
Under review as a conference paper at ICLR 2023

RED-GCN: REVISIT THE DEPTH OF GRAPH CONVOLU-
TIONAL NETWORK

Anonymous authors
Paper under double-blind review

ABSTRACT

Finding the proper depth d of a GNN that provides strong representation power
has drawn significant attention, yet nonetheless largely remains an open problem
for the graph learning community. Although noteworthy progress has been made,
the depth or the number of layers of a corresponding GCN is realized by a series of
graph convolution operations, which naturally makes d a positive integer (d ∈ N+).
An interesting question is whether breaking the constraint of N+ by making d
a real number (d ∈ R) can bring new insights into graph learning mechanisms.
In this work, by redefining GCN’s depth d as a trainable parameter continuously
adjustable within (−∞,+∞), we open a new door of controlling its expressiveness
on graph signal processing to model graph homophily/heterophily (nodes with
similar/dissimilar labels/attributes tend to inter-connect). A simple and powerful
GCN model RED-GCN, is proposed to retain the simplicity of GCN and mean-
while automatically search for the optimal d without the prior knowledge regarding
whether the input graph is homophilic or heterophilic. Negative-valued d intrin-
sically enables high-pass frequency filtering functionality for graph heterophily.
Variants extending the model flexibility/scalability are also developed. The theoret-
ical feasibility of having a real-valued depth with explainable physical meanings is
ensured via eigen-decomposition of the graph Laplacian and a properly designed
transformation function from the perspective of functional calculus. Extensive
experiments demonstrate the superiority of RED-GCN on node classification tasks
for a variety of graphs. Furthermore, by introducing the concept of eigengraph, a
novel graph augmentation method is obtained: the optimal d effectively generates
a new topology through a properly weighted combination of eigengraphs, which
dramatically boosts the performance even for a vanilla GCN.

1 INTRODUCTION

Graph convolutional network (GCN) (Kipf & Welling, 2016; Veličković et al., 2017; Hamilton et al.,
2017) has exhibited great power in a variety of graph learning tasks, such as node classification
(Kipf & Welling, 2016; Luan et al., 2019; 2022a), link prediction (Zhang & Chen, 2018), community
detection (Chen et al., 2020), and many more. Since the representation power of GCN is largely
determined by its depth, i.e., the number of graph convolution layers, tremendous research efforts
have been made on finding the optimal depth that strengthens the model’s ability for downstream tasks.
Upon increasing the depth, the over-smoothing issue arises: a GCN’s performance is deteriorated
if its depth exceeds a uncertain threshold (Kipf & Welling, 2016). It is unveiled in (Li et al., 2018)
that a graph convolution operation is a special form of Laplacian smoothing (Taubin, 1995). Thus,
the similarity between the graph node embeddings grows with the depth so that these embeddings
eventually become indistinguishable. Various techniques are developed to alleviate this issue, e.g.,
applying pairwise normalization can make distant nodes dissimilar (Zhao & Akoglu, 2019), and
dropping sampled edges during training slows down the growth of embedding smoothness as depth
increases (Rong et al., 2019).

Other than the over-smoothing issue due to large GCN depth, another fundamental phenomenon
widely existing in real-world graphs is homophily and heterophily. In a homophilic graph, nodes with
similar labels or attributes tend to inter-connect, while in a heterophily graph, connected nodes usually
have distinct labels or dissimilar attributes. Most graph neural networks (GNNs) are developed based
on homophilic assumption (Yang et al., 2016), while models able to perform well on heterophilic

1

Under review as a conference paper at ICLR 2023

graphs often need special treatment and complex designs (Bianchi et al., 2021; Zhu et al., 2020).
Despite the achievements made by these methodologies, little correlation has been found between the
adopted GNN model’s depth and its capability of characterizing graph heterophily.

For most GNNs, if not all, the depth needs to be manually set as a hyper-parameter before training,
and finding the proper depth usually requires a considerable amount of trials or good prior knowledge
of the graph dataset. Since the depth represents the number of graph convolution operations and
naturally takes only positive integer values, little attention has been paid to the question whether a
non-integer depth is realizable, and if yes, whether it is practically meaningful, and whether it can
bring unique advantages to current graph learning mechanisms.

This work revisits the GCN depth from spectral and spatial perspectives and explains the inter-
dependencies between the following key ingredients in graph learning: the depth of a GCN, the
spectrum of the graph signal, and the homophily/heterophily of the underlying graph. Firstly,
through eigen-decomposition of the symmetrically normalized graph Laplacian, we present the
correlation between graph homophily/heterophily and the eigenvector frequencies. Secondly, by
introducing the concept of eigengraph, we show the graph topology is equivalent to a weighted linear
combination of eigengraphs, and the weight values determine the GCN’s capability of capturing ho-
mophilic/heterophilic graph signals. Thirdly, we reveal that the eigengraph weights can be controlled
by GCN’s depth, so that an automatically tunable depth parameter is needed to adjust the eigengraph
weights into the designated distribution in match of the underlying graph homophily/heterophily.

To realize the adaptive GCN depth, we extend its definition from a positive integer to an arbitrary real
number with theoretical feasibility guarantees from functional calculus (Shah & Okutmuştur, 2020).
With a trainable depth parameter, we propose a simple and powerful model, Redefined Depth-GCN
(ReD-GCN), with two variants. Extensive experiments demonstrate the automatically optimal depth
searching ability, and it is found that negative-valued depth plays the key role in handling heterophilic
graphs. Systematical investigation on the optimal depth is conducted in both spectral and spatial
domains. It in turn inspires the development of a novel graph augmentation methodology. With
clear geometric explanability, the augmented graph structure possesses supreme advantages over the
raw input topology, especially for graphs with heterophily. The main contributions of this paper are
summarized as following:

• The interdependence between negative GCN depth and graph heterophily is discovered;
In-depth geometric and spectral explanations are presented.

• A novel problem of automatic GCN depth tuning for graph homophily/heterophily detection
is formulated. To our best knowledge, this work presents the first trial to make GCN’s depth
trainable by redefining it on the real number domain.

• A simple and powerful model RED-GCN with two variants (RED-GCN-S and RED-GCN-
D) is proposed. A novel graph augmentation method is discussed.

• Our model achieves superior performance on semi-supervised node classification tasks on
11 graph datasets.

2 PRELIMINARIES

Notations. We utilize bold uppercase letters for matrices (e.g., A), bold lowercase letters for column
vectors (e.g., u) and lowercase letters for scalars (e.g., α). We use the superscript ⊤ for transpose of
matrices and vectors (e.g., A⊤ and u⊤). An attributed undirected graph G = {A,X} contains an
adjacency matrix A ∈ Rn×n and an attribute matrix X ∈ Rn×q with the number of nodes n and the
dimension of node attributes q. D denotes the diagonal degree matrix of A. The adjacency matrix
with self-loops is given by Ã = A+ I (I is the identity matrix), and all variables derived from Ã are
decorated with symbol ˜, e.g., D̃ represents the diagonal degree matrix of Ã. Md stands for the d-th
power of matrix M, while the parameter and node embedding matrices in the d-th layer of a GCN
are denoted by W(d) and H(d).

Graph convolutional network (GCN) and simplified graph convolutional network (SGC). The
layer-wise message-passing and aggregation of GCN (Kipf & Welling, 2016) is given by

H(d+1) = σ(D̃− 1
2 ÃD̃− 1

2H(d)W(d)), (1)

2

Under review as a conference paper at ICLR 2023

1

1

1

𝑣!

𝑣"

𝑣#

𝑣!

𝑣"

𝑣#

normalization 1
2

1
2

1
2 =

𝑣!

𝑣"

𝑣#

1 − 𝜆! = 1, (𝜆! = 0)

1
3

1
3

1
3

1
3

1
3

1
3

𝑣!

𝑣"

𝑣#
−
1
3

1
6

−
1
3

2
3

1
6

1
6

𝑣!

𝑣"

𝑣#

1 − 𝜆" = −
1
2
, (𝜆" =

3
2
)

−
1
2

1
2

1
2+ +

𝐀 𝐒 = 𝐃!
"
#𝐀𝐃!

"
eigengraph 1 eigengraph 2 eigengraph 3

1 − 𝜆# = −
1
2 , (𝜆# =

3
2)

Figure 1: Decompose the symmetrically normalized adjacency matrix into three eigengraphs.

where H(d)/H(d+1) stands for the embedding matrix (H(0) = X) in the d-th/(d+ 1)-th layer; W(d)

is the trainable parameter matrix; and σ(·) is the non-linear activation function. With σ(·) removed in
each layer, SGC (Wu et al., 2019) is obtained as below:

H(d) = S̃dXW, (2)

where S̃ = D̃− 1
2 ÃD̃− 1

2 , and the parameter of each layer W(i) are compressed into one trainable
W =

∏d−1
i=0 W(i).

Graph Laplacian and spectrum. In graph theory, graph Laplacian L = D−A and its symmetrically
normalized correspondence Lsym = I−D− 1

2AD− 1
2 possess critical properties of the underlying

graph G. Lsym has eigenvalues [λ1, λ2, . . . , λn], where λi ∈ [0, 2),∀i ∈ {1, 2, . . . , n} (Chung &
Graham, 1997). 1 Here they are put in ascending order: 0 = λ1 ≤ λ2 ≤ · · · ≤ λn < 2. It can
be eigen-decomposed as: Lsym = UΛU⊤, where U = [u1,u2, . . . ,un] is the eigenvector matrix
(ui ⊥ uj ,∀i ̸= j), and Λ is the diagonal eigenvalue matrix:

Λ =

λ1 · · · 0
...

. . .
...

0 · · · λn

 .

For each eigenvector ui, we have uiu
⊤
i ∈ Rn×n. As we will show in Section 3, this n× n matrix

can be viewed as a weighted adjacency matrix of a graph with possible negative edges, which we
name uiu

⊤
i as the i-th eigengraph of G. Accordingly, Lsym can be written as the linear combination

of all eigengraphs weighted by the corresponding eigenvalues (Chung & Graham, 1997):
Lsym = λ1u1u

⊤
1 + . . .+ λiuiu

⊤
i + . . .+ λnunu

⊤
n , (3)

where the first eigenvalue λ1 = 0, and the corresponding eigengraph u1u
⊤
1 has an identical value 1

n
for all entries (Shuman et al., 2013). Thus, for SGC, we have

S̃ = I− L̃sym = Ũ(I− Λ̃)Ũ⊤ =

n∑
i=0

(1− λ̃i)ũiũ
⊤
i . (4)

A SGC with d layers requires d consecutive graph convolution operations, which involves the
multiplication of S̃ by d times. Due to the orthogonality of Ũ, namely, Ũ⊤Ũ = I, we obtain

S̃d = Ũ(I− Λ̃)Ũ⊤Ũ(I− Λ̃)Ũ⊤ . . . Ũ(I− Λ̃)Ũ⊤ = Ũ(I− Λ̃)dŨ⊤ =

n∑
i=1

(1− λ̃i)
dũiũ

⊤
i , (5)

where 1− λ̃i ∈ (−1, 1], and the depth d of SGC serves as the power of S̃’s eigenvalues. S̃d can be
viewed as the sum of eigengraphs ũiũ

⊤
i weighted by coefficients (1− λ̃i)

d.

Graph homophily and heterophily. Graph homophily describes to what extent edges tend to link
nodes with the same labels and similar features. In this work, we focus on edge homophily (Zhu
et al., 2020): h(G) =

∑
i,j,A[i,j]=1⟨y[i]=y[j]⟩∑

i,j A[i,j] ∈ [0, 1], where ⟨x⟩ = 1 if x is true and 0 otherwise. A

graph is more homophilic for h(G) closer to 1 or more heterophilic for h(G) closer to 0.

3 MODEL

Firstly, we establish the intrinsic connections between eigengraphs with small/large weights, graph
signals with high/low frequencies, and graphs with homophilic/heterophilic properties. Secondly, we

1This work focuses on connected graph without bipartite components (i.e., a connected component which is
a bipartite graph).

3

Under review as a conference paper at ICLR 2023

show how the positive/negative depth d of a GCN affects the eigengraph weights and in turn deter-
mines the algorithm’s expressive power to process homophilic/heterophilic graph signals. Thirdly,
with the help of functional calculus (Shah & Okutmuştur, 2020), we present the theoretical feasi-
bility of extending the domain of d from N+ to R. Finally, by making d a trainable parameter, we
present our model RED-GCN and its variants, which are capable of automatically detecting the
homophily/heterophily of the input graph and finding the corresponding optimal depth.

The eigenvectors of a graph Laplacian form a complete set of basis vectors in the n-dimensional space
capable of expressing the original node attribute X as a linear combination. From the perspective of
graph spectrum analysis (Shuman et al., 2013), the frequency of eigenvector ui reflects how much the
j-th entry ui[j] deviates from the k-th entry ui[k] for each connected node pair vj and vk in G. This
deviation is measured by the set of zero crossings of ui: Z(ui) := {e = (vj , vk) ∈ E : ui[j]ui[k] <
0}, where E is the set of edges in graph G. Larger/smaller |Z(ui)| indicates higher/lower eigenvector
frequency. A zero-crossing also corresponds a negative weighted edge in an eigengraph. Due to
the widely existing positive correlation between λi and |Z(ui)| (Shuman et al., 2013), large/small
eigenvalues mostly correspond to the high/low frequencies of the related eigenvectors. As illustrated
by the toy example of n = 3 in Figure 1, for λ1 = 0, we have |Z(u1)| = 0, and eigengraph u1u

⊤
1

is well-connected with identical edge weight 1
n ; negative edge weights exist in the 2nd and 3rd

eigengraphs, indicating more zero crossings (|Z(u2)| = 1 and |Z(u3)| = 2) and higher eigenvector
frequencies.

Since node labels correlate with their attributes (Zheng et al., 2022a), and node attribute similarities
indicate the extent of smoothness/homophily (Luan et al., 2020; 2021), plus node attributes can be
expressed by eigenvectors, the deviation between eigenvector entry pairs naturally implies the extent
of heterophily. Apparently, high frequency eigenvectors and their corresponding eigengraphs have
advantage on capturing graph heterophily. High frequency eigengraphs should accordingly take larger
weights when modeling heterophilic graphs, while low frequency ones should carry larger weights
when dealing with homophilic graphs. In turn, eigengraph weights are controlled by GCN/SGC’s
depth d, e.g., for a SGC of depth d, the weight of the i-th eigengraph is (1− λ̃i)

d, and changing the
layer d of SGC adjusts the weights of different eigengraphs. Therefore, depth d controls the model’s
expressive power to effectively filter low/high-frequency signals for graph homophily/heterophily.

A question is naturally raised: instead of manually setting the depth d, can d be built into the
model as a trainable parameter so that a proper set of the eigengraph weights matching the graph
homophily/heterophily can be automatically reached by finding the optimal d in an end-to-end fashion
during training? Differentiable variables need continuity, which requires the extension of depth d
from the discrete positive integer domain (N+) to the continuous real number domain R. According
to functional calculus (Shah & Okutmuştur, 2020), applying an arbitrary function f on a graph
Laplacian Lsym is equivalent to applying the same function only on the eigenvalue matrix Λ:

f(Lsym) = Uf(Λ)U⊤ = U

f(λ1) · · · 0
...

. . .
...

0 · · · f(λn)

U⊤, (6)

which also applies to L̃sym and S̃. Armed with this, we seek to realize an arbitrary depth SGC via a
power function as f(S̃) = S̃d = Ũ(I− Λ̃)dŨ⊤ =

∑n
i=1(1− λ̃i)

dũiũ
⊤
i (d ∈ R).

0.0 0.5 1.0 1.54

3

2

1

0

1

2

3

4

(1
)d

d = 2
d = 1
d = 0
d = 1
d = 2

(a) (1− λ̃)d.

0.0 0.5 1.0 1.50.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

(1
0.

5
)d

d = 2
d = 1
d = 0
d = 1
d = 2

(b) (1− 1
2
λ)d

Figure 2: Eigengraph weight versus eigenvalue for (a)
SGC and (b) RED-GCN-S under different depth ds.

However, since λ̃i ∈ [0, 2), we have
(1 − λ̃i) ≤ 0 when 1 ≤ λ̃i < 2, and
for (1 − λ̃i) taking zero or negative val-
ues, (1− λ̃i)

d is not well-defined or involv-
ing complex-number-based calculations for
a real-valued d (e.g.,(−0.5)

3
8) (Shah &

Okutmuştur, 2020). Moreover, even for
integer-valued ds under which (1− λ̃i)

d is
easy to compute, the behavior of (1− λ̃i)

d

is complicated versus λ̃i and diverges when
λ̃i = 1 for negative ds, as shown in Fig-
ure 2a. Thus, the favored weight distribu-
tion may be hard to obtain by tuning d.

4

Under review as a conference paper at ICLR 2023

To avoid such complications and alleviate
the difficulties for manipulating the eigengraph weights, a transformation function g(·) operating on
the graph Laplacian Lsym or L̃sym is in need to shift g(λi) or g(λ̃i) into a proper value range so that
its power of a real-valued d is easy to obtain and well-behaved versus λi or λ̃i. Without the loss of
generality, our following analysis focuses on Lsym and λi. There may exist multiple choices for g(·)
satisfying the requirements. In this work, we focus on the following form:

Ŝ = g(Lsym) =
1

2
(2I− Lsym). (7)

This choice of g(·) holds three properties: (1) Positive eigenvalues. Since we have Lsym’s i-th
eigenvalue λi ∈ [0, 2), the corresponding eigenvalue of Ŝ is g(λi) =

1
2 (2− λi) ∈ (0, 1]. Thus, the

d-th power of g(λi) is computable for any d ∈ R. (2) Monotonicity versus eigenvalues λ. As shown
in Figure 2b, g(λi)

d = (1− 1
2λ)

d is monotonically increasing/decreasing when λ varies between 0
and 2 under negative/positive depth. (3) Geometric interpretability. Filter Ŝ can be expressed as:

Ŝ = UΛ̂U⊤ = U(I− 1

2
Λ)U⊤ =

1

2
I+

1

2
(I− Lsym) =

1

2
(I+D− 1

2AD− 1
2). (8)

As shown in Figure 3, in spatial domain, Ŝ is obtained via 3 operations on adjacency matrix A:
normalization, adding self-loops, and scaling all edge weights by 1

2 (a type of lazy random walk (Luan
et al., 2020)), while S̃ in vanilla GCN/SGC contains 2 operations: adding self-loops and normalization.

With the help of transformation g, the depth d is redefined on real number domain, and the message
propagation process of depth d can be realized via the following steps: (1) Eigen-decompose Lsym;
(2) Calculate Ŝd via weight g(λi)

d and the weighted sum of all eigengraphs: Ŝd = UΛ̂dU⊤ =∑n
i=1 g(λi)

duiu
⊤
i (3) Multiply Ŝd with original node attributes X.

𝑣!

𝑣"

𝑣#

𝑣!

𝑣"

𝑣#1
4

1
4

1
4

1
2

1
2

1
2𝑣!

𝑣"

𝑣#
1 1

1

1
2𝐃

!"#𝐀𝐃!
"
#

1
2 𝐈

!𝐒

𝑣!

𝑣"

𝑣#1
3

1
3

1
3

1
3

1
3

1
3 #𝐒

1

1

1

Figure 3: The difference between S̃ (left) for
GCN/SGC and Ŝ (right) for RED-GCN.

Negative depth explained. An intuitive expla-
nation of negative d can be obtained from the
perspective of matrix inverse and message diffu-
sion process when d takes integer values. Since
Ŝ−1Ŝ = UΛ̂−1U⊤UΛ̂1U⊤ = I, Ŝ−1 is the
inverse matrix of Ŝ. In diffusion dynamics, X
can be viewed as an intermediate state generated
in a series of message propagation steps. ŜX
effectively propagates the message one-step for-
ward, while Ŝ−1 can cancel the effect of Ŝ on
X and recover the original message by moving
backward: Ŝ−1ŜX = X. Accordingly, Ŝ−1X
traces back to the message’s previous state in the series. However, neither A or L has inverse due to
their non-positive eigenvalues. More discussions on the impact of negative depth in spatial domain
are presented in Section 4.4. Non-integer d indicates the back- or forward propagation can be a
continuous process.

RED-GCN-S. By further making d a trainable parameter, we present our model, Redefined Depth-
GCN-Single (RED-GCN-S), whose final node embedding matrix is given by

H = σ(ŜdXW), (9)
where σ(·) is the nonlinear activation function; W is a trainable parameter matrix; and d is the
trainable depth parameter. As observed from Figure 2b, weight distribution of different frequen-
cies/eigengraphs is tuned via d: (1) for d = 0, the weight is uniformed distributed among all frequency
components (g(λi)

d = 1), which implies that no particular frequency is preferred by the graph signal;
(2) for d > 0, weight g(λi)

d decreases with the corresponding frequency, which indicates the low
frequency components are favored so that RED-GCN-S effectively functions as a low-pass filter
and therefore captures graph homophily; (3) for d < 0, high frequency components gains amplified
weights so that RED-GCN-S serves as a high-pass filter capturing graph heterophily. During train-
ing, RED-GCN-S tunes its frequency filtering functionality to suit the underlying graph signal by
automatically finding the optimal d.

RED-GCN-D. During optimization, RED-GCN-S embraces a single depth d unified for all eigen-
graphs and selects its preferences for either homophily or heterophily. However, RED-GCN-S

5

Under review as a conference paper at ICLR 2023

requires a full eigen-decomposition of Lsym, which can be expensive for large graphs. Additionally,
the high and low frequency components in a graph signal may not be mutually exclusive, namely,
there exists the possibility for a graph to simultaneously possess homophilic and heterophilic coun-
terparts. Therefore, we propose the second variant of RED-GCN: RED-GCN-D (Dual), which
introduces two separate trainable depths, dh and dl, to gain more flexible weighting of the high and
low frequency related eigengraphs respectively. Arnoldi method (Lehoucq et al., 1998) is adopted to
conduct EVD on Lsym and obtain the top-K largest and smallest eigen-pairs (λi,ui)s. By denoting
Ul = U[:, 0 : K] and Uh = U[:, n − K : n] (Ul and Uh ∈ Rn×K), we define a new diffusion
matrix Ŝdual(dl, dh,K) as

Ŝdual(dl, dh,K) = UlΛ̂
dl

l U⊤
l +UhΛ̂

dh

h U⊤
h , (10)

where Λ̂l ∈ RK×K and Λ̂h ∈ RK×K are diagonal matrices of the top-K smallest and largest
eigenvalues. 2 The final node embedding of RED-GCN-D is presented as

H = σ(Ŝdual(dl, dh,K)XW), (11)

where depths dl and dh are trainable; and W is a trainable parameter matrix. We make RED-GCN-D
scalable on large graphs by choosing K ≪ n, so that Ŝdual(dl, dh,K) approximates the full diffusion
matrix by covering only a small subset of all eigengraphs. For small graphs, we use K = ⌊n

2 ⌋ to
include all eigengraphs, and Ŝdual(dl, dh,K) thus gains higher flexibility than Ŝ with the help of the
two separate depth parameters instead of a unified one.

Differences with ODE-based GNNs. Previous attempts on GNNs with continuous diffusion are mostly
inspired by graph diffusion equation, an Ordinary Difference Equation (ODE) characterizing the
dynamical message propagation process versus time. In contrast, our framework starts from discrete
graph convolution operations without explicitly involving ODE. CGNN (Xhonneux et al., 2020) aims
to build a deep GNN immune to over-smoothing by adopting the neural ODE framework (Chen
et al., 2018). But its time parameter t is a non-trainable hyper-parameter predefined within the
positive domain, which is the key difference with RED-GCN. A critical CGNN component for
preventing over-smoothing, restart distribution (the skip connection from the first layer), is not needed
in our framework. Moreover, CGNN applies the same depth to all frequency components, while
RED-GCN-D has the flexibility to adopt two different depths respectively to be adaptive to high and
low frequency components. GRAND (Chamberlain et al., 2021) introduces non-Eular multi-step
schemes with adaptive step size to obtain more precise solutions of the diffusion equation. Its depth
(total integration time) is continuous but still predefined/non-trainable and takes only positive values.
DGC (Wang et al., 2021) decouples the SGC depth into two prefinded non-trainable hyper-parameters:
a positive real-valued T controlling the total time and a positive integer-valued Kdgc corresponding to
the number of diffusion steps. However, realizing negative depth in DGC is non-applicable since the
implementation is through propagation by Kdgc times, rather than through an arbitrary real-valued
exponent d on eigengraph weights in RED-GCN.

4 EXPERIMENT

In this section, we evaluate the proposed RED-GCN on the semi-supervised node classification task
on both homophilic graphs and heterophilic graphs.

4.1 EXPERIMENT SETUP

Datasets. We use 11 datasets for evaluation, including 4 homophilic graphs: Cora (Kipf & Welling,
2016), Citeseer (Kipf & Welling, 2016), Pubmed (Kipf & Welling, 2016) and DBLP (Bojchevski &
Günnemann, 2017), and 7 heterophilic graphs: Cornell (Pei et al., 2020), Texas (Pei et al., 2020),
Wisconsin (Pei et al., 2020), Actor (Pei et al., 2020), Chameleon (Rozemberczki et al., 2021), Squirrel
(Rozemberczki et al., 2021), and cornell5 (Fey & Lenssen, 2019). We collect all datasets from the
public GCN platform Pytorch-Geometric (Fey & Lenssen, 2019). For Cora, Citeseer, Pubmed with
data splits in Pytorch-Geometric, we keep the training/validation/testing set split as in GCN (Kipf &
Welling, 2016). For the remaining 8 datasets, we randomly split every dataset into 20/20/60% for
training, validation, and testing. The statistics of all datasets are presented in Appendix.

2Case λi = 2, namely g(λi) = 0, is excluded since it corresponds to the existence of bipartite components.

6

Under review as a conference paper at ICLR 2023

Baselines and Metrics. We compare our model with 7 baseline methods,including 4 classic GNNs:
GCN (Kipf & Welling, 2016), SGC (Wu et al., 2019), APPNP (Klicpera et al., 2018) and ChebNet
(Defferrard et al., 2016), and 3 GNNs tailored for heterophilic graphs: FAGCN (Bo et al., 2021),
GPRGNN (Chien et al., 2020) and H2GCN (Zhu et al., 2020). Accuracy (ACC) is used as the
evaluation metric. We report the average ACCs with the standard deviation (std) for all methods, each
obtained by 5 runs with different initializations.

Implementation Details. See Appendix due to the page limit.

4.2 NODE CLASSIFICATION

The semi-supervised node classification performances on homophilic graphs and heterophilic graphs
are shown in Table 1 and Table 2 respectively.

Homophilic graphs. From Table 1, it is observed that different methods have similar performance on
homophilic graphs. RED-GCN-S achieves the best accuracies on two datasets: Cora and DBLP. On
the remaining two datasets, RED-GCN-S is only 1.1% and 0.4% below the best baselines (APPNP
on Citeseer and SGC on Pubmed). For RED-GCN-D, it obtains similar performance as the other
methods, even though it only uses the top-K largest/smallest eigen-pairs.

Table 1: Performance comparison (mean±std accuracy) on homophilic graphs.

Datasets Cora Citeseer Pubmed DBLP
GCN 80.8±0.8 70.5±0.6 78.8±0.6 84.1±0.2
SGC 80.9±0.4 70.8±0.8 79.6±0.4 84.1±0.2

APPNP 81.0±1.0 71.9±0.4 79.3±0.2 83.0±0.5
GPRGNN 82.0±0.7 69.3±0.9 78.6±0.7 84.5±0.3
FAGCN 80.3±0.4 71.7±0.8 78.5±0.9 82.4±0.7
H2GCN 78.8±1.0 70.5±1.0 77.9±0.3 82.4±0.3
ChebNet 78.8±0.5 71.1±0.4 78.1±0.8 83.1±0.1

RED-GCN-S 82.5±1.1 70.8±0.7 79.2±0.2 84.7±0.3
RED-GCN-D 82.4 ±0.7 70.6 ±0.6 77.9 ±0.3 84.2±0.2

Table 2: Performance comparison (mean±std accuracy) on heterphilic graphs.

Datasets Texas Cornell Wisconsin Actor Squirrel Chameleon cornell5
GCN 55.9±3.4 44.3±4.4 51.4±2.2 27.5±0.5 35.8±1.3 55.2±1.8 67.9±0.2
SGC 58.7±3.1 43.8±4.4 47.3±2.1 28.0±0.8 37.2±1.8 55.3±1.0 67.4±0.5

APPNP 55.1±3.7 51.5±2.4 58.0±3.1 32.8±0.8 29.5±0.9 46.7±0.8 68.3±0.5
GPRGNN 61.3 ±5.8 53.3±4.6 71.0±4.8 33.6±0.4 34.1±1.0 55.0±3.9 67.3±0.3
FAGCN 60.2±7.8 54.8±7.4 60.1±5.2 32.3±0.5 31.2±1.6 50.4±1.9 68.3±0.7
H2GCN 68.8±6.5 61.4±4.4 69.9±5.3 33.9±0.3 30.4±0.9 48.8±1.9 68.4±0.2
ChebNet 76.2±2.9 66.7±3.9 75.4±3.5 34.3±0.5 31.8±0.5 49.6±1.8 OOM

RED-GCN-S 77.6±5.9 72.0±5.8 82.0±2.6 35.3±0.7 38.2±1.2 55.7±1.3 68.5±0.4
RED-GCN-D 77.1 ±2.5 72.0 ±2.8 81.5 ±2.4 27.6 ±0.8 44.2±0.9 56.9±0.9 70.0±0.2

Heterophilic graphs. RED-GCN-S/RED-GCN-D outperforms every baseline on all heterophilic
graphs, as shown in Table 2. These results demonstrate that without manually setting the model depth
and without the prior knowledge of the input graph, RED-GCN has the capability of automatically
detecting the underlying graph heterophily. We have an interesting observation: on 3 large datasets,
Squirrel, Chameleon, and cornell5, even with only a small portion of the eigengraphs, RED-GCN-D
is able to achieve better performance than RED-GCN-S with the complete set of eigengraphs. This
suggests that the graph signal in some real-world graphs might be dominated by a few low and high
frequency components, and allowing two independent depth parameters in RED-GCN-D brings the
flexibility to capture the low and high frequencies at the same time.

4.3 TRAINABLE DEPTH

A systematic study is conducted on the node classification performance w.r.t the trainable depth d.

Optimal depth. In Figure 4, the optimal depths and their corresponding classification accuracies are
annotated. For two homophilic graphs, Cora and Citeseer, the optimal depths are positive (5.029 and
3.735) in terms of the best ACCs, while for two heterophilic graphs, Actor and Squirrel, the optimal
depths are negative (−0.027 and −3.751). These results demonstrate our model indeed automatically
capture graph heterophily/homophily by finding the suitable depth to suppress or amplify the relative
weights of the corresponding frequency components. Namely, high/low frequency components are
suppressed for homophilic/heterophilic graphs respectively.

7

Under review as a conference paper at ICLR 2023

0 1 2 3 4 5
d

50

55

60

65

70

75

80

85

90

Ac
cu

ra
cy

(%
)

the optimal (5.029, 82.8%)

Performance on Cora

(a) Cora

0 1 2 3 4 5
d

50

55

60

65

70

75

80

Ac
cu

ra
cy

(%
)

the optimal (3.735, 71.4%)

Performance on Citeseer

(b) Citeseer

1 0 1
d

20

25

30

35

40

45

Ac
cu

ra
cy

(%
)

the optimal (-0.027, 36.9%)

Performance on Actor

(c) Actor

3.9 3.8 3.7 3.6 3.5 3.4 3.3
d

20

25

30

35

40

45

50

Ac
cu

ra
cy

(%
)

the optimal (-3.751,41.5%)

Performance on Squirrel

(d) Squirrel

Figure 4: Node classification accuracy w.r.t. the trainable depth d on four datasets: Cora, Citeseer,
Actor and Squirrel. (the optimal d, accuracy) is annotated (e.g., (-0.027, 36.9%) for Actor).

Close to zero depth. For the two homophilic graphs in Figures 4a and 4b, sharp performance drop is
observed when depth d approaches 0, since the eigengraphs gain close-to-uniform weights. For the
heterophilic Actor dataset, its optimal depth −0.027 is close to 0, as shown in Figure 4c. In addition,
the performance of RED-GCN-D (27.6%) is similar to that of GCN (27.5%), both of which are
much worse than RED-GCN-S (35.3%). This result indicates that Actor is a special graph where all
frequency components have similar importance. Due to the absence of the intermediate frequency
components between the high- and low-end ones, the performance of RED-GCN-D is severely
impacted. For vanilla GCN, the suppressed weights of the high frequency components deviate from
the near-uniform spectrum and thus lead to low ACC on this dataset.

4.4 GRAPH AUGMENTATION AND GEOMETRIC INSIGHTS

Table 3: The performance of one-layer
vanilla GCN over the augmented Ŝd.

Datasets Texas Cornell Wisconsin
GCN 55.9 44.3 51.4

RED-GCN-S 77.6 72.0 82.0
RED-GCN-D 77.1 72.0 81.5

GCN (Ŝd) 75.9 72.7 83.4

It is especially interesting to analyze what change a
negative depth brings to the spatial domain and how
such change impacts the subsequent model performance.
Graph augmentation. By picking the optimal depth d ac-
cording to the best performance on the validation set, a new
diffusion matrix Ŝd is obtained. With the optimal d fixed,
substituting the normalized adjacency matrix D̃− 1

2 ÃD̃− 1
2

in Eq. 1 by Ŝd is equivalent to applying the vanilla GCN
to a new topology. This topology effectively plays the role
of a structural augmentation for the original graph. The impact of such augmentation on performance
is tested on 3 heterophilic graphs: Texas, Cornell and Wisconsin, as shown in Table 3. Apparently, for
the vanilla GCN, the performance obtained with this new topology is superior over that with the raw
input graph: it dramatically brings 20%-30% lifts in ACC. Moreover, the augmented topologies also
make vanilla GCN outperform RED-GCN-S and RED-GCN-D on 2 out of the 3 datasets. By nature,
the augmented graph is a re-weighted linear combination of the eigengraphs, and its topological
structure intrinsically assigns higher weights to eigengraphs corresponding to higher frequencies, as
shown in Figures 5.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
0.0

0.5

1.0

1.5

2.0

2.5

3.0

W
ei

gh
ts

Sd

S

Figure 5: The weights of
eigengraphs w.r.t. eigenval-
ues on the augmented diffu-
sion matrix Ŝd and original Ŝ
for Cornell (d = −0.362).

Geometric properties. To further understand how the topology of
Ŝd with a negative optimal d differs from that of Ŝ and why the
performance is significantly boosted, a heat map of (Ŝd − Ŝ) is
presented in Figure 6 for Cornell. 3 First, the dark red diagonal
line in the heat map indicates the weights of self-loops are signif-
icantly strengthened in the augmented graph, and as a result, in
consistency with the previous findings (Zheng et al., 2022a), the raw
node attributes make more contributions in determining their labels.
These strengthened self-weights also play the similar role as restart
distribution or skip connections (Xhonneux et al., 2020) preventing
the node embeddings becoming over-smoothed. In addition, there
is a horizontal line and a vertical line (light yellow line marked by
dashed ovals) in the heat map in Figure 6, correspond to the hub node
in the graph, namely the node with the largest degree. Interestingly,
the connections between this node and most other nodes in the graph
experience a negative weight change. Therefore, the influence of the

3Heat maps for Texas and Wisconsin are in Appendix with similar observations.

8

Under review as a conference paper at ICLR 2023

hub node on most other nodes are systematically reduced. Consequently, the augmentation amplifies
the deviations between node embeddings and facilitates the characterization of graph heterophily.

5 RELATED WORKS

Figure 6: The difference between the
augmented diffusion matrix and the orig-
inal one Ŝd − Ŝ for Cornell in heat map.
Best viewed in color.

Graph Convolutional Network (GCN). GCN models can
be mainly divided into two categories: (1) spectral graph
convolutional networks and (2) spatial convolutional net-
works. In (1), Spectral CNN (Bruna et al., 2013) borrows
the idea from convolutional neural network (Goodfellow
et al., 2016) to construct a diagonal matrix as the convo-
lution kernel. ChebNet (Defferrard et al., 2016) adopts a
polynomial approximation of the convolution kernel. GCN
(Kipf & Welling, 2016) further simplifies the ChebNet via
the first order approximation. Recently, (He et al., 2021;
Bianchi et al., 2021; Wang & Zhang, 2022) propose more
advanced filters as the convolution kernel. Most works in
(2) follow the message-passing mechanism. GraphSAGE
(Hamilton et al., 2017) iteratively aggregates features from
local neighborhood. GAT (Veličković et al., 2017) applies
self-attention to the neighbors. APPNP (Klicpera et al.,
2018) deploys personalized pagerank (Tong et al., 2006)
to sample nodes for aggregration. MoNet (Monti et al.,
2017) unifies GCNs in the spatial domain.

The Depth of GCN and Over-smoothing. A large amount of works focus on the over-smoothing
issue. Its intrinsic cause is demystified: a linear GCN layer is a Laplacian smoothing operator (Li
et al., 2018; Wu et al., 2019). PairNorm (Zhao & Akoglu, 2019) forces distant nodes to be distinctive
by adding an intermediate normalization layer. Dropedge (Rong et al., 2019), DeepGCN (Li et al.,
2019), AS-GCN (Huang et al., 2018), and JK-net (Xu et al., 2018) borrow the idea of ResNet (He
et al., 2016) to dis-intensify smoothing. DeeperGXX (Zheng et al., 2021) adopts a topology-guided
graph contrastive loss for connected node pairs to obtain discriminative representations. Most works
aim to build deep GCNs (i.e., d is a large positive integer) by reducing over-smoothing, while
RED-GCN extends the depth from N+ to R and explores the negative depth.

Node Classification on Homophilic and Heterophilic Graphs. GCN/GNN models mostly follow
the homophily assumption that connected nodes tend to share similar labels (Kipf & Welling, 2016;
Veličković et al., 2017; Hamilton et al., 2017). Recently, heterophilic graphs, in which neighbors
often have disparate labels, attract lots of attention. Geom-GCN (Pei et al., 2020) and H2GCN (Zhu
et al., 2020) extend the neighborhood for aggregation. FAGCN (Bo et al., 2021) and GPRGNN (Chien
et al., 2020) adaptively integrate the high/low frequency signals with trainable parameters. Alternative
message-passing mechanisms have been proposed in HOG-GCN (Wang & Zhang, 2022) and CPGNN
(Zhu et al., 2021). The latest related works include ACM-GCN (Luan et al., 2021; 2022b), LINKX
(Lim et al., 2021), BernNet (He et al., 2021), GloGNN (Li et al., 2022) and GBKGNN (Du et al.,
2022). Other works can be found in a recent survey (Zheng et al., 2022b).

6 CONCLUSION AND FUTURE WORK

To our best knowledge, this work presents the first effort to make GCN’s depth trainable by redefining
it on the real number domain. We unveil the interdependence between negative GCN depth and
graph heterophily. A novel problem of automatic GCN depth tuning for graph homophily/heterophily
detection is formulated, and we propose a simple and powerful solution named RED-GCN with two
variants (RED-GCN-S and RED-GCN-D). An effective graph augmentation method is also discussed
via the new understanding on the message propagation mechanism generated by the negative depth.
Superior performance of our method is demonstrated via extensive experiments with semi-supervised
node classification on 11 graph datasets. The new insights on GCN’s depth obtained by our work may
open a new direction for future research on spectral and spatial GNNs. Since RED-GCN requires to
conduct eigen-decomposition of the graph Laplacian, it is not directly applicable to inductive and
dynamic graph learning problems, which we leave for future exploration.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Filippo Maria Bianchi, Daniele Grattarola, Lorenzo Livi, and Cesare Alippi. Graph neural networks
with convolutional arma filters. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2021.

Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. Beyond low-frequency information in graph con-
volutional networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pp. 3950–3957, 2021.

Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian embedding of graphs: Unsupervised
inductive learning via ranking. arXiv preprint arXiv:1707.03815, 2017.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

Ben Chamberlain, James Rowbottom, Maria I Gorinova, Michael Bronstein, Stefan Webb, and
Emanuele Rossi. Grand: Graph neural diffusion. In International Conference on Machine
Learning, pp. 1407–1418. PMLR, 2021.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Zhengdao Chen, Lisha Li, and Joan Bruna. Supervised community detection with line graph neural
networks. In International conference on learning representations, 2020.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. arXiv preprint arXiv:2006.07988, 2020.

Fan RK Chung and Fan Chung Graham. Spectral graph theory, volume 92. American Mathematical
Soc., 1997.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. Advances in neural information processing systems,
29, 2016.

Lun Du, Xiaozhou Shi, Qiang Fu, Xiaojun Ma, Hengyu Liu, Shi Han, and Dongmei Zhang. Gbk-
gnn: Gated bi-kernel graph neural networks for modeling both homophily and heterophily. In
Proceedings of the ACM Web Conference 2022, pp. 1550–1558, 2022.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. IEEE
Signal Processing Magazine, 30:83–98, 2019.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Mingguo He, Zhewei Wei, Hongteng Xu, et al. Bernnet: Learning arbitrary graph spectral filters via
bernstein approximation. Advances in Neural Information Processing Systems, 34:14239–14251,
2021.

Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. Adaptive sampling towards fast graph
representation learning. Advances in neural information processing systems, 31, 2018.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate: Graph
neural networks meet personalized pagerank. arXiv preprint arXiv:1810.05997, 2018.

10

Under review as a conference paper at ICLR 2023

Richard B Lehoucq, Danny C Sorensen, and Chao Yang. ARPACK users’ guide: solution of large-
scale eigenvalue problems with implicitly restarted Arnoldi methods. SIAM, 1998.

Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can gcns go as deep
as cnns? In Proceedings of the IEEE/CVF international conference on computer vision, pp.
9267–9276, 2019.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for
semi-supervised learning. In Thirty-Second AAAI conference on artificial intelligence, 2018.

Xiang Li, Renyu Zhu, Yao Cheng, Caihua Shan, Siqiang Luo, Dongsheng Li, and Weining Qian.
Finding global homophily in graph neural networks when meeting heterophily. arXiv preprint
arXiv:2205.07308, 2022.

Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and
Ser Nam Lim. Large scale learning on non-homophilous graphs: New benchmarks and strong
simple methods. Advances in Neural Information Processing Systems, 34:20887–20902, 2021.

Sitao Luan, Mingde Zhao, Xiao-Wen Chang, and Doina Precup. Break the ceiling: Stronger multi-
scale deep graph convolutional networks. Advances in neural information processing systems, 32,
2019.

Sitao Luan, Mingde Zhao, Chenqing Hua, Xiao-Wen Chang, and Doina Precup. Complete the missing
half: Augmenting aggregation filtering with diversification for graph convolutional networks. arXiv
preprint arXiv:2008.08844, 2020.

Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen
Chang, and Doina Precup. Is heterophily a real nightmare for graph neural networks to do node
classification? arXiv preprint arXiv:2109.05641, 2021.

Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Xiao-Wen Chang, and Doina Precup. When do
we need gnn for node classification? arXiv preprint arXiv:2210.16979, 2022a.

Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen
Chang, and Doina Precup. Revisiting heterophily for graph neural networks. arXiv preprint
arXiv:2210.07606, 2022b.

Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and Michael M
Bronstein. Geometric deep learning on graphs and manifolds using mixture model cnns. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 5115–5124,
2017.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. arXiv preprint arXiv:2002.05287, 2020.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. arXiv preprint arXiv:1907.10903, 2019.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. Journal
of Complex Networks, 9(2):cnab014, 2021.

Kamal Shah and Baver Okutmuştur. Functional Calculus. BoD–Books on Demand, 2020.

David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and Pierre Vandergheynst.
The emerging field of signal processing on graphs: Extending high-dimensional data analysis to
networks and other irregular domains. IEEE signal processing magazine, 30(3):83–98, 2013.

Gabriel Taubin. A signal processing approach to fair surface design. In Proceedings of the 22nd
annual conference on Computer graphics and interactive techniques, pp. 351–358, 1995.

Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan. Fast random walk with restart and its applications.
In Sixth international conference on data mining (ICDM’06), pp. 613–622. IEEE, 2006.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

11

Under review as a conference paper at ICLR 2023

Xiyuan Wang and Muhan Zhang. How powerful are spectral graph neural networks. arXiv preprint
arXiv:2205.11172, 2022.

Yifei Wang, Yisen Wang, Jiansheng Yang, and Zhouchen Lin. Dissecting the diffusion process in
linear graph convolutional networks. Advances in Neural Information Processing Systems, 34:
5758–5769, 2021.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In International conference on machine learning, pp.
6861–6871. PMLR, 2019.

Louis-Pascal Xhonneux, Meng Qu, and Jian Tang. Continuous graph neural networks. In International
Conference on Machine Learning, pp. 10432–10441. PMLR, 2020.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In International
conference on machine learning, pp. 5453–5462. PMLR, 2018.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In International conference on machine learning, pp. 40–48. PMLR, 2016.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in neural
information processing systems, 31, 2018.

Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. In International
Conference on Learning Representations, 2019.

Lecheng Zheng, Dongqi Fu, and Jingrui He. Tackling oversmoothing of gnns with contrastive
learning. arXiv preprint arXiv:2110.13798, 2021.

Wenqing Zheng, W Edward Huang, Nikhil Rao, Sumeet Katariya, Zhangyang Wang, and Karthik
Subbian. Cold brew: Distilling graph node represen- tations with incomplete or missing neighbor-
hoods. In International Conference on Learning Representations, 2022a.

Xin Zheng, Yixin Liu, Shirui Pan, Miao Zhang, Di Jin, and Philip S Yu. Graph neural networks for
graphs with heterophily: A survey. arXiv preprint arXiv:2202.07082, 2022b.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. Advances in Neural
Information Processing Systems, 33:7793–7804, 2020.

Jiong Zhu, Ryan A Rossi, Anup Rao, Tung Mai, Nedim Lipka, Nesreen K Ahmed, and Danai Koutra.
Graph neural networks with heterophily. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 11168–11176, 2021.

12

	Introduction
	Preliminaries
	Model
	Experiment
	Experiment Setup
	Node Classification
	trainable depth
	Graph augmentation and Geometric insights

	Related Works
	Conclusion and Future Work

