

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ODYSSEYBENCH: EVALUATING LLM AGENTS ON LONG-HORIZON COMPLEX OFFICE APPLICATION WORKFLOWS

Anonymous authors

Paper under double-blind review

ABSTRACT

Autonomous agents powered by large language models (LLMs) are increasingly deployed in real-world applications requiring complex, long-horizon workflows. However, existing benchmarks predominantly focus on atomic tasks that are self-contained and independent, failing to capture the long-term contextual dependencies and multi-interaction coordination required in realistic scenarios. To address this gap, we introduce *OdysseyBench*, a comprehensive benchmark for evaluating LLM agents on long-horizon workflows across diverse office applications including Word, Excel, PDF, Email, and Calendar. Our benchmark comprises two complementary splits: *OdysseyBench+* with 300 tasks derived from real-world use cases, and *OdysseyBench-Neo* with 302 newly synthesized complex tasks. Each task requires agent to identify essential information from long-horizon interaction histories and perform multi-step reasoning across various applications. To enable scalable benchmark creation, we propose *HOMERAGENTS*, a multi-agent framework that automates the generation of long-horizon workflow benchmarks through systematic environment exploration, task generation, and dialogue synthesis. Our extensive evaluation demonstrates that *OdysseyBench* effectively challenges state-of-the-art LLM agents, providing more accurate assessment of their capabilities in complex, real-world contexts compared to existing atomic task benchmarks. We believe that *OdysseyBench* will serve as a valuable resource for advancing the development and evaluation of LLM agents in real-world productivity scenarios.

1 INTRODUCTION

Autonomous agents powered by large language models (LLMs) have demonstrated remarkable capabilities across diverse domains, including reasoning (Lin et al., 2024; Boisvert et al., 2024; Yao et al., 2024), software development (Yang et al., 2024; Murty et al., 2024; Zhou et al., 2023; Xie et al., 2025), and scientific research (Drouin et al., 2024; Wu et al., 2025; Zheng et al., 2025). As these agents increasingly transition from research settings to real-world applications, they are expected to handle complex, multi-step tasks such as drafting professional emails, updating documents, and managing personal calendars (Yao et al., 2024; Wang et al., 2024b; Xu et al., 2024a). This shift underscores the need for the development of comprehensive benchmarks that accurately reflect real-world scenarios and rigorously evaluate agent performance in complex, contextual task environments.

However, existing benchmarks for agents predominantly focus on atomic tasks that are self-contained and independent of previous interactions or accumulated context (Zhou et al., 2023; Paranjape et al., 2023; Bonatti et al., 2024; Wang et al., 2024b; Xu et al., 2024a), as illustrated in Figure 1(a). While these benchmarks serve as valuable initial assessments, they fundamentally misrepresent the nature of real-world workflows, which typically unfold across extended periods and encompass various agent-user interactions and require agents to systematically curate, integrate, and leverage information accumulated over extended periods (Schick et al., 2023; Hu et al., 2024; Erdogan et al., 2025). Agents that perform well on atomic task benchmarks may struggle with the contextual dependencies, information persistence, and collaborative workflow management required in real-world scenarios.

In this work, we address these challenges by introducing a novel benchmark **OdysseyBench** designed to evaluate agents on complex, long-horizon workflows spanning diverse office applications, including

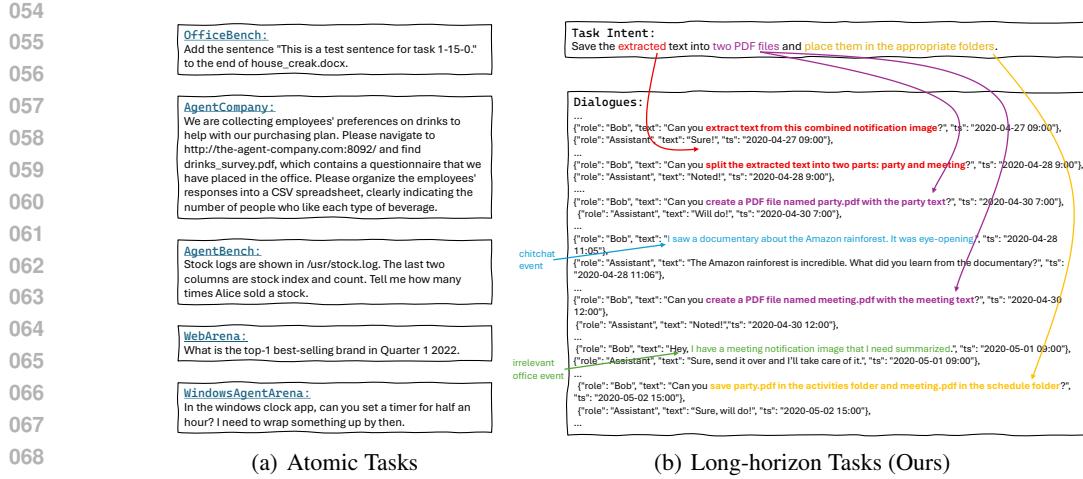


Figure 1: (a) Atomic tasks: each task is self-contained and does not rely on previous interactions or context. (b) Long-horizon tasks (Ours): a complex task requiring context aggregation, spanning multiple interactions.

Word, Excel, PDF, Email, and Calendar. Our benchmark includes two splits: **OdysseyBench+**, which consists of 300 long-horizon tasks originated from real-world use cases in OfficeBench (Wang et al., 2024b), and **OdysseyBench-Neo**, which contains 302 newly generated tasks that are more complex and diverse. Each task, as illustrated in Figure 1(b), is designed to require the agent to reason about the task and extract essential information from long-horizon dialogue histories between the user and agent. This enables the construction of feasible workflows and supports multi-step reasoning across various applications. The tasks are structured to reflect the complexities of agent-user interactions, emphasizing the need for agents to maintain context, synthesize information from prior exchanges, and coordinate actions across diverse tools and environments.

Furthermore, many benchmarks rely on costly human annotation, limiting scalability and constraining the diversity of evaluation scenarios (Zhou et al., 2023; Xu et al., 2024a; Yao et al., 2024). While recent efforts have explored synthetic data generation with LLMs (Ou et al., 2024; Xu et al., 2024b; Xie et al., 2025), these approaches typically yield atomic tasks, lacking the sustained interactions and long-term context essential for realistic workflows. These limitations highlight the urgent need for systematic, automated benchmarks that reflect the challenges of real-world, long-horizon tasks.

To address these challenges, we additionally propose **HOMERAGENTS**, a multi-agent framework that automates the generation of long-horizon workflow benchmarks. Our framework consists of two complementary components: **HOMERAGENTS+**, which leverages existing benchmarks from OfficeBench (Wang et al., 2024b) and employs a two-agent iterative refinement process to transform atomic tasks into contextually rich, multi-interaction scenarios, thereby creating **OdysseyBench+**; and **HOMERAGENTS-NEO**, which utilizes a multi-agent system operating within realistic application environments to generate entirely new long-horizon tasks from scratch, producing **OdysseyBench-Neo**. Through systematic environment exploration, task generation, and dialogue creation, **HOMERAGENTS** enables scalable production of diverse, contextually grounded benchmark tasks that reflect the complexity of real-world scenarios while maintaining the quality standards for rigorous evaluation.

We conduct extensive evaluations of **OdysseyBench** using state-of-the-art agents. Our experiments reveal that while humans achieve near-perfect performance (over 90% accuracy) on our benchmark, state-of-the-art agents, such as o3 and GPT-5, achieve only around 55% accuracy. This demonstrates that our benchmarks effectively challenge current models and offer a more accurate assessment of their capabilities in real-world contexts.

In summary, our contributions are as follows:

- We introduce **OdysseyBench**, a comprehensive benchmark for evaluating agents on long-horizon workflows across multiple office applications, consisting of **OdysseyBench+** and **OdysseyBench-Neo**.

- 108 • We propose **HOMERAGENTS**, a multi-agent framework that automates the generation of
109 long-horizon tasks, enabling scalable and diverse benchmark creation.
- 110 • We demonstrate the effectiveness of *OdysseyBench* in challenging state-of-the-art language
111 agents, providing insights into their performance in complex, real-world scenarios.
- 112 • We analyze the impact of dialogue storage formats within *OdysseyBench*, demonstrating
113 that semantic compression and coherent aggregation are essential for effective multi-step
114 reasoning and agent performance.

116 2 RELATED WORK

118 **Evaluating LLMs in Executive Environments** As LLMs advance in tackling real-world challenges
119 (Hurst et al., 2024; Jaech et al., 2024; OpenAI, 2025; Anthropic, 2025b;a; Comanici et al., 2025),
120 there is a growing shift toward evaluating their capabilities in dynamic, executive environments
121 rather than static datasets. Beyond text-based games (Côté et al., 2018; Shridhar et al., 2020), recent
122 research increasingly simulates realistic scenarios to assess agents' proficiency in tool use (Deng
123 et al., 2023; Zhuang et al., 2023; Qin et al., 2023; Lù et al., 2024; Wang et al., 2024a; Shen et al., 2024;
124 Xu et al., 2024a; Sutela & Lindström, 2024). Current benchmarks, such as WebArena (Zhou et al.,
125 2023), AgentBench (Paranjape et al., 2023), WindowsArena (Bonatti et al., 2024), and OfficeBench
126 (Wang et al., 2024b), provide valuable evaluation settings focused on web and office environments.
127 However, these platforms primarily measure atomic performance in self-contained contexts and lack
128 mechanisms to evaluate LLM agents' interactions with complex environments over extended periods.
129 This limitation is significant, as robust assessment of planning, long-term information retrieval, and
130 execution is essential for understanding agents' true capabilities in real-world tasks.

131 **Synthetic Benchmark Generation** Existing agent datasets and benchmarks largely rely on human
132 annotators for task creation, demonstrations, and evaluation metric design (Zhou et al., 2023; Xu et al.,
133 2024a; Yao et al., 2024), resulting in high costs and limited diversity. Recent studies try to leverage
134 LLMs to automatically generate agent tasks and trajectories (Ou et al., 2024; Xu et al., 2024b; Xie
135 et al., 2025). For instance, Murty et al. (2024); Pahuja et al. (2025); Trabucco et al. (2025); Gandhi &
136 Neubig (2025) employ LLMs as web agents to synthesize web-based interactions in semi-realistic
137 environments. Moreover, composing atomic tasks is another method to construct more challenging
138 tasks (Boisvert et al., 2024; Drouin et al., 2024). Li et al. (2024) iteratively propose and refine dataset
139 descriptions to generate topic-specific problems. However, these approaches predominantly focus
140 on web-based activities and are generally limited to simple interactions, lacking the complexity of
141 multi-step reasoning and extensive tool use required for robust agent evaluation.

143 3 METHODOLOGY

145 In this section, we firstly introduce HOMERAGENTS, a multi-agent framework that automatically
146 generates the long-horizon workflow benchmark *OdysseyBench* in Section 3.1, including two com-
147 ponents: HOMERAGENTS+ (Section 3.1.1) and HOMERAGENTS-NEO (Section 3.1.2). We then
148 describe the long-horizon workflow benchmark *OdysseyBench* in Section 3.2, including the dataset
149 analysis (Section 3.2.2), quality control measures (Section 3.2.3), and human evaluation (??).

151 3.1 HOMERAGENTS: AUTOMATING BENCHMARK CREATION

152 It is highly challenging to create *OdysseyBench* in a scalable and reliable manner, as it requires
153 generating realistic user-assistant interaction histories and the context-dependent multi-step tasks
154 that reflect the complexity and ambiguity of real-world productivity scenarios. To facilitate this
155 process, we propose a multi-agent framework HOMERAGENTS that automates the generation of tasks,
156 including HOMERAGENTS+ (see Section 3.1.1) and HOMERAGENTS-NEO (see Section 3.1.2).

158 3.1.1 HOMERAGENTS+: STANDING ON THE SHOULDERS OF OfficeBench

159 HOMERAGENTS+ builds upon the task descriptions from OfficeBench (Wang et al., 2024b) to
160 generate long-horizon dialogue scenarios that more closely mirror real-world productivity workflows.
161 Starting from a given task description \mathcal{T} , HOMERAGENTS+ employs a two-agent iterative refinement

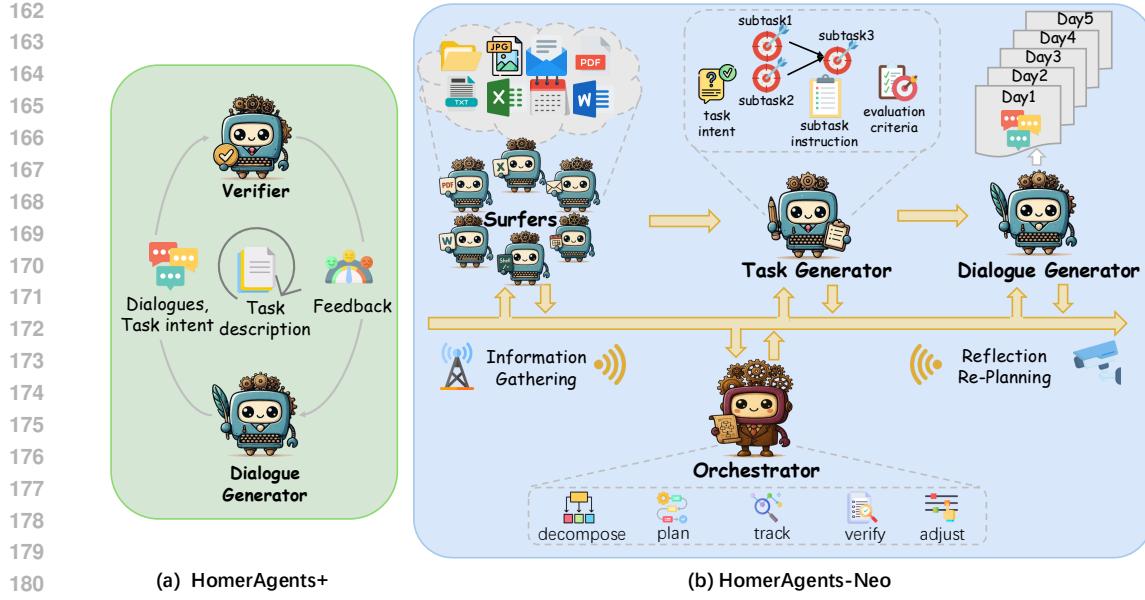


Figure 2: HOMERAGENTS Framework Overview. HOMERAGENTS consists of two components: HOMERAGENTS+ and HOMERAGENTS-NEO. HOMERAGENTS+ builds upon the task descriptions from OfficeBench to generate long-horizon dialogues, while HOMERAGENTS-NEO creates entirely new tasks and corresponding dialogues from scratch by employing a multi-agent system that operates within realistic application environments.

framework to produce task intents \mathbb{I} and corresponding long-horizon user-assistant dialogues \mathbb{D} , thereby contextualizing and enriching the original task.

The framework comprises two core components: a **generator** (\mathcal{G}) and a **verifier** (\mathcal{V}), as depicted in Figure 2. The generator \mathcal{G} receives the task description \mathcal{T} and any feedback from previous iterations \mathbb{F}_{i-1} , and outputs a task intent \mathbb{I}_i along with a corresponding dialogue \mathbb{D}_i . Here, the task intent \mathbb{I} succinctly captures the user’s goal without specific details, while the dialogue \mathbb{D} provides the natural conversational context leading to the task. The verifier \mathcal{V} then assesses the generated content for dialogue realism, task alignment, and contextual coherence, returning structured feedback \mathbb{F}_i .

Algorithm 1: HOMERAGENTS+

Input: Task description \mathcal{T} ; the generator \mathcal{G} ; the verifier \mathcal{V} ; the maximal number of iterations N_{\max} ;

Output: Task intent \mathbb{I} and dialogues \mathbb{D} ;

```

1  $\mathbb{F}_0 \leftarrow \emptyset$ ; ▷ Initialize empty feedback
2 for  $i=1$  to  $N_{\max}$  do
3    $\{\mathbb{I}_i, \mathbb{D}_i\} \leftarrow \mathcal{G}(\mathcal{T}, \mathbb{F}_{i-1})$ ; ▷ The generator  $\mathcal{G}$  generates the task intent  $\mathbb{I}$  and dialogues  $\mathbb{D}$ 
4    $\mathbb{F}_i \leftarrow \mathcal{V}(\mathcal{T}, \mathbb{I}_i, \mathbb{D}_i)$ ; ▷ The verifier  $\mathcal{V}$  evaluates  $\mathbb{I}$  and  $\mathbb{D}$ , and provides feedback  $\mathbb{F}_i$ 
5   if  $\mathbb{F}_i == \text{pass}$  then
6     return  $\{\mathbb{I}_i, \mathbb{D}_i\}$ ; ▷ Early stop if the verifier  $\mathcal{V}$  thinks the task intent  $\mathbb{I}$  and
dialogues  $\mathbb{D}$  are satisfactory
7 return  $\{\mathbb{I}_{N_{\max}}, \mathbb{D}_{N_{\max}}\}$ ; ▷ Return the task intent  $\mathbb{I}$  and dialogues  $\mathbb{D}$  after  $N_{\max}$  iterations

```

This process is executed iteratively, as outlined in Algorithm 1, with a maximum of N_{\max} iterations. In each iteration i , the generator \mathcal{G} refines its output based on the original task and accumulated feedback, while the verifier \mathcal{V} either approves the result (“pass”) or provides actionable feedback for further improvement. The cycle ends when the verifier approves or the iteration limit is reached. This iterative, feedback-driven approach allows HOMERAGENTS+ to generate realistic, complex long-horizon tasks for rigorous workflow evaluation.

216 3.1.2 HOMERAGENTS-NEO: SCALING UP THE BENCHMARK CREATION
217

218 While HOMERAGENTS+ effectively leverages existing benchmarks, HOMERAGENTS-NEO addresses
219 the need for more diverse and scalable task generation by creating entirely new long-horizon tasks
220 from scratch. HOMERAGENTS-NEO employs a multi-agent system that operates within realistic
221 application environments to generate authentic productivity scenarios, as shown in Figure 2.

222
223 **Algorithm 2:** HOMERAGENTS-NEO

224 **Input:** Applications $\mathcal{A} = \{a_k\}_{k=0}^K$; Environment \mathcal{E} ; Orchestrator \mathcal{O} ; Surfers $\mathcal{S} = \{S_k\}_{k=0}^K$; Task
225 Generator $\mathcal{G}_{\text{task}}$; Dialogue Generator $\mathcal{G}_{\text{dial}}$;
226 **Output:** Task τ and dialogue \mathbb{D} ;
227 **1 Phase 1: Planning:**
228 2 $\mathbb{P} \leftarrow \mathcal{O}(\mathcal{A}, \mathcal{E})$ where $\mathbb{P} = \{\mathbb{P}_{\text{surf}}, \mathbb{P}_{\text{task}}, \mathbb{P}_{\text{dial}}\}$; \triangleright Orchestrator drafts the generation plan \mathbb{P}
229 **3 Phase 2: Environment Exploration:**
230 4 $\mathbb{C} \leftarrow \bigcup_{k=0}^K S_k(\mathbb{P}_{\text{surf}}, a_k, \mathcal{E})$; \triangleright Surfers collect contextual information from environment \mathcal{E}
231 **5 Phase 3: Task Generation:**
232 6 $\tau \leftarrow \mathcal{G}_{\text{task}}(\mathbb{P}_{\text{task}}, \mathbb{C})$ where $\tau = \{\mathbb{T}, \mathbb{I}, \mathbb{K}, \mathbb{E}\}$; \triangleright Task Generator generate task components,
233 including task description \mathbb{T} , task intent \mathbb{I} , subtask instructions \mathbb{K} , and evaluation
234 criteria \mathbb{E}
235 **7 Phase 4: Dialogue Generation:**
236 8 $\mathbb{D} \leftarrow \mathcal{G}_{\text{dial}}(\mathbb{P}_{\text{dial}}, \mathbb{C}, \mathbb{I}, \mathbb{K})$; \triangleright Dialogue generator generates T-Days dialogues
237 **9 return** Task τ and dialogues \mathbb{D} ; \triangleright Complete task for dataset

238 HOMERAGENTS-NEO consists of **productivity applications** $\mathcal{A} = \{a_k\}_{k=0}^K$, **environment** \mathcal{E} , **orchestrator** \mathcal{O} , **surfers** $\mathcal{S} = \{S_k\}_{k=0}^K$, **task generator** $\mathcal{G}_{\text{task}}$, and **dialogue generator** $\mathcal{G}_{\text{dial}}$. Orchestrator \mathcal{O}
239 manages planning, progress tracking, and coordinates the entire generation process by orchestrating
240 each stage of data generation, ensuring coherence in both task and dialogue creation. Surfers \mathcal{S} gather
241 information from environment by interacting with a diverse set of simulated productivity applications.
242 Task generator $\mathcal{G}_{\text{task}}$ synthesizes the tasks and corresponding evaluation criteria. Dialogue generator
243 $\mathcal{G}_{\text{dial}}$ then creates multi-day dialogues simulating realistic user-assistant interactions. The framework
244 consists of four distinct phases, as outlined in Algorithm 2:
245

246 **Phase 1: Planning** The orchestrator \mathcal{O} receives a set of applications $\mathcal{A} = \{a_k\}_{k=0}^K$ and environment
247 \mathcal{E} , then formulates a generation plan $\mathbb{P} = \{\mathbb{P}_{\text{surf}}, \mathbb{P}_{\text{task}}, \mathbb{P}_{\text{dial}}\}$. This plan specifies how the subsequent
248 phases should explore the environment \mathbb{P}_{surf} , generate tasks \mathbb{P}_{task} , and create dialogues \mathbb{P}_{dial} .
249

250 **Phase 2: Environment Exploration** A collection of specialized surfers $\mathcal{S} = \{S_k\}_{k=0}^K$ systematically
251 explore the application environment. Each surfer S_k follows the surfing plan \mathbb{P}_{surf} to interact with
252 application a_k within environment \mathcal{E} , collecting contextual information \mathbb{C} . This exploration phase
253 ensures that generated tasks are grounded in realistic application capabilities and user workflows.
254

255 **Phase 3: Task Generation** The task generator $\mathcal{G}_{\text{task}}$ uses contextual information \mathbb{C} and the plan
256 \mathbb{P}_{task} to produce task specifications $\tau = \{\mathbb{T}, \mathbb{I}, \mathbb{K}, \mathbb{E}\}$, including the task description \mathbb{T} , the task intent
257 \mathbb{I} , detailed subtask instructions \mathbb{K} , and evaluation criteria \mathbb{E} . The task description \mathbb{T} outlines the
258 specific goals and requirements of the task, the task intent \mathbb{I} conveys the high-level overall goal but
259 omits specific details of the task, $\mathbb{K} = \{k_1, \dots, k_t\}$ provides instructions for completing the task, and
260 the evaluation criteria \mathbb{E} define how the task's success will be measured.
261

262 **Phase 4: Dialogue Generation** The dialogue generator $\mathcal{G}_{\text{dial}}$ uses the dialogue plan \mathbb{P}_{dial} , context \mathbb{C} ,
263 task intent \mathbb{I} , and subtask instructions \mathbb{K} to create realistic long-horizon user-assistant conversations
264 \mathbb{D} . For each subtask $k_i \in \mathbb{K}$, it generates a dialogue \mathbb{D}_i , simulating multi-day interactions, reflecting
265 how the task is approached over multiple days. These are combined into a full dialogue history
266 $\mathbb{D} = \{\mathbb{D}_1, \dots, \mathbb{D}_t\}$ that illustrates the user's journey through the task, including some task-irrelevant
267 content (e.g., chitchat) to better reflect real-world scenarios. By structuring generation into four
268 phases, HOMERAGENTS-NEO systematically explores application environments and maintains
269 coherence between tasks and dialogues, enabling scalable creation of diverse, realistic benchmark
tasks that capture real-world complexity.

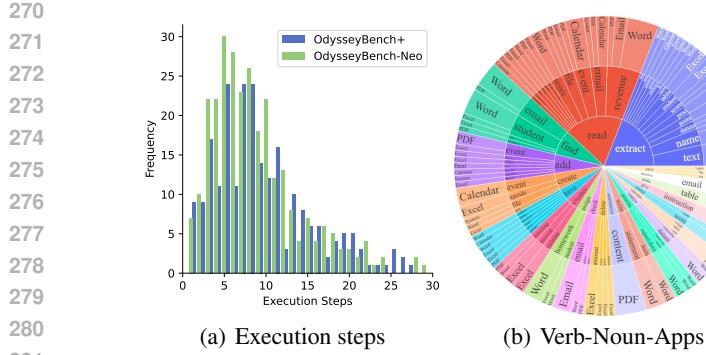


Figure 3: (1) Execution steps needed for the tasks in OdysseyBench. (2) Actions, objects, and applications of OdysseyBench.

3.1.3 IMPLEMENTATION DETAILS

To balance performance and cost, all agents in HOMERAGENTS use the GPT-4.1 model for strong reasoning at reasonable expense. We set the maximum iterations N_{\max} in Algorithm 1 to 5, and generate at least $T = 5$ days of dialogues in Algorithm 2 to capture long-term workflow complexity. HOMERAGENTS-NEO is implemented on the Magentic-One framework (Fourney et al., 2024).

During dialogue generation, the assistant simulates task execution by generating responses based on task descriptions and context, rather than performing real actions. This enables scalable, diverse, and realistic dialogue generation. By deferring execution, our benchmark focuses on agents' ability to curate and integrate information across multiple dialogue turns and days, which is crucial for evaluating long-horizon comprehension and planning.

3.2 OdysseyBench: LONG-HORIZON WORKFLOW BENCHMARK

3.2.1 EVALUATION

We build OdysseyBench in a Docker environment with pre-installed applications, automate operations using Python, and manage documents, emails, and calendar events via a file system. After the agents complete each task, we save the file system and perform customized evaluations to verify correctness.

Our evaluation combines exact matching, fuzzy matching, and execution-based methods. Exact and fuzzy matching check if the agent's output matches the expected results (e.g., keyword matching for documents and calendar events), while execution-based evaluation uses code to verify outputs (e.g., checking calendar conflicts). A task is successful if all criteria are met. We report the **pass rate** as the percentage of tasks completed successfully: $\frac{\# \text{successful tasks}}{\# \text{total tasks}}$.

3.2.2 DATASET ANALYSIS

We provide the statistical analysis of our dataset in Appendix A. We further analyze the distribution of execution steps in OdysseyBench (Figure 3(a)), finding that most tasks in both datasets require 3-15 execution turns. This indicates that OdysseyBench tasks are sufficiently complex and reflect real-world multi-step workflows. We also examine task diversity in OdysseyBench, summarizing actions, objects, and applications in Figure 3(b). The benchmark covers a broad range of actions, objects, and applications, ensuring it captures the complexity and variety of real-world productivity tasks and making it a valuable resource for evaluating long-horizon workflow understanding in LLMs.

3.2.3 QUALITY CONTROL

Automated Filtering After creating the initial benchmark using HOMERAGENTS, we implement a multi-step LLM-based filtering mechanism to ensure the quality and reliability of the generated tasks:

Table 1: Human performance of OdysseyBench-Neo.

Task	1-apps	2-apps	3-apps	overall
Human	92.31	90.00	91.67	91.50

324 1. **Task Evaluation Check:** We firstly verify that each generated task is associated with a
 325 well-defined evaluation criteria \mathbb{E} . If the evaluation criteria are not supported by our system
 326 as described in Section 3.2.1, the task is discarded. This step ensures all the tasks in the
 327 benchmark can be objectively assessed for correctness and completeness.
 328 2. **Task Solvability Check:** We prompt a state-of-the-art LLM (e.g., o3) to attempt solving
 329 each generated task using either the full description \mathbb{T} or just the intent \mathbb{I} and subtask
 330 instructions \mathbb{K} . Ideally, the agent should be able to complete the task if the full description
 331 is provided. If the agent fails to complete the task even with the full description, the task is
 332 deemed unsolvable and is removed from the benchmark. This step helps eliminate tasks that
 333 are inherently flawed or too ambiguous for practical completion.
 334 3. **General Quality Check:** After the previous two checks, we ensure that the tasks in the
 335 benchmark are both verifiable and solvable. We then conduct a final quality check using
 336 a group of five LLM agents. Each agent independently assess the remaining tasks based
 337 on the quality verification guidelines outlined in Appendix B. If a task receives negative
 338 feedback from three or more agents, it is removed from the benchmark. This collective
 339 evaluation helps maintain high standards for task quality and relevance.

340 **Human Verification and Post-Editing** We also implement human verification and post-editing
 341 to further enhance the quality of the generated task intent and dialogues. A team of three native
 342 English-speaking annotators manually reviews the generated task intent and dialogues, assessing
 343 them based on the quality verification guidelines outlined in Appendix B. Due to the complexity of
 344 the guidelines, we organize a training session to ensure the annotators fully understand the criteria.
 345 During this process, each example in the benchmark is evaluated by all three annotators and further
 346 revised if any disagreements arise. The inter-annotator agreement is measured using Fleiss' Kappa
 347 score (Fleiss & Cohen, 1973), which is 0.72, indicating substantial agreement among the annotators.

348 3.2.4 HUMAN PERFORMANCE

350 To establish an understanding of human performance on OdysseyBench, we employ two experienced
 351 productivity application users to complete a randomly selected subset of 100 tasks from
 352 OdysseyBench-Neo. Each user is instructed to complete the tasks with the full dialogue history \mathbb{D}
 353 and task intent \mathbb{I} . They are given up to 10 minutes to complete each task and allowed to use any
 354 external tools, such as AI writing assistants, to aid in task completion. As shown in Table 1, the
 355 human users achieve an overall pass rate of 91.50%, demonstrating that the tasks in OdysseyBench
 356 are solvable by humans and providing a benchmark for evaluating LLM performance.

357 4 EXPERIMENTAL SETUP

360 **Long-Context Evaluation:** We evaluate agent performance on OdysseyBench by providing the entire
 361 dialogue history. **RAG Evaluation:** We also assess agents in the Retrieval-Augmented Generation
 362 (RAG) setting, where relevant context is retrieved from dialogue history using embedding models.
 363 We test two types of stored context: (1) **raw** and (2) **summarized**, each at two granularities. For raw
 364 context: (a) *session-level* (entire session as one document), (b) *utterance-level* (each turn as a separate
 365 document). For summarized context: (a) *session-level* (session summarized as one document), (b)
 366 *chunk-level* (multiple sessions segmented and summarized in chunks).

367 **Metrics and Models** As in Section 3.2.1, we use **pass rate** (percentage of successful task
 368 completions) as the main metric. We evaluate proprietary LLMs (o3, o3-mini, GPT-4o, GPT-4o-mini,
 369 GPT-4.1, GPT-5, GPT-5-chat) and open-weight LLMs (DeepSeek-R1, DeepSeek-R1-Distill-Qwen-
 370 32b, Qwen3-32b). The RAG embedding model is OpenAI text-embedding-3-large.

373 5 EXPERIMENTAL RESULTS

375 **Tasks get increasingly complex with more applications involved, leading to a performance**
 376 **drop.** As shown in Table 2, performance consistently declines as the number of applications
 377 per task increases. For OdysseyBench+, the average performance drops from single-app scenarios
 to three-app scenarios across all models: o3 drops from 72.83 to 30.36, GPT-4.1 from 55.91 to

378
 379 Table 2: Performance of the long-context configuration on OdysseyBench+ and OdysseyBench-Neo
 380 tasks. We divide the tasks into “1/2/3-apps”, specifying the number of applications required by the
 381 tasks. The overall performance is reported as the macro-average across all tasks.

	OdysseyBench+				OdysseyBench-Neo			
	1-apps	2-apps	3-apps	overall	1-apps	2-apps	3-apps	overall
Proprietary Models								
o3	72.83	70.53	30.36	56.19	68.33	60.56	59.06	61.26
o3-mini	38.04	20.00	15.18	23.75	71.67	39.44	45.61	49.34
GPT-4o-mini	30.11	22.11	7.14	19.00	65.00	33.80	29.83	37.75
GPT-4o	47.31	42.11	15.18	33.67	75.00	47.89	45.61	51.99
GPT-4.1	55.91	43.16	12.50	35.67	75.00	63.38	47.37	56.62
GPT-5-chat	55.91	48.42	20.54	40.33	75.00	57.75	51.46	57.62
GPT-5	75.27	66.32	25.89	54.00	61.67	56.34	53.80	55.96
Open-weight Models								
DeepSeek-R1	53.76	47.37	20.54	39.33	78.33	60.56	44.44	54.97
DS.-Distill-Qwen-32b	30.11	16.84	1.79	15.33	40.00	22.54	10.53	19.21
Qwen-3-32b	38.71	33.68	11.61	27.00	41.67	22.54	21.05	25.50

395
 396 Table 3: Performance of RAG-based GPT-4o on OdysseyBench. “Long-context prompting” refers to
 397 evaluation in the long-context setting. “top-k” denotes the number of top retrieved documents used as
 398 context, and “tokens” indicates the total tokens in the retrieved documents.

storage	granularity	top-k	OdysseyBench+				OdysseyBench-Neo					
			tokens	1-apps	2-apps	3-apps	overall	tokens	1-apps	2-apps	3-apps	overall
Long-context prompting			8000	47.31	42.11	15.18	33.67	6700	75.00	47.89	45.61	51.99
raw	session	5	750	40.86	40.00	11.61	29.67	-	-	-	-	-
		10	1500	39.79	40.00	14.29	30.33	-	-	-	-	-
		5	80	29.03	35.79	8.04	23.33	90	30.00	16.90	8.19	14.57
		10	155	27.96	33.68	8.93	22.67	180	31.67	16.90	11.11	16.56
		25	370	39.79	35.79	12.50	28.33	450	35.00	32.39	21.05	26.49
		50	730	57.69	40.00	17.17	29.41	915	56.67	40.85	31.58	38.74
	utterance	5	290	29.03	35.79	9.82	24.00	2200	75.00	46.48	49.12	53.64
		10	650	33.33	36.84	9.82	25.67	-	-	-	-	-
		5	290	30.11	29.47	12.50	23.33	1200	30.11	29.47	12.50	23.33
		10	380	40.86	34.74	16.96	30.00	1260	40.86	34.74	16.96	30.00
		25	600	46.24	36.84	19.64	33.33	1360	68.33	59.16	50.88	56.29
		50	670	44.09	40.00	16.96	32.67	1460	68.33	59.16	48.54	54.97

415
 416 12.50, and DeepSeek-R1 from 53.76 to 20.54. A similar but less pronounced trend appears in
 417 OdysseyBench-Neo. For instance, o3 maintains relatively stable performance (68.33 to 59.06), while
 418 GPT-4o shows a decline from 75.00 to 45.61. This highlights the challenge LLMs face in coordinating
 419 information across applications, which requires advanced reasoning about dependencies and state.

420
 421 **More context typically leads to better performance, but at a cost.** As shown in Table 3, stor-
 422 ing raw data without retrieval (long-context prompting) gives the highest performance (33.67 on
 423 OdysseyBench+ with 8000 tokens; 51.99 on OdysseyBench-Neo with 6700 tokens), but uses many
 424 tokens. Utterance-level retrieval in RAG offers a good balance, peaking at 29.41 with 730 tokens on
 425 OdysseyBench+ and 38.74 with 915 tokens on OdysseyBench-Neo. It outperforms the long-context
 426 prompting for some OdysseyBench+ tasks but underperforms in OdysseyBench-Neo, likely due to
 427 shorter dialogues in OdysseyBench+ and excessive fragmentation in OdysseyBench-Neo (see dataset
 428 statistical analysis in Appendix A). This highlights the need to maintain coherent conversational
 429 boundaries, as fragmented utterances can undermine context integrity.

430
 431 **Summary storage effectively captures task essence.** Summarization improves performance by
 432 condensing information and retaining key context. Session-level summaries outperform the long-
 433 context prompting (53.64 on OdysseyBench-Neo with one third of the tokens), while chunk-level

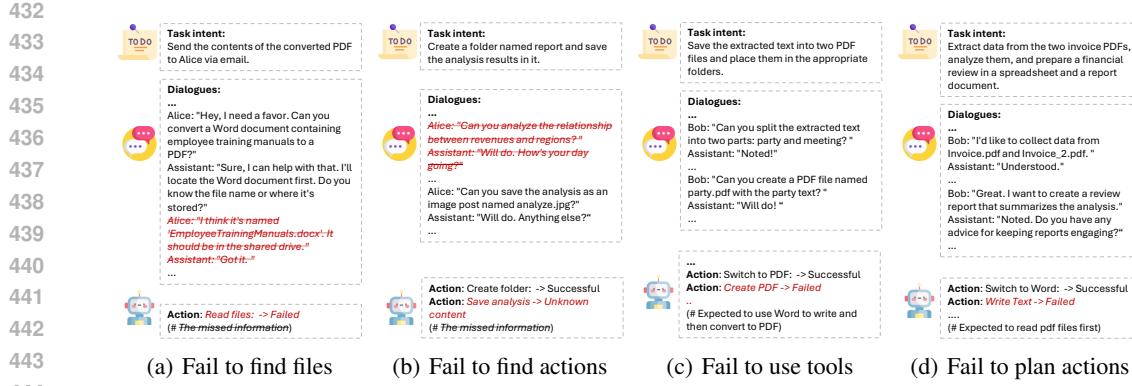


Figure 4: Typical failure cases of the LLM agents in OdysseyBench.

summaries do even better (56.29 with less than 20% of the tokens). Summarized context distills essential information, removes redundancy, and increases semantic density, enabling more efficient and precise retrieval within the same token budget. However, Increasing top-k from 25 to 50 slightly reduces performance (56.29 to 54.97 on OdysseyBench-Neo), indicating that more context can add noise and irrelevant information. Quality of retrieved content matters more than quantity. These results highlight the need for memory architectures that emphasize semantic aggregation and context continuity for complex, multi-step workflows.

6 CASE STUDY

To analyze LLM agent failures in OdysseyBench, we manually reviewed execution traces and categorized errors into four main types: (1) **Missing required files**: Agents overlook input files mentioned in the dialogue (e.g., missing “EmployeeTraining-Manuals.docx” in Figure 4(a)). (2) **Missing required actions**: Agents fail to perform or modify files as instructed (e.g., omitting the “analyze the relationship” step in Figure 4(b)). (3) **Incorrect tool calls**: Agents use the wrong tool or arguments (e.g., creating PDFs directly instead of converting from Word in Figure 4(c)). (4) **Inaccurate planning**: Agents lack a coherent plan, such as writing in a Word document before reading the necessary PDF content (Figure 4(d)). Further quantitative analysis based on the file types involved in failed executions (Figure 5) reveals that most errors are associated with file creation or writing tasks, particularly for formats such as “.docx” and “.xlsx”. This indicates agents often struggle with complex, multi-step workflows that require precise coordination of tools, timing, and reasoning.

7 CONCLUSION

In this work, we addressed the critical limitation of existing atomic task benchmarks by introducing OdysseyBench, a comprehensive benchmark for evaluating language agents on long-horizon workflows across diverse office applications. Our key contribution, HOMERAGENTS, provides a scalable multi-agent framework that automates benchmark generation through two complementary approaches: HOMERAGENTS+ transforms existing atomic tasks into contextually rich scenarios to create OdysseyBench+, while HOMERAGENTS-NEO generates entirely new complex tasks from scratch to produce OdysseyBench-Neo. Extensive evaluation revealed substantial performance gaps between state-of-the-art agents on our benchmark compared to atomic tasks, demonstrating the importance of contextual dependencies and multi-interaction coordination in realistic scenarios.

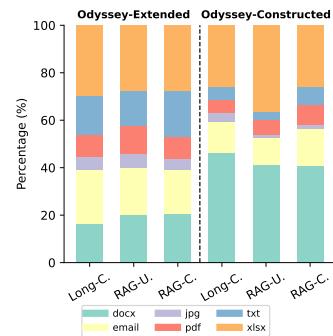


Figure 5: Errors on file types with three configurations: long-C. (long-context), RAG-U. (RAG-utterance), and RAG-C. (RAG-chunk).

486 ETHICS STATEMENT
487488 This work introduces *OdysseyBench* and the *HOMERAGENTS* multi-agent framework for bench-
489 marking LLM agents on long-horizon office application workflows. All experiments were conducted
490 using publicly available models and datasets, or proprietary models accessed under their respective
491 licenses and terms of use. No human subjects or private user data were involved in this research.
492 The benchmark tasks and dialogues were generated synthetically or derived from existing public
493 datasets, with explicit guidelines to avoid personal, sensitive, or inappropriate content. We encourage
494 responsible use of *OdysseyBench* and *HOMERAGENTS*, with attention to fairness, transparency, and
495 the limitations of underlying models and synthetic data.
496497 REPRODUCIBILITY STATEMENT
498499 We are committed to reproducibility in this work. Detailed descriptions of the *OdysseyBench*
500 benchmark, task generation algorithms, and evaluation protocols are provided in Section 3 and
501 throughout the main paper. Experimental setups, including model configurations, dataset splits,
502 evaluation metrics, and implementation details, are thoroughly documented in Section 4 and Appendix.
503 All datasets used are either publicly available or will be released with the benchmark. To further
504 support reproducibility, we will release the *OdysseyBench* benchmark, *HOMERAGENTS* framework,
505 and code for all experiments upon publication, enabling other researchers to replicate our results and
506 build upon this work.
507508 THE USE OF LARGE LANGUAGE MODELS (LLMs)
509510 In preparing this work, we utilize large language models (LLMs) as general-purpose tools to assist
511 with writing polish and grammar correction. The LLMs are not involved in research ideation,
512 experimental design, or substantive content generation. Their role is limited to improving the clarity
513 and readability of the text, ensuring grammatical accuracy, and refining the presentation of our
514 findings. All scientific contributions, analyses, and conclusions are solely the work of the authors.
515516 REFERENCES
517

Anthropic. Claude 3.7 Sonnet and Claude Code. Online, February 2025a. URL <https://www.anthropic.com/news/clause-3-7-sonnet>. 5 min read.

Anthropic. Introducing Claude 4: Claude Opus 4 and Claude Sonnet 4. Online, May 2025b. URL <https://www.anthropic.com/news/clause-4>. 5 min read.

Léo Boisvert, Megh Thakkar, Maxime Gasse, Massimo Caccia, Thibault de Chezelles, Quentin Cappart, Nicolas Chapados, Alexandre Lacoste, and Alexandre Drouin. Workarena++: Towards compositional planning and reasoning-based common knowledge work tasks. *Advances in Neural Information Processing Systems*, 37:5996–6051, 2024.

Rogerio Bonatti, Dan Zhao, Francesco Bonacci, Dillon Dupont, Sara Abdali, Yinheng Li, Yadong Lu, Justin Wagle, Kazuhito Koishida, Arthur Bucker, et al. Windows agent arena: Evaluating multi-modal os agents at scale. *arXiv preprint arXiv:2409.08264*, 2024.

Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long context, and next generation agentic capabilities. *arXiv preprint arXiv:2507.06261*, 2025.

Marc-Alexandre Côté, Akos Kádár, Xingdi Yuan, Ben Kybartas, Tavian Barnes, Emery Fine, James Moore, Matthew Hausknecht, Layla El Asri, Mahmoud Adada, et al. Textworld: A learning environment for text-based games. In *Workshop on Computer Games*, pp. 41–75. Springer, 2018.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su. Mind2web: Towards a generalist agent for the web. *Advances in Neural Information Processing Systems*, 36:28091–28114, 2023.

540 Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H Laradji, Manuel Del Verme, Tom Marty,
 541 Léo Boisvert, Megh Thakkar, Quentin Cappart, David Vazquez, et al. Workarena: How capable are
 542 web agents at solving common knowledge work tasks? *arXiv preprint arXiv:2403.07718*, 2024.
 543

544 Lutfi Eren Erdogan, Nicholas Lee, Sehoon Kim, Suhong Moon, Hiroki Furuta, Gopala Anu-
 545 manchipalli, Kurt Keutzer, and Amir Gholami. Plan-and-act: Improving planning of agents
 546 for long-horizon tasks. *arXiv preprint arXiv:2503.09572*, 2025.

547 Joseph L Fleiss and Jacob Cohen. The equivalence of weighted kappa and the intraclass correlation
 548 coefficient as measures of reliability. *Educational and psychological measurement*, 33(3):613–619,
 549 1973.

550 Adam Fourney, Gagan Bansal, Hussein Mozannar, Cheng Tan, Eduardo Salinas, Friederike Niedtner,
 551 Grace Proebsting, Griffin Bassman, Jack Gerrits, Jacob Alber, et al. Magentic-one: A generalist
 552 multi-agent system for solving complex tasks. *arXiv preprint arXiv:2411.04468*, 2024.

553 Apurva Gandhi and Graham Neubig. Go-browse: Training web agents with structured exploration.
 554 *arXiv preprint arXiv:2506.03533*, 2025.

555 Mengkang Hu, Tianxing Chen, Qiguang Chen, Yao Mu, Wenqi Shao, and Ping Luo. Hiagent: Hier-
 556 archical working memory management for solving long-horizon agent tasks with large language
 557 model. *arXiv preprint arXiv:2408.09559*, 2024.

558 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 559 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*
 560 *arXiv:2410.21276*, 2024.

561 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 562 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv preprint*
 563 *arXiv:2412.16720*, 2024.

564 Xiang Lisa Li, Farzaan Kaiyom, Evan Zheran Liu, Yifan Mai, Percy Liang, and Tatsunori Hashimoto.
 565 Autobencher: Towards declarative benchmark construction. *arXiv preprint arXiv:2407.08351*,
 566 2024.

567 Haohan Lin, Zhiqing Sun, Sean Welleck, and Yiming Yang. Lean-star: Learning to interleave thinking
 568 and proving. *arXiv preprint arXiv:2407.10040*, 2024.

569 Xing Han Lù, Zdeněk Kasner, and Siva Reddy. Weblinx: Real-world website navigation with
 570 multi-turn dialogue. *arXiv preprint arXiv:2402.05930*, 2024.

571 Shikhar Murty, Hao Zhu, Dzmitry Bahdanau, and Christopher D Manning. Nnetnav: Unsuper-
 572 vised learning of browser agents through environment interaction in the wild. *arXiv preprint*
 573 *arXiv:2410.02907*, 2024.

574 OpenAI. OpenAI o3 and o4-mini System Card. System card, OpenAI, San Francisco, CA, April
 575 2025. URL <https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf>. Accessed July 16, 2025.

576 Tianyue Ou, Frank F Xu, Aman Madaan, Jiarui Liu, Robert Lo, Abishek Sridhar, Sudipta Sengupta,
 577 Dan Roth, Graham Neubig, and Shuyan Zhou. Synatra: Turning indirect knowledge into direct
 578 demonstrations for digital agents at scale. *Advances in Neural Information Processing Systems*, 37:
 579 91618–91652, 2024.

580 Vardaan Pahuja, Yadong Lu, Corby Rosset, Boyu Gou, Arindam Mitra, Spencer Whitehead, Yu Su,
 581 and Ahmed Awadallah. Explorer: Scaling exploration-driven web trajectory synthesis for multi-
 582 modal web agents. *arXiv preprint arXiv:2502.11357*, 2025.

583 Jay N Paranjape, Shameema Sikder, Vishal M Patel, and S Swaroop Vedula. Cross-dataset adaptation
 584 for instrument classification in cataract surgery videos. In *International Conference on Medical*
 585 *Image Computing and Computer-Assisted Intervention*, pp. 739–748. Springer, 2023.

594 Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
 595 Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
 596 apis. *arXiv preprint arXiv:2307.16789*, 2023.

597

598 Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Eric Hambrø, Luke
 599 Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach
 600 themselves to use tools. *Advances in Neural Information Processing Systems*, 36:68539–68551,
 601 2023.

602 Haiyang Shen, Yue Li, Desong Meng, Dongqi Cai, Sheng Qi, Li Zhang, Mengwei Xu, and Yun
 603 Ma. Shortcutsbench: A large-scale real-world benchmark for api-based agents. *arXiv preprint*
 604 *arXiv:2407.00132*, 2024.

605

606 Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew
 607 Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. *arXiv*
 608 *preprint arXiv:2010.03768*, 2020.

609 Mika Sutela and Nino Lindström. A game theoretic approach to lowering incentives to violate speed
 610 limits in finland. *arXiv preprint arXiv:2402.09556*, 2024.

611 Brandon Trabucco, Gunnar Sigurdsson, Robinson Piramuthu, and Ruslan Salakhutdinov. Insta:
 612 Towards internet-scale training for agents. *arXiv preprint arXiv:2502.06776*, 2025.

613

614 Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji.
 615 Executable code actions elicit better llm agents. In *Forty-first International Conference on Machine*
 616 *Learning*, 2024a.

617 Zilong Wang, Yuedong Cui, Li Zhong, Zimin Zhang, Da Yin, Bill Yuchen Lin, and Jingbo Shang.
 618 Officebench: Benchmarking language agents across multiple applications for office automation.
 619 *arXiv preprint arXiv:2407.19056*, 2024b.

620

621 Junde Wu, Jiayuan Zhu, and Yuyuan Liu. Agentic reasoning: Reasoning llms with tools for the deep
 622 research. *arXiv preprint arXiv:2502.04644*, 2025.

623

624 Jingxu Xie, Dylan Xu, Xuandong Zhao, and Dawn Song. Agentsynth: Scalable task generation for
 625 generalist computer-use agents. *arXiv preprint arXiv:2506.14205*, 2025.

626

627 Frank F Xu, Yufan Song, Boxuan Li, Yuxuan Tang, Kritanjali Jain, Mengxue Bao, Zora Z Wang,
 628 Xuhui Zhou, Zhitong Guo, Murong Cao, et al. Theagentcompany: benchmarking llm agents on
 629 consequential real world tasks. *arXiv preprint arXiv:2412.14161*, 2024a.

630

631 Yiheng Xu, Dunjie Lu, Zhennan Shen, Junli Wang, Zekun Wang, Yuchen Mao, Caiming Xiong, and
 632 Tao Yu. Agenttrek: Agent trajectory synthesis via guiding replay with web tutorials. *arXiv preprint*
 633 *arXiv:2412.09605*, 2024b.

634

635 John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
 636 and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
 637 *Advances in Neural Information Processing Systems*, 37:50528–50652, 2024.

638

639 Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. τ -bench: A benchmark for
 640 tool-agent-user interaction in real-world domains. *arXiv preprint arXiv:2406.12045*, 2024.

641

642 Yuxiang Zheng, Dayuan Fu, Xiangkun Hu, Xiaojie Cai, Lyumanshan Ye, Pengrui Lu, and Pengfei
 643 Liu. Deepresearcher: Scaling deep research via reinforcement learning in real-world environments.
 644 *arXiv preprint arXiv:2504.03160*, 2025.

645

646 Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
 647 Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for building
 648 autonomous agents. *arXiv preprint arXiv:2307.13854*, 2023.

649

650 Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun, and Chao Zhang. Toolqa: A dataset for llm
 651 question answering with external tools. *Advances in Neural Information Processing Systems*, 36:
 652 50117–50143, 2023.

648
649
650 Table 4: Data statistics of OdysseyBench+ and OdysseyBench-Neo.
651
652
653

	OdysseyBench+				OdysseyBench-Neo			
	single apps	two apps	three apps	overall	single apps	two apps	three apps	overall
Total # conversation h .	93	95	112	300	60	71	171	302
Avg. # session k . in conversation h	27.8	24.7	30.6	27.9	5.0	5.0	5.1	5.0
Avg. # utterance j . in session k	10.8	12.1	11.4	11.4	72.3	73.5	73.3	73.2
Avg. # tokens. conversation h	3323.2	3209.6	3809.9	3468.9	5031.6	5223.1	5196.4	5169.9
Avg. # tokens. sessions k	119.7	130.1	124.4	124.6	1006.3	1041.7	1026.1	1025.8
Avg. # tokens. utterance j	11.1	10.8	10.9	10.9	13.9	14.2	14.0	14.0

660
661

A DATASET STATISTICAL ANALYSIS

662

663 As shown in Table 4, our dataset comprises 602 tasks, categorized by the number of applications
664 involved: Single App (153 tasks), Two Apps (166 tasks), and Three Apps (283 tasks). Each task
665 is documented through multi-day dialogues, with at least five days per task. Dialogues occurring
666 within the same day are grouped into a single session, and every dialogue contains a minimum of 10
667 utterances, ensuring rich interaction data. OdysseyBench+ contains 300 conversation histories with an
668 average of 27.9 sessions per conversation and 11.4 utterances per session, resulting in relatively short
669 sessions with an average of 124.6 tokens per session. In contrast, OdysseyBench-Neo comprises 302
670 conversations with a more structured format of exactly 5 sessions per conversation (corresponding
671 to the 5-day dialogue design) but significantly longer sessions, averaging 1025.8 tokens each and
672 73.2 utterances per session. This design difference reflects OdysseyBench-Neo’s focus on creating
673 more comprehensive daily interactions, while OdysseyBench+ maintains the original fragmented
674 conversation structure from OfficeBench. Overall, OdysseyBench-Neo generates richer conversational
675 content with approximately 49% more tokens per conversation (5169.9 vs. 3468.9 tokens),
676 demonstrating the enhanced depth and complexity of the newly generated tasks.

677

B QUALITY VERIFICATION GUIDELINE

678

679 To ensure consistency and quality, we design a quality verification guideline following the best
680 practices in the AI community. Annotators are instructed to remove any task or dialogue that does
681 not meet **all** of the following criteria:

- 682 • **Completeness:** The combination of task intent and dialogue must provide all information
683 necessary for a competent agent (or human) to complete the task. No essential details should
684 be missing from the dialogue history or task intent.
- 685 • **Soundness (No Information Leakage):** The task intent must not reveal specific details
686 from the original task description that are intended to be discovered through the dialogue.
687 All critical information for task completion should be conveyed through the dialogue, not
688 leaked in the intent.
- 689 • **Clarity and Coherence:** The task description, intent, and dialogues must be clearly written,
690 logically structured, and free of ambiguity. Dialogue turns should follow a natural, realistic
691 conversational flow, with each utterance making sense in context.
- 692 • **Solvability:** The task must be solvable using only the information provided in the intent
693 and dialogue, without requiring external knowledge or assumptions. There should be no
694 contradictions or missing steps that would prevent successful completion.
- 695 • **Relevance and Appropriateness:** The task and dialogue should be relevant to real-world
696 productivity scenarios and appropriate for the intended application environment. Content
697 must be free from offensive, biased, or inappropriate language.
- 698 • **Diversity and Realism:** Dialogues should include a mix of task-relevant and occasional
699 task-irrelevant (e.g., chitchat) content to reflect real-world interactions, but should not be
700 dominated by irrelevant content. Tasks should not be trivial or repetitive; they should reflect
701 the complexity and variety expected in real-world workflows.
- 702 • **Language Quality:** All text must be grammatically correct, fluent, and written in natural
703 English.

702 Table 5: The number of execution steps of the task in OdysseyBench+ and OdysseyBench-Neo
 703 under different configurations indicates how many steps are required to successfully execute the task.
 704 “configuration” represents the experimental setup used for evaluation.

	configuration	1-apps	2-apps	3-apps	overall
OdysseyBench+	long-context	6.31	11.61	12.70	10.25
	RAG-utterance	6.85	11.48	14.70	11.05
	RAG-chunk	7.25	8.28	14.86	10.10
OdysseyBench-Neo	long-context	7.81	9.63	11.74	10.46
	RAG-utterance	8.17	9.66	12.52	10.92
	RAG-chunk	7.93	9.92	12.54	10.95

716 Tasks or dialogues failing to meet any of these standards are removed. This process ensures the
 717 benchmark remains high-quality, challenging, and representative of real-world use cases, in line with
 718 accepted practices in the AI community.

721 C ANALYSIS OF EXECUTION STEPS

724 Furthermore, analysis of execution steps in Table 5 reveals that chunk-level summaries introduce
 725 negligible computational overhead, and in some cases, even reduce the number of steps required to
 726 complete tasks. This indicates that summarization not only boosts performance, but also streamlines
 727 the reasoning process by providing relevant context efficiently, without overwhelming the model.
 728 These findings underscore the critical role of semantic compression and coherent aggregation in
 729 enabling effective multi-step reasoning.

732 D CRITERIA OF VERIFIER AGENT

735 We provide the criteria used by the verifier agent in HOMERAGENTS+ to ensure the quality and
 736 realism of the generated dialogues. These criteria are designed to maintain a high standard for the
 737 dialogues, ensuring they are both realistic and challenging for agents to navigate.

740 Criteria of Verifier in HOMERAGENTS+

- 741 • At least 5 calendar-day dialogues, over 100 turns.
- 742 • Agent speaks only after user turns.
- 743 • Sub-tasks from the atomic instruction are split, never repeated.
- 744 • DO NOT lose any information about atomic instruction in the chat logs, such as the time, the numbers,
 745 file names, application names...
- 746 • Add as much casual chitchat as possible, but not extra subtasks to do.
- 747 • Each item JSON has keys “role”, “text”, “ts”.
- 748 • NO personal data and NO hateful content.
- 749 • Do not mention rules or benchmark.

752 E PROMPTS FOR AGENTS

754 In this section, we separately provide the illustrations of the prompts used in the HOMERAGENTS+
 755 and HOMERAGENTS-NEO.

756 E.1 PROMPTS FOR HOMERAGENTS+
757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

Prompt 1: Verifier Prompt

798

799

SYS PROMPT:

800

You are a strict grader.

801

{Evaluation Criteria}

802

Input will be a JSON array called CONVERSATION followed by the criteria above. Output
EXACTLY this JSON schema:

803

{ "passed": true | false, "feedback": " max 300 chars if failed, else empty"}

804

Reply with nothing else.

805

USER PROMPT:

806

807

808

809

CONVERSATION: "{conversation}"

864

E.2 PROMPTS FOR HOMERAGENTS-NEO

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

Rules for Tasks Generation in HOMERAGENTS-NEO

- The task description should be a string that describes each subtask (1-5 subtasks) to be completed.
- Only follow and use the evaluation criteria formatted from the examples and do not invent new evaluation criteria.
- The evaluation criteria should be a list of dictionaries, each dictionary representing an evaluation
- The task description is hidden from the agent, and a ground truth agent should be able to complete the task with just the task description.
- The ground truth memory should contain the necessary facts (things like time, new values, new filenames, new content values (but intermediate or final calculations), etc.) and events (action items) needed to complete the task, which will be distributed across the chat histories. These memories when dispensed across the chat histories, should be related to the task and queryable using the query sentence.
- For the query sentence, it should be a general instruction of the task description, which will be sent to the policy agent to understand the general task and use it to query more details about the task details from memories.
- FOR EXCEL TASKS, we do not have ground truth reference files, DO NOT USE evaluate exact match with a reference excel file. Instead, use the evaluation criteria to check some important added values to the excel such as `{{"function": "evaluate excel cell value", "args": [{"file": "data/salary.xlsx", "matches": [{"row": 5, "col": 2, "value": "200000"}]}]}`, etc.
- FOR CALENDAR TASKS, the commands for creating calendar events do not contain information such as one hour reminders or locations, so do not use these as task or evaluation criteria. Instead, if you want to evaluate these, use the event's title, start time and end time as evaluation. If you want to evaluate the event's details such as location, ask the agent to add these details to the event title, and add this action item note to the ground truth memory for chat generation. Note that when generating a task, you should be precise about what to expect for the calendar's description as an LLM policy agent may generate events with different names.
- FOR QUESTION ANSWERING TASKS, expect the agent to output a the final answer in the answer.txt file, instead of adding a line in an existing file like word or excel file. When evaluating such answers, be precise about the task, ground truth memory such that you can expect what the agent produce so that the correctness of the answer is easily verifiable.
- The inference agents can create or modify files such as docx, xlsx, generate pdf files. No powerpoint or txt files are allowed except for the answer.txt file where the policy agent's final output is logged.
- FOR EMAIL TASKS, there is no draft mode or attachment options. Follow closely the examples given below, and do not create new evaluation criteria formats.
- FOR WORD (docx file generation or update) TASKS such as summarization, evaluation on a subset of the most important keywords is sufficient and do not match the exact content or long sentences as the inference agent are not expected to generate the exact matches.
- As a general rule, make sure that the facts and values, output file name and action items in the proposed task and memory are precise and clear and matches the evaluation criteria accurately, such that the agent can accurately complete the task. If you leave the task description vague, the agent may write to wrong file names, wrong event details, etc. For example, for setting up a calendar event, make sure you specify the exact start time and end time, and the exact description of the event, so that the agent can create the event with the correct details. For creating new files, make sure you specify the exact file name, etc. And make sure that these important points or action items are clearly described in the ground truth memory so that an inference agent with query sentence and ground truth memory can complete the task as in the task description.
- Provide new and complementary information about your proposed new tasks in the ground truth memory, and DO NOT INCLUDE the solution to the task such as the intermediate steps for the solution (such as values read from files or intermediate or final calculated values), but rather a list of facts and action items that are necessary for completing the task complementing the files, such as missing details from the files, important action items or notes missing in the query sentence such as the output filenames, locations to put values, what elements a calendar event description should contain, or new events you propose or new facts. The memory generated will appear in the chat histories. The inference agent has access to all the files, and should be able to query the ground truth memory using the query sentence to find the necessary facts and action items to complete the task, while the query sentence should miss some details such as facts or preferences, which can be found in the memory.
- Follow closely the json format and function names in the given examples when generating evaluations and do not invent new evaluation functions, and for keyword checks, split those keywords into different chunks to avoid being too strict (e.g., split and skip the punctuation marks).

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948

Rules for Dialogues Generation in HOMERAGENTS-NEO

- The generated chat histories should contain around 100-120 turns per day, spread across 5 days (before today).
- To generate the chats, Take the following steps as the orchestrator: ##### Break Down Memory per Chat Day: First extract the precise subtask action items or the factual knowledge from the ground truth memory pieces to be covered for each day. ##### Chat Generation: For each day (day 0 to day 4), provide the PRECISE memory pieces for the day as the orchestrator, and ask the chat generator agent to write the chat histories day by day using the ChatTool. For example: to generate day N chat history with chat generator agent, first extract and mention the list of `{EXACT MEMORY CONTENTS}` to be covered on the day and let it generate chats that precisely capture these contents. Make sure that with the memory pieces, the inference agent can find the action items to work on, the correct file names, and the correct content values to complete the task. Beware that sometimes if the description is vague, the agent may write to wrong file names, wrong event details, etc. ##### To make the chat histories longer, chitchat with the agent that are not related to the task can be added, but make sure that these do not add noise to the task solving such as new action items that are not covered by the memory or task description. Do not duplicate the memory pieces across the chat days, and if all memories have been covered, the chat history of the next day can be just about chitchat.
- Each chat turn being a json object with timestamp, the source (user or agent), and the content.
- The chat is between the user and the agent (not human), the user may mention the facts from the memory or action items from the task description, and the agent may respond with answers like will do but not solve the action, so that during inference, the agent can find the action items to work on.

949
950
951
952
953
954

E.2.1 TASK GENERATOR PROMPT

955

Prompt 3: Task Generator Prompt

956

SYS PROMPT:

957
958
959
960
961
962
963
964
965

Generate a task description, evaluation criteria, and ground truth memory for the task. Use the TaskTool to log it. The task description should be a string, the evaluation criteria should be a list of dictionaries, each dictionary representing an evaluation criterion, and the ground truth memory should be a list of dictionaries, each dictionary representing a memory item. Use double quotes and not single quotes. The format of the arguments to the tool call to the tool named TaskTool should be: `{'task_specs': <the json object with task description, evaluation criteria, query sentence, and ground truth memory'>}` where the tool name is TaskTool. NOTE THAT the json object should be valid with double quotes on the keys and values.

966
967

Rules for Tasks generation}

968
969

USER PROMPT:

970
971

Context: “{context information}”

Instruction: “{instruction from orchestrator}”

972 E.2.2 ORCHESTRATOR PROMPT
973

974

975

976

977

978

979

980

981

982

983

984

985 Prompt 4: Orchestrator Prompt
986987 *SYS PROMPT:*

988 Today is {date} ({weekday}). The current time is {time}. You are an AI assistant for
 989 user {username}. Now you're the orchestrator and your task is to synthesize new tasks to
 990 evaluate agents' memory capability for task solving. To generate this new task, you will
 991 need to generate task specifications and chat histories which includes important memory of
 992 information for solving the task, please follow the following steps:

993 **###STEP 1: FILE READING:** First start by reading some existing files (such as excel, email,
 994 calendar, or other files) using the file related task agents, it is possible there are sometimes
 995 no files while it is still possible to propose tasks. Gather important information from these
 996 files that are related to the task you want to propose, such as where to update a file or to use
 997 information from these files. Note that the inference agent will have access to these files, so
 998 the ground truth memory and the chat histories to generate is not just about recording specific
 999 elements in the files but more about new information or action items relates but not limited to
 contents already in the file.

1000 **###STEP 2: TASK PROPOSAL:** then propose a new task which includes information:

1001 1. a task description (hidden from agent),
 1002 2. the task evaluation criteria (hidden from agent),
 1003 3. a ground truth memory which includes facts and events needed to complete the task (hidden
 1004 from agent), 4. a query sentence which is a more general instruction of the task description
 1005 which will be sent to the policy agent to understand the general task and use it to query
 1006 more details about the task details from memories. 5. for evaluation, txt is not a file format
 1007 that can be used, so please do not generate tasks that require generating new txt files. For
 1008 safe evaluation, please follow the task spec examples below to generate possible tasks and
 1009 evaluations.{task_spec_examples}

1010 **###STEP 3: LOG DOWN THE TASK SPECS:** After proposing the task, use the
 1011 task_generator_agent to write down these task details using the TaskTool.

1012 **###STEP 4: GENERATE DIALOGUES:** (DO NOT FORGET) After generating the task,
 1013 expand the ground truth memory into long chat histories where the ground truth memories are
 1014 scattered, such that during inference, the agent can be challenged on curating correct pieces
 1015 of memories from these chats.

1016 **{Rules for Tasks generation}**1017 **{Rules for Dialogues generation}**

1018 As a general note, you can find files, calendar events, emails for your task in '/testbed/data',
 1019 you can use the assistant agents to read, list, the files, do not create new items for this task
 1020 generation cycle.

1021 **DO NOT TERMINATE THE TASK IF YOU HAVE NOT FINISHED GENERATING THE
 1022 TASK SPECS OR THE DIALOGUES. DO NOT STOP TO GET HUMAN FEEDBACK,
 1023 JUST GENERATE THE TASK SPECS AND DIALOGUES.**

1024 *USER PROMPT:*

1025 Context: "{context information}"

1026 E.2.3 CHAT GENERATOR PROMPT
10271028 Prompt 5: Dialogue Generator Prompt
10291030 *SYS PROMPT:*1031 Today is {date} ({weekday}). The current time is {time}. You are an AI assistant for user
1032 username. Now you're the chat generator assistant helping a task generator orchestrator to
1033 synthesize new tasks. Your job is to expand the ground truth memory into chat histories where
1034 the memories are scattered in the chat histories. Generate chat histories for the task given the
1035 ground truth memory and task description.1036 **{Rules for Dialogues generation}**
10371038 *USER PROMPT:*
10391040 Task: “{task}”
1041 Subtask Instruction: “{subtask instruction}”
1042 Instruction: “{instruction from orchestrator}”
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079