architecture
is E(3) equivariant, it is prone to producing samples of incorrect chirality or mixed correct-incorrect
chirality. Samples of entirely wrong chirality are mirrored and included, whilst those of mixed
chirality are discarded. For Fig.[5] we begin with 128 unconditional and conditional samples and
filter based on the aforementioned procedure.
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