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Abstract
Recent work has shown that distilling reasoning traces from a larger teacher model
via supervised finetuning outperforms reinforcement learning with the smaller
student model alone (Guo et al., 2025). However, there has not been a system-
atic study of what kind of reasoning demonstrations from the teacher are most
effective in improving the student model’s reasoning capabilities. In this work we
curate high-quality NATURALTHOUGHTS by selecting reasoning traces from a
strong teacher model based on a large pool of questions from NATURALREASON-
ING (Yuan et al., 2025). We first conduct a systematic analysis of factors that affect
distilling reasoning capabilities, in terms of sample efficiency and scalability for
general reasoning tasks. We observe that simply scaling up data size with random
sampling is a strong baseline with steady performance gains. Further, we find that
selecting difficult examples that require more diverse reasoning strategies is more
sample-efficient to transfer the teacher model’s reasoning skills. Evaluated on both
Llama and Qwen models, training with NATURALTHOUGHTS outperforms existing
reasoning datasets such as OpenThoughts, LIMO, etc. on general STEM reasoning
benchmarks including GPQA-Diamond, MMLU-Pro and SuperGPQA.

1 Introduction

Scaling reinforcement learning (RL) with generated chain-of-thoughts (CoTs) has led to remarkable
improvements in the reasoning capabilities of large language models (LLMs) (Guo et al., 2025). An
effective approach to elicit such capabilities, especially for smaller models, is to distill from a teacher
model, i.e. supervised-finetuning (SFT) on reasoning traces output by a stronger reasoning model.
In practice, SFT with thousands of training examples is often applied as a critical step before RL
even for larger models (Guo et al., 2025; Bercovich et al., 2025). The importance of distillation is
also evident by the fact that RL alone does not increase the innate priors for reasoning a student
model (Yue et al., 2025), while SFT on reasoning traces from a teacher model can add new reasoning
primitives to be explored in the RL stage.

Various efforts from the community have been devoted to distilling CoT trajectories from reasoning
models, with notable examples being Open-R1 (Face, 2025) and OpenThoughts (Guha et al., 2025).
Through these efforts, it has been demonstrated that state-of-the-art reasoning models often exhibit
sub-optimal reasoning trajectories such as “overthinking” or “underthinking” (Kumar et al., 2025;
Chen et al., 2025; Wang et al., 2025). Recent work such as LIMO (Ye et al., 2025) and S1K
(Muennighoff et al., 2025) show the importance of selecting and curating distillation examples to
improve downstream capabilities. They find that as few as 1,000 high-quality reasoning traces are
sufficient to drastically increase the student model’s performance on mathematical reasoning tasks (Ye
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Figure 1: Comparison of NATURALTHOUGHTS (NT) with existing distillation datasets, when training
Llama-3.1-8B-Instruct (Top) and Qwen-2.5-7B-Instruct (Bottom) respectively. In contrast to the
“Less is More” hypothesis (Ye et al., 2025; Muennighoff et al., 2025), we observe that scaling up
high-quality questions and reasoning samples consistently improves performance, even with random
selection. Selection based on reasoning strategies diversity and difficulty (e.g. long CoT, disagreement
between teacher models) further improves over random selection (Section 2.2, Section 4.1).

et al., 2025; Muennighoff et al., 2025). Both LIMO and S1K conduct manual selection of distillation
examples, limited to math and coding questions, subsequently leading primarily to performance
gains in those domains. While such curated small-scale datasets are helpful for solving easy to
medium-difficulty problems in in-distribution domains, they may not generalize well to reasoning
problems in other domains (Sun et al., 2025).

In this work, we conduct a systematic analysis of data-centric factors that affect distilling reasoning
capabilities from a “reasoning” teacher model to an (initially) “non-reasoning” student model.
Specifically, we use questions from NaturalReasoning as a testbed, given its diversity and effectiveness
in eliciting reasoning (Yuan et al., 2025), and generate reasoning traces from a performant reasoning
model such as DeepSeek-R1 (Guo et al., 2025). We use the resulting dataset, NATURALTHOUGHTS,
to examine the effects of training on different filtered data subsets and understand how models learn
to reason effectively. We study the curation of distillation training examples along several axes
including scale, diversity, and difficulty. We find that increasing each axis in the training data leads to
performance gains.

Given that an important consideration when deploying the student model in real-world applications is
inference-time efficiency, we also take into account the susceptibility of current models to overthinking
(i.e., generating too many reasoning tokens). Consequently, in addition to reasoning performance,
we also focus on improving the student model’s reasoning efficiency. We propose a simple training
method with mixed System-1 and System-2 distillation (Yu et al., 2024a), where training examples
do not always contain the full reasoning traces from the teacher (System-2), but instead only contain
the teacher model’s final answers after thinking (System-1).

Our main contributions are as follows:

• We demonstrate the importance of scaling high-quality, diverse reasoning data, which is contrary
to the “Less is More” hypothesis (Ye et al., 2025; Muennighoff et al., 2025) (Section 4.1). We
observe consistent performance improvements by scaling up the data quantity, even with random
selection from NATURALTHOUGHTS.
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Figure 2: NATURALTHOUGHTS Overview. We outline the three main components of our strategies
for selecting and distilling reasoning data. 1) Starting from the NaturalReasoning dataset (Yuan
et al., 2025), we sample prompts for the teacher model to generate reasoning and answer traces
from, creating the NATURALTHOUGHTS dataset. 2) From the NATURALTHOUGHTS seed set, we use
several filtering methods for data selection (Section 4.1). 3) Given a filtered subset obtained from data
selection, we finetune a student model on the prompt-reasoning-answer triples, where the reasoning
traces and answers are generated by the teacher model.

• We systematically compare different data selection methods based on a large pool of reasoning
traces from a teacher model (Section 4.1). We examine the efficacy of selecting SFT examples
based on various metrics including diversity and difficulty. We find that difficult examples which
require longer reasoning chains and diverse reasoning strategies are most effective at distilling the
teacher’s reasoning capabilities.

• To make the student model’s reasoning process more efficient, we show that a simple method of
training with mixed System-1 (using the condensed final responses) and System-2 (using both
the intermediate CoTs and the final responses) reasoning based on question difficulty enables
the student model to adapt its reasoning strategy based on the input. This allows for a dynamic
trade-off between efficiency and accuracy at test time, resulting in more effective problem-solving
and significantly shifting the efficiency-accuracy frontier. (Section 4.3).

2 Method

The objective of our work is to distill reasoning capabilities from a “reasoning” teacher model to
an (initially) “non-reasoning” student model. We define each reasoning training example to be a
(question, reasoning response) pair, where the response is generated by a teacher model, consisting
of two parts: the intermediate reasoning trace (e.g. the tokens between <think> and </think>,
which represent System-2 reasoning) and the final answer (System-1). We sample questions from
NaturalReasoning (Yuan et al., 2025), a comprehensive dataset comprising 2.8 million questions
that span multiple domains and that have been shown to be effective in eliciting reasoning. We use
DeepSeek-R1 (Guo et al., 2025) as the teacher model to generate reasoning responses. We call the
resulting dataset of distilled reasoning examples NATURALTHOUGHTS. In the following subsections,
we outline how we annotate and filter reasoning examples from the initial dataset in order to optimize
the student model’s reasoning capabilities.

2.1 Reasoning Annotation

Given a training set of (question, reasoning response) pairs, we first seek to annotate the data, using
three different annotations. First, we annotate the domain and topics of each question using the
taxonomy from Du et al. (2025), which includes 13 top-level domains including Engineering,
Philosophy, Medicine, Economics, Science, Law, History, Education, Management, Literature and
Arts, Agronomy, Sociology and Military Science. Then, for each reasoning trace, we prompt Llama-
3.1-70B-Instruct (Grattafiori et al., 2024) to identify the “meta-reasoning” strategies throughout the
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thinking process, such as self-verification, backtracking, exploration, etc. Finally, we prompt Llama-
3.1-70B-Instruct to score the “verbosity” of the reasoning, from 0 to 10, where 0 means the reasoning
is very efficient with no rambling, and 10 means excessive rambling without making progress towards
a solution. Full prompts used for annotations are provided in Figure 9 and Figure 10.

2.2 Reasoning Data Selection

Given the training examples with their respective annotations, the second step is to select samples used
for distillation. We study different data selection strategies along the following two axes: diversity
and difficulty.

Diversity We hypothesize that a diversified set of questions and reasoning traces would be effective
for distillation (Muennighoff et al., 2025). We attempt to obtain diverse subsets of data using three
properties.

• Question topics With annotated question topics from Section 2.1, we sample data uniformly
across all the 12 topic domains, taking about 850 samples from each domain.

• Question semantic embeddings We also create a diverse subset of questions using the semantic
feature space. Specifically, we embed questions using Llama 3.1-8B-Instruct. We then perform
density-based clustering on the embeddings, and uniformly sample from each cluster. More details
can be found in Appendix D.

• Reasoning strategies With the annotated reasoning strategies from Section 2.1, each example has a
set of strategies S = {si}. As shown in Figure 4, there are a few frequently used strategies such as
self-verification, etc. followed by a long tail of niche strategies. To select examples demonstrating
diverse problem-solving strategies yet without “overthinking”, we downsample examples where
the number of reasoning strategies |S| ≤ Rmin or |S| > Rmax. In the experiments in Section 4.1,
we use Rmin = 4 and Rmax = 8, based on the distribution of unique strategies annotated per
example (Figure 8). We also downsample examples with low reasoning density, measured as
having fewer unique reasoning strategies than the number of reasoning steps. Further ablations on
the sampling approach are provided in Appendix E.

Difficulty Another hypothesis is that the quality of the reasoning traces is correlated with the
difficulty of the questions, which usually requires advanced reasoning. We therefore attempt to create
data subsets with varying levels of difficulty using the following strategies.

• Length The initial training dataset is dominated by short traces. Therefore, we downsample
examples with short reasoning responses to study the benefit of using longer reasoning chains.
Specifically, each example is sampled with probability p = (l/C)τ , where l is the length of
reasoning response measured by the number of tokens, C is a constant normalizer, and τ is
the sampling temperature modulating how heavily shorter sequences are downsampled. In the
experiments in Section 4.1, we use C = 5000, τ = 2.5.

• Verbosity Given the annotated verbosity scores from Section 2.1, we derive three subsets by
sampling without replacement based on the scores: Low (beginning with the lowest verbosity,
0, and progressively including samples with higher verbosity), High (starting from the highest
verbosity, 10, and progressively including samples with lower verbosity), and Med (including all
samples with a verbosity of 5).

• Models Agreement For each example, we compared responses from a model with long CoT
reasoning traces (Deepseek-R1) and a model without long CoT traces (Llama-3.3-70B). We use
their disagreement, judged by Llama-3.1-8B-Instruct, as a proxy of question difficulty. We create
two subsets of training examples based on solution agreement or disagreement.

2.3 Mixed Reasoning Distillation

As the teacher reasoning model may have sub-optimal reasoning patterns such as “overthinking” or
“underthinking”, we compare different settings of distilling the teacher model’s reasoning:

System-2 Distillation By default, we conduct supervised finetuning on the entire response generated
by the teacher model, which includes the full reasoning trace and the final answer.

System-1 Distillation Instead of learning from the long CoT reasoning trace, we investigate the
effectiveness of only learning from the teacher’s final answer.
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Mixed System-1 and System-2 Training data is a mixture of examples from both types as described
above. We compared two mixing approaches: random mixing and difficulty-based mixing. In random
mixing, we select training examples with full System-2 reasoning with probability p = {0.2, 0.4, 0.6}.
In difficulty-based mixing, we use full System-2 reasoning traces for examples annotated with
disagreement (as a proxy of difficult questions) and only use the condensed System-1 response for
the remaining examples.

Adaptive Reasoning at Inference-time To enable explicit control of which types of reasoning to
use at inference time, we append an explicit instruction to the end of the question to indicate which
types of reasoning and how much inference budget the response should use. Specifically, we augment
the training data with “Think carefully before answering. Use about {K} words.” for
System-2, and “Answer directly without thinking. Use about {K} words.” for System-1.
K is derived from the training data. At inference time, we evaluate the accuracy-efficiency trade-offs
under three settings:

• No-Think We instruct the model to “Answer directly without thinking”, i.e. perform
System-1 mode of reasoning by generating a short condensed answers.

• Think We instruct the model to “Think carefully before answering. Use about {K}
words” followed by the special think start token <think> to force the generation into System-2
mode. K is set to 3500 which is the average length of System-2 responses in the training set.

• Adaptive-Think To test whether the mixed System-1 and System-2 distillation can enable the
student model to efficiently and automatically adapt to the question difficulty at inference time, we
also evaluate a hybrid mode, where we instruct the model to “Think carefully before answering.”
but without explicitly appending the special token <think>.

3 Experimental Setup

We perform supervised finetuning (SFT) with NATURALTHOUGHTS data on both Llama-3.1-8B-
Instruct and Qwen2.5-7B-Instruct student models. We compare different data selection methods at
the scale of 1,000 and 10,000 training examples. We also experiment with training on 100,000 and
500,000 samples to test the scaling properties of NATURALTHOUGHTS. During SFT training, we
mask the loss on the question, i.e. only train on the teacher model’s reasoning trace and final answer.
Unless otherwise noted, we use a maximum response length of 16,384 tokens and ensure that each
training example contains a complete response within the maximum number of tokens. We utilize the
fairseq2 library (Balioglu et al., 2023) for training. We apply dynamic batching where each batch
roughly contains 400k tokens. We train 10 epochs for 1k samples, 6 epochs for 10k, and 8 epochs for
100k and 500k training examples respectively. We use the AdamW optimizer with 0.1 weight decay
and a constant learning rate 2e− 5. Each model is trained on 32 NVIDIA H200 GPUs.

Baselines We compare the curation approaches described in Section 2.2 with the following baselines:

• Random selection We randomly select 1k, 10k, 100k and 500k examples from NATU-
RALTHOUGHTS (NT-RANDOM).

• State-of-the-art reasoning datasets We compare to LIMO (Ye et al., 2025) and S1K (Muen-
nighoff et al., 2025) which use the same teacher model (DeepSeek-R1) and perform careful
manual curation for both the questions and the reasoning responses. For a fair comparison, we
train our own Llama-3.1-8B-Instruct student model on their datasets. To understand the effect of
question source and question quality in NATURALTHOUGHTS, we also build another two baselines
(NT-NN-LIMO, NT-NN-S1K), which use questions from LIMO and S1K as seeds to retrieve
similar questions from NATURALTHOUGHTS. Specifically, we choose the nearest neighbors
of the LIMO and S1K questions in the question embedding space, and train a Llama-3.1-8B-
Instruct student model on the retrieved data. We also compare to OPENTHOUGHTS3 (Guha et al.,
2025), a high-quality reasoning dataset that has achieved state-of-the-art performance on several
reasoning benchmarks. We compare NATURALTHOUGHTS to OPENTHOUGHTS3 using both
Llama-3.1-8B-Instruct and Qwen2.5-7B-Instruct student models2.

2
Specifically, we compare to different released assets from OPENTHOUGHTS3 for different settings. For experiments with Llama

models, as described in Table 1, we compare to https://huggingface.co/mlfoundations-dev/openthoughts3_10k_llama3 and https:
//huggingface.co/mlfoundations-dev/openthoughts3_100k_llama3. For experiments with Qwen models, as described in Table 4, we compare
to https://huggingface.co/mlfoundations-dev/openthoughts3_10k, https://huggingface.co/mlfoundations-dev/openthoughts3_100k and
https://huggingface.co/open-thoughts/OpenThinker3-7B.
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• DeepSeek-R1 distilled models As a reference point, we also compare to the DeepSeek-R1-Distill-
Llama-8B and DeepSeek-R1-Distill-Qwen-7B (Guo et al., 2025) models, which were trained via
SFT with the same teacher and student models as our experiments, but with 800k non-public data.

Evaluation We evaluate on reasoning benchmarks in both math and general STEM domains: MATH-
500 (Hendrycks et al., 2021) (500 examples), GPQA-Diamond (Rein et al., 2024) (198 examples),
MMLU-Pro (Wang et al., 2024) (12,032 examples), and SuperGPQA (Du et al., 2025) (26,529
examples). We evaluate all models using the same evaluation setting as used in Guo et al. (2025).
Specifically, we report pass@1 averaged across multiple seeds to reduce the variance. We use
N = 24 seeds for GPQA-Diamond, and N = 16 for MATH-500, and N=1 for MMLU-Pro and
SuperGPQA. For decoding hyperparameters, we use temperature 0.6, and top-p 0.95 for Llama
models, and temperature 0.7, top-p 1.0 for Qwen models. We use maximum generation length of
16,384 tokens to match the sequence lengths used in training.

4 Results

Train Size GPQA-D MATH-500 MMLU-Pro SuperGPQA

Baselines
Llama-3.1-8B-Instruct 0 29.0±0.5 49.1±0.4 47.7 21.9
LIMO (Ye et al., 2025) 817 34.0±0.5 56.5±0.3 55.1 23.9
S1K (Muennighoff et al., 2025) 1k 36.9±0.7 59.4±0.3 56.2 27.2
NT-NN-LIMO 10k 35.3±0.6 64.7±0.4 57.6 27.7
NT-NN-S1K 10k 38.5±0.6 63.7±0.3 57.4 29.0
OpenThoughts3 (Guha et al., 2025) 10k 33.9±0.5 72.3±0.4 58.2 26.2
OpenThoughts3 (Guha et al., 2025) 100k 37.8±0.5 82.2±0.2 59.0 30.0
DeepSeek-R1-Distill-Llama-8B 800k 46.3 89.1 56.2 29.3

NATURALTHOUGHTS, Scale
Random 1k 37.1±0.4 57.8±0.3 56.6 27.3
Random 10k 37.6±0.6 61.3±0.3 57.8 28.8
Random 100k 42.5±0.6 67.5±0.3 59.8 31.2
Reasoning Strategies 100k 44.1±0.6 67.7±0.3 61.2 31.8
Models Disagree 100k 45.2±0.6 70.2±0.2 59.8 32.2
Long 100k 43.1±0.7 69.0±0.3 61.2 32.2
Random 500k 48.3±0.6 72.3±0.3 61.9 31.3
Reasoning Strategies 500k 48.6±0.7 75.4±0.2 62.3 33.0
Models Disagree 500k 45.2±0.6 70.8±0.3 59.8 30.7
Long 500k 48.8±0.6 74.9±0.3 62.0 31.9

NATURALTHOUGHTS, Diversity
Topics 10k 32.7±0.5 55.7±0.3 55.9 25.4
Semantic Embeddings 10k 39.4±0.5 60.3±0.3 55.9 27.2
Reasoning Strategies 10k 38.8±0.5 63.5±0.4 58.2 28.8

NATURALTHOUGHTS, Difficulty
Long 10k 39.1±0.7 63.5±0.3 58.6 28.8
Models Disagree 10k 39.7±0.4 61.9±0.3 59.1 29.7
Models Agree 10k 37.5±0.6 60.1±0.3 56.7 28.9
Verbosity=Low 10k 37.0±0.7 59.1±0.3 54.8 26.7
Verbosity=Med 10k 37.2±0.6 62.1±0.4 57.5 28.9
Verbosity=High 10k 38.4±0.6 59.8±0.4 56.6 28.7

Table 1: Reasoning data scaling and selection for the Llama-3.1-8b-Instruct student model. We
compare reasoning data selection based on quality, diversity and difficulty. We use DeepSeek R1 as
the teacher model, and conduct supervised finetuning on Llama-3.1-8B-Instruct as the student model.
Selection based on diversity in reasoning strategies and question difficulty (via model disagreement)
outperforms random selection, although the gap becomes smaller when scaling up data size.

4.1 Reasoning Data Selection

Table 1 and Table 4 show the overall results of the different curation strategies for reasoning distillation
from the teacher model, using Llama and Qwen student models respectively. We describe our findings
in more details in the following paragraphs.

Baseline Comparisons First we obtain similar observations as in LIMO (Ye et al., 2025) and
S1K (Muennighoff et al., 2025): with carefully selected training samples and a strong teacher model,
we can effectively distill strong reasoning capabilities even at small data scales. As shown in Table 1,
using only 1,000 randomly selected examples from NATURALTHOUGHTS already outperforms
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LIMO and is on par with S1K, even though these two prior datasets went through rigorous manual
selection of questions and reasoning traces.

Diversity In Table 1, we compare selecting examples based on diversity in questions (both topics
and semantic embeddings), which is often used in prior work (Muennighoff et al., 2025), as well
as our proposed diversity in reasoning strategies. First, we find that simply uniformly sampling
across question topics reduces the performance compared to randomly sampling from the seed set.
This is likely due to question topic distribution being too concentrated among a small set of topics.
Compared to question topic diversity, the question semantic embedding diversity method produces
better performance as the clusters are more fine-grained. Notably, we find that selecting samples
based on the diverse reasoning strategies results in the best performance out of the three selection
criteria. This implies that the diversity of the reasoning traces is more important than the diversity of
the questions themselves.

Difficulty We report multiple findings based on training on subsets of varying difficulty. First,
the “Long” subset, or examples where shorter reasoning traces are downsampled, performs better
than random selection which contains more short reasoning traces. Second, the “Models Disagree”
subset performs better than both random selection and “Long”. This implies that training on difficult
questions that require more advanced reasoning traces is more sample-efficient in distilling reasoning
capabilities. Overall, we find that the “Models Disagree” subset leads to the best average performance
across all 10K filtered subsets.

Comparing the effects of reasoning verbosity, we find that the “Medium Verbosity” subset is on
average the best performing verbosity training set. We hypothesize that the high verbosity subset has
too many incoherent reasoning traces, and the low verbosity subset does not contain enough useful
reasoning. However, the verbosity distribution is quite concentrated, so it may not be a strong signal
to distinguish high-quality examples.

4.2 Reasoning Data Scaling

Different from what was observed in LIMO and S1K, where increasing the number of training
samples results in marginal improvement or even decrease in distillation performance, we observe
that with NATURALTHOUGHTS, simply scaling up data size beyond 1,000 to 10,000 improves
performance on tasks requiring both knowledge and reasoning. This holds for both Llama models, as
is shown in Table 1 (scale) and Qwen models, as is shown in Table 4, even with random selection.
Additionally, using manually curated data as question seeds (NT-NN-LIMO, and NT-NN-S1K)
improves the scaling trend compared to random selection. We find that performance across the diverse
set of evaluation tasks does not saturate when scaling up the training set size to 500,000 examples,
with both random selection and selection based on reasoning strategy diversity (see Figure 1).

We also verify whether the scaling trends persist with a larger student model, which is often more
sample efficient. To this end, we use the Llama-3.3-70B-Instruct as the student model. We randomly
select 1,000, 10,000 and 100,000 questions from NATURALTHOUGHTS. Results are summarized in
Table 2. Similar to the trend observed with Llama-3.1-8B-Instruct and Qwen-2.5-7B-Instruct, scaling
up data size beyond 1,000 examples consistently improves performance across all four tasks. With
100k training samples, the student model already outperforms DeepSeek-R1-Distill-Llama-70B on
GQPA-D, MMLU-Pro and SuperGPQA.

Train Size GPQA-D MATH-500 MMLU-Pro SuperGPQA

NATURALTHOUGHTS
Random Selection 1k 63.5±0.6 86.3±0.2 78.0 46.0
Random Selection 10k 65.6±0.6 87.4±0.3 78.4 48.3
Random Selection 100k 67.6±0.4 88.5±0.2 78.9 50.6

DeepSeek-R1-Distill-Llama-70B 800k 65.2 94.5 78.5 49.4

Table 2: Scaling results with a larger model. On general STEM reasoning tasks, training Llama3.3-
70B-Instruct with NATURALTHOUGHTS outperforms DeepSeek-R1-Distill-Llama-70B, which was
trained with the same teacher and student models using more data.
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No-Think Adaptive-Think Think
Mean Length Accuracy Mean Length Accuracy Mean Length Accuracy

System-1 321.3 34.0±0.6 541.1 32.4±0.7 - -

System-2 5133.7 36.3±0.5 7817 37.3±0.6 8740.6 37.6±0.6

Random Mixing
pSystem2 = 0.2 511.0 31.2±0.7 1056.0 31.8±0.6 8642.3 34.7±0.7

pSystem2 = 0.4 847.3 31.8±0.5 1642.7 33.2±0.5 9155.0 36.7±0.6

pSystem2 = 0.6 729.6 34.1±0.6 1683.4 35.3±0.6 7139.8 37.5±0.5

Difficulty-based Mixing 799.4 34.5±0.5 2033.0 35.1±0.6 7562.4 38.9±0.7

Table 3: Mixed Reasoning Distillation. We show the accuracy-efficiency tradeoff of training
with mixed System-1 and System-2 reasoning, with three modes at inference time: “No-Think”,
“Adaptive-Think”, and “Think”. We report pass@1 accuracy on GPQA-Diamond. The mixed training
approach enables operation in all three inference modes, which was not possible with either System-1
or System-2 alone. Our results demonstrate that difficulty-based mixing not only achieves a favorable
accuracy-efficiency tradeoff, but also improves overall accuracy in “Think” mode compared to only
using System-2. See Figure 6 for a visualization of the trade-offs.

4.3 Mixed Distillation Efficiency

We compare different reasoning distillation approaches outlined in Section 2.3, and evaluate on
GPQA-Diamond. We summarize results in Table 3.

System-2 Distillation The baseline System-2 training (i.e. leveraging both the CoT and the final
answer) achieves 37.6% accuracy at the cost of efficiency, producing an average response length of
8,740 tokens. In an attempt to elicit responses with shorter reasoning, this model could not provide
short answers when instructed not to think (“No-Think” mode), only reducing the average response
length to 5,134 tokens.

System-1 Distillation When training with System-1 demonstrations from the teacher model (i.e.
only the final answers without reasoning), the student model achieves significant inference-time
efficiency gains. We observe that responses are 27x shorter, at the cost of only a 4.6% drop in
accuracy compared to System-2 Distillation. However, we find that these models lack the ability to
leverage test-time compute, even when explicitly instructed to spend more token budget for reasoning
in the Adaptive-Think mode.

Random Mixing Distillation Training with a random mix of System-1 and System-2 reasoning
enables the student model to achieve flexible test-time compute by interpolating between thinking fast
and slow. For example, when training with 40% System-2 responses (PSystem2 = 0.4), the average
response length drops from 9,155 tokens in the “Think” mode to 1,642 and 847 for the “Adaptive-
Think” and “No-Think” modes, respectively. Increasing the ratio of System-2 examples improves
performance but increases response lengths. For example, models trained with 60% System-2 achieve
an accuracy of 37.5% in the “Think” mode, compared to 36.7% and 34.7% for training with 40% and
20% System-2 reasoning respectively.

Difficulty Based Mixing Distillation In contrast to random mixing, the difficulty-based mixing
approach selectively distills System-2 responses for difficult questions and System-1 responses for
easy questions. This targeted strategy, like random mixing, enables the model to flexibly adapt its
response length at inference time. Notably, the difficulty-based mixing method achieves an accuracy
of 38.9%, representing a 1.3% improvement over System-2 distillation. Furthermore, this approach
results in only 36% System-2 responses in the training set, yet it surpasses all random mixing methods,
including the one with 60% System-2 responses, which yields an accuracy of 37.5%. This suggests
that by selectively applying System-1 and System-2 distillation based on question difficulty, the
model can strike a better balance between accuracy and efficiency.

5 Results
We sample questions from NaturalReasoning (Yuan et al., 2025), given its diversity and effectiveness
in eliciting reasoning. We use DeepSeek-R1 (Guo et al., 2025) as the teacher model to generate rea-
soning responses. We use the resulting dataset of distilled reasoning examples, NATURALTHOUGHTS
to study data efficiency in distillation. Detailed experimental setup is described in Section 3.
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Reasoning Data Scaling. Different from what was observed in LIMO and S1K, where increasing
the number of training samples results in marginal improvement or even decrease in distillation
performance, we observe that with NATURALTHOUGHTS, simply scaling up data size beyond 1k to
10k improves performance on tasks requiring both knowledge and reasoning. This holds for both
Llama models (Table 1-scale) and Qwen models (Table 4), even with random selection. We find that
performance across the diverse set of evaluation tasks does not saturate when scaling up the training
set size to 500k examples, with both random selection and selection based on reasoning strategy
diversity (see Figure 1).

Reasoning Data Selection. We compare different curation strategies for reasoning distillation on
Llama-3.1-8B-Instr (Table 1) and Qwen-2.5-7B-Instr (Table 4). We also verify whether the scaling
trends persist with a larger student model such as Llama-3.3-70B-Instr (Table 2). We summarize our
findings as follows with more details in the Appendix.

Baseline Comparisons First we obtain similar observations as in LIMO (Ye et al., 2025) and
S1K (Muennighoff et al., 2025): with carefully selected training samples and a strong teacher model,
we can effectively distill strong reasoning capabilities even at small data scales. As shown in Table 1,
using only 1k randomly selected examples from NATURALTHOUGHTS already outperforms LIMO
and is on par with S1K, even though these two prior datasets went through rigorous manual selection
of questions and reasoning traces.

Diversity In Table 1, we compare selecting examples based on diversity in questions (topics and
embeddings), which is often used in prior work (Muennighoff et al., 2025), as well as our proposed
diversity in reasoning strategies. We find that simply uniformly sampling across question topics
reduces the performance compared to randomly sampling from the seed set. Compared to question
topic diversity, the question semantic embedding diversity method produces better performance as the
clusters are more fine-grained. Notably, we find that selecting samples based on diverse reasoning
strategies results in the best performance out of the three selection criteria.

Difficulty We report several findings based on training on subsets of varying difficulty. First, the
“Long” subset, or examples where shorter reasoning traces are downsampled, performs better than
random selection. Second, the “Models Disagree” subset, where we use the disagreement between
a strong and weak model as a proxy for difficulty, performs better than both random selection and
“Long”. This implies that training on difficult questions that require more advanced reasoning traces is
more sample-efficient in distilling reasoning capabilities (Figure 7). Finally, for reasoning verbosity,
where we use LLM-annotated verbosity classifications of reasoning traces as a proxy for difficulty,
we find that the “Medium Verbosity” subset is on average the best performing verbosity training set.
We hypothesize that the high verbosity subset has too many incoherent reasoning traces, and the low
verbosity subset doesn’t contain enough useful reasoning. However, the verbosity distribution is
concentrated, so it may not be a strong signal to distinguish high-quality examples.

Mixed System-1 and System-2 Distillation. The baseline System-2 training (i.e. leveraging both
CoT and final answer) achieves 37.6% accuracy at the cost of efficiency, producing an average
response length of 8,740 tokens. In an attempt to elicit shorter reasoning responses, the model could
not provide short answers when instructed not to think (“No-Think”), reducing the mean response
length to 5,134 tokens. When training with System-1 demonstrations from the teacher model (i.e. only
final answers), the student model achieves significant inference-time efficiency gains. We observe
that responses are 27x shorter, at the cost of only a 4.6% drop in accuracy compared to System-2
Distillation. However, we find that these models lack the ability to leverage test-time compute, even
when explicitly instructed to spend more token budget for reasoning in the Adaptive-Think mode.

Random Mixing Distillation Training with a random mix of System-1 and System-2 reasoning
enables the student model to achieve flexible test-time compute by interpolating between thinking
fast and slow. For example, when training with 40% System-2 responses (PSystem2 = 0.4), the
average response length drops from 9,155 tokens in the “Think” mode to 1,642 and 847 for the
“Adaptive-Think” and “No-Think” modes, respectively. Increasing the ratio of System-2 examples
improves performance but increases response lengths.

Difficulty Based Mixing Distillation In contrast to random mixing, the difficulty-based mixing
approach selectively distills System-2 responses for difficult questions and System-1 responses for
easy questions. This targeted strategy, like random mixing, enables the model to flexibly adapt its
response length at inference time. Notably, the difficulty-based mixing method achieves an accuracy
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of 38.9%, representing a 1.3% improvement over System-2 distillation. Furthermore, this approach
results in only 36% System-2 responses in the training set, yet it surpasses all random mixing methods,
including the one with 60% System-2 responses, which yields an accuracy of 37.5%. This suggests
that by selectively applying System-1 and System-2 distillation based on question difficulty, the
model can strike a better balance between accuracy and efficiency.

6 Ablations and Analysis

Long is More? Prior work on data selection for LLM alignment has shown that selecting long
samples is a tough-to-beat baseline (Zhao et al., 2024). Through our experiments, we validate that
length is also a tough-to-beat baseline for LLM reasoning. However, as is shown in Figure 7, we find
that the most performant selection strategies (Long, Reasoning Strategies and Models Disagree) all
have different distributions of reasoning length, indicating that length is not the only causal factor.
Furthermore, selection based on reasoning strategy diversity yields a very similar length distribution
to that of random selection, yet the former leads to better performance.

Reducing Sequence Length: Improvements with Mixed Distillation One natural question is
whether training with shorter reasoning traces achieves the same efficiency gains as mixed distillation.
To this end, we experiment with reducing the maximum sequence length of training examples from
16,384 to 8,192 tokens, and use the same evaluation setting as described in Section 4.3. Results are
provided in Table 7.

As expected, this leads to shorter responses at inference time, with an average length of 440 tokens
in the Adaptive-Think mode and 372 tokens in No-Think mode. However, it comes at the cost of a
severe drop in accuracy, with System-2 distillation scoring 32.5% and 32.1% in those two modes
respectively. In contrast, applying difficulty-based mixing with a sequence length of 8,192 tokens not
only preserves the ability to adjust response length via Adaptive Thinking but also yields notable
accuracy improvements. Specifically, we observe gains of 0.6% over System-2 distillation with a
sequence length of 16,384 and 1.2% over System-2 distillation with a sequence length of 8,192,
while producing 2x fewer tokens. This suggests that difficulty-based mixing can effectively balance
efficiency and accuracy, even at reduced sequence lengths.

Effect of easy-to-verify data We further evaluate the impact of training on problems with easy-
to-verify answers. We use selection based on "Models Disagree" as a baseline, to compare with
additionally selecting problems whose reference answers have short lengths (≤ 9 words) as a proxy
for "easy-to-verify". As is shown in Table 5, training on reasoning traces of such problems does not
bring consistent improvements except on math reasoning tasks.

7 Discussion and Conclusion

In this work, we conduct an in-depth analysis of aspects of training data that lead to better scaling
performance and sample efficiency when distilling reasoning capabilities from a strong teacher to
a weaker student model. Our results offer new insights on the selection and curation of reasoning
data, where current understanding mostly focuses on the overall importance of data quality, e.g. the
“Less is More” hypothesis. Our experiments indicate that for “learning to reason”, the diversity of
reasoning primitives matters more than the diversity of topics or domains. Questions that are more
difficult usually elicit more reasoning steps and thus serve as better demonstration examples to distill
reasoning skills. We attribute lagging improvements on the mathematical task evaluations to the fact
that the majority of the problems in our source prompt data do not look like problems appearing in
those math evaluations.

Insights derived from our experiments and analysis are highly relevant to the growing interest in
building small reasoning models. The training recipe of state-of-the-art small reasoning models
(Yang et al., 2025) also emphasizes the importance of data curation used in both RL post-training
and strong-to-weak SFT distillation (Bercovich et al., 2025). In practice, a few criteria are used to
select samples that (i) are as challenging as possible and (ii) cover a broad range of sub-domains. Our
findings are complementary to those, where we demonstrate the potential performance gains from
having explicit control over which fine-grained reasoning primitives to distill from the teacher model.
Furthermore, we demonstrate steerability of reasoning efficiency in our mixed System-1/System-2
distillation experiments.
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A Related Work

Data-centric Approaches for Improving Reasoning Distillation and reinforcement learning have
become standard approaches for building strong reasoning models. Guo et al. (2025) explicitly
compare the effectiveness of distillation vs. RL for improving small models’ reasoning capabilities,
and find that distilling from a strong teacher model significantly outperforms large-scale RL training
only on the student model. Since then, the community has been actively working on distillation and
proposing distilled datasets such as OpenThoughts (Guha et al., 2025) and OpenR1 (Face, 2025).
However, there has been little study on the quality of distillation datasets until recently. Prior work
such as LIMO (Ye et al., 2025) and S1K (Muennighoff et al., 2025) shows that carefully curated
questions and reasoning traces can greatly improve sample efficiency, where 1,000 examples are
sufficient to distill the long CoT behaviors from the teacher model. However, these hypotheses were
primarily verified in narrow domains such as math and coding. Our work provides new insights on a
much broader set of domains with more diverse reasoning problems.

Reasoning Efficiency Recent work has shown that overthinking is a common pattern in SoTA
reasoning models (e.g., R1 (Guo et al., 2025), o1 (Jaech et al., 2024), o3, etc.) and thus the need to
curate high-quality reasoning traces (Kumar et al., 2025; Chen et al., 2025) as well as to develop
methods that elicit more efficient reasoning (Aggarwal and Welleck, 2025). In particular, Ma et al.
(2025) demonstrate non-trivial reasoning performance by simply omitting thinking in the training
data. An alternative approach to selecting reasoning traces is to revise the teacher model’s reasoning
traces and generate new reasoning paths (Lu et al., 2025). Distilling System 2 into System 1 was
first proposed in Yu et al. (2024b).
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B Additional Tables and Figures

Train Size GPQA-D MATH-500 MMLU-Pro SuperGPQA

Baselines
Qwen-2.5-7B-Instruct 0 34.1±0.5 69.7±0.3 56.5 29.5
OpenThoughts3 (Guha et al., 2025) 10k 34.7±0.5 83.2±0.2 59.1 28.5
OpenThoughts3 (Guha et al., 2025) 100k 41.8±0.5 88.1±0.2 62.8 33.7
OpenThoughts3 (Guha et al., 2025) 1.2m 46.9±0.5 91.2±0.1 59.1 33.5
DeepSeek-R1-Distill-Qwen-7B 800k 49.1 92.8 56.8 29.8

NATURALTHOUGHTS
Random 10k 41.8±0.6 79.0±0.2 59.7 31.2
Reasoning Strategies 10k 42.2±0.6 78.6±0.2 61.5 32.1
Models Disagree 10k 40.5±0.5 78.4±0.3 61.7 32.7
Long 10k 40.0±0.6 78.8±0.2 61.8 33.5
Random 100k 42.6±0.5 80.8±0.2 62.7 32.8
Models Disagree 100k 43.7±0.6 80.8±0.2 62.8 33.9
Reasoning Strategies 100k 43.5±0.5 80.9±0.2 62.2 33.1
Long 100k 43.4±0.4 81.7±0.4 62.2 34.0
Random 500k 48.6±0.6 83.1±0.2 62.3 35.2
Reasoning Strategies 500k 48.3±0.5 83.6±0.2 62.7 35.2

Table 4: Reasoning data scaling and selection for the Qwen-2.5-7B-Instruct student model.
We also provide comparisons when using Qwen-2.5-7B-Instruct as the student model. Training
with 500k examples from NATURALTHOUGHTS outperforms training with 1.2m examples from
OpenThoughts3 (Guha et al., 2025) on three of the four evaluation benchmarks.

Train Size GPQA-D MATH-500 MMLU Pro SuperGPQA

Models Disagree 10k 39.7±0.4 61.9±0.3 59.1 29.7
with short reference answer 10k 39.0±0.7 63.0±0.3 59.2 28.1

Models Disagree 100k 45.2±0.6 70.2±0.2 59.8 32.2
with short reference answer 100k 43.8±0.5 71.4±0.4 61.4 31.2

Table 5: Reference-answer-based selection. We show that filtering questions based on the length of
the reference answers (as a proxy for easy-to-verify problems), in addition to disagreement selection,
yields improvement in math reasoning performance.
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Figure 3: A mix of System-1 (no reasoning traces,
final answer only) and System-2 (full reasoning
traces) distillation improves the inference-time
efficiency of the student model (details in Sec-
tion 2.3 and Section 4.3).

Figure 4: Top 20 commonly used reasoning
strategies based on annotations of 10,000 sam-
ples. We observe that there are a small number
frequently used strategies, followed by a long tail
of more niche strategies.
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Figure 5: Generation length distributions of System-1 and System-2 reasoning for GPQA-
Diamond. System-1 responses (left) are predominantly brief, indicating minimal thinking, if any.
In contrast, System-2 responses (right) are significantly longer than those of System-1 and exhibit
greater variance, as the response lengths vary based on the amount of thinking required for each
question, depending on its complexity.
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Figure 6: Mixed System-1 (final answer only) and System-2 (reasoning trace + final answer) distillation
improves the inference-time efficiency of the student model (details in Table 3 and Section 4.3).
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Figure 8: Distribution of unique reasoning strate-
gies per example based on annotations of 10,000
samples.
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C Prompts used in Annotation

The prompt used for annotating reasoning traces to obtain reasoning strategies and verbosity score is
provided in Figure 9. Figure 10 covers the prompt used to annotate disciplines and fields for questions
in the dataset.

Below is a question and solution generated by an LLM. Your task is
to summarize the problem -solving steps used by the LLM. Read the
thought process carefully , and annotate the explorations in the
thought process used by the LLM. Specifically , write down detailed
steps the LLM took to pursue its thinking process , identifying all
meta -reasoning strategies used at each step , e.g. self -verification
, backtracking , exploration , etc. Based on these analysis , also
check the degrees of verbosity of the reasoning traces , e.g. how
much unnecessary ramblings were found during the thinking process
which does not make much progress in solving the problem. Derive a
verbosity_score in the end. The verbosity_score should be derived
on a scale of 0 to 10. Score 0 means the problem solving in the
thinking process is very efficient with no rambling at all. Score
10 means the reasoning traces are very verbose , where the thinking
process is long but each step does not make progress in solving the
problem. Organize your answer in a json so that the steps and meta

-reasoning strategies and the final verbosity_score can be easily
extracted.
Question: {question}
Solution from LLM: {reasoning trace to be annotated }}

Figure 9: Prompt for annotating reasoning traces to obtain reasoning strategies and the verbosity
score.

19



You are an expert in labeling questions into categories.

For a given question , use the following taxonomy for labelling ,
which is structured as {'discipline ': {'field ': ['sub -field ', 'sub -
field ', ...]}}.

{'Engineering ': {'Electronic Science and Technology ': ['Circuits
and Systems ',

'Microelectronics and Solid -State Electronics ',
'Electromagnetic Field and Microwave Technology '],

'Computer Science and Technology ': ['Computer Architecture ',
'Data Structures ',
'Operating Systems ',
'Computer Software and Theory ',
'Advanced Programming Languages ',
'Pattern Recognition ',
'Principles of Computer Organization ',
'Computer Networks ',
'Databases ',
'Formal Languages '],

'Information and Communication Engineering ': ['Signal and
Information Processing ',
'Optical Fiber Communication ',
'Communication and Information Systems ',
'Antenna and Radio Communication ',
'Communication Principles '],

'Control Science and Engineering ': ['Control Theory and Control
Engineering ',
'Operations Research and Cybernetics ',
'Guidance , Navigation and Control '],

'Materials Science and Engineering ': ['Materials Physics and
Chemistry ',
'Materials Processing Engineering '],

'Electrical Engineering ': ['Power Electronics and Electrical
Drives ',
'Electrical Theory and New Technologies ',
'High Voltage and Insulation Technology ',
'Power Systems and Automation '],

'Power Engineering and Engineering Thermophysics ': ['Power
Machinery and Engineering ',
'Internal Combustion Engineering ',
'Thermal Energy Engineering ',
'Engineering Thermophysics ',
'Refrigeration and Cryogenic Engineering ',
'Fluid Machinery and Engineering ',
'Heat Transfer ',
'Engineering Fluid Mechanics '],

'Hydraulic Engineering ': ['Water conservancy and Hydropower
Engineering ',
'Hydraulics and Hydrology '],

'Chemical Engineering and Technology ': ['Mass Transport and
Separation Process in Chemical Engineering ',
'Fluid Flow and Heat Transfer in Chemical Engineering ',
'Elements of Chemical Reaction Engineering ',
'Chemical Transport Engineering '],

'Architecture ': ['Urban Planning and Design ',
'Architectural Design and Theory ',
'Architectural History '],

'Forestry Engineering ': ['Forest Engineering ',
'Wood Science and Technology '],
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'Nuclear Science and Technology ': ['Radiation Protection and
Nuclear Technology Applications ',

'Nuclear Energy and Reactor Technology '],
'Weapon Science and Technology ': ['Weapon Systems Science and

Engineering ',
'Military Chemistry and Pyrotechnics '],

'Naval Architecture and Ocean Engineering ': ['Marine Engineering
',

'Ship Mechanics and Design Principles '],
'Environmental Science and Engineering ': ['Environmental and

Resource Protection ',
'Environmental Engineering ',
'Environmental Science '],

'Transportation Engineering ': ['Vehicle Operation Engineering ',
'Traffic Information Engineering and Control ',
'Transportation Planning and Management ',
'Road and Railway Engineering '],

'Mechanical Engineering ': ['Manufacturing Automation ',
'Mechatronic Engineering '],

'Aeronautical and Astronautical Science and Technology ': ['
Aeronautical and Astronautical Science and Technology '],

'Civil Engineering ': ['Geotechnical Engineering ',
'Structural Engineering ',
'Bridge and Tunnel Engineering ',
'Urban Infrastructure Engineering '],

'Mechanics ': ['Fundamentals of Dynamics and Control ',
'Theoretical Fluid Mechanics ',
'Theoretical Mechanics ',
'Rigid Body Mechanics ',
'Solid Mechanics '],

'Petroleum and Natural Gas Engineering ': ['Poromechanics and
Reservoir Physics ',

'Oil and Gas Field Development and Storage & Transportation
Engineering '],

'Food Science and Engineering ': ['Food Processing and Storage
Engineering ',

'Food Biochemistry '],
'Agricultural Engineering ': ['Agricultural Environment and Soil -

Water Engineering ',
'Agricultural Mechanization Engineering '],

'Surveying and Mapping Science and Technology ': ['Geodesy and
Surveying Engineering ',

'Cartography and Geographic Information Engineering ',
'Digital Surveying and Remote Sensing Applications '],

'Metallurgical Engineering ': ['Iron and Steel Metallurgy ',
'Principles of Metallurgy ',
'Non -ferrous Metallurgy ',
'Physical Chemistry of Metallurgical Process '],

'Mining Engineering ': ['Mining and Safety Engineering ',
'Mineral Processing Engineering '],

'Geological Resources and Geological Engineering ': ['Geological
Resources and Geological Engineering '],

'Optical Engineering ': ['Theoretical Optics ',
'Optoelectronic Technology ',
'Laser Technology ',
'Applied Optics '],

'Textile Science and Engineering ': ['Textile Materials Science ',
'Textile Chemistry and Dyeing Engineering '],

'Instrument Science and Technology ': ['Instrument Science and
Technology ']},
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'Philosophy ': {'Philosophy ': ['Philosophical Aesthetics ',
'Ethics ',
'Logic ',
'Philosophy of Science and Technology ',
'Religious Studies ']},

'Medicine ': {'Traditional Chinese Medicine ': ['Traditional Chinese
Medicine Theory ',
'Traditional Chinese Health Preservation ',
'Traditional Chinese Pharmacy '],

'Clinical Medicine ': ['Internal Medicine ',
'Obstetrics and Gynecology ',
'Emergency Medicine ',
'Neurology ',
'Psychiatry and Mental Health ',
'Surgery ',
'Imaging and Nuclear Medicine ',
'Otorhinolaryngology ',
'Dermatology and Venereology ',
'Ophthalmology ',
'Geriatric Medicine ',
'Oncology ',
'Clinical Laboratory Diagnostics ',
'Anesthesiology ',
'Pediatrics ',
'Nursing and Rehabilitation Medicine '],

'Basic Medicine ': ['Pathogen Biology ',
'Immunology ',
'Human Anatomy and Histology -Embryology ',
'Pathology and Pathophysiology ',
'Forensic Medicine ',
'Radiation Medicine '],

'Public Health and Preventive Medicine ': ['Epidemiology and
Health Statistics ',

'Health Toxicology and Environmental Health ',
'Maternal , Child and Adolescent Health ',
'Nutrition and Food Hygiene '],

'Pharmacy ': ['Pharmacology ',
'Microbiology and Biochemical Pharmacy ',
'Pharmaceutical Analysis ',
'Medicinal Chemistry ',
'Pharmaceutics '],

'Stomatology ': ['Basic Stomatology ', 'Clinical Stomatology ']},
'Economics ': {'Applied Economics ': ['Finance ',

'Public Finance ',
'International Trade ',
'Labor Economics ',
'Economic Statistics ',
'Quantitative Economics ',
'Industrial Economics ',
'National and Defense Economics '],

'Theoretical Economics ': ['Political Economy ',
'Economic History ',
'Western Economics ']},
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'Science ': {'Mathematics ': ['Combinatorial Mathematics ',
'Ordinary Differential Equations ',
'Mathematical Analysis ',
'Advanced Algebra ',
'Functions of Real Variables ',
'Probability and Statistics ',
'Numerical Analysis ',
'Polynomials and Series Expansions ',
'Geometry and Topology ',
'Computational Mathematics ',
'Discrete Mathematics ',
'Stochastic Processes ',
'Functions of Complex Variables ',
'Fundamental Mathematics ',
'Number Theory ',
'Group Theory ',
'Cryptography ',
'Fuzzy Mathematics ',
'Special Number Theory ',
'Graph Theory '],

'Physics ': ['Particle and Nuclear Physics ',
'Electrodynamics ',
'Quantum Mechanics ',
'Atomic and Molecular Physics ',
'Fluid Physics ',
'Solid State Physics ',
'Relativity ',
'Thermodynamics and Statistical Physics ',
'Subatomic and Atomic Physics ',
'Semiconductor Physics ',
'Polymer Physics ',
'Statistical Mechanics ',
'Thermodynamics ',
'Acoustics '],

'Systems Science ': ['Systems Science '],
'Biology ': ['Botany ',
'Biochemistry and Molecular Biology ',
'Genetics ',
'Zoology ',
'Biophysics ',
'Cell Biology ',
'Physiology ',
'Microbiology ',
'Ecology '],

'Chemistry ': ['Organic Chemistry ',
'Physical Chemistry ',
'Analytical Chemistry ',
'Electrochemistry ',
'Radiochemistry ',
'Polymer Chemistry and Physics ',
'Inorganic Chemistry '],

'Geography ': ['Human Geography ', 'Physical Geography '],
'Oceanography ': ['Hydrogeology ',
'Marine Chemistry ',
'Underwater Acoustics ',
'Marine Biology '],
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'Geology ': ['Principles of Seismic Exploration ',
'Structural Geology ',
'Mineralogy , Petrology , and Economic Geology ',
'Paleontology and Stratigraphy ',
'Geochemistry '],

'Physical Oceanography ': ['Physical Oceanography '],
'Astronomy ': ['Solar System Science ',
'Astrophysics ',
'Stellar and Interstellar Evolution ',
'Astronomical Observation and Technology ',
'Cosmology '],

'Atmospheric Science ': ['Atmospheric Physics and Atmospheric
Environment ',

'Meteorology ',
'Dynamic Meteorology '],

'Geophysics ': ['Solid Earth Geophysics ', 'Space physics ']},
'Law ': {'Law ': ['Procedural Law ',

'Constitutional and Administrative Law ',
'Criminal Law ',
'Civil and Commercial Law ',
'Contract Law ',
'Military Law ',
'Law and Social Governance ',
'International Law ',
'Legal Theory and Legal History '],

'Political Science ': ['Political Science ']},
'History ': {'History ': ['World History ',

'Historical Geography ',
'Archaeology and Museology ']},

'Education ': {'Education ': ['Theory of Curriculum and Instruction ',
'Educational Technology and Principles ',
'Special Education ',
'Preschool Education '],

'Psychology ': ['Psychology '],
'Physical Education ': ['Sports Science and Medicine ',
'Sports Humanities and Sociology ',
'Physical Education and Training ']},

'Military Science ': {'Military Science ': ['Military Thought and
History ',
'Military Command and Information Systems ',
'Military Management ',
'Military Logistics and Equipment ']},

'Management ': {'Business Administration ': ['Business and Accounting
Management ',

'Tourism Management and Technological Economics Management '],
'Public Administration ': ['Social Medicine and Health Management

',
'Land Resource Management and Administrative Management ',
'Education Economics , Management and Social Security '],

'Library , Information and Archival Management ': ['Information
Management and Communication ',

'Library and Archival Science ',
'Information Management Science '],

'Management Science and Engineering ': ['Management Science and
Engineering ']},
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'Literature and Arts ': {'Language and Literature ': ['Literary
History ',
'French Language and Literature ',
'Linguistics and Applied Linguistics ',
'Literary Theory ',
'Philology and Bibliography ',
'Modern and Contemporary Chinese Literature ',
'Classical Chinese Literature ',
'Russian Language and Literature '],

'Art Studies ': ['Dance Studies ',
'Design Arts ',
'Broadcasting and Television Art ',
'Fine Arts ',
'Drama and Opera Studies ',
'Film Studies '],

'Journalism and Communication ': ['Journalism and News Practice ',
'History and Theory of Journalism and Media Management ',
'Communication and Broadcasting '],

'Musicology ': ['Composition ',
'Instrumentation and Performance ',
'Music History , Education , and Technology ',
'Musical Forms and Analysis ',
'Harmony ',
'Pitch and Scales ']},

'Agronomy ': {'Aquaculture ': ['Aquaculture '],
'Animal Husbandry ': ['Animal Rearing and Breeding ',
'Animal Nutrition and Feed Science '],

'Crop Science ': ['Crop Science '],
'Forestry ': ['Forest Cultivation and Genetic Breeding ',
'Landscape Plants and Ornamental Horticulture '],

'Veterinary Medicine ': ['Veterinary Medicine ']},
'Sociology ': {'Sociology ': ['Social and Folklore Studies ',

'Demography and Anthropology ']}}
First , identify the most appropriate discipline. Then identify the
most appropriate filed within the chosen discipline. Finally ,
identify the most appropriate sub -filed.

Put your final labelling results in a json object:
```
{

"discipline ": <choose the most appropriate discipline >,
"field": <choose the most appropriate field within the
discipline >,
"sub_field ": <choose the most appropriate sub_field within the
field >

}
```

Under no circumstances use enumeration and do not give more than 1
discipline , 1 field and 1 sub -field and do not use any labels that
are not in above dictionary.

### Question

Figure 10: Prompt for annotating question with discipline and fields.
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Table 6: Comparison of different semantic embedding clustering methods for 10k training examples.

Embeddings Clustering # clusters GPQA-D MATH-500 MMLU Pro SuperGPQA Average

all-MiniLM-L6-v2 K-means 10k 36.3±0.8 57.5±0.4 55.4 25.9 43.8
sup-simcse-roberta-large K-means 10k 34.3±0.7 58.8±0.4 56.1 26.7 44.0

Llama-3.1-8B-Instruct K-means
100 39.4±0.7 57.6±0.4 55.5 26.1 44.7
500 36.0±0.5 59.6±0.3 56.4 26.5 44.6
1k 35.8±0.8 59.8±0.3 56.5 26.7 44.7

10k 36.5±0.6 59.0±0.3 57.3 26.2 44.8
HDBSCAN 991 39.4±0.5 60.3±0.3 55.9 27.2 45.7

Table 7: Comparison of different methods for mixing System-1 and System-2 responses using
sequence lengths of 8K and 16K.

No-Think Adaptive-Think Think
Sequence Length Mean Length Accuracy Mean Length Accuracy Mean Length Accuracy

System-1 8192 250.8 34±0.5 533.4 33.1±0.5 - -
System-1 16384 321.3 34±0.6 541.1 32.4±0.7 - -

System-2 8192 371.6 32.1±0.5 439.5 32.5±0.5 8510.2 37±0.6
System-2 16384 5133.7 36.3±0.5 7817 37.3±0.6 8740.6 37.6±0.6

Difficulty-based Mixing 8192 243.6 33.5±0.6 904.6 35.15±0.5 4735.4 38.2±0.5
Difficulty-based Mixing 16384 799.4 34.5±0.5 2033 35.1±0.6 7562.4 38.9±0.7

D Diversity using Semantic Embeddings based Clustering

In Table 6, we compare the performance of different clustering methods. Three popular embedding
models are considered: all-MiniLM-L6-v2 (Wang et al., 2020), SimCSE (Gao et al., 2022) and Llama-
3.1-8B-Instruct (Grattafiori et al., 2024). The embedding size of all-MiniLM-L6-v2 is 384, sup-
simcse-roberta-large is 1024 and Llama-3.1-8B-Instruct is 4096. After choosing the best embedding
model Llama-3.1-8B, we then experiment with different clustering methods. We use K-means
with different numbers of clusters: 100, 500, 1k, 10k. We also experiment with density-based
HDBSCAN (McInnes et al., 2017) clustering method. In each experiment, we use equal stratified
sampling to randomly sample same number of items from each cluster. The best combination of
Llama-3.1-8B-Instruct with HDBSCAN is reported in the main experiment Table 1.

E Reasoning strategy count ablation

The number of unique reasoning strategies found per training example is shown in Figure 8. We split
training examples into bucket Low (less than 5 strategies), Med (5-8 strategies) and High (more than
8 strategies) and perform SFT distillation. From Table 8 we observe that on average the Med category
performs the best. The fact that performance varies on different buckets indicates that the reasoning
strategy should align with specific tasks.

Table 8: Comparison of different reasoning strategy count sampling methods.

sampling method # examples GPQA-D MATH-500 MMLU Pro SuperGPQA

# Strategies=Low 10k 34.9±0.4 60.9±0.2 57.2 27.5
# Strategies=Med 10k 40.3±0.6 59.9±0.3 56.8 28.2
# Strategies=High 10k 38.2±0.5 60.8±0.3 57.4 27.6

F Limitations

Our experiments are conducted in the setting of off-policy distillation where the student model is
trained on the cross entropy loss from the teacher’s labels. Another commonly adopted approach
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{'Mathematics ': (1338522 , 49.92) ,
'Physics ': (443010 , 16.52) ,
'Computer Science and Technology ': (196323 , 7.32),
'Applied Economics ': (144020 , 5.37),
'Biology ': (60535 , 2.26),
'Chemistry ': (51152 , 1.91),
'Law ': (45345 , 1.69),
'Electronic Science and Technology ': (43368 , 1.62),
'Education ': (42881 , 1.6),
'Philosophy ': (38093 , 1.42),
'Mechanical Engineering ': (34756 , 1.3),
'Electrical Engineering ': (24703 , 0.92),
'Clinical Medicine ': (16956 , 0.63),
'Basic Medicine ': (16256 , 0.61),
'Astronomy ': (15106 , 0.56),
'Power Engineering and Engineering Thermophysics ': (14027 , 0.52),
'Mechanics ': (12406 , 0.46),
'Business Administration ': (11542 , 0.43),
'Theoretical Economics ': (10922 , 0.41),
'Information and Communication Engineering ': (9936, 0.37),
'Aeronautical and Astronautical Science and Technology ': (8535,

0.32),
'Civil Engineering ': (7997, 0.3),
'Control Science and Engineering ': (7701, 0.29),
'Language and Literature ': (7255, 0.27),
'Public Health and Preventive Medicine ': (6363, 0.24),
'Management Science and Engineering ': (6072, 0.23),
'Psychology ': (5744, 0.21),
'History ': (5271, 0.2),
'Geography ': (4998, 0.19),
'Sociology ': (4482, 0.17),
'Materials Science and Engineering ': (4458, 0.17),
'Optical Engineering ': (3987 , 0.15),
'Chemical Engineering and Technology ': (3541, 0.13),
'Geology ': (3340, 0.12),
'Hydraulic Engineering ': (3069 , 0.11),
'Transportation Engineering ': (2621, 0.1),
'Musicology ': (2178, 0.08),
'Crop Science ': (2176, 0.08),
'Art Studies ': (1966, 0.07),
'Atmospheric Science ': (1955 , 0.07),
'Physical Education ': (1939 , 0.07),
'Nuclear Science and Technology ': (1836, 0.07),
'Pharmacy ': (1572, 0.06),
'Geophysics ': (1493, 0.06),
'Environmental Science and Engineering ': (1269, 0.05),
'Systems Science ': (1106, 0.04),
'Political Science ': (804, 0.03),
'Naval Architecture and Ocean Engineering ': (727, 0.03),
'Animal Husbandry ': (706, 0.03),
'Public Administration ': (651, 0.02),
'Military Science ': (593, 0.02),
'Oceanography ': (576, 0.02),
'Architecture ': (532, 0.02),
'Food Science and Engineering ': (482, 0.02),
'Petroleum and Natural Gas Engineering ': (441, 0.02),
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'Surveying and Mapping Science and Technology ': (405, 0.02),
'Journalism and Communication ': (374, 0.01),
'Textile Science and Engineering ': (328, 0.01),
'Stomatology ': (275, 0.01),
'Metallurgical Engineering ': (266, 0.01),
'Forestry ': (170, 0.01),
'Weapon Science and Technology ': (137, 0.01),
'Veterinary Medicine ': (133, 0.0),
'Instrument Science and Technology ': (125, 0.0),
'Aquaculture ': (125, 0.0),
'Library , Information and Archival Management ': (110, 0.0),
'Physical Oceanography ': (98, 0.0),
'Traditional Chinese Medicine ': (69, 0.0),
'Mining Engineering ': (68, 0.0),
'Agricultural Engineering ': (63, 0.0),
'Forestry Engineering ': (48, 0.0),
'Geological Resources and Geological Engineering ': (24, 0.0)}

Figure 11: Domain distribution(count and percentage) among all the questions.

in knowledge distillation is on-policy distillation (Agarwal et al., 2023), where the student model
is trained to match the logits of the teacher model computed given a partial context generated by
the student. Future work should verify whether the same findings hold in the on-policy setting. The
implications of selecting distillation examples can be further explored by conducting reinforcement
learning following the SFT distillation stage with curated reasoning data.
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Question: A weight is attached to a string and spun vertically in a
gravity field. Describe the resultant force acting on the weight

at the leftmost and rightmost positions of its circular motion , and
explain why the resultant force does not always point towards the

center of the circle.

"Okay , so I have this problem where a weight is attached to a
string and spun vertically in a gravity field. I need to describe
the resultant force acting on the weight at the leftmost and
rightmost positions of its circular motion. Also , I have to explain
why the resultant force doesn 't always point towards the center of
the circle. Hmm , let me think about this step by step.

First , I remember that when an object moves in a circular path , it
experiences a centripetal force directed towards the center of the
circle. This centripetal force is necessary to keep the object
moving in a circular path instead of a straight line. In many cases
, like when spinning a ball horizontally , the tension in the string
provides the centripetal force. But in this case , it's a vertical

circle , so gravity must play a role here.

At different points in the vertical circle , the forces acting on
the weight will be different because gravity is always acting
downward , whereas the tension in the string will vary depending on
the position. Let me try to visualize this. When the weight is at
the top of the circle , both tension and gravity are acting downward
. At the bottom , tension acts upward and gravity downward. At the
leftmost and rightmost positions , which are the sides of the circle
, the string is horizontal , right? So gravity is still acting
downward , and tension is along the string towards the center. Wait ,
but if the weight is at the leftmost point , the center is to the

right , so tension is to the right , gravity is down. So the
resultant force would be the combination of tension and gravity.
Similarly , at the rightmost point , tension is towards the left , and
gravity is still down.

But the question is about the leftmost and rightmost positions. Let
me focus on those. So in these positions , the weight is moving

either upward or downward? Wait , at the leftmost point , if the
weight is moving in a vertical circle , the direction of motion is
either up or down , depending on whether it's moving clockwise or
counterclockwise. Let 's assume it's moving in a vertical circle in
such a way that when it's at the leftmost point , it's moving
downward , and at the rightmost point , it's moving upward. Wait ,
that might not be right. Let me clarify.

In vertical circular motion , when you spin something around , at the
top , the velocity is to the left or right , and at the bottom , it's
the opposite. So actually , at the leftmost point , the velocity is

downward , and at the rightmost point , it's upward? Hmm , maybe.
Alternatively , if we're considering the standard vertical circle
where you start from the bottom and go up, then at the top , the
velocity is to the left , at the bottom to the right , so the
leftmost and rightmost points would have velocity upward and
downward? Wait , perhaps it's better to parametrize the motion.

29



Alternatively , perhaps more straightforwardly , at any point in the
circular motion , the direction of the velocity is tangential to the
circle. So at the leftmost point , the velocity is straight down ,

and at the rightmost point , it's straight up. Wait , no. If the
circle is vertical , the top of the circle is highest point , bottom
is lowest. Then , leftmost and rightmost points are at the sides. So
when the object is at the leftmost point , moving down from the top
to the bottom , the velocity direction is downward. Wait , actually ,
at the leftmost point , the velocity is in the downward direction?

Wait , no, in a circle , the direction of velocity is tangent to the
circle. So at the leftmost point , if you imagine a circle , the
tangent is vertical , pointing down on the left and up on the right.
Wait , no. Wait , maybe I should draw this mentally.

Consider a circle on a vertical plane. The top point has velocity
to the left or right , depending on the direction of rotation.
Suppose the weight is moving clockwise. Then at the top , velocity
is to the right; at the bottom , to the left; at the leftmost point ,
velocity is downward; at the rightmost point , velocity is upward.

If it's counterclockwise , then at the top , velocity is to the left;
bottom to the right; leftmost upward; rightmost downward. So

depending on direction , the velocity direction at those side points
is either up or down. Hmm.

But regardless , in terms of the forces acting on the weight at the
leftmost and rightmost positions: At each of these points , the
forces acting are tension in the string and gravity. The tension is
directed towards the center of the circle , which at leftmost

position is towards the right , and at the rightmost position is
towards the left. Gravity is always acting downward , with magnitude
mg. So at these two points , the tension provides the centripetal

force component , but gravity acts perpendicular to the tension?
Wait , at the leftmost and rightmost points , gravity is vertical and
tension is horizontal. Therefore , the two forces are perpendicular
to each other at these points. Therefore , the resultant force

would be the vector sum of the horizontal tension and the vertical
gravitational force. So in that case , the resultant force is not
purely towards the center , because you have two components: one
towards the center (tension) and one downward (gravity). So the
resultant force would be the combination of these two , hence not
pointing towards the center. But wait , isn 't centripetal
acceleration still required? Let me think.

Wait , in uniform circular motion , the net force must be centripetal
, but in non -uniform circular motion , such as when there is
tangential acceleration , the net force has both centripetal and
tangential components. In this case , when you spin a weight
vertically , the speed is not constant because gravity does work on
the object , speeding it up as it comes down and slowing it down as
it goes up. Therefore , the motion is not uniform , so there is a
tangential component of acceleration , which means the net force has
both a centripetal component (towards the center) and a tangential
component (tangent to the circle).
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Therefore , at the leftmost and rightmost points , the weight is
experiencing both a centripetal force (due to tension) and a
gravitational force (downward). Since these are perpendicular , the
resultant force is the combination of the two. However , wait , at
the leftmost and rightmost positions , is there a tangential
acceleration? Let 's see. If the object is moving in a circle with
varying speed , then the tangential acceleration is present. At the
leftmost point , if the object is moving downward (in a clockwise
rotation), then the gravitational force has a component along the
direction of motion , which would cause a tangential acceleration.
Wait , but at the exact leftmost point , the velocity is purely
downward , and gravity is acting straight down. However , the tension
at that point is horizontal. So at that exact point , the

gravitational force is entirely tangential (since the tangent at
the leftmost point is vertical). Therefore , the gravitational force
is entirely contributing to the tangential acceleration , while the
tension provides the centripetal force. But wait , if that 's the

case , then the net force would have two components: tension (
centripetal) and gravity (tangential). Hence , the resultant force
isn 't purely towards the center , which is why the problem states
that the resultant force does not always point towards the center.

Similarly , at the rightmost point , the velocity is upward (for
clockwise motion), and gravity is acting downward. At the exact
rightmost point , the velocity is purely upward , tangent to the
circle. Gravity is acting downward , which is opposite to the
direction of motion. Therefore , gravity here is providing a
tangential deceleration , again contributing to a tangential
component of acceleration. Tension here is horizontal towards the
center (leftward at the rightmost point). Thus , again , the
resultant force is a combination of the tension (centripetal) and
gravity (tangential), resulting in a net force that is not purely
centripetal.

Therefore , at the leftmost and rightmost positions , the resultant
force on the weight is the vector sum of the tension force (
directed towards the center of the circle) and the gravitational
force (directed downward). Since these forces are perpendicular to
each other , the resultant force vector will point in a direction
that is a combination of centripetal (horizontal) and tangential (
vertical) components. This resultant force is not purely towards
the center because of the gravitational force acting downward ,
which introduces a tangential component. Hence , the net force is
not centripetal at these points but has both centripetal and
tangential components , leading to a resultant force that does not
point directly towards the center of the circle.

But wait , let me make sure. Let 's take the leftmost point: the
tension is to the right (centripetal direction), gravity is down.
The net force is the vector sum of these two. So the resultant
force would be diagonally right and down. Similarly , at the
rightmost point , tension is to the left , gravity is down , so net
force is diagonally left and down. So neither of these resultant
forces points directly towards the center of the circle. Therefore ,
the reason the resultant force doesn 't always point towards the

center is that , in vertical circular motion , gravity acts downward
and is not aligned with the string 's tension , introducing a
tangential component to the net force at positions where the string
is horizontal (leftmost and rightmost points). In contrast , at the
top and bottom , gravity is either aligned with or opposite to the

tension , leading to net forces that are centripetal (if we consider
the bottom , where tension upwards minus weight provides

centripetal; at the top , tension plus weight if any provides
centripetal). Wait , but at the top , if the tension is insufficient ,
the weight might not complete the circle. But assuming it's in

motion , then the net force at top and bottom is still towards the
center , but at the sides , the net force is a combination of
centripetal and tangential components.
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Wait , to summarize: In vertical circular motion , due to gravity ,
the net force (resultant force) has both centripetal and tangential
components except at the top and bottom , where gravity is along

the vertical axis. At the leftmost and rightmost positions , the
tension is horizontal , gravity is vertical , so their vector sum is
not purely horizontal (towards the center), hence the resultant
force points towards the center and downward , making it not purely
centripetal but a combination.

Therefore , the answer would be that at the leftmost and rightmost
positions , the resultant force is a combination of the tension
force towards the center and the gravitational force downward. The
resultant force does not always point towards the center because
gravity introduces a tangential component to the net force at these
positions.

I need to make sure there 's no error here. Another way to think
about it is, in uniform circular motion , the net force must be
centripetal , but when the motion is non -uniform (speed changing),
there is a tangential component. Since gravity causes the speed to
change as the weight moves around the circle , the motion is non -
uniform , hence the net force has tangential components. At leftmost
and rightmost positions , the tangential component is vertical (due
to gravity), so indeed the net force has both centripetal and

tangential parts , resulting in a non -centripetal resultant
direction.

Yes , that makes sense. Therefore , the conclusion is correct.
</think >

At the leftmost and rightmost positions of the weight 's vertical
circular motion , the ** resultant force** is the vector sum of two
forces:
1. ** Tension ** in the string , directed horizontally toward the
center of the circle.
2. ** Gravity ** (weight), acting vertically downward.

Since these forces are perpendicular to each other , the resultant
force vector points diagonally ** toward the center and downward **
at the leftmost position and diagonally ** toward the center and
downward ** at the rightmost position (due to gravity 's consistent
downward pull). This resultant force has both a ** centripetal
component ** (from tension) and a ** tangential component ** (from
gravity).

**Why the resultant force does not always point toward the center
:**
In vertical circular motion , gravity introduces a ** tangential
acceleration ** component at positions where the string is
horizontal (leftmost and rightmost points). This tangential
component causes the speed of the weight to change (increase on the
descending side and decrease on the ascending side), making the

motion non -uniform. Consequently , the net force must account for
both the centripetal force required for circular motion and the
tangential force due to gravity. The resultant force vector
therefore does not point purely toward the center but instead
combines centripetal and tangential directions.

At the top and bottom of the circle , gravity aligns with the radial
direction , resulting in a purely centripetal net force. However ,

at the sides (leftmost and rightmost points), gravity acts
tangentially , leading to the non -centripetal resultant force."

Reasoning Strategies: ['self -verification ', 'backtracking ', '
synthesis ', 'discussion ', 'exploration ', 'analysis ', 'calculation ',
'explanation ', 'generalization ']

Figure 12: Reasoning trace with high count of reasoning strategies, and annotated reasoning strategies.
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