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Abstract

Document-level translation models are usually001
evaluated using general metrics such as BLEU,002
which are not informative about the benefits of003
context. Current work on context-aware evalua-004
tion, such as contrastive methods, only measure005
translation accuracy on words that need con-006
text for disambiguation. Such measures cannot007
reveal whether the translation model uses the008
correct supporting context. We propose to009
complement accuracy-based evaluation with010
measures of context utilization. We find that011
perturbation-based analysis (comparing models’012
performance when provided with correct ver-013
sus random context) is an effective measure of014
overall context utilization. For a finer-grained015
phenomenon-specific evaluation, we propose to016
measure how much the supporting context con-017
tributes to handling the phenomena. We show018
that automatically-annotated supporting context019
gives similar conclusions to human-annotated020
context and can be used as alternative for cases021
where human annotations are not available. Fi-022
nally, we highlight the importance of using023
discourse-rich datasets in any such endeavor. 1024

1 Introduction025

Documents are one of the primary ways in which026

we produce and consume text. While for some027

languages, sentences provide a base unit of meaning,028

there are many sentences that contain discourse029

phenomena that are difficult to disambiguate at030

sentence level (Figure 1). Despite the vital need031

for document-level translation systems in order to032

handle those context-dependent phenomena, most033

of the current works on machine translation focus034

on sentence-level translation. Post and Junczys-035

Dowmunt (2023) listed the problem of evaluation036

as one of the reasons for the inability to move037

beyond sentence-level translation. In this work, we038

focus on this problem of evaluation. In particular,039

1Code will be released in the paper’s final version.

we focus on evaluating document-level translation 040

models based on how well they utilize the inter- 041

sentential information provided when translating at 042

the document level. 043

The research on document-level translation eval- 044

uation has progressed significantly. Early works 045

used general metrics such as BLEU (Papineni et al., 046

2002) and TER (Snover et al., 2006) which proved 047

to be inadequate for capturing improvements in 048

discourse phenomena. Subsequent research intro- 049

duced phenomena-specific automatic metrics and 050

contrastive test suites. Maruf et al.’s (2022) survey 051

includes a comprehensive list of works in this di- 052

rection. While these metrics provide an accuracy 053

measure of models’ performance on phenomena, 054

they do not account for correct context utilization. 055

Unlike prior studies, we adopt an interpretable 056

approach to context utilization evaluation. We eval- 057

uate models based on their ability to use the correct 058

context, and not only the ability to generate the 059

correct translation without necessarily utilizing the 060

context. 061

To assess the models’ correct context utilization, 062

we perform a perturbation-based analysis. Previ- 063

ous studies in perturbation analysis, such as those 064

conducted by Voita et al. (2021), Li et al. (2020), 065

and Rikters and Nakazawa (2021), were limited 066

to specific architectures, evaluated on particular 067

metrics, and perturbed only the source context. In 068

our more comprehensive study, we analyze perfor- 069

mance across various document-level architectures 070

using multiple metrics including BLEU and CXMI 071

(Fernandes et al., 2021). Additionally, our analysis 072

involves perturbing both source and target contexts 073

to examine the influence of both sides. 074

For more fine-grained analysis at the level of a 075

specific discourse phenomenon, Yin et al. (2021) 076

collected annotations of supporting context words 077

from expert translators for the pronoun resolution 078

phenomenon. However, they propose using such an- 079

notations as supervision to guide models’ attention. 080
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In contrast, we focus on evaluating context-aware081

models’ performance on the phenomenon. We082

evaluate models based on the attribution scores of083

supporting context. To obtain attribution scores, we084

use one of the state-of-the-art interpretability meth-085

ods for transformer models: ALTI+ (Ferrando et al.,086

2022). Moreover, we use automatically annotated087

(using coreference resolution models) supporting088

context as an alternative to human annotated context089

and show that it gives similar conclusions. Using090

automatic annotations allowed us to scale to dif-091

ferent languages and has the potential to extend to092

other discourse phenomena.093

As an accuracy measure on discourse phenom-094

ena, Fernandes et al. (2023) proposed a novel sys-095

tematic approach to tag words in a corpus with096

specific discourse phenomena and evaluate mod-097

els’ performance using the F1 measure. However,098

they mention that context-aware models make only099

marginal improvements over context-agnostic mod-100

els. Our analysis reveals that this in fact depends on101

the richness of the dataset with phenomena, and that102

challenge sets curated to target context-dependent103

discourse phenomena are better in distinguishing104

the differences between models in handling the105

phenomena.106

Our contributions are the following:107

• We perform a perturbation-based analysis on108

different document-level MT models and find109

that the single-encoder concatenation model110

is able to make use of the correct context vs. a111

random context.112

• We propose the use of attribution scores of113

supporting context to evaluate correct context114

utilization. We analyze the pronoun resolu-115

tion phenomenon as a case study and find116

that sentence-level models and single-encoder117

context-aware models are better than multi-118

encoder models in the amount of attribution119

that the pronoun’s antecedents have to gener-120

ating the pronoun.121

• We propose the use of automatically annotated122

supporting context as an alternative to human-123

annotated context to perform the attribution124

evaluation. We show that, despite noise in125

automatic annotation, results are consistent126

with the human-annotated context, paving the127

way towards efficient use of linguistic expertise128

in document-level translation evaluation.129

[EN] One of the Chinese worked in an amusement park . It
was closed for the season.

[DE] Ein Chinese arbeitete in einem Vergnügungspark . Er
war gerade geschlossen.

Figure 1: An example illustrating the pronoun resolution
phenomena which can not be disambiguated at sentence
level. The pronoun It is ambiguous and its translation
depends on the antecedent . 2

• We highlight the importance of using a dis- 130

course rich dataset when evaluating the ability 131

of models to handle context-dependent dis- 132

course phenomena. 133

2 Background 134

Sentence-level MT models treat sentences in a 135

document as separate units. They only con- 136

sider intra-sentential dependencies. In contrast, 137

document-level models take into account intra- 138

sentential as well as inter-sentential dependen- 139

cies. Formally, if we consider a document 𝐷 = 140

{(𝑥1, 𝑦1), (𝑥2, 𝑦2), ..., (𝑥𝑛, 𝑦𝑛)}, the probability of 141

translating sentence 𝑥𝑖 into 𝑦𝑖 using a sentence-level 142

model is 143

𝑃(𝑦𝑖 |𝑥𝑖) =
𝑇∏︂
𝑡=1

𝑃(𝑦𝑖,𝑡 |𝑦𝑖,<𝑡,𝑥𝑖), 144

while the probability using a document-level trans- 145

lation model with context 𝐶𝑖 is: 146

𝑃(𝑦𝑖 |𝑥𝑖,𝐶𝑖) =
𝑇∏︂
𝑡=1

𝑃(𝑦𝑖,𝑡 |𝑦𝑖,<𝑡,𝑥𝑖,𝐶𝑖), 147

where 𝑇 is the number of tokens in the target 148

sentence 𝑦𝑖. 149

There are several ways to design neural archi- 150

tectures for document-level MT. The main archi- 151

tectures developed so far can be broadly classified 152

into two categories based on how they combine 153

the context and current sentence representations: 154

single-encoder and multi-encoder approaches. 155

2.1 Single-Encoder Approaches 156

The single-encoder approach to document level MT 157

works by concatenating previous sentences to the 158

current sentence separated by a special token. It 159

is commonly deployed under two setups: a 2-to-2 160

2Example is drawn from ContraPro dataset
https://github.com/ZurichNLP/ContraPro

2

https://github.com/ZurichNLP/ContraPro


setup in which the previous and current source161

sentences are translated together, the translation162

of the current source sentence is then obtained by163

extracting tokens after the special concatenation164

token on the target side, and a 2-to-1 setup where165

the concatenation happens only in the source side,166

the target in this case is only the current sentence167

translation (Tiedemann and Scherrer, 2017; Bawden168

et al., 2018).169

2.2 Multi-Encoder Approaches170

The multi-encoder approach uses extra encoders for171

source and target contexts. The encoded representa-172

tions of the context and current sentences are com-173

bined together before being passed to the decoder.174

There are different ways to combine the context175

and current sentence representations. Methods in176

the literature include concatenation, hierarchical177

attention, and attention gating (Libovický and Helcl,178

2017; Zoph and Knight, 2016; Wang et al., 2017;179

Bawden et al., 2018).180

3 Experimental details181

3.1 Data182

We train our models on IWSLT2017 TED data183

(Cettolo et al., 2012). We consider two language184

pairs in our experiments, namely EN→DE and EN185

→ FR. For EN→ DE, we use the same splits used186

by Maruf et al. (2019); we combine tst2016–2017187

into the test set and the rest are used for development.188

For EN→ FR, we use the same splits as Fernandes189

et al. (2021); we use the test sets tst2011–2014 as190

validation sets and tst2015 as the test set.191

3.2 Models192

For both language pairs, we consider an encoder-193

decoder transformer architecture as our base model194

(Vaswani et al., 2017). Similar to Fernandes et al.195

(2021), we train a transformer small model (hidden196

size of 512, feedforward size of 1024, 6 layers, 8197

attention heads). All models are trained on top198

of Fairseq (Ott et al., 2019). We use the same199

hyper-parameters as Fernandes et al. (2021), we200

train using the Adam optimizer with 𝛽1 = 0.9 and201

𝛽2 = 0.98 and use an inverse square root learning202

rate scheduler with an initial value of 5 × 10−4203

and with a linear warm-up in the first 4000 steps.204

We train the models with early stopping on the205

validation perplexity. For models that use context,206

we train the models using a dynamic context size207

of 0–5 previous source and target sentences to208

ensure robustness against varying context size, as 209

recommended by Sun et al. (2022). We develop 210

three models for our evaluation experiments: 211

• A sentence-level model: As in Figure 2a, we 212

train an encoder-decoder model on sentence- 213

level data. This model has two evaluation 214

setups: a sentence-level and a document-level 215

setup. When evaluating at the sentence level, 216

we refer to this model as the sentence-level 217

model. To perform document-level evaluation, 218

context and current sentences are concatenated 219

with a special separator token in between them; 220

this is referred to as the sentence-level* model 221

in the rest of the paper. 222

• A single-encoder concatenation model: As 223

seen in Figure 2b, we use the 2-to-2 setup 224

(§2.1) with a sliding window across sentences 225

in each document, allowing us to consider both 226

source and target contexts. We will refer to 227

this model as the concatenation model in the 228

rest of the paper. 229

• A multi-encoder concatenation model: As 230

in Figure 2c, we add two extra encoders to 231

represent source and target contexts. The 232

outputs of the three encoders are concatenated 233

before being passed to the decoder. We will 234

refer to this model as the multi-encoder model 235

in the rest of the paper. Per §2.2, there are other 236

methods to combine the outputs of multiple 237

encoders beyond concatenation. However, we 238

opt for concatenation due to its simplicity and 239

its comparable BLEU performance to other 240

architectures, as presented in Bawden et al. 241

(2018). 242

4 Method 243

Our goal is to build interpretable metrics to measure 244

the extent of context utilization in context-aware MT. 245

To this end, we propose two methods: a perturbation 246

analysis and an attribution analysis. 247

4.1 Perturbation-Based Analysis 248

We look at the difference in performance when pass- 249

ing the correct versus random tokens as context. 250

The correct context is the previous 5 sentences on 251

source side, and the previous 5 generated transla- 252

tions on the target side. 3 To generate random con- 253

text, we sample random tokens from the model’s 254

3We avoid using the gold target context at inference time
to eliminate exposure bias.
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(a) Sentence-level Model (b) Concatenation Model

(c) Multi-encoder Model

Figure 2: Model architectures for different settings. src & tgt refer to the current source and target sentence pair. src
ctx & tgt ctx refer to the previous source and target sentence pairs used as context. In the concatenation model,
the context and current sentences are concatenated together with a special separator token in between them. In the
multi-encoder model, the ⊕ symbol refers to a concatenation operation.

vocabulary with a size similar to the correct context255

size. We compare models across BLEU and CXMI256

(conditional cross-mutual information (Fernandes257

et al., 2021)) metrics. CXMI is used to measure258

context usage by comparing the model distributions259

over a dataset with and without context . It should260

be noted that the numerical CXMI value cannot be261

compared across models since the multi-encoder262

model has a different number of parameters which263

will affect the probability distribution learned by264

the model. Therefore, we mainly focus on the sign265

of the CXMI value for the comparison. A posi-266

tive CXMI value means that introducing context267

increases the probabilities assigned by the model to268

output tokens, and a negative CXMI means that the269

context is reducing them. Formally, for a source–270

target pair (𝑥, 𝑦) and a context 𝐶, it reads:271

272

CXMI(𝐶 → 𝑦 |𝑥) =273

𝐻𝑞MT𝐴
(𝑦 |𝑥) −𝐻𝑞MT𝐶

(𝑦 |𝑥,𝐶),274

where 𝐻𝑞𝑀𝑇𝐴
is the entropy of the context agnostic275

model and𝐻𝑞𝑀𝑇𝐶
is the entropy of the context-aware276

model. In our analysis, we evaluate the same model277

with and without context, i.e., 𝑞MT𝐴 = 𝑞MT𝐶 = 𝑞MT278

As for the BLEU score, we directly compare the279

numerical value of the BLEU score in the correct280

vs. random context setup. We compute:281

∆ = BLEU(correct) − BLEU(random).282

The higher the ∆, the better the model at utilizing283

the correct context.284

4.2 Attribution Analysis285

In this experiment, we measure the attribution of286

supporting context words to model predictions.287

By supporting context words, we mean the words288

that are necessary to resolve context-dependent289

phenomena. For example, in case of pronoun 290

resolution, the supporting context words are the 291

pronoun’s antecedents. 292

We look at the percentage of attribution of 293

pronoun antecedents to generating a pronoun 294

against the attribution of the entire input. We 295

make use of the ContraPro contrastive evaluation 296

dataset for the analysis. For EN → DE, the 297

dataset considers the translation of the English 298

pronoun 𝑖𝑡 to the three German pronouns er, sie 299

or es. It consists of 4K examples per pronoun 300

(Müller et al., 2018). For EN → FR, the 301

dataset concerns the translation of the English 302

pronouns it, they to their French correspondents 303

il, elle, ils, and elles. It includes 14K samples 304

evenly split across the pronouns (Lopes et al., 305

2020). In particular, we use a subset of the data 306

that has an antecedent distance between 1–5 307

since we are using 5 previous sentences as context. 4 308

309

The attribution method we used is the ALTI+ 310

(Aggregation of Layer-wise Token-to-token Inter- 311

actions) method (Ferrando et al., 2022), which has 312

been shown to be effective in explaining model 313

behaviors (e.g. detecting hallucinations (Dale et al., 314

2023)). ALTI+ is designed to work for any encoder- 315

decoder transformer model, so it can be readily 316

applied for both the sentence-level and concate- 317

nation models. However, further consideration 318

is needed to apply it in the multi-encoder setup. 319

In the multi-encoder model, the input consists of 320

separate source context, source, and target context 321

sequences 𝑥 = [𝑥𝑠𝑐,𝑥𝑠,𝑥𝑡𝑐]. Each sequence is en- 322

coded separately by a different encoder giving ALTI 323

contribution matrices 𝐶𝑒𝑛𝑐𝑠𝑐
𝑒𝑠𝑐←𝑥𝑠𝑐 , 𝐶

𝑒𝑛𝑐𝑠
𝑒𝑠←𝑥𝑠 and 𝐶𝑒𝑛𝑐𝑡𝑐

𝑒𝑡𝑐←𝑥𝑡𝑐 , 324

4For EN→DE, we exclude 2400 examples with antecedent
distance 0, and 118 examples with a distance greater than 5.
for EN→FR, 5986 examples with antecedent distance 0 are
excluded.
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antecedents context current
ContraPro DE
sentence-level 0.00 0.00 100
sentence-level* 1.69 89.71 10.29
concatenation 2.86 78.09 21.91
multi-encoder 0.07 2.36 97.64
ContraPro FR
sentence-level 0.00 0.00 100
sentence-level* 3.57 84.38 15.62
concatenation 2.59 76.19 23.81
multi-encoder 0.25 3.07 96.93

Table 1: The percentage of attribution of pronouns’
antecedents, the entire context words, and current sen-
tence words to generating the ambiguous pronoun in
ContraPro dataset.

respectively. Since we concatenate the output of325

each encoder giving 𝑒 = [𝑒𝑠𝑐, 𝑒𝑠, 𝑒𝑡𝑐], the overall326

encoder contribution matrix is block diagonal:327

𝐶𝑒𝑛𝑐
𝑒←𝑥 =

⎡⎢⎢⎢⎢⎣
𝐶𝑒𝑛𝑐𝑠𝑐
𝑒𝑠𝑐←𝑥𝑠𝑐 0 0

0 𝐶𝑒𝑛𝑐𝑠
𝑒𝑠←𝑥𝑠 0

0 0 𝐶𝑒𝑛𝑐𝑡𝑐
𝑒𝑡𝑐←𝑥𝑡𝑐

⎤⎥⎥⎥⎥⎦328

The rest of ALTI+ algorithm proceeds unchanged.329

We obtain word-level attributions scores and then330

compute the percentage of the sum of attributions331

of source and target antecedent words against the332

total attribution of the entire input. 5333

5 Results and Discussion334

5.1 Are Models Sensitive To The Correct335

Context?336

Results of the perturbation analysis are shown in337

Table 2. For both language pairs, the concatenation338

model is making use of correct context tokens, and339

presenting random context tokens to the model340

results in worse BLEU performance and a negative341

CXMI value. Even though the sentence-level model342

has a high BLEU score, its performance drops343

significantly when evaluated at the document level344

(sentence-level*). This is expected; since the model345

has not been trained on longer contexts. Regarding346

the multi-encoder model, even though it has the best347

BLEU performance, the consistent performance of348

the model with correct and random context suggests349

that it is not utilizing the correct context, as can350

also be confirmed by the low or negative CXMI351

values. This analysis highlights the importance of352

5We compute the scores for the first occurrence of the
antecedent. This might penalize a model that pays attention to
another occurrence of the antecedent. This is rare: the average
number of antecedents is 1.09 for DE and 1.18 for FR.

looking beyond the BLEU score when evaluating 353

context utilization of document-level MT models. 354

5.2 Are Models Paying “Attention” To The 355

Supporting Context? 356

We obtain the attribution scores of the supporting 357

context provided in the ContraPro pronoun resolu- 358

tion dataset. The supporting context is automati- 359

cally generated using coreference resolution tools. 360

Looking at Table 1, we can see that the sentence- 361

level* model and the concatenation model have 362

higher attribution scores compared to the multi- 363

encoder model. This can also be confirmed by 364

the low overall context attribution compared to the 365

current sentence attribution in the multi-encoder 366

model. It should be noted that our implementation 367

of the multi-encoder model depends on simple con- 368

catenation of the encoders’ outputs before being fed 369

to the decoder. More complicated multi-encoder 370

setups (e.g., using gating mechanisms or hierarchi- 371

cal attention) might have better context attribution. 372

Moreover, for German pronouns, looking at the total 373

context contributions, we observe that despite the 374

fact that the sentence-level* model has the highest 375

context attributions, it is not the best at utilizing the 376

supporting context. This highlights the importance 377

of focusing on important parts of the context when 378

evaluating context utilization. 379

5.3 Does automatically Annotated Supporting 380

Context Align With Human Annotated 381

Supporting Context? 382

We investigate whether the automatically annotated 383

supporting context aligns with the way humans 384

utilize context for pronoun disambiguation. We 385

use the SCAT (Supporting Context for Ambiguous 386

Translations) data provided by Yin et al. (2021) 387

which contains human annotations of supporting 388

context for pronoun resolution on the French Con- 389

traPro data. We filter the data for instances that has 390

an antecedent outside the current sentence and end 391

up with 5961 instances for evaluation. We calculate 392

the attribution scores of human context for the mod- 393

els we built for EN→FR translation. Comparing the 394

attribution percentages in Table 3 to the attributions 395

on ContraPro FR data in Table 1, we observe simi- 396

lar trends across models. The sentence-level* and 397

concatenation models have comparable attribution 398

scores and are higher than the multi-encoder model. 399

This shows that automatically annotated context 400

can be a good alternative to human annotations 401

which are expensive to obtain at scale. 402
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BLEU CXMI
context setup random correct ∆ no-context random correct
EN→DE
sentence-level – – – 23.22 – –
sentence-level* 2.49 3.54 1.05 – −2.98 −2.10
concatenation 20.24 23.32 3.08 23.39 −0.32 0.014
multi-encoder 23.72 23.72 0.00 23.71 −0.002 −0.002
EN→FR
sentence-level – – – 36.17 – –
sentence-level* 5.61 9.36 3.75 – −2.95 −1.84
concatenation 27.90 35.57 7.67 35.82 −0.32 0.006
multi-encoder 36.85 36.85 0.00 36.63 0.002 0.002

Table 2: BLEU and CXMI scores of correct vs. random context on IWSLT2017 test data. The best BLEU score in a
correct setup (with context for the concatenation and multi-encoder models and without context for the sentence-level
model) is bolded. ∆ represents the difference in BLEU scores between the correct and random context setups, the
higher the difference, the better the model in utilizing the correct context. The best ∆ is highlighted in bold. A
positive CXMI value means that the probabilities of output tokens are increased with context while a negative

CXMI value means that context is reducing them.

model antecedents context current
sentence-level 0.00 0.00 100
sentence-level* 1.25 87.12 12.88
concatenation 1.03 74.23 25.77
multi-encoder 0.53 2.49 97.5

Table 3: Attribution percentages of human annotated
antecedents, the entire context words, and current sen-
tence words to generating the ambiguous pronoun in
SCAT dataset.

5.4 Are Models Able To Handle403

Context-Dependent Phenomena?404

The ultimate goal of context-aware MT is being able405

to model context-dependent phenomena. Hence,406

we evaluate models on their ability to address these407

phenomena. We use the Multilingual Discourse408

Aware benchmark (MuDA) to automatically tag409

datasets with context-dependent phenomena (Fer-410

nandes et al., 2023). We considered 4 linguistic411

discourse phenomena in our analysis: lexical cohe-412

sion, formality, pronoun resolution and verb form.413

Lexical cohesion refers to consistently translating414

an entity in the same way throughout a document.415

Formality is the phenomenon where the second-416

person pronoun that the speaker uses depends on417

their relationship the the person being addressed.418

Pronoun resolution denotes the phenomenon in419

languages that use gendered pronouns for pronouns420

other than the third-person singular, or assign gen-421

der based on formal rules instead of semantic ones.422

Verb form denotes the phenomenon in languages423

with a fine-grained verb morphology, where the424

translation of the verb should reflect the tone, mood 425

and cohesion of the document. 426

We use the IWSLT2017 test set as well as Con- 427

traPro data (including context sentences) in the 428

analysis. Table 6 presents the statistics of discourse 429

phenomena in these datasets. We then evaluate 430

models using the F1 measure based on whether 431

a word tagged in the reference exists and is also 432

tagged in the hypothesis. As can be seen in Table 6, 433

for both language pairs, ContraPro dataset has a 434

higher percentage of tokens tagged with pronouns 435

(since the dataset targets this phenomena). Look- 436

ing at the F1 measure of models on this dataset in 437

Table 5, we can see that the concatenation model 438

has a higher score compared to other models which 439

is reflected in the ContraPro accuracy as well (Ta- 440

ble 4). On the other hand, the lower percentages of 441

phenomena in the IWSLT data results in similar per- 442

formance across models on this data. We highlight 443

the importance of using a discourse rich dataset 444

to benchmark models’ performance on handling 445

context-dependent phenomena. Evaluation on other 446

discourse phenomena, which neither of the datasets 447

targeted, resulted in no distinction between the mod- 448

els as seen in Tables 7 and 8. The low F1 measure 449

of the sentence-level* model across phenomena on 450

the IWSLT data can be linked to its low translation 451

performance as presented in §5.1. Surprisingly 452

on the other hand, for the more challenging Con- 453

traPro data, its performance is comparable to other 454

models. 455

Moreover, we show that supporting context attri- 456
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EN→DE EN→FR
Context size 0 5 0 5
sentence-level 42 – 76 –
sentence-level* – 47 – 81
concatenation 45 58 76 85
multi-encoder 43 43 76 75

Table 4: ContraPro contrastive accuracy (%) for dif-
ferent context sizes. The accuracy is calculated based
on the percentage of time a model correctly scores a
positive example above its incorrect variant.

EN→DE EN→FR
Model IWSLT CPro IWSLT CPro
sentence-level 0.62 0.39 0.70 0.44
sentence-level* 0.38 0.45 0.53 0.48
concatenation 0.60 0.48 0.67 0.49
multi-encoder 0.61 0.40 0.70 0.44

Table 5: F1 measure of models on pronoun resolution
phenomena on IWSLT and ContraPro data. The F1
measure is evaluated based on if a word tagged with a
discourse phenomena in the reference exists and is also
tagged in the hypothesis

bution should be considered as a separate evaluation457

dimension from translation quality using Pareto-458

style plots: Figure 3 shows the Pareto plot of two459

evaluation methods for EN→FR pronoun resolu-460

tion: the F1 measure and the supporting context461

attribution percentage. It can be noticed that the462

multi-encoder model is sub-optimal on both dimen-463

sions, while the sentence-level* and concatenation464

methods present a trade-off. furthermore, despite465

the comparable F1 measure of the sentence-level466

to the multi-encoder model, it has zero attribution.467

5.5 Discussion468

Previous sections outlined different evaluation tech-469

niques for assessing context utilization of document-470

level MT models. These evaluations are comple-471

mentary to each other and equally important. We472

start with a perturbation analysis to confirm whether473

the model is utilizing the correct context and it is474

not just acting as regularization. furthermore, we475

show that utilizing the correct context is not enough476

to handle context dependent phenomena; since not477

all context is important. Therefore, for a more fine-478

grained evaluation, we assess models in how well479

they utilize the parts in the context that are necessary480

to handle the phenomena. For this purpose, We481

use attribution scores supported with an accuracy482

evaluation (F1 measure) on the phenomena.483
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Figure 3: Pareto plot for EN→FR pronouns. The
plot shows that attribution evaluations and accuracy
based evaluations are complementary to each other. In
particular, there is a trade-off between the sentence-level*
and concatenation models, while the multi-encoder and
sentence-level models are dominated.

Overall, our study highlights the important as- 484

pects to consider when evaluating context utiliza- 485

tion: the use of correct context, the utilization of 486

the correct parts of the context, the accuracy per- 487

formance on the discourse phenomena, in addition 488

to the general translation performance of course. 489

6 Related Work 490

Previous studies on evaluating context influence on 491

MT performance often examined specific context- 492

aware architectures or particular discourse phenom- 493

ena. Nayak et al. (2022) explored context effects on 494

the hierarchical attention context-aware MT model, 495

showing that the improved performance on gen- 496

eral metrics is due to a context-sensitive class of 497

sentences. Bawden et al. (2018) improved the multi- 498

encoder model by encoding the source and context 499

sentences separately while concatenating the cur- 500

rent and previous target sentences on the decoder 501

side, demonstrating the importance of target-side 502

context. In contrast, we offer a generalizable ap- 503

proach applicable to any context-aware MT model. 504

While we focus on pronoun resolution, our tools 505

can extend to various linguistic phenomena given 506

appropriate rules for annotating supporting context. 507

In comparing various document-level models, 508

Huo et al. (2020) found performance variation 509

based on tasks, with no universally superior model. 510

They also highlight back-translation’s benefit to 511

document-level systems, noting their robustness 512

against to sentence-level noise. Unlike their general 513

metric approach, we enhance the analysis using 514
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Dataset pronouns cohesion formality verb form no. sentences no. tokens
EN→ DE
IWSLT 180 (0.4) 569 (1.4) 641 (1.5) – 2,271 40,877
ContraPro 14,477 (2.4) 87 (0.01) 9,710 (1.6) – 70,718 599,197
EN→FR
IWSLT 311 (1.2) 150 (0.6) 329 (1.3) 787 (3.1) 1,210 25,638
ContraPro 22,810 (2.6) 195 (0.02) 10,505 (1.2) 16,211 (1.8) 81,989 865,890

Table 6: Discourse phenomena statistics in different datasets along with the total number of the sentences and
tokens in each dataset. The numbers between brackets represent the percentage of tokens tagged against the total
number of tokens.

Model cohesion formality
IWSLT
sentence-level 0.68 0.67
sentence-level* 0.20 0.29
concatenation 0.67 0.68
multi-encoder 0.66 0.67
ContraPro
sentence-level 0.29 0.31
sentence-level* 0.24 0.33
concatenation 0.27 0.35
multi-encoder 0.31 0.33

Table 7: F1 measure of models on lexical cohesion and
formality phenomena on ContraPro and IWSLT datasets
for EN→DE

perturbation methods and attribution evaluation.515

In interpreting context’s benefits, Kim et al.516

(2019) quantified the causes of improvements of517

context-aware models on general test sets using518

attention scores. They found that context usually519

acts as a regularization and is rarely utilized in an520

interpretable way. Our work differs in that we use521

ALTI+ attribution scores instead of attention scores522

to interpret models’ behaviors.523

In a concurrent work, Sarti et al. (2023) intro-524

duced an end-to-end interpretability pipeline for525

analyzing context reliance in context-aware models.526

In contrast, we we rely on linguistic rules instead of527

attention weights or gradient norms to extract con-528

textual cues, which we show to align with human529

annotated cues. Additionally, we use attribution530

scores to compare different MT models, including531

single– and multi-encoder ones.532

7 Conclusion533

In this work, we shed light on multiple angles to534

look from when evaluating context utilization in535

document-level MT. We use a perturbation-based536

analysis to investigate correct context utilization.537

Additionally, for phenomena-specific evaluation,538

Model cohesion formal vb. form
IWSLT
sentence-level 0.81 0.71 0.42
sentence-level* 0.36 0.45 0.13
concatenation 0.81 0.75 0.42
multi-encoder 0.82 0.74 0.43
ContraPro
sentence-level 0.58 0.32 0.28
sentence-level* 0.53 0.31 0.26
concatenation 0.56 0.32 0.28
multi-encoder 0.58 0.33 0.29

Table 8: F1 measure of models on lexical-cohesion,
formality and verb-form phenomena on ContraPro and
IWSLT datasets for EN→FR

we propose using attribution scores as measure 539

context utilization. We suggest calculating the 540

attributions of only the supporting context that 541

is necessary for handling context-dependent phe- 542

nomena. Moreover, we show that automatically 543

annotated supporting context is inline with human 544

annotated supporting context and can be used as an 545

alternative. Finally, we highlight the importance of 546

using discourse-rich data in evaluation. 547

Based on our proposed analysis and evaluation 548

tools, we argue that the single encoder approaches 549

to document-level MT demonstrate a priori better 550

context use while also scoring high for translation 551

quality, suggesting that multi-encoder models need 552

more careful design or tuning as highlighted by 553

Rikters and Nakazawa (2021). 554

For future work, we aim to extend attribution 555

evaluation to other discourse phenomena, by de- 556

signing rules for automatic annotation of supporting 557

context for the phenomena with the aid of linguis- 558

tic expertise. We would also like to apply our 559

evaluation tools and setups to different document- 560

level architectures to provide a solid benchmark of 561

context utilization by context-aware models. 562
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Limitations563

One limitation is that our conclusions regard-564

ing the multi-encoder model are considering only565

one instance of the multi-encoder approaches to566

document-level MT. We do not claim that all multi-567

encoder approaches to document-level MT will568

have low degrees of context utilization. We leave to569

to future work to investigate the context utilization570

of other multi-encoder approaches.571

Due to the lack of supporting context annotations572

for discourse phenomena, we focused only on the573

pronoun resolution phenomena on two language574

pairs: EN→DE and EN→FR. However, we hope575

that this study opens the door towards works on576

automatic supporting context annotations for all577

identified discourse phenomena.578
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