
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ODYSSEYBENCH: EVALUATING LLM AGENTS ON
LONG-HORIZON COMPLEX OFFICE APPLICATION
WORKFLOWS

Anonymous authors
Paper under double-blind review

ABSTRACT

Autonomous agents powered by large language models (LLMs) are increasingly
deployed in real-world applications requiring complex, long-horizon workflows.
However, existing benchmarks predominantly focus on atomic tasks that are self-
contained and independent, failing to capture the long-term contextual dependen-
cies and multi-interaction coordination required in realistic scenarios. To address
this gap, we introduce OdysseyBench, a comprehensive benchmark for evaluat-
ing LLM agents on long-horizon workflows across diverse office applications
including Word, Excel, PDF, Email, and Calendar. Our benchmark comprises two
complementary splits: OdysseyBench+ with 300 tasks derived from real-world use
cases, and OdysseyBench-Neo with 302 newly synthesized complex tasks. Each
task requires agent to identify essential information from long-horizon interaction
histories and perform multi-step reasoning across various applications. To enable
scalable benchmark creation, we propose HOMERAGENTS, a multi-agent frame-
work that automates the generation of long-horizon workflow benchmarks through
systematic environment exploration, task generation, and dialogue synthesis. Our
extensive evaluation demonstrates that OdysseyBench effectively challenges state-
of-the-art LLM agents, providing more accurate assessment of their capabilities
in complex, real-world contexts compared to existing atomic task benchmarks.
We believe that OdysseyBench will serve as a valuable resource for advancing the
development and evaluation of LLM agents in real-world productivity scenarios.

1 INTRODUCTION

Autonomous agents powered by large language models (LLMs) have demonstrated remarkable
capabilities across diverse domains, including reasoning (Lin et al., 2024; Boisvert et al., 2024; Yao
et al., 2024), software development (Yang et al., 2024; Murty et al., 2024; Zhou et al., 2023; Xie et al.,
2025), and scientific research (Drouin et al., 2024; Wu et al., 2025; Zheng et al., 2025). As these agents
increasingly transition from research settings to real-world applications, they are expected to handle
complex, multi-step tasks such as drafting professional emails, updating documents, and managing
personal calendars (Yao et al., 2024; Wang et al., 2024b; Xu et al., 2024a). This shift underscores the
need for the development of comprehensive benchmarks that accurately reflect real-world scenarios
and rigorously evaluate agent performance in complex, contextual task environments.

However, existing benchmarks for agents predominantly focus on atomic tasks that are self-contained
and independent of previous interactions or accumulated context (Zhou et al., 2023; Paranjape et al.,
2023; Bonatti et al., 2024; Wang et al., 2024b; Xu et al., 2024a), as illustrated in Figure 1(a). While
these benchmarks serve as valuable initial assessments, they fundamentally misrepresent the nature of
real-world workflows, which typically unfold across extended periods and encompass various agent-
user interactions and require agents to systematically curate, integrate, and leverage information
accumulated over extended periods (Schick et al., 2023; Hu et al., 2024; Erdogan et al., 2025).
Agents that perform well on atomic task benchmarks may struggle with the contextual dependencies,
information persistence, and collaborative workflow management required in real-world scenarios.

In this work, we address these challenges by introducing a novel benchmark OdysseyBench designed
to evaluate agents on complex, long-horizon workflows spanning diverse office applications, including

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

OfficeBench:
Add the sentence "This is a test sentence for task 1-15-0."
to the end of house_creak.docx.

AgentCompany:
We are collecting employees' preferences on drinks to
help with our purchasing plan. Please navigate to
http://the-agent-company.com:8092/ and find
drinks_survey.pdf, which contains a questionnaire that we
have placed in the office. Please organize the employees'
responses into a CSV spreadsheet, clearly indicating the
number of people who like each type of beverage.

WebArena:
What is the top-1 best-selling brand in Quarter 1 2022.

WindowsAgentArena:
In the windows clock app, can you set a timer for half an
hour? I need to wrap something up by then.

AgentBench:
Stock logs are shown in /usr/stock.log. The last two
columns are stock index and count. Tell me how many
times Alice sold a stock.

(a) Atomic Tasks

Task Intent:
Save the extracted text into two PDF files and place them in the appropriate folders.

Dialogues:
...
{"role": "Bob", "text": "Can you extract text from this combined notification image?", "ts": "2020-04-27 09:00"},
{"role": "Assistant", "text": “Sure!", "ts": "2020-04-27 09:00"},
…
{"role": "Bob", "text": "Can you split the extracted text into two parts: party and meeting?", "ts": "2020-04-28 9:00"},
{"role": "Assistant", "text": "Noted!", "ts": "2020-04-28 9:00"},
….
{"role": "Bob", "text": "Can you create a PDF file named party.pdf with the party text?", "ts": "2020-04-30 7:00"},
 {"role": "Assistant", "text": "Will do!", "ts": "2020-04-30 7:00"},

…
{"role": "Bob", "text": "I saw a documentary about the Amazon rainforest. It was eye-opening.", "ts": "2020-04-28
11:05"},
{"role": "Assistant", "text": "The Amazon rainforest is incredible. What did you learn from the documentary?", "ts":
"2020-04-28 11:06"},
…
{"role": "Bob", "text": "Can you create a PDF file named meeting.pdf with the meeting text?", "ts": "2020-04-30
12:00"},
 {"role": "Assistant", "text": "Noted!","ts": "2020-04-30 12:00"},
…
 {"role": "Bob", "text": "Hey, I have a meeting notification image that I need summarized.", "ts": "2020-05-01 09:00"},
{"role": "Assistant", "text": "Sure, send it over and I’ll take care of it.", "ts": "2020-05-01 09:00"},
…
 {"role": "Bob", "text": "Can you save party.pdf in the activities folder and meeting.pdf in the schedule folder?",

"ts": "2020-05-02 15:00"},
 {"role": "Assistant", "text": “Sure, will do!", "ts": "2020-05-02 15:00"},

…

chitchat
event

irrelevant
office event

(b) Long-horizon Tasks (Ours)

Figure 1: (a) Atomic tasks: each task is self-contained and does not rely on previous interactions
or context. (b) Long-horizon tasks (Ours): a complex task requiring context aggregation, spanning
multiple interactions.

Word, Excel, PDF, Email, and Calendar. Our benchmark includes two splits:
OdysseyBench+, which consists of 300 long-horizon tasks originated from real-world use cases in
OfficeBench (Wang et al., 2024b), and OdysseyBench-Neo, which contains 302 newly generated
tasks that are more complex and diverse. Each task, as illustrated in Figure 1(b), is designed to
require the agent to reason about the task and extract essential information from long-horizon dialogue
histories between the user and agent. This enables the construction of feasible workflows and supports
multi-step reasoning across various applications. The tasks are structured to reflect the complexities of
agent-user interactions, emphasizing the need for agents to maintain context, synthesize information
from prior exchanges, and coordinate actions across diverse tools and environments.

Furthermore, many benchmarks rely on costly human annotation, limiting scalability and constraining
the diversity of evaluation scenarios (Zhou et al., 2023; Xu et al., 2024a; Yao et al., 2024). While
recent efforts have explored synthetic data generation with LLMs (Ou et al., 2024; Xu et al., 2024b;
Xie et al., 2025), these approaches typically yield atomic tasks, lacking the sustained interactions and
long-term context essential for realistic workflows. These limitations highlight the urgent need for
systematic, automated benchmarks that reflect the challenges of real-world, long-horizon tasks.

To address these challenges, we additionally propose HOMERAGENTS, a multi-agent framework
that automates the generation of long-horizon workflow benchmarks. Our framework consists of
two complementary components: HOMERAGENTS+, which leverages existing benchmarks from
OfficeBench (Wang et al., 2024b) and employs a two-agent iterative refinement process to transform
atomic tasks into contextually rich, multi-interaction scenarios, thereby creating OdysseyBench+; and
HOMERAGENTS-NEO, which utilizes a multi-agent system operating within realistic application en-
vironments to generate entirely new long-horizon tasks from scratch, producing OdysseyBench-Neo.
Through systematic environment exploration, task generation, and dialogue creation, HOMERA-
GENTS enables scalable production of diverse, contextually grounded benchmark tasks that reflect the
complexity of real-world scenarios while maintaining the quality standards for rigorous evaluation.

We conduct extensive evaluations of OdysseyBench using state-of-the-art agents. Our experiments
reveal that while humans achieve near-perfect performance (over 90% accuracy) on our benchmark,
state-of-the-art agents, such as o3 and GPT-5, achieve only around 55% accuracy. This demonstrates
that our benchmarks effectively challenge current models and offer a more accurate assessment of
their capabilities in real-world contexts.

In summary, our contributions are as follows:

• We introduce OdysseyBench, a comprehensive benchmark for evaluating agents on long-
horizon workflows across multiple office applications, consisting of OdysseyBench+ and
OdysseyBench-Neo.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• We propose HOMERAGENTS, a multi-agent framework that automates the generation of
long-horizon tasks, enabling scalable and diverse benchmark creation.

• We demonstrate the effectiveness of OdysseyBench in challenging state-of-the-art language
agents, providing insights into their performance in complex, real-world scenarios.

• We analyze the impact of dialogue storage formats within OdysseyBench, demonstrating
that semantic compression and coherent aggregation are essential for effective multi-step
reasoning and agent performance.

2 RELATED WORK

Evaluating LLMs in Executive Environments As LLMs advance in tackling real-world challenges
(Hurst et al., 2024; Jaech et al., 2024; OpenAI, 2025; Anthropic, 2025b;a; Comanici et al., 2025),
there is a growing shift toward evaluating their capabilities in dynamic, executive environments
rather than static datasets. Beyond text-based games (Côté et al., 2018; Shridhar et al., 2020), recent
research increasingly simulates realistic scenarios to assess agents’ proficiency in tool use (Deng
et al., 2023; Zhuang et al., 2023; Qin et al., 2023; Lù et al., 2024; Wang et al., 2024a; Shen et al., 2024;
Xu et al., 2024a; Sutela & Lindström, 2024). Current benchmarks, such as WebArena (Zhou et al.,
2023), AgentBench (Paranjape et al., 2023), WindowsArena (Bonatti et al., 2024), and OfficeBench
(Wang et al., 2024b), provide valuable evaluation settings focused on web and office environments.
However, these platforms primarily measure atomic performance in self-contained contexts and lack
mechanisms to evaluate LLM agents’ interactions with complex environments over extended periods.
This limitation is significant, as robust assessment of planning, long-term information retrieval, and
execution is essential for understanding agents’ true capabilities in real-world tasks.

Synthetic Benchmark Generation Existing agent datasets and benchmarks largely rely on human
annotators for task creation, demonstrations, and evaluation metric design (Zhou et al., 2023; Xu et al.,
2024a; Yao et al., 2024), resulting in high costs and limited diversity. Recent studies try to leverage
LLMs to automatically generate agent tasks and trajectories (Ou et al., 2024; Xu et al., 2024b; Xie
et al., 2025). For instance, Murty et al. (2024); Pahuja et al. (2025); Trabucco et al. (2025); Gandhi &
Neubig (2025) employ LLMs as web agents to synthesize web-based interactions in semi-realistic
environments. Moreover, composing atomic tasks is another method to construct more challenging
tasks (Boisvert et al., 2024; Drouin et al., 2024). Li et al. (2024) iteratively propose and refine dataset
descriptions to generate topic-specific problems. However, these approaches predominantly focus
on web-based activities and are generally limited to simple interactions, lacking the complexity of
multi-step reasoning and extensive tool use required for robust agent evaluation.

3 METHODOLOGY

In this section, we firstly introduce HOMERAGENTS, a multi-agent framework that automatically
generates the long-horizon workflow benchmark OdysseyBench in Section 3.1, including two com-
ponents: HOMERAGENTS+ (Section 3.1.1) and HOMERAGENTS-NEO (Section 3.1.2). We then
describe the long-horizon workflow benchmark OdysseyBench in Section 3.2, including the dataset
analysis (Section 3.2.2), quality control measures (Section 3.2.3), and human evaluation (??).

3.1 HOMERAGENTS: AUTOMATING BENCHMARK CREATION

It is highly challenging to create OdysseyBench in a scalable and reliable manner, as it requires
generating realistic user–assistant interaction histories and the context-dependent multi-step tasks
that reflect the complexity and ambiguity of real-world productivity scenarios. To facilitate this
process, we propose a multi-agent framework HOMERAGENTS that automates the generation of tasks,
including HOMERAGENTS+ (see Section 3.1.1) and HOMERAGENTS-NEO (see Section 3.1.2).

3.1.1 HOMERAGENTS+: STANDING ON THE SHOULDERS OF OfficeBench

HOMERAGENTS+ builds upon the task descriptions from OfficeBench (Wang et al., 2024b) to
generate long-horizon dialogue scenarios that more closely mirror real-world productivity workflows.
Starting from a given task description T , HOMERAGENTS+ employs a two-agent iterative refinement

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Task Generator Dialogue Generator

task
intent

evaluation
criteria

Day1

Day2
Day3

Day4
Day5

Information
Gathering

Reflection
Re-Planning

Dialogues,
Task intent

FeedbackTask
description

Dialogue
Generator

Verifier

Surfers

plan verifytrack

Orchestrator

adjustdecompose

subtask
instruction

subtask1

subtask2

subtask3

(a) HomerAgents+ (b) HomerAgents-Neo

Figure 2: HOMERAGENTS Framework Overview. HOMERAGENTS consists of two components:
HOMERAGENTS+ and HOMERAGENTS-NEO. HOMERAGENTS+ builds upon the task descriptions
from OfficeBench to generate long-horizon dialogues, while HOMERAGENTS-NEO creates entirely
new tasks and corresponding dialogues from scratch by employing a multi-agent system that operates
within realistic application environments.

framework to produce task intents I and corresponding long-horizon user-assistant dialogues D,
thereby contextualizing and enriching the original task.

The framework comprises two core components: a generator (G) and a verifier (V), as depicted in
Figure 2. The generator G receives the task description T and any feedback from previous iterations
Fi−1, and outputs a task intent Ii along with a corresponding dialogue Di. Here, the task intent I
succinctly captures the user’s goal without specific details, while the dialogue D provides the natural
conversational context leading to the task. The verifier V then assesses the generated content for
dialogue realism, task alignment, and contextual coherence, returning structured feedback Fi.

Algorithm 1: HOMERAGENTS+
Input: Task description T ; the generator G; the verifier V; the maximal number of iterations Nmax;
Output: Task intent I and dialogues D;

1 F0 ← ∅ ; ▷ Initialize empty feedback
2 for i=1 to Nmax do
3 {Ii,Di} ← G(T ,Fi−1) ; ▷ The generator G generates the task intent I and dialogues D
4 Fi ← V(T , Ii,Di) ; ▷ The verifier V evaluates I and D, and provides feedback Fi

5 if Fi == pass then
6 return {Ii,Di} ; ▷ Early stop if the verifier V thinks the task intent I and

dialogues D are satisfactory

7 return {INmax ,DNmax} ; ▷ Return the task intent I and dialogues D after Nmax iterations

This process is executed iteratively, as outlined in Algorithm 1, with a maximum of Nmax iterations.
In each iteration i, the generator G refines its output based on the original task and accumulated
feedback, while the verifier V either approves the result (“pass”) or provides actionable feedback
for further improvement. The cycle ends when the verifier approves or the iteration limit is reached.
This iterative, feedback-driven approach allows HOMERAGENTS+ to generate realistic, complex
long-horizon tasks for rigorous workflow evaluation.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.1.2 HOMERAGENTS-NEO: SCALING UP THE BENCHMARK CREATION

While HOMERAGENTS+ effectively leverages existing benchmarks, HOMERAGENTS-NEO addresses
the need for more diverse and scalable task generation by creating entirely new long-horizon tasks
from scratch. HOMERAGENTS-NEO employs a multi-agent system that operates within realistic
application environments to generate authentic productivity scenarios, as shown in Figure 2.

Algorithm 2: HOMERAGENTS-NEO

Input: Applications A = {ak}Kk=0; Environment E ; Orchestrator O; Surfers S = {Sk}Kk=0; Task
Generator Gtask; Dialogue Generator Gdial;

Output: Task τ and dialogue D;
1 Phase 1: Planning;
2 P← O(A, E) where P = {Psurf,Ptask,Pdial}; ▷ Orchestrator drafts the generation plan P
3 Phase 2: Environment Exploration;
4 C←

⋃K
k=0 Sk(Psurf, ak, E); ▷ Surfers collect contextual information from environment E

5 Phase 3: Task Generation;
6 τ ← Gtask(Ptask,C) where τ = {T, I,K,E} ; ▷ Task Generator generate task components,

including task description T, task intent I, subtask instructions K, and evaluation
criteria E

7 Phase 4: Dialogue Generation;
8 D← Gdial(Pdial,C, I,K) ; ▷ Dialogue generator generates T-Days dialogues
9 return Task τ and dialogues D; ▷ Complete task for dataset

HOMERAGENTS-NEO consists of productivity applications A = {ak}Kk=0, environment E , orches-
trator O, surfers S = {Sk}Kk=0, task generator Gtask, and dialogue generator Gdial. Orchestrator O
manages planning, progress tracking, and coordinates the entire generation process by orchestrating
each stage of data generation, ensuring coherence in both task and dialogue creation. Surfers S gather
information from environment by interacting with a diverse set of simulated productivity applications.
Task generator Gtask synthesizes the tasks and corresponding evaluation criteria. Dialogue generator
Gdial then creates multi-day dialogues simulating realistic user-assistant interactions. The framework
consists of four distinct phases, as outlined in Algorithm 2:

Phase 1: Planning The orchestrator O receives a set of applications A = {ak}Kk=0 and environment
E , then formulates a generation plan P = {Psurf,Ptask,Pdial}. This plan specifies how the subsequent
phases should explore the environment Psurf, generate tasks Ptask, and create dialogues Pdial.

Phase 2: Environment Exploration A collection of specialized surfers S = {Sk}Kk=0 systemati-
cally explore the application environment. Each surfer Sk follows the surfing plan Psurf to interact with
application ak within environment E , collecting contextual information C. This exploration phase
ensures that generated tasks are grounded in realistic application capabilities and user workflows.

Phase 3: Task Generation The task generator Gtask uses contextual information C and the plan
Ptask to produce task specifications τ = {T, I,K,E}, including the task description T, the task intent
I, detailed subtask instructions K, and evaluation criteria E. The task description T outlines the
specific goals and requirements of the task, the task intent I conveys the high-level overall goal but
omits specific details of the task, K = {k1, . . . , kt} provides instructions for completing the task, and
the evaluation criteria E define how the task’s success will be measured.

Phase 4: Dialogue Generation The dialogue generator Gdial uses the dialogue plan Pdial, context C,
task intent I, and subtask instructions K to create realistic long-horizon user-assistant conversations
D. For each subtask ki ∈ K, it generates a dialogue Di, simulating multi-day interactions, reflecting
how the task is approached over multiple days. These are combined into a full dialogue history
D = {D1, . . . ,Dt} that illustrates the user’s journey through the task, including some task-irrelevant
content (e.g., chitchat) to better reflect real-world scenarios. By structuring generation into four
phases, HOMERAGENTS-NEO systematically explores application environments and maintains
coherence between tasks and dialogues, enabling scalable creation of diverse, realistic benchmark
tasks that capture real-world complexity.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0 5 10 15 20 25 30
Execution Steps

0

5

10

15

20

25

30

Fr
eq

ue
nc

y

OdysseyBench+
OdysseyBench-Neo

(a) Execution steps (b) Verb-Noun-Apps

Figure 3: (1) Execution steps needed for the tasks in
OdysseyBench. (b) Actions, objects, and applications of
OdysseyBench.

Table 1: Human performance of
OdysseyBench-Neo.

Task 1-apps 2-apps 3-apps overall

Human 92.31 90.00 91.67 91.50

3.1.3 IMPLEMENTATION DETAILS

To balance performance and cost, all agents in HOMERAGENTS use the GPT-4.1 model for strong
reasoning at reasonable expense. We set the maximum iterations Nmax in Algorithm 1 to 5, and
generate at least T = 5 days of dialogues in Algorithm 2 to capture long-term workflow complexity.
HOMERAGENTS-NEO is implemented on the Magentic-One framework (Fourney et al., 2024).

During dialogue generation, the assistant simulates task execution by generating responses based
on task descriptions and context, rather than performing real actions. This enables scalable, diverse,
and realistic dialogue generation. By deferring execution, our benchmark focuses on agents’ ability
to curate and integrate information across multiple dialogue turns and days, which is crucial for
evaluating long-horizon comprehension and planning.

3.2 OdysseyBench: LONG-HORIZON WORKFLOW BENCHMARK

3.2.1 EVALUATION

We build OdysseyBench in a Docker environment with pre-installed applications, automate operations
using Python, and manage documents, emails, and calendar events via a file system. After the agents
complete each task, we save the file system and perform customized evaluations to verify correctness.

Our evaluation combines exact matching, fuzzy matching, and execution-based methods. Exact and
fuzzy matching check if the agent’s output matches the expected results (e.g., keyword matching for
documents and calendar events), while execution-based evaluation uses code to verify outputs (e.g.,
checking calendar conflicts). A task is successful if all criteria are met. We report the pass rate as the
percentage of tasks completed successfully: #successful tasks

#total tasks .

3.2.2 DATASET ANALYSIS

We provide the statistical analysis of our dataset in Appendix A. We further analyze the distribution
of execution steps in OdysseyBench (Figure 3(a)), finding that most tasks in both datasets require
3-15 execution turns. This indicates that OdysseyBench tasks are sufficiently complex and reflect
real-world multi-step workflows. We also examine task diversity in OdysseyBench, summarizing
actions, objects, and applications in Figure 3(b). The benchmark covers a broad range of actions,
objects, and applications, ensuring it captures the complexity and variety of real-world productivity
tasks and making it a valuable resource for evaluating long-horizon workflow understanding in LLMs.

3.2.3 QUALITY CONTROL

Automated Filtering After creating the initial benchmark using HOMERAGENTS, we implement a
multi-step LLM-based filtering mechanism to ensure the quality and reliability of the generated tasks:

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

1. Task Evaluation Check: We firstly verify that each generated task is associated with a
well-defined evaluation criteria E. If the evaluation criteria are not supported by our system
as described in Section 3.2.1, the task is discarded. This step ensures all the tasks in the
benchmark can be objectively assessed for correctness and completeness.

2. Task Solvability Check: We prompt a state-of-the-art LLM (e.g., o3) to attempt solving
each generated task using using either the full description T or just the intent I and subtask
instructions K. Ideally, the agent should be able to complete the task if the full description
is provided. If the agent fails to complete the task even with the full description, the task is
deemed unsolvable and is removed from the benchmark. This step helps eliminate tasks that
are inherently flawed or too ambiguous for practical completion.

3. General Quality Check: After the previous two checks, we ensure that the tasks in the
benchmark are both verifiable and solvable. We then conduct a final quality check using
a group of five LLM agents. Each agent independently assess the remaining tasks based
on the quality verification guidelines outlined in Appendix B. If a task receives negative
feedback from three or more agents, it is removed from the benchmark. This collective
evaluation helps maintain high standards for task quality and relevance.

Human Verification and Post-Editing We also implement human verification and post-editing
to further enhance the quality of the generated task intent and dialogues. A team of three native
English-speaking annotators manually reviews the generated task intent and dialogues, assessing
them based on the quality verification guidelines outlined in Appendix B. Due to the complexity of
the guidelines, we organize a training session to ensure the annotators fully understand the criteria.
During this process, each example in the benchmark is evaluated by all three annotators and further
revised if any disagreements arise. The inter-annotator agreement is measured using Fleiss’ Kappa
score (Fleiss & Cohen, 1973), which is 0.72, indicating substantial agreement among the annotators.

3.2.4 HUMAN PERFORMANCE

To establish an understanding of human performance on OdysseyBench, we employ two experi-
enced productivity application users to complete a randomly selected subset of 100 tasks from
OdysseyBench-Neo. Each user is instructed to complete the tasks with the full dialogue history D
and task intent I. They are given up to 10 minutes to complete each task and allowed to use any
external tools, such as AI writing assistants, to aid in task completion. As shown in Table 1, the
human users achieve an overall pass rate of 91.50%, demonstrating that the tasks in OdysseyBench
are solvable by humans and providing a benchmark for evaluating LLM performance.

4 EXPERIMENTAL SETUP

Long-Context Evaluation: We evaluate agent performance on OdysseyBench by providing the entire
dialogue history. RAG Evaluation: We also assess agents in the Retrieval-Augmented Generation
(RAG) setting, where relevant context is retrieved from dialogue history using embedding models.
We test two types of stored context: (1) raw and (2) summarized, each at two granularities. For raw
context: (a) session-level (entire session as one document), (b) utterance-level (each turn as a separate
document). For summarized context: (a) session-level (session summarized as one document), (b)
chunk-level (multiple sessions segmented and summarized in chunks).

Metrics and Models As in Section 3.2.1, we use pass rate (percentage of successful task com-
pletions) as the main metric. We evaluate proprietary LLMs (o3, o3-mini, GPT-4o, GPT-4o-mini,
GPT-4.1, GPT-5, GPT-5-chat) and open-weight LLMs (DeepSeek-R1, DeepSeek-R1-Distill-Qwen-
32b, Qwen3-32b). The RAG embedding model is OpenAI text-embedding-3-large.

5 EXPERIMENTAL RESULTS

Tasks get increasingly complex with more applications involved, leading to a performance
drop. As shown in Table 2, performance consistently declines as the number of applications
per task increases. For OdysseyBench+, the average performance drops from single-app scenarios
to three-app scenarios across all models: o3 drops from 72.83 to 30.36, GPT-4.1 from 55.91 to

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Performance of the long-context configuration on OdysseyBench+ and OdysseyBench-Neo
tasks. We divide the tasks into “1/2/3-apps”, specifying the number of applications required by the
tasks. The overall performance is reported as the macro-average across all tasks.

OdysseyBench+ OdysseyBench-Neo

1-apps 2-apps 3-apps overall 1-apps 2-apps 3-apps overall

Proprietary Models
o3 72.83 70.53 30.36 56.19 68.33 60.56 59.06 61.26
o3-mini 38.04 20.00 15.18 23.75 71.67 39.44 45.61 49.34
GPT-4o-mini 30.11 22.11 7.14 19.00 65.00 33.80 29.83 37.75
GPT-4o 47.31 42.11 15.18 33.67 75.00 47.89 45.61 51.99
GPT-4.1 55.91 43.16 12.50 35.67 75.00 63.38 47.37 56.62
GPT-5-chat 55.91 48.42 20.54 40.33 75.00 57.75 51.46 57.62
GPT-5 75.27 66.32 25.89 54.00 61.67 56.34 53.80 55.96
Open-weight Models
DeepSeek-R1 53.76 47.37 20.54 39.33 78.33 60.56 44.44 54.97
DS.-Distill-Qwen-32b 30.11 16.84 1.79 15.33 40.00 22.54 10.53 19.21
Qwen-3-32b 38.71 33.68 11.61 27.00 41.67 22.54 21.05 25.50

Table 3: Performance of RAG-based GPT-4o on OdysseyBench. “Long-context prompting” refers to
evaluation in the long-context setting. “top-k” denotes the number of top retrieved documents used as
context, and “tokens” indicates the total tokens in the retrieved documents.

storage granularity top-k OdysseyBench+ OdysseyBench-Neo

tokens 1-apps 2-apps 3-apps overall tokens 1-apps 2-apps 3-apps overall

Long-context prompting 8000 47.31 42.11 15.18 33.67 6700 75.00 47.89 45.61 51.99

raw

session 5 750 40.86 40.00 11.61 29.67 - - - - -
10 1500 39.79 40.00 14.29 30.33 - - - - -

utterance

5 80 29.03 35.79 8.04 23.33 90 30.00 16.90 8.19 14.57
10 155 27.96 33.68 8.93 22.67 180 31.67 16.90 11.11 16.56
25 370 39.79 35.79 12.50 28.33 450 35.00 32.39 21.05 26.49
50 730 57.69 40.00 17.17 29.41 915 56.67 40.85 31.58 38.74

summarized

session 5 290 29.03 35.79 9.82 24.00 2200 75.00 46.48 49.12 53.64
10 650 33.33 36.84 9.82 25.67 - - - - -

chunk

5 290 30.11 29.47 12.50 23.33 1200 30.11 29.47 12.50 23.33
10 380 40.86 34.74 16.96 30.00 1260 40.86 34.74 16.96 30.00
25 600 46.24 36.84 19.64 33.33 1360 68.33 59.16 50.88 56.29
50 670 44.09 40.00 16.96 32.67 1460 68.33 59.16 48.54 54.97

12.50, and DeepSeek-R1 from 53.76 to 20.54. A similar but less pronounced trend appears in
OdysseyBench-Neo. For instance, o3 maintains relatively stable performance (68.33 to 59.06), while
GPT-4o shows a decline from 75.00 to 45.61. This highlights the challenge LLMs face in coordinating
information across applications, which requires advanced reasoning about dependencies and state.

More context typically leads to better performance, but at a cost. As shown in Table 3, stor-
ing raw data without retrieval (long-context prompting) gives the highest performance (33.67 on
OdysseyBench+ with 8000 tokens; 51.99 on OdysseyBench-Neo with 6700 tokens), but uses many
tokens. Utterance-level retrieval in RAG offers a good balance, peaking at 29.41 with 730 tokens on
OdysseyBench+ and 38.74 with 915 tokens on OdysseyBench-Neo. It outperforms the long-context
prompting for some OdysseyBench+ tasks but underperforms in OdysseyBench-Neo, likely due to
shorter dialogues in OdysseyBench+ and excessive fragmentation in OdysseyBench-Neo (see dataset
statistical analysis in Appendix A). This highlights the need to maintain coherent conversational
boundaries, as fragmented utterances can undermine context integrity.

Summary storage effectively captures task essence. Summarization improves performance by
condensing information and retaining key context. Session-level summaries outperform the long-
context prompting (53.64 on OdysseyBench-Neo with one third of the tokens), while chunk-level

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Task intent:
Send the contents of the converted PDF
to Alice via email.

Action: Read files: -> Failed
(# The missed information)

Dialogues:
…
Alice: "Hey, I need a favor. Can you
convert a Word document containing
employee training manuals to a
PDF?"
Assistant: "Sure, I can help with that. I'll
locate the Word document first. Do you
know the file name or where it's
stored?"
Alice: "I think it's named
'EmployeeTrainingManuals.docx'. It
should be in the shared drive."
Assistant: "Got it. "
…

(a) Fail to find files

Task intent:
Create a folder named report and save
the analysis results in it.

Action: Create folder: -> Successful
Action: Save analysis -> Unknown
content
(# The missed information)

Dialogues:
…
Alice: "Can you analyze the relationship
between revenues and regions? "
Assistant: "Will do. How's your day
going?"
…
Alice: "Can you save the analysis as an
image post named analyze.jpg?"
Assistant: "Will do. Anything else?“
…

(b) Fail to find actions

Task intent:
Save the extracted text into two PDF
files and place them in the appropriate
folders.

…
Action: Switch to PDF: -> Successful
Action: Create PDF -> Failed
..
(# Expected to use Word to write and
then convert to PDF)

Dialogues:
…
Bob: "Can you split the extracted text
into two parts: party and meeting? "
Assistant: "Noted!"
…
Bob: "Can you create a PDF file named
party.pdf with the party text? "
Assistant: "Will do! “
…

(c) Fail to use tools

Task intent:
Extract data from the two invoice PDFs,
analyze them, and prepare a financial
review in a spreadsheet and a report
document.

Action: Switch to Word: -> Successful
Action: Write Text -> Failed
….
(# Expected to read pdf files first)

Dialogues:
…
Bob: "I'd like to collect data from
Invoice.pdf and Invoice_2.pdf. "
Assistant: "Understood."
…
Bob: "Great. I want to create a review
report that summarizes the analysis."
Assistant: "Noted. Do you have any
advice for keeping reports engaging?“
…

(d) Fail to plan actions

Figure 4: Typical failure cases of the LLM agents in OdysseyBench.

summaries do even better (56.29 with less than 20% of the tokens). Summarized context distills
essential information, removes redundancy, and increases semantic density, enabling more efficient
and precise retrieval within the same token budget. However, Increasing top-k from 25 to 50 slightly
reduces performance (56.29 to 54.97 on OdysseyBench-Neo), indicating that more context can add
noise and irrelevant information. Quality of retrieved content matters more than quantity. These
results highlight the need for memory architectures that emphasize semantic aggregation and context
continuity for complex, multi-step workflows.

6 CASE STUDY

Long-C.
RAG-U.

RAG-C.
Long-C.

RAG-U.
RAG-C.

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

Odyssey-Extended Odyssey-Constructed

docx
email

jpg
pdf

txt
xlsx

Figure 5: Errors on file types with
three configurations: long-C. (long-
context) , RAG-U. (RAG-utterance),
and RAG-C. (RAG-chunk).

To analyze LLM agent failures in OdysseyBench, we manually
reviewed execution traces and categorized errors into four main
types: (1) Missing required files: Agents overlook input files
mentioned in the dialogue (e.g., missing “EmployeeTraining-
Manuals.docx” in Figure 4(a)). (2) Missing required actions:
Agents fail to perform or modify files as instructed (e.g., omit-
ting the “analyze the relationship” step in Figure 4(b)). (3)
Incorrect tool calls: Agents use the wrong tool or arguments
(e.g., creating PDFs directly instead of converting from Word
in Figure 4(c)). (4) Inaccurate planning: Agents lack a coher-
ent plan, such as writing in a Word document before reading
the necessary PDF content (Figure 4(d)). Further quantitative
analysis based on the file types involved in failed executions
(Figure 5) reveals that most errors are associated with file cre-
ation or writing tasks, particularly for formats such as “docx”
and “xlsx”. This indicates agents often struggle with complex,
multi-step workflows that require precise coordination of tools,
timing, and reasoning.

7 CONCLUSION

In this work, we addressed the critical limitation of existing atomic task benchmarks by introduc-
ing OdysseyBench, a comprehensive benchmark for evaluating language agents on long-horizon
workflows across diverse office applications. Our key contribution, HOMERAGENTS, provides a
scalable multi-agent framework that automates benchmark generation through two complementary
approaches: HOMERAGENTS+ transforms existing atomic tasks into contextually rich scenarios to
create OdysseyBench+, while HOMERAGENTS-NEO generates entirely new complex tasks from
scratch to produce OdysseyBench-Neo. Extensive evaluation revealed substantial performance gaps
between state-of-the-art agents on our benchmark compared to atomic tasks, demonstrating the
importance of contextual dependencies and multi-interaction coordination in realistic scenarios.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work introduces OdysseyBench and the HOMERAGENTS multi-agent framework for bench-
marking LLM agents on long-horizon office application workflows. All experiments were conducted
using publicly available models and datasets, or proprietary models accessed under their respective
licenses and terms of use. No human subjects or private user data were involved in this research.
The benchmark tasks and dialogues were generated synthetically or derived from existing public
datasets, with explicit guidelines to avoid personal, sensitive, or inappropriate content. We encourage
responsible use of OdysseyBench and HOMERAGENTS, with attention to fairness, transparency, and
the limitations of underlying models and synthetic data.

REPRODUCIBILITY STATEMENT

We are committed to reproducibility in this work. Detailed descriptions of the OdysseyBench
benchmark, task generation algorithms, and evaluation protocols are provided in Section 3 and
throughout the main paper. Experimental setups, including model configurations, dataset splits,
evaluation metrics, and implementation details, are thoroughly documented in Section 4 and Appendix.
All datasets used are either publicly available or will be released with the benchmark. To further
support reproducibility, we will release the OdysseyBench benchmark, HOMERAGENTS framework,
and code for all experiments upon publication, enabling other researchers to replicate our results and
build upon this work.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this work, we utilize large language models (LLMs) as general-purpose tools to assist
with writing polish and grammar correction. The LLMs are not involved in research ideation,
experimental design, or substantive content generation. Their role is limited to improving the clarity
and readability of the text, ensuring grammatical accuracy, and refining the presentation of our
findings. All scientific contributions, analyses, and conclusions are solely the work of the authors.

REFERENCES

Anthropic. Claude 3.7 Sonnet and Claude Code. Online, February 2025a. URL https://www.
anthropic.com/news/claude-3-7-sonnet. 5 min read.

Anthropic. Introducing Claude 4: Claude Opus 4 and Claude Sonnet 4. Online, May 2025b. URL
https://www.anthropic.com/news/claude-4. 5 min read.

Léo Boisvert, Megh Thakkar, Maxime Gasse, Massimo Caccia, Thibault de Chezelles, Quentin
Cappart, Nicolas Chapados, Alexandre Lacoste, and Alexandre Drouin. Workarena++: Towards
compositional planning and reasoning-based common knowledge work tasks. Advances in Neural
Information Processing Systems, 37:5996–6051, 2024.

Rogerio Bonatti, Dan Zhao, Francesco Bonacci, Dillon Dupont, Sara Abdali, Yinheng Li, Yadong
Lu, Justin Wagle, Kazuhito Koishida, Arthur Bucker, et al. Windows agent arena: Evaluating
multi-modal os agents at scale. arXiv preprint arXiv:2409.08264, 2024.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier
with advanced reasoning, multimodality, long context, and next generation agentic capabilities.
arXiv preprint arXiv:2507.06261, 2025.

Marc-Alexandre Côté, Akos Kádár, Xingdi Yuan, Ben Kybartas, Tavian Barnes, Emery Fine, James
Moore, Matthew Hausknecht, Layla El Asri, Mahmoud Adada, et al. Textworld: A learning
environment for text-based games. In Workshop on Computer Games, pp. 41–75. Springer, 2018.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su.
Mind2web: Towards a generalist agent for the web. Advances in Neural Information Processing
Systems, 36:28091–28114, 2023.

10

https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-4

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H Laradji, Manuel Del Verme, Tom Marty,
Léo Boisvert, Megh Thakkar, Quentin Cappart, David Vazquez, et al. Workarena: How capable are
web agents at solving common knowledge work tasks? arXiv preprint arXiv:2403.07718, 2024.

Lutfi Eren Erdogan, Nicholas Lee, Sehoon Kim, Suhong Moon, Hiroki Furuta, Gopala Anu-
manchipalli, Kurt Keutzer, and Amir Gholami. Plan-and-act: Improving planning of agents
for long-horizon tasks. arXiv preprint arXiv:2503.09572, 2025.

Joseph L Fleiss and Jacob Cohen. The equivalence of weighted kappa and the intraclass correlation
coefficient as measures of reliability. Educational and psychological measurement, 33(3):613–619,
1973.

Adam Fourney, Gagan Bansal, Hussein Mozannar, Cheng Tan, Eduardo Salinas, Friederike Niedtner,
Grace Proebsting, Griffin Bassman, Jack Gerrits, Jacob Alber, et al. Magentic-one: A generalist
multi-agent system for solving complex tasks. arXiv preprint arXiv:2411.04468, 2024.

Apurva Gandhi and Graham Neubig. Go-browse: Training web agents with structured exploration.
arXiv preprint arXiv:2506.03533, 2025.

Mengkang Hu, Tianxing Chen, Qiguang Chen, Yao Mu, Wenqi Shao, and Ping Luo. Hiagent: Hier-
archical working memory management for solving long-horizon agent tasks with large language
model. arXiv preprint arXiv:2408.09559, 2024.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Xiang Lisa Li, Farzaan Kaiyom, Evan Zheran Liu, Yifan Mai, Percy Liang, and Tatsunori Hashimoto.
Autobencher: Towards declarative benchmark construction. arXiv preprint arXiv:2407.08351,
2024.

Haohan Lin, Zhiqing Sun, Sean Welleck, and Yiming Yang. Lean-star: Learning to interleave thinking
and proving. arXiv preprint arXiv:2407.10040, 2024.

Xing Han Lù, Zdeněk Kasner, and Siva Reddy. Weblinx: Real-world website navigation with
multi-turn dialogue. arXiv preprint arXiv:2402.05930, 2024.

Shikhar Murty, Hao Zhu, Dzmitry Bahdanau, and Christopher D Manning. Nnetnav: Unsuper-
vised learning of browser agents through environment interaction in the wild. arXiv preprint
arXiv:2410.02907, 2024.

OpenAI. OpenAI o3 and o4-mini System Card. System card, OpenAI, San Francisco, CA, April
2025. URL https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/
o3-and-o4-mini-system-card.pdf. Accessed July 16, 2025.

Tianyue Ou, Frank F Xu, Aman Madaan, Jiarui Liu, Robert Lo, Abishek Sridhar, Sudipta Sengupta,
Dan Roth, Graham Neubig, and Shuyan Zhou. Synatra: Turning indirect knowledge into direct
demonstrations for digital agents at scale. Advances in Neural Information Processing Systems, 37:
91618–91652, 2024.

Vardaan Pahuja, Yadong Lu, Corby Rosset, Boyu Gou, Arindam Mitra, Spencer Whitehead, Yu Su,
and Ahmed Awadallah. Explorer: Scaling exploration-driven web trajectory synthesis for multi-
modal web agents. arXiv preprint arXiv:2502.11357, 2025.

Jay N Paranjape, Shameema Sikder, Vishal M Patel, and S Swaroop Vedula. Cross-dataset adaptation
for instrument classification in cataract surgery videos. In International Conference on Medical
Image Computing and Computer-Assisted Intervention, pp. 739–748. Springer, 2023.

11

https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
apis. arXiv preprint arXiv:2307.16789, 2023.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke
Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach
themselves to use tools. Advances in Neural Information Processing Systems, 36:68539–68551,
2023.

Haiyang Shen, Yue Li, Desong Meng, Dongqi Cai, Sheng Qi, Li Zhang, Mengwei Xu, and Yun
Ma. Shortcutsbench: A large-scale real-world benchmark for api-based agents. arXiv preprint
arXiv:2407.00132, 2024.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. arXiv
preprint arXiv:2010.03768, 2020.

Mika Sutela and Nino Lindström. A game theoretic approach to lowering incentives to violate speed
limits in finland. arXiv preprint arXiv:2402.09556, 2024.

Brandon Trabucco, Gunnar Sigurdsson, Robinson Piramuthu, and Ruslan Salakhutdinov. Insta:
Towards internet-scale training for agents. arXiv preprint arXiv:2502.06776, 2025.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji.
Executable code actions elicit better llm agents. In Forty-first International Conference on Machine
Learning, 2024a.

Zilong Wang, Yuedong Cui, Li Zhong, Zimin Zhang, Da Yin, Bill Yuchen Lin, and Jingbo Shang.
Officebench: Benchmarking language agents across multiple applications for office automation.
arXiv preprint arXiv:2407.19056, 2024b.

Junde Wu, Jiayuan Zhu, and Yuyuan Liu. Agentic reasoning: Reasoning llms with tools for the deep
research. arXiv preprint arXiv:2502.04644, 2025.

Jingxu Xie, Dylan Xu, Xuandong Zhao, and Dawn Song. Agentsynth: Scalable task generation for
generalist computer-use agents. arXiv preprint arXiv:2506.14205, 2025.

Frank F Xu, Yufan Song, Boxuan Li, Yuxuan Tang, Kritanjali Jain, Mengxue Bao, Zora Z Wang,
Xuhui Zhou, Zhitong Guo, Murong Cao, et al. Theagentcompany: benchmarking llm agents on
consequential real world tasks. arXiv preprint arXiv:2412.14161, 2024a.

Yiheng Xu, Dunjie Lu, Zhennan Shen, Junli Wang, Zekun Wang, Yuchen Mao, Caiming Xiong, and
Tao Yu. Agenttrek: Agent trajectory synthesis via guiding replay with web tutorials. arXiv preprint
arXiv:2412.09605, 2024b.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
Advances in Neural Information Processing Systems, 37:50528–50652, 2024.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. τ -bench: A benchmark for
tool-agent-user interaction in real-world domains. arXiv preprint arXiv:2406.12045, 2024.

Yuxiang Zheng, Dayuan Fu, Xiangkun Hu, Xiaojie Cai, Lyumanshan Ye, Pengrui Lu, and Pengfei
Liu. Deepresearcher: Scaling deep research via reinforcement learning in real-world environments.
arXiv preprint arXiv:2504.03160, 2025.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for building
autonomous agents. arXiv preprint arXiv:2307.13854, 2023.

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun, and Chao Zhang. Toolqa: A dataset for llm
question answering with external tools. Advances in Neural Information Processing Systems, 36:
50117–50143, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Table 4: Data statistics of OdysseyBench+ and OdysseyBench-Neo.

OdysseyBench+ OdysseyBench-Neo

single
apps

two
apps

three
apps overall single

apps
two
apps

three
apps overall

Total # conversation h. 93 95 112 300 60 71 171 302
Avg. # session k. in conversation h 27.8 24.7 30.6 27.9 5.0 5.0 5.1 5.0
Avg. # utterance j. in session k 10.8 12.1 11.4 11.4 72.3 73.5 73.3 73.2

Avg. # tokens. conversation h 3323.2 3209.6 3809.9 3468.9 5031.6 5223.1 5196.4 5169.9
Avg. # tokens. sessions k 119.7 130.1 124.4 124.6 1006.3 1041.7 1026.1 1025.8
Avg. # tokens. utterance j 11.1 10.8 10.9 10.9 13.9 14.2 14.0 14.0

A DATASET STATISTICAL ANALYSIS

As shown in Table 4, our dataset comprises 602 tasks, categorized by the number of applications
involved: Single App (153 tasks), Two Apps (166 tasks), and Three Apps (283 tasks). Each task
is documented through multi-day dialogues, with at least five days per task. Dialogues occurring
within the same day are grouped into a single session, and every dialogue contains a minimum of 10
utterances, ensuring rich interaction data. OdysseyBench+ contains 300 conversation histories with an
average of 27.9 sessions per conversation and 11.4 utterances per session, resulting in relatively short
sessions with an average of 124.6 tokens per session. In contrast, OdysseyBench-Neo comprises 302
conversations with a more structured format of exactly 5 sessions per conversation (corresponding
to the 5-day dialogue design) but significantly longer sessions, averaging 1025.8 tokens each and
73.2 utterances per session. This design difference reflects OdysseyBench-Neo’s focus on creating
more comprehensive daily interactions, while OdysseyBench+ maintains the original fragmented
conversation structure from OfficeBench. Overall, OdysseyBench-Neo generates richer conversa-
tional content with approximately 49% more tokens per conversation (5169.9 vs. 3468.9 tokens),
demonstrating the enhanced depth and complexity of the newly generated tasks.

B QUALITY VERIFICATION GUIDELINE

To ensure consistency and quality, we design a quality verification guideline following the best
practices in the AI community. Annotators are instructed to remove any task or dialogue that does
not meet all of the following criteria:

• Completeness: The combination of task intent and dialogue must provide all information
necessary for a competent agent (or human) to complete the task. No essential details should
be missing from the dialogue history or task intent.

• Soundness (No Information Leakage): The task intent must not reveal specific details
from the original task description that are intended to be discovered through the dialogue.
All critical information for task completion should be conveyed through the dialogue, not
leaked in the intent.

• Clarity and Coherence: The task description, intent, and dialogues must be clearly written,
logically structured, and free of ambiguity. Dialogue turns should follow a natural, realistic
conversational flow, with each utterance making sense in context.

• Solvability: The task must be solvable using only the information provided in the intent
and dialogue, without requiring external knowledge or assumptions. There should be no
contradictions or missing steps that would prevent successful completion.

• Relevance and Appropriateness: The task and dialogue should be relevant to real-world
productivity scenarios and appropriate for the intended application environment. Content
must be free from offensive, biased, or inappropriate language.

• Diversity and Realism: Dialogues should include a mix of task-relevant and occasional
task-irrelevant (e.g., chitchat) content to reflect real-world interactions, but should not be
dominated by irrelevant content. Tasks should not be trivial or repetitive; they should reflect
the complexity and variety expected in real-world workflows.

• Language Quality: All text must be grammatically correct, fluent, and written in natural
English.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 5: The number of execution steps of the task in OdysseyBench+ and OdysseyBench-Neo
under different configurations indicates how many steps are required to successfully execute the task.
“configuration” represents the experimental setup used for evaluation.

configuration 1-apps 2-apps 3-apps overall

OdysseyBench+
long-context 6.31 11.61 12.70 10.25

RAG-utterance 6.85 11.48 14.70 11.05
RAG-chunk 7.25 8.28 14.86 10.10

OdysseyBench-Neo
long-context 7.81 9.63 11.74 10.46

RAG-utterance 8.17 9.66 12.52 10.92
RAG-chunk 7.93 9.92 12.54 10.95

Tasks or dialogues failing to meet any of these standards are removed. This process ensures the
benchmark remains high-quality, challenging, and representative of real-world use cases, in line with
accepted practices in the AI community.

C ANALYSIS OF EXECUTION STEPS

Furthermore, analysis of execution steps in Table 5 reveals that chunk-level summaries introduce
negligible computational overhead, and in some cases, even reduce the number of steps required to
complete tasks. This indicates that summarization not only boosts performance, but also streamlines
the reasoning process by providing relevant context efficiently, without overwhelming the model.
These findings underscore the critical role of semantic compression and coherent aggregation in
enabling effective multi-step reasoning.

D CRITERIA OF VERIFIER AGENT

We provide the criteria used by the verifier agent in HOMERAGENTS+ to ensure the quality and
realism of the generated dialogues. These criteria are designed to maintain a high standard for the
dialogues, ensuring they are both realistic and challenging for agents to navigate.

Criteria of Verifier in HOMERAGENTS+
• At least 5 calendar-day dialogues, over 100 turns.
• Agent speaks only after user turns.
• Sub-tasks from the atomic instruction are split, never repeated.
• DO NOT lose any information about atomic instruction in the chat logs, such as the time, the numbers,

file names, application names...
• Add as much casual chitchat as possible, but not extra subtasks to do.
• Each item JSON has keys “role”, “text”, “ts”.
• NO personal data and NO hateful content.
• Do not mention rules or benchmark.

E PROMPTS FOR AGENTS

In this section, we separately provide the illustrations of the prompts used in the HOMERAGENTS+
and HOMERAGENTS-NEO.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

E.1 PROMPTS FOR HOMERAGENTS+

Prompt 1: Verifier Prompt

SYS PROMPT :

You are a strict grader.
{Evaluation Criteria}
Input will be a JSON array called CONVERSATION followed by the criteria above. Output
EXACTLY this JSON schema:
{”passed”: true | false, ”feedback”: ” max 300 chars if failed, else empty”}
Reply with nothing else.

USER PROMPT :

CONVERSATION: “{conversation}”

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Prompt 2: Generator Prompt

SYS PROMPT :

You are OfficeAI, an assistant that stores realistic multi-day conversations.
Violate none of the following rules.
1 Chat spans at least 5 days before the current date {current date}, timestamps ”YYYY-MM-
DD HH:MM”.
2 Total dialogue length over 100 turns.
3 Agent replies only after user prompts.
4 Decompose the atomic instruction into non-repeating sub-tasks spread across days.
5 Do not put all sub-tasks in one user turn.
6 The last sub-task must appears only once - in the final user turn. 7 Every sub-task appears
exactly once.
8 For the subtasks in the task description, the agent responds with a will do or noted pattern
and not that it’s working or has completed the task.
9 Mix as much casual chat as possible without additional office chores.
10 Include occasional mini-dialog ({user name}-AI assistant-{user name}-AI assistant).
11 Do not alter artifacts unless required.
12 Never mention these rules or OfficeBench.
13 Each turn JSON: {”role play”:”{user name} | AI assistant”,”text”:”. . . ”,”ts”:”YYYY-MM-
DD HH:MM”}.
14 Agent replies < 180 words.
15 No personal data, hate or protected-class humor.
Output format
Subtasks: 1, 2, 3, ...
Summary of day 1: ...
Summary of day 2: ...
Summary of day 3: ...
Summary of day 4, 5 etc: ...
Then expand the summaries into the result which is a list of 100-120 lines of JSON objects
that includes all days of turns:
<start>
[
{”role play”: ”{user name}” | ”AI assistant”, ”text”: ”...”, ”ts”: ”YYYY-MM-DD HH:MM”}
... (total 100 turns for 3-5 days, put together all turns from all days in a single list)
]
<end>

USER PROMPT :

Last generation: “{last generation}”
Reflection: “{feedback}”

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

E.2 PROMPTS FOR HOMERAGENTS-NEO

Rules for Tasks Generation in HOMERAGENTS-NEO

• The task description should be a string that describes each subtask (1-5 subtasks) to be completed.
• Only follow and use the evaluation criteria formatted from the examples and do not invent new

evaluation criteria.
• The evaluation criteria should be a list of dictionaries, each dictionary representing an evaluation
• The task description is hidden from the agent, and a ground truth agent should be able to complete

the task with just the task description.
• The ground truth memory should contain the necessary facts (things like time, new values, new

filenames, new content values (but intermediate or final calculations), etc.) and events (action items)
needed to complete the task, which will be distributed across the chat histories. These memories
when disepensed across the chat histories, should be related to the task and queryable using the query
sentence.

• For the query sentence, it should be a general instruction of the task description, which will be sent to
the policy agent to understand the general task and use it to query more details about the task details
from memories.

• FOR EXCEL TASKS, we do not have ground truth reference files, DO NOT USE evaluate ex-
act match with a reference excel file. Instead, use the evaluation criteria to check some impor-
tant added values to the excel such as {{“function”: “evaluate excel cell value”,“args”: {{“file”:
“data/salary.xlsx”,“matches”: [{{“row”: 5,“col”: 2,“value”: “200000”}}]}}}}, etc.

• FOR CALENDAR TASKS, the commands for creating calendar events do not contain information
such as one hour reminders or locations, so do not use these as task or evaluation criteria. Instead, if
you want to evaluate these, use the event’s title, start time and end time as evaluation. If you want to
evaluate the event’s details such as location, ask the agent to add these details to the event title, and
add this action item note to the ground truth memory for chat generation. Note that when generating
a task, you should be precise about what to expect for the calendar’s description as an LLM policy
agent may generate events with different names.

• FOR QUESTION ANSWERING TASKS, expect the agent to output a the final answer in the
answer.txt file, instead of adding a line in an existing file like word or excel file. When evaluating
such answers, be precise about the task, ground truth memory such that you can expect what the
agent produce so that the correctness of the answer is easily verifiable.

• The inference agents can create or modify files such as docx, xlsx, generate pdf files. No powerpoint
or txt files are allowed except for the answer.txt file where the policy agent’s final output is logged.
11. FOR EMAIL TASKS, there is no draft mode or attachment options. Follow closely the examples
given below, and do not create new evaluation criteria formats.

• FOR WORD (docx file generation or update) TASKS such as summarization, evaluation on a subset
of the most important keywords is sufficient and do not match the exact content or long sentences as
the inference agent are not expected to generate the exact matches.

• As a general rule, make sure that the facts and values, output file name and action items in the
proposed task and memory are precise and clear and matches the evaluation criteria accurately, such
that the agent can accurately complete the task. If you leave the task description vague, the agent
may write to wrong file names, wrong event details, etc. For example, for setting up a calendar event,
make sure you specify the exact start time and end time, and the exact description of the event, so
that the agent can create the event with the correct details. For creating new files, make sure you
specify the exact file name, etc. And make sure that these important points or action items are clearly
described in the ground truth memory so that an inference agent with query sentence and ground
truth memory can complete the task as in the task description.

• Provide new and complementary information about your proposed new tasks in the ground truth
memory, and DO NOT INCLUDE the solution to the task such as the intermediate steps for the
solution (such as values read from files or intermediate or final calculated values), but rather a list
of facts and action items that are necessary for completing the task complementing the files, such
as missing details from the files, important action items or notes missing in the query sentence such
as the output filenames, locations to put values, what elements a calendar event description should
contain, or new events you propose or new facts. The memory generated will appear in the chat
histories. The inference agent has access to all the files, and should be able to query the ground truth
memory using the query sentence to find the necessary facts and action items to complete the task,
while the query sentence should miss some details such as facts or preferences, which can be found
in the memory.

• Follow closely the json format and function names in the given examples when generating evaluations
and do not invent new evaluation functions, and for keyword checks, split those keywords into
different chunks to avoid being too strict (e.g., split and skip the punctuation marks).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Rules for Dialogues Generation in HOMERAGENTS-NEO

• The generated chat histories should contain around 100-120 turns per day, spread across 5 days
(before today).

• To generate the chats, Take the following steps as the orchestrator: #### Break Down Memory per
Chat Day: First extract the precise subtask action items or the factual knowledge from the ground
truth memory pieces to be covered for each day. #### Chat Generation: For each day (day 0 to day 4),
provide the PRECISE memory pieces for the day as the orchestrator, and ask the chat generator agent
to write the chat histories day by day using the ChatTool. For example: to generate day N chat history
with chat generator agent, first extract and mention the list of ¡EXACT MEMORY CONTENTS¿
to be covered on the day and let it generate chats that precisely capture these contents. Make sure
that with the memory pieces, the inference agent can find the action items to work on, the correct file
names, and the correct content values to complete the task. Beware that sometimes if the description
is vague, the agent may write to wrong file names, wrong event details, etc. #### To make the chat
histories longer, chitchat with the agent that are not related to the task can be added, but make sure
that these do not add noise to the task solving such as new action items that are not covered by the
memory or task description. Do not duplicate the memory pieces across the chat days, and if all
memories have been covered, the chat history of the next day can be just about chitchat.

• Each chat turn being a json object with timestamp, the source (user or agent), and the content.
• The chat is between the user and the agent (not human), the user may mention the facts from the

memory or action items from the task description, and the agent may respond with answers like will
do but not solve the action, so that during inference, the agent can find the action items to work on.

E.2.1 TASK GENERATOR PROMPT

Prompt 3: Task Generator Prompt

SYS PROMPT :

Generate a task description, evaluation criteria, and ground truth memory for the task. Use
the TaskTool to log it. The task description should be a string, the evaluation criteria should
be a list of dictionaries, each dictionary representing an evaluation criterion, and the ground
truth memory should be a list of dictionaries, each dictionary representing a memory item.
Use double quotes and not single quotes. The format of the arguments to the tool call to
the tool named TaskTool should be: {’task specs’: <the json object with task description,
evaluation criteria, query sentence, and ground truth memory’>} where the tool name is
TaskTool. NOTE THAT the json object should be valid with double quotes on the keys and
values.
{Rules for Tasks generation}

USER PROMPT :

Context: “{context information}”
Instruction: “{instruction from orchestrator}”

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

E.2.2 ORCHESTRATOR PROMPT

Prompt 4: Orchestrator Prompt

SYS PROMPT :

Today is {date} ({weekday}). The current time is {time}. You are an AI assistant for
user {username}. Now you’re the orchestrator and your task is to synthesize new tasks to
evaluate agents’ memory capability for task solving. To generate this new task, you will
need to generate task specifications and chat histories which includes important memory of
information for solving the task, please follow the following steps:
###STEP 1: FILE READING: First start by reading some existing files (such as excel, email,
calendar, or other files) using the file related task agents, it is possible there are sometimes
no files while it is still possible to propose tasks. Gather important information from these
files that are related to the task you want to propose, such as where to update a file or to use
information from these files. Note that the inference agent will have access to these files, so
the ground truth memory and the chat histories to generate is not just about recording specific
elements in the files but more about new information or action items relates but not limited to
contents already in the file.
###STEP 2: TASK PROPOSAL: then propose a new task which includes information:
1. a task description (hidden from agent),
2. the task evaluation criteria (hidden from agent),
3. a ground truth memory which includes facts and events needed to complete the task (hidden
from agent), 4. a query sentence which is a more general instruction of the task description
which will be sent to the policy agent to understand the general task and use it to query
more details about the task details from memories. 5. for evaluation, txt is not a file format
that can be used, so please do not generate tasks that require generating new txt files. For
safe evaluation, please follow the task spec examples below to generate possible tasks and
evaluations.{task spec examples}
###STEP 3: LOG DOWN THE TASK SPECS: After proposing the task, use the
task generator agent to write down these task details using the TaskTool.
###STEP 4: GENERATE DIALOGUES: (DO NOT FORGET) After generating the task,
expand the ground truth memory into long chat histories where the ground truth memories are
scattered, such that during inference, the agent can be challenged on curating correct pieces
of memories from these chats.
{Rules for Tasks generation}
{Rules for Dialogues generation}
As a general note, you can find files, calendar events, emails for your task in ’/testbed/data’,
you can use the assistant agents to read, list, the files, do not create new items for this task
generation cycle.
DO NOT TERMINATE THE TASK IF YOU HAVE NOT FINISHED GENERATING THE
TASK SPECS OR THE DIALOGUES. DO NOT STOP TO GET HUMAN FEEDBACK,
JUST GENERATE THE TASK SPECS AND DIALOGUES.

USER PROMPT :

Context: “{context information}”

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

E.2.3 CHAT GENERATOR PROMPT

Prompt 5: Dialogue Generator Prompt

SYS PROMPT :

Today is {date} ({weekday}). The current time is {time}. You are an AI assistant for user
username. Now you’re the chat generator assistant helping a task generator orchestrator to
synthesize new tasks. Your job is to expand the ground truth memory into chat histories where
the memories are scattered in the chat histories. Generate chat histories for the task given the
ground truth memory and task description.
{Rules for Dialogues generation}

USER PROMPT :

Task: “{task}”
Subtask Instruction: “{subtask instruction}”
Instruction: “{instruction from orchestrator}”

20

	Introduction
	Related Work
	Methodology
	HomerAgents: Automating Benchmark Creation
	HomerAgents+: Standing on the Shoulders of OfficeBench
	HomerAgents-Neo: Scaling up the Benchmark Creation
	Implementation Details

	OdysseyBench: Long-Horizon Workflow Benchmark
	Evaluation
	Dataset Analysis
	Quality Control
	Human Performance

	Experimental Setup
	Experimental Results
	Case Study
	Conclusion
	Dataset Statistical Analysis
	Quality Verification Guideline
	Analysis of Execution Steps
	Criteria of Verifier Agent
	Prompts for Agents
	Prompts for HomerAgents+
	Prompts for HomerAgents-Neo
	Task Generator Prompt
	Orchestrator Prompt
	Chat Generator Prompt

