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Abstract

We introduce a new approach for applying
sampling-based sketches to two and three mode
tensors. We illustrate our technique to construct
sketches for the classical problems of ¢y sampling
and producing ¢; embeddings. In both settings
we achieve sketches that can be applied to a rank
one tensor in (R4)®4 (for ¢ = 2, 3) in time scal-
ing with d rather than d? or d°. Our main idea is
a particular sampling construction based on fast
convolution which allows us to quickly compute
sums over sufficiently random subsets of tensor
entries.

1. Introduction

In the modern area of enormous data sets, space is often at
a premium, and one would like algorithms that either avoid
storing all available data, or that compress existing data. A
common and widely-applied strategy is sketching. Given
a vector z € R" consisting of the relevant data, a (linear)
sketch of x is given by Sz where S is a linear map down to
a dimension much smaller than n. Typically the goal is to
design S so that some useful statistic of « can be computed
from the sketched vector Sz, even though most of the in-
formation about = has been discarded. Linear sketches are
particularly useful in the context of streaming algorithms,
since linear updates to x can be translated to the sketch,
simply by sketching the vector of updates, and adding it to
the previous value of the sketch. Sketches have also found
important applications in speeding up linear-algebraic (and
related) computations (Woodruff et al., 2014). Here, the idea
is to first apply a sketch to reduce the dimensionality of the
problem, while approximately preserving a quantity of in-
terest (e.g., a regression solution). Then standard algorithms
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can be applied to the smaller problem resulting in improved
runtimes.

A lot of work on sketching has focused on efficiently apply-
ing sketches to structured data. For example, if the under-
lying data is sparse, one might hope for a sketch that can
be applied in input-sparsity time. A different type of struc-
ture that has been widely studied in this context is tensor
structure. A line of work has been devoted to developing
fast tensor sketches (Pham & Pagh, 2013; Ahle et al., 2020;
Ahle & Knudsen, 2019; Meister et al., 2019), which are
sketches that can be applied quickly to low-rank tensors. A
rank-one tensor in R™ ® R” for example (i.e., a rank-one
matrix) only requires O(n) parameters to specify. However,
a naive sketch might require O(n?) time to apply if each
entry of the tensor must be calculated to form the sketch.
The goal with tensor sketches is to do better then expanding
into a vector form prior to sketching.

Much of the work based on sketching tensors has focused
on {y-norm settings. The most studied example is Johnson-
Lindenstrauss (JL) embeddings, which have been studied
extensively for tensors. For JL sketches, the ideal sketch is
a dense Gaussian sketch. However, such sketches are slow
to apply and so the main interest is in approximating the
properties of a Gaussian sketch with a sketch that can be
applied faster.

We study a completely different type of “sampling-based”
sketch, which is embodied by the ¢y sampling problem. The
goal here is to observe a linear sketch of z, and then to
(nearly) uniformly sample an element from z’s support. A
dense Gaussian sketch is completely useless as we would
like a row of our sketch to single out an element of supp(z).
To allow for this, the standard idea is to take a sketch which
performs sparse samples at various scales. We ask: Are there
sampling-based sketches which can be applied quickly to
rank-one tensors?

For tensors with two and three modes (which cover many
tensors of practical importance), we provide a new approach
for constructing sampling-based sketches in the tensor set-
ting. To illustrate our approach, we focus on two fundamen-
tal problems: ¢y sampling, and ¢; embeddings. We recall
the setup for these problems.
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¢y Sampling. For the ¢, sampling problem one would
like to construct a distribution over sketching matrices S so
that observing Sx allows us to return a uniformly random
element from the support of x. We allow constant distor-
tion, and § failure probability, so conditioned on not failing
(which must occur with probability at least 1 —J), we should
have that for all 7 in the support of x, the sampling algorithm
outputs ¢ with probability in [c; /|supp(z)|, c2/|supp(X)]].

¢; Embeddings. For the /; embedding problem, the goal
is to construct a sketch S, such that for any z € R", we
have

allzlly <[1Szlly < el

for absolute constants 0 < ¢; < ¢s.

1.1. Our Results

Our main idea is constructing a way to subsample a ten-
sor at a given sampling rate p, and then to sum over the
resulting sampling. Specifically we introduce a sampling
primitive that we call a “p-sample” which samples each
element with probability approximately p, and does so in
a nearly pairwise independent manner. As we show, this
will be sufficient for constructing both ¢-samplers and ¢;
embeddings. Constructing p-samples is straightforward for
tensors which are given entrywise — one can simply sample
each entry independently with probability p. Our key nov-
elty is in showing that it is possible to construct p-samples
for two and three mode tensors, which for rank-one tensors
can be summed over in nearly linear time. We discuss the
ideas for constructing samples below.

Given our sampling primitive, we show how to construct ¢,
samplers and ¢; embeddings.

For the ¢y sampling problem we show the following result:

Theorem 1.1. For ¢ = 2,3 there there is a linear
sketch of X € R™ with sketching dimension m =
O(log % log? n(loglogn + log %)) space, and a sampling
algorithm that succeeds with probability 1 — 6, which, con-
ditioned on succeeding, outputs an index i in supp(X ). Con-
ditioned on succeeding, the probability that the algorithm
outputs i € supp(X) is in [\supo.fX)\ , m]. The algo-
rithm also returns the value of X;. Moveover, the entries of
the sketching matrix can be taken to be in {0,+1, —1}.

For q = 2, our sketch can be applied to rank-one ten-
sors in O(mn) time, and when q = 3 can be applied in
O(mnlog® n) time.

For /1 embeddings, we show the following:

Theorem 1.2. There is an O(1)-distortion {1 embedding
sketch S R™ — R"™ with sketching dimension m =
O(log* n + log?(1/68) log n) that satisfies ||Sz|, < c||z||,

with constant probability, and satisfies ||Sz||, > c|lz||;
with probability at least 1 — 0.

Moreover our sketch can be applied to rank one tensors
in R¥ ® R¥ in O(mk) time, and to rank one tensors in
RF @ RF @ R* in O(mklog? k) time.

Our main novelty here lies in the p-sample construction,
which is applied in a similar way as for our {y-sample,
although the details are more complicated. We therefore
defer the proof of this result to the appendix.

Regression We note that this error guarantee of “no con-
traction” with high probability, and “no dilation” with con-
stant probability is know to be sufficient to construct algo-
rithms for solving ¢; regression. In particular, by setting
d = exp(—d), a standard net argument given in (Clark-
son & Woodruff, 2014) for example, shows that “no con-
traction” holds with high probability over a d-dimensional
subspace. As long as “no dilation” holds for the solution
vector, then it is well-known that this yields a dimension-
reduction for ¢; regression. Thus our ¢; sketch can be used
to speed up sketching for an ¢; regression problem of the
form min, || Az — b||; , where A has d columns, each of
which have low-rank structure.

Finally, while we choose to illustrate our approach on the
problems of £y sampling and ¢; embeddings, we believe that
this technique could be applied more generally whenever
there is a known sketch that is built from random subsam-
pling and taking random linear combinations within the
sample.

1.2. Techniques

The main idea behind both ¢y-sampling and ¢; -embeddings
is to subsample coordinates at various scales in order to
isolate some coordinates of z. As a warmup, we begin by de-
scribing £, sampling. Then we describe how our techniques
extend to constructing ¢/; embeddings. We note that our
basic approach to constructing £y samplers and ¢; embed-
dings are not novel. However our ability to quickly sketch
rank-one tensors is.

£y Sampling In the general form of ¢y sampling, we are
given a vector (or in our case a tensor) X, and the goal
is to design a sketch that allows us sample an entry of X
nearly uniformly from the support of X. The idea is to
take a random sample S of X’s entries and then to store a
random linear combination of the values in .S as an entry
of the sketch. If .S intersects supp(X) in a single element
then this will allow us to recover a value in supp(X). If
supp(X) has size k, then we would like S to sample each
value with probability roughly 1/k in order to have a good
probability of isolating a single element. Since & is unknown
to us initially, the idea is to perform the sampling procedure
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at each of log n sampling levels 1
The challenge for us is to design samples S that allow for
fast sketching on rank-one tensors, e.g., tensors of the form
T ® y. As we later show, the step of computing a random
linear combination of values in S can be achieved simply
by randomly flipping the signs along each mode. The harder
part is designing S so that we can sum the resulting tensor
over S in roughly O(n) time. In other words we need S
to be such that we can quickly compute (i.j)es Tilj- If
S just samples each entry of X i.i.d. with probability p,
then it is not clear how to do better than computing the
sum term-by-term, which would require Q(pn?) time in our
example.

The next most natural thing to try is to take S = 57 X So
to be a random rectangle, since rectangles allow the above
summation to be computed in O(n) time. To achieve sam-
pling probability p one could take a rectangle of dimension
\/Pd X \/pd, where the subsets of indices S and So cor-
responding to each dimension are chosen randomly. Thus,
construction succeeds in sampling each entry of X with
probability p; however this is not sufficient to isolate a
single entry of supp(X) with good probability. For exam-
ple supp(X) could consist of a single row of X. If we set
p = 1/d then S has a good probability of sampling some
entry from supp(X ). However, when this occurs, S nearly
always contains more than one such element. Indeed, S
would typically contain around v/d elements, and in this
situation it is not possible to sample a single entry from a
row of X. One could try to fix this by randomizing the sam-
pling scale on each side of the rectangle for a fixed sampling
probability. In the case of ¢, sampling this would at least
result in worse logarithmic factors in the sketching dimen-
sion than what we achieve. In the case of /; embeddings, it
is unclear how to obtain a constant-factor embedding with
this approach. For instance, in the two-mode case, a given
sampling probability p can be realized by O(log d) choices
of scales for the two rectangle dimensions. If a given level
of X has size 1/p and is distributed uniformly throughout
X, then all rectangles with sampling probability p will pick
out single elements of that level. On the other hand, if the
level is distributed along a single 1-dimensional fiber, then
it might be the case that only one of the rectangles is good
for that level. This suggests that the distortion would likely
need to be 2(log d) on some inputs. It does not seem clear
how one could arrange arrange for an O(1) distortion ¢,
embedding that handles these situations simultaneously.

Surprisingly, at least for 2 and 3 mode tensors, it is possible
to construct samples .S that have better sampling proper-
ties than rectangles, but which can still be summed over in
nearly linear time. For brevity, we refer to the sampling that
we need as a p-sample, when it samples each index with
probability (approximately) p. The idea is to design .S in

such a way that we can employ algorithms for fast convolu-
tion using the Fast Fourier Transform. For example, in the
2-mode case, one can compute

Z Z;Y;

i+j€[0,T—1]

for a constant T (chosen to give the appropriate sampling
probability) in O(nlogn) time, by first calculating the
convolution x * y and then summing over the indices in
[0, T — 1]. This only gives a sum over a fixed set, but by ran-
domly permuting the indices along each mode, and choosing
T appropriately, this allows us to achieve sampling proba-
bilities down to p = 1/n. Smaller sampling probabilities
result in samples of size O(n), and so the sum can just be
calculated explicitly. (As it turns out, in the 2-mode case, the
runtime can be improved to O(n) by a simple optimization.)

The 3-mode case is somewhat more complicated. A similar
convolution trick involving a convolution of three vectors
allows us to construct p-samples with fast summation down
to 1/n. And sampling probabilities below 1/n? allow for
direct computation. What about sampling probabilities be-
tween 1/ n? and 1 /n? Here, we show how to compute sums
of the form

Z TiYj 2k

i+j+k=0,j—1i€[0,T—1]

in O(nlog® T') time. The rough approach is to show that
we can reduce computing this quantity to n/7" instances
of multiplication by the top-left corner ({i,7 : @ > j}) of
aroughly 7' x T Toeplitz matrix. Each top corner matrix
can be decomposed into a sum of 7" logT" Toeplitz matrices
(up to some zero-padding) each of which has an O(T log T')
multiplication time.

{1 embeddings For /; embeddings our approach roughly
follows the sketch introduced by (Verbin & Zhang, 2012)
for producing constant distortion ¢; embeddings. The main
idea is to think of a vector x € R™ as decomposed into
approximate level sets, with the size of entries in each level
set decreasing exponentially. For instance, when ||z||; =
1, the level sets L; could be taken to contain entries in
[q~(FY) g~ for some ¢ < 1. For each level set, our sketch
has an associated level with sampling probability larger
than ¢, which is designed to capture most of the mass of
L;. Since we would like our sampling level to capture the
mass of L; with high probability, we need to oversample
the entries of L; substantially. The usual approach here is
to choose a fairly large ¢, and then hash the sampled values
into separate buckets so as to minimize cancellations. This
is typically done with CountSketch; however it is not clear
how to efficiently compose a CountSketch with our fast
sample constructions. Therefore we take a slightly different
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approach. Instead of hashing each sampling level into T’
buckets, we simply take 7" independent samples, each with
sampling probability ¢/T.. The analysis is quite similar
to the analysis using CountSketch, but we retain the the
ability to quickly sketch rank-one tensors. However, we
do pay a price — our sketching time scales linearly with
the size of the sketch. In contrast, for vectors, CountSketch
constructions allow for sketching in time that scales as O(n -
(number of sampling levels)). However these sketches are
not efficient for rank-one tensors, since n would be replaced
by n? or n3.

To avoid too much dilation, the rough idea is that each
sampling level picks up roughly the right amount of mass
from its corresponding L; with good probability. Also, large
levels have a small numbers of elements and so they are
unlikely to be picked up by a smaller sampling level. The
main issue is in bounding the contribution of the L;’s con-
taining many small values. To avoid, this (Verbin & Zhang,
2012) introduced the idea of hashing each sampling level
into buckets with random signs in order to induce cancella-
tion among the contributions from such L;’s. We employ the
same technique here. However in order to make applying
the signs efficient, our approach is to first apply random
signs along the modes of the tensor, and then to sum over
appropriate p-samples in order to compute a “bucket”. For
a constant number of modes, this turns out to be enough
randomness to induce cancellation.

This outline for constructing /; embeddings has appeared
in the literature several times. Our main novelty lies in
constructing samples that admit fast linear combinations for
rank-one tensors.

Finally, one might wonder if our techniques are really neces-
sary. We could hope to design fast sketches using Kronecker-
structured-sketches of the form S; ® S5, which are easy to
apply to a rank-one tensor x ® y — one simply computes
S1z ® Soy. It does not appear that a Kronecker-structured
sketch can match our bounds. Indeed by a lower bound
given in (Li et al., 2021) , an O(1) ¢; embedding for a
single vector z € R" requires at least poly(n) sketching
dimension for Kronecker-structured sketches. On the other
hand, our sketch can still be applied to rank-one tensors
in near-linear time, but requires only poly logn space to
embed x. One could also ask whether Kahtri-Rao sketches
(i.e., a sketch with each row of the sketch a rank one tensor)
could be applied to match our sketching dimension. While
we do not provide a lower bound against Kahtri-Rao mea-
surements, we also do not see how to match our bounds for
either ¢y sampling or /; embeddings. We leave the question
of whether such a lower bound exists as an interesting open
question.

For larger ¢ we also note that our /; embedding procedure
could be applied to triples of modes at a time, giving a tree

construction similar to (Ahle et al., 2020). Unfortunately
however, the distortion grows like 2logs 4 and the success
probability becomes ¢~ ¢ by a union bound. Whether these
parameters can be improved while allowing for fast sketch-
ing is an interesting problem.

1.3. Additional Open Questions

An interesting open question is whether a similar set of ideas
can be applied to tensors with a larger number of modes.
For four modes, the most natural approach here would be
to attempt to develop a fast sum that can sum over a (subset
of) a codimension 2 subspaces of the tensor entries. For
example, we might wish to calculate sums of the form

E Wik Yk2e

.3,k LE€Q

where () is a set of entries satisfying two linear constraints.
Unfortunately, we are not aware of a way to calculate such a
sum faster than O(n?) time. It would be interesting to either
give a fast summation algorithm, or to find a new technique
that gets around this issue.

1.4. Related Work

A substantial literature has been devoted to obtaining fast
sketches for tensors. Tensor sketching was initiated in (Pham
& Pagh, 2013) where it was shown that CountSketch can be
quickly applied to rank-one tensors using the Fast Fourier
Transform. More recently, {2 embeddings were constructed
by (Ahle & Knudsen, 2019) and improved in (Ahle et al.,
2020) with applications for sketching polynomial kernels.

In earlier work (Indyk & McGregor, 2008) gives a
Kronecker-structured for the ¢; norm in the context of inde-
pendence testing, using a variation on the previously-known
Cauchy sketch (Indyk, 2006). We note that this sketch re-
quires taking a median in order to recover the ¢; norm, and
thus does not give an ¢; embedding, which may be more
suitable for optimization applications.

(Indyk, 2006) studies the problem of ¢; estimation using
Cauchy sketches. Later, (Verbin & Zhang, 2012) gave a
construction of an oblivious ¢; embedding. Our general
approach for constructing /; embeddings is largely based
on theirs. This approach is also generalized in (Clarkson &
Woodruff, 2014) to M-estimators, and in particular is applied
to construct ¢; (and more general) subspace embeddings.
These bounds for ¢; embeddings were recently improved in
(Munteanu et al., 2021).

(Li et al., 2021) expanded on the work and considered in-
dependence testing for higher order tensors. They also give
a poly(d) lower bound for constructing ¢; embeddings for
a single vector in R? using Kronecker-structured measure-
ments.
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1.5. Notation and Preliminaries

We use the notation [N] to refer to the set {1,...,N}.
For two vectors = and y, the notation x ® y refers to the
Kronecker product of x and y. We use the notation x * y for
the circular convolution of z and y. That is

@y =Y miy,
i+j=k
where the sum ¢ + j is interpreted mod V. In such situations
it is sometimes convenient to index vectors starting at 0
so we will do this occasionally. However unless otherwise
stated, we index starting at 1.

We typically identify a g-mode tensor with a vector in R™",
assuming that the dimension along each tensor mode is
n. We will typically make this assumption for the sake of
convenience. We say that a tensor in R™’ has rank one
if it can be expressed as 1 ® ... ® x4 for some vectors
T1y---,Tq-

We will use c throughout to refer to an absolute constant,
which might be different between uses (even within an equa-
tion).

The notation O(f) means O( f log® f) for some constant c.

{o sampling. ¢, sampling has received extensive attention.
(Cormode & Firmani, 2014) surveys the standard recipe for
constructing £y-samplers, which we roughly follow here.

(Woodruff & Zhang, 2018) considers solving the £g-
sampling problem in a distributed setting for a product of
two matrices which are held on different servers, however
this is different from our setting, as their communication
scheme is not a linear sketch.

2. p-sample constructions

We first define our main sampling primitive, which we call
a p-sample. This can be viewed as a slightly weaker version
of a pairwise independent sample.

Definition 2.1. Let 7" be an arbitrary finite set. We say that
a random subset of S of T is a p-sample for 7" if

1. For all entries ¢ € T,

p/2 <Pr(i e S)<p.
2. Forall j #iin T,

Pr(j € Sli € S) < 2p.

Definition 2.2. Fix an n and m and suppose that S is a
subset of [n]™ = [n] x ... x [n]. Let 2™ ... 2(™) ¢
R™ be arbitrary vectors. We say that S admits fast
summation if there is an algorithm which computes

Z(z‘l,...,z‘m)es xgll)xg) .. :UET) in O(mn) time.

To perform one of our constructions we will need a particu-
lar type of Toeplitz-like fast matrix multiplication.

Lemma 2.3. Let A € R™" be a matrix where A; ; =
Aijrjyaforall0 <i<n—-1,0<j<n—2 Let Bbe
defined by B; j = A; j if j > i and B; j = 0 otherwise.

Given v € R"™ the matrix product Av can be computed in
O(nlogn) time, and the product Bv can be computed in
O(nlog?n) time.

Proof. To see that A admits fast multiplication, note that the
rows of A coincide with the even rows of a Toeplitz matrix
of size 2n x 2n. Since multiplication by a Toeplitz matrix
can be carried out in O(nlogn) time (Kailath & Sayed,
1999), the same holds for A.

To get a fast algorithm for B we decompose it into a sum
of matrices, each with the same structure of A up to some
zero-padding. We call these matrices By, B2 and Bs. Take
Bj to be B but with all indices outside of {(i,7) : 1 <
i < [In/2],[n/2] < j < n} replaced with 0. Visually,
the support of A is a right triangle and the support of B
corresponds to the largest square inscribed in A. Let By
and B3 correspond to the two triangles that are left after
removing the square. That is, B> has support contained
in {(4,7) : ¢ > |%]} and B3 has support contained in
{G,7) > 2]}

By construction, B = By + Bs 4+ Bs. Then B; has the
structure of A from the first part of the lemma, so admits
O(nlogn) time multiplication. After removing the zero
padding, both B, and Bs have the same structure as B but
with half the dimension. Thus we have a runtime recurrence
of the form T'(n) = 2T(|n/2]) + O(nlogn), which gives
an overall runtime of O(n log™ n).

O

Theorem 2.4. For m = 2,3, and for all n and p, there
exists a p-sample for [n]™ that admits fast summation. Ad-
ditionally

1. When m = 2 the summation runs in O(n) time
2. When m = 3 the summation runs in O(nlog® n) time
Proof. We first show how to construct sets of indices that

can be summed over quickly. We will then show how to use
these sets to construct p-samples with fast summation.

m=2 Constructions. Let 7" be an arbitrary positive integer,
and consider the set

Ar ={(i,j) € [n] x [n] : i +j € [T]} € (Z/n)".

(Note that we are treating all indices as values in Z/n.) We
will first show that Ar admits O(n) summation for all 7.
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We would like to compute a sum of the form

Z !Eiyjzz Z Iiyjzzfi

i+je[T] i jij—i€T i

2. ur

GEML+i,T+i]

Let S () denote the value of the inner sum for a fixed ¢. Note
that S(i + 1) = S(i) + yr4j+1 — Yi+1- Then S(0) can be
computed in O(n) time and each of S(1), S(2),...,S5(n —
1) can be computed in turn, each in O(1) time using the
recurrence. This gives an O(n) algorithm for computing the
original sum.

m=3 Constructions. Let 7" be arbitrary and set By =

{(i,7,k) : i+ 7+ k € [0,T — 1]}.consider a sum of the
form
doomwim= > D wyiak
(4,9,k)€BT te[0,T—1] i+j+k=t

Each of the inner sums occurs as an entry in the circular
convolution x*y*z. A circular convolution can be computed
in O(nlogn) time using the Fast Fourier Transform, and so
By can be computed in O(nlogn) time.

For m = 3, we also need a sparser construction. For this,
define Cr = {(4,4,k) :i+j+k=0,j—i€[0, T —1]}.
We are interested in the sum

Z LilYjZk = Z

(i,5,k)€Cr i+j+k=0,j—i€[T)

SN

As the algorithm for fast multiplication is slightly more
involved we defer to Lemma 2.5.

T;iYjRk

ZiYj-

Constructing p-samples. In each case we will begin by
applying a random function P; : [n] — [n] independently
along each mode 7. Then we will take the indices that land
in either Ar, Br, or Cr.

For A1 we take the set of indices
r=1{(i,7) : (P1(i), P2(j)) € Ar}.

The probability that (¢, j) € Ar is T/n since (i, j) is uni-
formly random. For (7,7) # (k,£) the values of Py(i) +
P5(j) and Py (k) + P> (¢) are independent. To see this, sup-
pose without loss of generality that j # ¢. Then conditioned
on P (i), P»(j) and P (k), we have that P,(¢) is uniform
over [n]. Therefore the events (P (i), P2(j)) € Ar and
(Pi(k), Py(£)) € Ar are independent, and so

Pr((k, ) € A%|(i,7) € A%) = T/n.

For Br, precisely the same construction and argument ap-
plies.

Cr requires a bit more work. This time we choose
Py, P, P; to be random permutations. Define P by
P((i,j,k)) = (P1(i), P2(5), P3(k)). As before, for any
(1,4,k), (P1(3),P2(j), Ps(k)) is uniformly random, so
(Py(i), P2(5), P3(k)) € Cr with T/n? probability. Now
consider two pairs u; = (i1, j1, k1) and ug = (i, j2, ko)
with u; # uo. Suppose that u; and usg differ in only a single
coordinate. Then since P;, P, Ps are permutations,

Pr(P(ul) S CT|P(U2) S CT) =0,

since C'7 intersects each single-mode fiber in at most one
coordinate.

Next we consider the case where u; and uy differ in pre-
cisely two coordinates. We start the case where u; and us
agree in the third coordinate. Without loss of generality,
we assume that u; = (0,0,0) and us = (1,1,0). Then
Pr(P(u1) € Cr and P(u3) € Cr) is the probability that
the following events occur:

For any fixed value of P;3(0), there are exactly T pairs
(P1(0), P2(0)) that satisfy the first two equations, and sim-
ilarly there are T pairs (P;(1), P>(1)) that satisfy the last
two equations. There are T'(T' — 1) ways to choose the two
pairs, so the probability that P, and P» give two such pairs
is T(T — 1)(+ -1+ 1 1) This implies that

nn—1nn-—1

PI“(’U,Q S CT|U1 € CT) =

(n—17

A similar calculation gives the same probability when u
and u9 agree on precisely the first or second coordinates.

Finally consider the case where u; and wuo differ on all
three coordinates. Then P; (1) is uniform over all possible
triples, and conditioned on P; (u1), Pa(uz) is uniform over
all triples that differ from P; (u1) in all coordinates. There
are (n — 1)? such triples and at most T'n of these are in Cr.

So
Tn

PI“(’U,Q S CT|U1 € CT) < m
For two modes, we have constructed p-samples forp = n/T.
This is sufficient to give a p-sample for all sampling prob-
abilities down to 1/n. For sampling probabilities smaller
than 1/n, the size of the sample will be O(n) with high
probability, and so it admits fast summation by direct com-
putation.
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For three modes, our two constructions give p-samples down
to sampling probability 1/n2. For smaller p, we can again
compute the desired sum explicitly in O(n) time. O

We now verify that C'1 indeed admits fast summation.

Lemma 2.5. Let T be a positive integer, and let x,y,z €
R™. Let

Cr ={(i,j,k) :i+j+k=0and i—j € {0,..., T—1},

where the arithmetic operations are treated mod T'. There
is an algorithm that computes

Z TiYj 2k

(i,5,k)€Cr

. 2 . . . .
in O(nlog” T') time. For convenience, we zero-index into
each vector.

Proof. We first rewrite the sum as

Z TilYjZk = Z Z—k Z TiYj

(i.4.k)€CT K (i.9):i+j=k,i—j€{0,...T—1}

Y ¥

i:2i€{k,....k+T—1}

LilYk—i-

Note that {i € Z/T : 2i € [k, k+T — 1]} is a union of two
intervals Iy, and Jj, in Z/T which are given by

[ 122
NI

We now split the inner sum over I}, and J. We also split
the outer sum over even and odd values of k so that the
intervals shift by one with each term. This gives four sums
to compute, each of which is similar. For the first sum, we
wish to compute

Z Z—2k’ Z TilYk—i

k:0<2k!<T =

>

k7:0<2k'<T

22k’ E TiY2k! —i-

ick/+1o

We will show how to compute all of the inner sums quickly.
Define the “stride-2” circulant matrix Y € R"*" by Y},; =
Yok—j. Define Yk’j by Yk/j =Yy forj € k+ Iyand 0
otherwise. The sums we wish to evaluate are precisely the
entries of Y’z by construction.

Now we show how to evaluate Y'z. By increasing the di-
mension of Y/ and x by at most T (and continuing the
circulant pattern), we may assume without loss of generality
that n is a multiple of | I|.

The support of Y’ contains a “stripe” of width |Io| running
parallel to the diagonal. This stripe decomposes into a union
of 2n/T right triangles with legs of length |Iy|, and with
n/T in each of two orientations. More formally, by permut-
ing rows, we may assume that Iy = [0, a) where a = |Ip|.
Then the triangles described are the restrictions of Y to sets
of the form [ra, (r + 1)a] x [sa, (s + 1)a]. Each such trian-
gular submatrix is of the form considered in Lemma 2.3, so
admits O(|Io|log® |Io|) = O(T log® T') matrix-vector mul-
tiplication. Since there are 2n/T such submatrices of Y,
matrix vector multiplication with Y’ runs in O(nlog® T
time. This allows the sum in question to be computed in the
same time.

Each of the other three sums can be evaluated similarly and
gives the same runtime. So the runtime stated in the lemma
follows. O

We also collect a couple of basic facts that follow from the
definition of a p-sample.

Proposition 2.6. Let S be a p-sample for x, and let L be a
subset of indices.

1. Foralliin L, we have S N L = {i} with probability
at least $p(1 — 2p|L|).

2. With probability at least %|L|p(1—2p|L

).

SnL| = 1.

Proof. Consider a fixed index ¢ in L. With probability at
least p/2 we have i € S. Conditioned on ¢ € S, we have
Pr(j € S) < 2pforall j # . Taking a union bound over
all j € L gives Pr(SNL = {i}) > p/2(1 — 2p|L|). The
events S N L = {i} are mutually exclusive as ¢ ranges over
L, so the proposition follows. O

3. Constructing an ¢, sampler.

Before giving the {y-sampler we give two basic construc-
tions for 1-sparse recovery and singleton testing using
Kahtri-Rao structured measurements. We want Kahtri-Rao
measurements here, so that we can apply our random sign
flips modewise.

Lemma 3.1. Let X € R™. Suppose that U](-Z) fori € [N]
and j € [q] are random sign vectors. For N > clognlog %,

the measurements <O’§i) ®...® aéi), X > are sufficient to

1. recover X with 1 — § probability if X is 1-sparse".

2. to distinguish between X being 1-sparse and X hav-
ing at least two nonzero entries with at least 1 — §
probability.

' X being 1-sparse means that X has at most one nonzero entry
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Proof. First note that if X is 1-sparse then all measurements
will be equal in absolute value.

Now, suppose that X is 1-sparse with & in supp(X). Say
that the “sign pattern” for k is the sequence of signs of
<o£i) ®...8 a((li),X> for i € [N]. We can recover k as
long as its sign pattern is unique among indices, up to invert-
ing all the signs (since an entry of X could be either positive
or negative). The entries of each measurement are pairwise
independent, so the probability that k1 and k5 have the same
sign on a given measurement is 1/2. The probability that
they have the same sign on each of N measurements is
1/2™, so the probability that some other index has the same
sign pattern as k, up to inverting signs, is at most 2 % n?/2V
which is at most § for N > log %. So if X is 1-sparse,
then we recover X with 1 — § probability.

To test if X is 1-sparse we first run the 1-sparse recovery
algorithm to obtain a 1-sparse candidate Y for X (or if the
recovery fails, then we immediately return False). Now we
would like to test if X — Y is 0. To do this, we simply take
additional sign measurements in the form of those in the
lemma, and test if they all give 0. Clearly if X —Y =0
then this will occur. Now consider the case where X —
Y # 0. Consider the natural compression R®4 — R®(¢—1)
obtained by applying o, along the g-th mode. If X — Y is
non-zero then it has a 1-dimensional fiber v along mode ¢
which is non-zero. It is clear that (v, o) is non-zero with
probability at least 1/2. Therefor applying this inductively

shows that each measurement <0§i) ®...® 0,(;), X — Y>

is non-zero with probability at least 1/27. So O(27log })
additional measurements suffice. O

Remark 3.2. The above algorithm shows that there exists
a collection of sign measurements that allows for 1-sparse
recovery with probability 1. Thus such a collection of signs
only needs to be sampled once, and it will be valid with prob-
ability 1 — 6. For the equality testing step, the randomness
is essential. However, conditioned on having a no-failure
1-sparse recovery algorithm, we note that it yields no false
negatives. That is, if X is 1-sparse, then the tester will al-
ways accept.

Our next lemma for ¢ sampling shows that if we succeed
in isolating a single element of the support of X at an
O(1/|supp(X)|) sampling level, then that element is close
to uniform from the support.

Lemma 3.3. Let S be a p-sample, where p <
Then for all i € supp(X),

1
4]supp(X)|*

0.25 4
|supp(z)|” [supp(X)]

Pr(i e SHSﬂsupp(X)| =1)e

Proof. See the supplementary. O

We are now ready to give our construction of an ¢, sampler.

Theorem 3.4. For q = 2,3 there there is a linear
sketch of X € R™ with sketching dimension m =
O(log % log? n(loglogn + log %)) space, and a sampling
algorithm that succeeds with probability 1 — §, which, con-
ditioned on succeeding, outputs an index i in supp(X ). Con-
ditioned on succeeding, the probability that the algorithm
outputs © € supp(X) is in [%, m]. The algo-
rithm also returns the value of X;. Moveover; the entries of
the sketching matrix can be taken to be in {0,+1, —1}.

For q = 2, our sketch can be applied to rank-one ten-
sors in O(mn) time, and when q = 3 can be applied in
O(mnlog? n) time.

Proof. Our sketch consists of O(logn?) p-samples with
sampling probabilities p = 1, %, i ceey niq Additionally,
we take k independent such samples for each p which we
denote by S’%p), o Slgp).

There is some p in |

1 1 .
STsupp ()] » Asupp (X For this value of p

and fixed ¢, we have that Si(p e supp(X )‘ = 1 with proba-

bility at least 1/8 by Proposition 2.6. Thus, the probability
that this holds for some i is at least 1 — (7/8)", which is at
least 1 — 6 for k > log %.

Our ¢y sampling algorithm is to to iterate through the sam-
ples in increasing order of p, and within each level to iterate
through the Si(p )*s in increasing order of i. For each (p, 1)
we run the singleton tester from Lemma 3.1. If the singleton
tester accepts, then we use the 1-sparse recovery scheme
to return the appropriate index and value. As we have seen,
with probability at least 1 — 9, the algorithm will return
for some p < m. We also use the optimization of
Remark 3.2, so that we can assume the 1-sparse tester never
yields false negatives.

As long as this occurs, the algorithm will be successful
by the previous Lemma 3.3 unless the first Si(p ) for which
the singleton accepts is not 1-sparse. Call this event E.
If E occurs, then the singleton tester must fail on one
of O(klogn) trials, so we would like to make its fail-
ure probability at most O(d/(klogn). By Lemma 3.1 this
can be accomplished using a singleton-testing sketch of
size O(lognlog(klogn/d)) which is O(lognloglogn +
lognlog 3) when k = O(log $).

Now, we have k singleton sketches for each of logn
sampling probabilities p, resulting in a total sketch-
ing dimension of O(klog®n(loglogn + log})) =
O(log } log® n(loglogn + log 1)) O
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3.1. Conclusion and Future Work

We gave a new approach to constructing sampling-based
sketches which can be quickly applied to rank-one tensors
with at most 3 modes. To demonstrate the utility of this
approach we showed how to speed up sketching for ¢ esti-
mation, and for constructing ¢; embeddings.

A number of intriguing questions remain. For example, are
there other constructions of p-samples that apply to higher
mode tensors? Additionally, our sketches require O(n) time
to construct each entry of the sketch. While this can be
faster than the O(n?) or O(n?) required to expand a rank-
one tensor, it seems reasonable to hope for sketches that
takes closer to O(1) time per entry. This is the case for
CountSketch based constructions that work by sampling
and then hashing entries of the sample into buckets. Un-
fortunately in our setting it is not clear how to efficiently
compose our p-samples with a CountSketch.

Finally, it would interesting to extend our ideas to other
problems where sampling-based sketches have been applied.

4. Experiments

We evaluate the correctness of the ¢y samplers. Our ¢j-
sampler is theoretically guaranteed to output a uniformly
random entry of the support, up to some constant factor. That
is, the probability we output a fixed entry of the support of a
tensor X is hsup& X7 Tooont X)I} for some absolute constants
c1 and c,. In order to keep our analysis simple, the constants
c1 and co gotten from unwinding our proof are more extreme
than necessary. We remedy this by empirically showing that
our sampler is in fact much closer to uniform.

We choose our ¢y sampler to have 10 buckets at each sam-
pling level. For an N x N x N tensor X our sampling
rates begin at 1/N? and increase in powers of 5. While
these parameters are somewhat differnt from what we chose
theoretically, we find that they give good practical results.

In all experiments we work with 3-mode tensors. We con-
sider two different support structures for our experiments.
The first support shape we consider, we call the “disjoint
rectangle” support. In this model, the support consists
of two boxes B; and By of dimensions (z1,x2,x3) and
(1, Y2, y3), such that

Recall that the first step of p-sample construction is to per-
mute each mode separately, so up to permutation there is
only one configuration of rectangles to consider. Moreover,
up to this permutation symmetry, all entries of B are equiv-
alent to one another, and all entries of By are equivalent
to one another. Thus to test for uniformity, it suffices to
check that the number of samples from B is approximately
|B1|/(|B1] + | Bal).

The second support shape that we consider is a rectangle B
of dimensions (x1, z2, x3), along with an additional ;x5
random entries (sampled from outside the rectangle) which
we call R, the random component of the support. Note that
we choose the size of R to be the same as the size of B. This
is mainly for convenience, so that our ¢ tester is successful
if approximately half the samples lie in R.

In each of experiments we use the p-sample construction
that we previously discussed to build an ¢ tester. To make
the experiments run faster, we assume access to a perfect
singleton tester. While such a singleton tester does not exist
in practice, it can be approximated arbitrarily well using
ideas that we previously discussed. Here our aim is to under-
stand how well our p-sample construction works as a proxy
for a truly uniform sample.

All of our experiments suggest that our £y sampling proce-
dure behaves very nearly perfectly on the tensors described
above. All experiments are accurate to within a few percent
of what one would expect for uniform sampling. See sec-
tion C in the appendix for tables showing our experimental
data.

The code for the experiments, along with additional im-
plementations of our sketch are available at https://
github.com/wswartworth/tensorSampling.

Impact statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Construction of an /; Embedding

We design a sketch for /1 embeddings similar to (Verbin & Zhang, 2012). However we show how to design the sketch in
such a way so as to allow fast application to rank-one tensors.

We describe the general structure of our sketch here. We will later choose parameters in order to obtain the desired guarantees.

Description of sketch. Our sketch S consists of a series of ¢ sampling levels numbered O, ..., ¢ — 1. At each level h, there
are two parameters: 7y, and py,. T}, is the number of buckets at level h, and py, is the sampling probability at level h. Each
bucket in level h is formed by taking a random sign combination of coordinates corresponding to a (pp, /Ty, )-sample. So if S
is a (pr /Th)-sample, a bucket in level h takes the form

where z € R™ is the vector that we sketch, and o € {+1, —1}". We will choose o so that o; is a Kronecker product of ¢

random sign vectors, each of which is 4-wise independent. We use the notation B%h), ey B(T};) to represent the buckets at
sampling level h. We will allow py, to be larger than 1, as long as py, /T;, < 1.

¢, sketch analysis We first give the following technical lemma, which is given here to shorten the proof of the following
lemma.

Lemma A.l. Let x € R? have entries in [0, o). Let X1, ..., Xy ~ X be i.i.d. with Pr(X = |z;|) > pforall j. Then for
k> clog % max(m, 1), we have (X1 + ...+ Xy) > ip||z||, with probability at least 1 — 6.
1

Proof. Tt suffices to consider the case where Pr(X = ;) = p for all j and is 0 with the remaining probability, since this
majorizes the random variable in the lemma. Note that E(X; + ...+ X}) = pk ||z||;. We also have

E((X1 + ... + X3)?) = pk |25 + k(k — 1)p* ]} ,

So
Var(Xy + ...+ Xi) < pk |5 < pka ||z, .

For k > —8% we have \/pka[[z[, < ipk|z|;, and so by Chebyshev’s inequality,

pllell

1
Pr(Xi+...+ X < §pk\|x||1) <

A~

If instead we have k > (241log(1/4)) - max(ﬁ, 1), then group the sum into 24 log(1/§) terms (each group of size at
1

least one), each of which is at least half their expectation with 3/4 probability. By a Chernoff bound, at least half the groups

will be at least this large with 1 — ¢ probability, which means that the entire sum will be at least 1/4 its expectation, as

desired. ]

Our next task is to lower bound the contribution of a given sampling level.
Lemma A.2. Suppose that the number of modes q is at most 3. Consider a sampling level of our sketch as described above,
with sampling probability p and T buckets. Suppose that ||z||, = 1. Fix m and «y and let L be the set of coordinates of x
with magnitude in (m,~ym). Then for (p/T)|L| < 1/4,T > clog(1/6) andp > clog(l/d)ﬁ, we have

[Bi| + ...+ |Br| = ¢zl
with probability at least 1 — 4.

Proof. For convenience, set p’ = p/T. Consider a fixed bucket By, formed from p’-sample S}, and random signs 0. Also
consider fixed j € L. The probability that j € Sy is at least p’ /2 by definition of the sampler.

11
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Recall that oy, is a product of ¢ € {2, 3} 4-wise independent sign vectors, say 71, 72, 73 We claim that conditioned on
j € Sk, we have |By| > % | ;| with constant probability. To see this, consider first sketching by 7| to compress along the
first mode. For the fiber y of x that contains j, |(71, )| is at least c ||y, > c||z;||, with constant probability, since 7; has
4-wise independent signs 2. Then iteratively apply the same argument to sketching by 75 and 73 along the remaining modes.

Using the assumption that p’|L| < 1/4, we have that for i € L, Pr(|S, N L| = {i}) > p’/4 by 2.6. Applying the previous
Lemma A.1 with p’/8 gives that

107/8) el

with probability at least 1 — § when T" > clog 5 max(m7 1). Recalling that p’ = p/T, this rearranges to the desired
1
bound.

1
FIBi| + .+ p|Brl) 2

O

A.1. No Dilation

The following proposition will help to bound the contribution of the small coordinates to a given sampling level. This will
be the key place where we take advantage of cancellation. Unlike earlier analyses such as (Verbin & Zhang, 2012), we do
not have independence, so instead we will show how to get away with a Markov bound (earlier analyses could have applied
a similar argument).

Proposition A.3. Suppose that x € R"™ with |z||; < 1 and ||z| . < «. Let 01,...,0, € {0,—1,1} be such that
E(o,0;) =0 foralli # j and E(|o;|) < q. Then

E(‘O—lyl +...+ Unyn‘) < Inin(\/a 7Q)'

Proof. By Jensen’s inequality,
E(|01y1 +.oo+ Jnyn|)2 <E |01y1 +.o+ CTnyn|2
=E(oiyi +... +ooy2)
Sayi+...+ayn
2
=qllyllz-
Note that ||y||§ < lyll; lyll o, < . so the first part of the bound follows. For the second half, we have

E(lowyr + ...+ onynl) < E(low]|yi| + ... + |onl [yal)
<qllyll, <q¢

O

Lemma A.4. Consider applying our {1-embedding sketch S to a vector x. Then with with failure probability at most,
p1/B1+ ...+ pe/Be+ 1/10, we have the bound

”S‘T”l <10 <Z ||x[0¢i7ﬁz:]

S

Proof. Let E; be the event of sampling a coordinate larger than ; in layer i. There are at most 1/3; such coordinates, so
the probability that E; occurs is at most p/f3; by a union bound.

Now let z<,, be x where all coordinates larger in magnitude than «; are zeroed out. The previous lemma bounds the
expected contribution of <, to layer ¢ by min(y/T'o;/q, 1) (after rescaling).

*This follows for example from the classic analysis of the AMS sketch(Alon et al., 1996). Taking the average of O(1) such sign
measurements gives a 1 + (1/3) multiplicative approximation to the ¢ norm of y with 2/3 probability say (by a Chebyshev bound).
Thus, each measurement individually must be ¢ ||y||,, with constant probability.

12



Fast Sampling-Based Sketches for Tensors

Now let z[,,,5,) contain all coordinates of = between «; and 3; with the remaining coordinates zeroed out. The expected
contribution of z,, g, to layer i is Hx[ai’ a1l , since the layers are unbiased.

Thus with failure probability at most, p1 /51 + . .. + pe/Be + 1/10, we have the bound

10 (Z ot S miny/ T 1))
% i

on the total ¢; norm of the sketch. O

As a corollary, a standard net argument, such as that given in (Clarkson & Woodruff, 2014) for example, extends our
embedding result for a single vector to a subspace.

Corollary A.5. Let A € R"*? be a matrix. There is an oblivious sketch S with sketching dimension m = O(d?logn +

log® n) such that
c1[|Av]ly < [[SAvll; < ez ||Av]];

where 0 < ¢1 < cg are absolute constants. Moreover all entries of S can be taken to be in {0,+1,—1}, and S can be
applied to a tensor in (R*)®? in O(mk) time and can be applied to a tensor in (R*¥)®3 in O(mklog® k) time.

Combining the bounds

Theorem A.6. There is an O(1)-distortion {, embedding sketch S R™ — R™ with sketching dimension m = O(log* n +
log?(1/6) log n) that satisfies ||Sz||, < c||z||, with constant probability, and satisfies ||Sz|, > c||x|, with probability at
least 1 — 0.

Moreover our sketch can be applied to rank one tensors in R¥ @ R¥ in O(mk) time, and to rank one tensors in R* @ R¥ @ R¥
in O(mklog® k) time.

Proof. For h > 0, we set p;, = ¢" for a fixed ¢ and set T}, = T for a fixed value of 7', both to be determined. For notational
convenience we will also define a layer —1 of the sketch with p_; = ¢! and T_; = T. While ¢~ is larger than 1, T will
be chosen so that ¢! /T < 1.

Contraction Bound. Divide the coordinates of x into levels L; for ¢ > 0, with L; consisting of the coordinates of x in
(¢, q"] > 1/(10¢).

Suppose that L; is heavy. We will choose parameters so that level ¢+ — 1 of the sketch, preserves a constant fraction
of L;’s mass. Setting p= ¢"~! in Lemma A.2, the conditions we need are qi_1|L |/T < 1/4, T > clog(1/4) and

Also |L;| < 1/¢**! since

g~ > clog(1/6) Tee ” . Under the assumption that L; is heavy, we have |

> 1oz
|lz||; = 1. Therefore it suffices to choose parameters so that the following relations hold:

1. 1> c(log $)¢

1
q

2.

N
IV
Yo

(Note that the condition T" > clog % is redundant in light of the two listed.)

Dilation Bound. Next we bound the dilation of the sketch on x with ||z||; = 1. In the dilation bound above, we choose
a; = p't3and B; = p~ 1.

Then the first sum in the dilation bound Lemma A .4, is bounded by 4 since each coordinate of = appears in the sum at most
4 times. For the second sum, we have

¢
> min(y/Tya;/pi, 1) Z Tq+?/q'
=1

~

)
-
i
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We will choose parameters so that T'¢> < 1//2, so that this sum will be bounded by 1. Then

¢
Zmin( Tiou/pis1) <1+4+1=2.
i=0
We therefore get an O(1) dilation bound with failure probability at most % + Zle q?—il < ¢f. Thus we must choose
q <c/t.

Choosing Parameters. Taking stock of our constraints on parameters, we have

2.T> %

2

3. Tq® < 1/¢2
4, ¢ < %.

These can be satisfied by setting % = cmax(log %E, ¢?)and T = ¢/q?. Since £ < logn this yields an overall bound of

T = O(log*n + log?(1/6) log® n). Since there are T buckets in each of ¢ levels, this gives the desired bound on the
sketching dimension.

Finally the time bounds follow by using our construction of p-samples that admit fast summation: we first apply the o;’s
given in our construction, which takes O(n) time. We then compute the sum of the resulting tensor entries over a p-sample
that admits O(n) summation. This takes O(n) time in the two mode case, and O(n log® n) time in the three mode case. L[]

B. Proof of Lemma 2.9
Let i € supp(X) By 2.6, we have

Pr(S Nsupp(X) = {i}) > 5p(1 — 2p[supp(X)|) > —p.

N =
| =

From the definition of a p-sample we have
Pr(Snsupp(X) = {i}) < Pr(i € S) <p.
Also from 2.6,

Pr(1S 1 supp(X)| = 1) > 2 |supp(X)|p(1 — 2plsupp(X)])

1
2> 7 Isupp(X)[p.
By taking a union bound over i € supp(X), we have
Pr(|S N supp(X)| = 1) < [supp(X)|p.
It follows from this that
_ Pr(Snsupp(X) = {i})
a Pr(|S Nsupp(X)| =1)

Q4p 1
~ [supp(X)p|  4|supp(X)]

Pr(i € S||S Nsupp(X)| =1)

and

__r

(1/4)[supp(X)[p
4

" Jsupp(X)[’

Pr(i € S||S Nsupp(X)| =1) <
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C. Experiment Data

All experiments are carried out on a tensor of shape 40 x 40 x 40 for 1000 trials. For our ¢y sampler, we take our levels to
have sampling probabilities increasing in powers of 5. We additionally use 10 buckets per level. The following tables give
the raw data for our experiments.
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Rectangle dimensions Fraction in first rectangle | Expected Fraction | Failures
((1, 1,20), (1, 1, 1)) 0.9650 0.9524 0
((1, 10, 20), (1, 1, 1)) 0.9970 0.9950 0
((1,20,20), (1, 1, 1)) 0.9980 0.9975 1
((20, 20, 20), (1, 1, 1)) 1.0000 0.9999 1
((1, 1, 20), (10, 10, 10)) 0.0200 0.0196 0
((1, 10, 20), (10, 10, 10)) 0.1610 0.1667 0
((1, 20, 20), (10, 10, 10)) 0.2970 0.2857 0
((20, 20, 20), (10, 10, 10)) 0.8959 0.8889 1
((1, 1, 20), (20, 20, 20)) 0.0010 0.0025 3
((1, 10, 20), (20, 20, 20)) 0.0160 0.0244 2
((1, 20, 20), (20, 20, 20)) 0.0500 0.0476 0
((20, 20, 20), (20, 20, 20)) 0.5130 0.5000 0

Table 1. In each experiment, the support consists of two disjoint boxes. The dimensions of the two boxes are given in the leftmost column.
The table shows the fraction of points that our £, sampler chooses in the first rectangle, as well as the fraction that we expect for a perfect
Lo sampler. The rightmost column records the number of times our ¢y sampler failed.
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Rectangle shape | Fraction in rectangle | Failures
1,1, 1) 0.47 5
1,1,3) 0.51 0
1,1,9) 0.52 2
(1,1,27) 0.52 0
(1,3, 1) 0.52 1
(1,3,3) 0.51 4
(1,3,9) 0.50 0
1,9, 1) 0.51 3
1,9,3) 0.51 0
(1,9,9) 0.50 0
3,1, 1) 0.49 1
(3,1,3) 0.50 1
(3,1,9) 0.52 0
3,3, 1 0.49 0
(3,3,3) 0.53 0
(3,3,9) 0.51 0
(3,9, 1) 0.51 0
(3,9,3) 0.49 0
(3.9,9) 0.51 0
O, L1 0.53 1
9,1,3) 0.50 0
9,1,9) 0.51 0
9,3,1) 0.51 0
9,3,3) 0.49 0
9,3,9) 0.53 0
9,9,1) 0.54 0
9,9,3) 0.50 1
9,9,9 0.52 1
(1,3,27) 0.49 1
(1,9,27) 0.50 0
(1,27, 1) 0.51 0
(1,27,3) 0.50 0
(1,27,9) 0.50 0

1, 27,27) 0.48 0
(3,1,27) 0.52 1
(3,3,27) 0.51 1
(3,9,27) 0.53 0
(3,27, 1) 0.51 0
(3,27,3) 0.50 0
(3,27,9) 0.53 2
(3,27,27) 0.47 3
9, 1,27) 0.48 1
©,3,27) 0.53 0
9,9,27) 0.51 1
9,27,1) 0.50 1
9,27,3) 0.47 1
9,27,9) 0.50 1
9,27,27) 0.49 0
(27,1, 1) 0.53 0
(27,1, 3) 0.54 0
(27,1,9) 0.52 2
(27, 1,27) 0.50 2
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27,3, 1) 0.52 0
(27,3, 3) 0.49 2
(27,3, 9) 0.50 0
(27,3, 27) 0.50 0
(27,9, 1) 0.50 1
(27,9, 3) 0.50 0
(27,9, 9) 0.51 0
(27,9, 27) 0.53 0
(27,27, 1) 0.47 0
(27,27, 3) 0.51 1
(27,27,9) 0.48 0

(27,27,27) 0.48 0

Table 2: Each row of the table corresponds to an experiment run on
a support shape consisting of a box of dimension specified by the left
column of the table, as well as an equal number of additional uniformly
sampled entries. We run 1000 trials with our ¢y sampler, and record the
fraction of samples from successful runs of the sampler that are in the
rectangle. The rightmost column records the number of times the sampler
failed.
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