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Abstract

Systematic reviews (SR), in which experts summarize and analyze evidence across
individual studies to provide insights on a specialized topic, are a cornerstone for
evidence-based clinical decision-making, research, and policy. Given the exponen-
tial growth of scientific articles, there is growing interest in using large language
models (LLMs) to automate this process. However, the ability of LLMs to critically
assess evidence and reason across multiple documents to provide expert-quality
observations remains poorly characterized. We therefore ask: Can LLMs match
the conclusions of systematic reviews written by clinical experts when given
access to the same studies? To explore this question, we present MedEvidence,
a benchmark pairing findings from SRs with the studies they are based on. We
benchmark 24 LLMs on our MedEvidence dataset, including reasoning, medical
specialist, and models of varying sizes. We find that reasoning does not necessarily
improve performance, larger models do not consistently yield greater gains, and
knowledge-based fine-tuning tends to degrade accuracy on MedEvidence. Instead,
most models exhibit similar behavior: performance tends to degrade as token
length increases, their responses show overconfidence, and all models show a lack
of scientific skepticism toward low-quality findings. These results suggest that
more work is still required before LLMs can reliably match the observations from
expert-conducted SRs, even though these systems are already deployed and being
used by clinicians.

1 Introduction

As the number of published articles grows exponentially [[1], manually synthesizing findings from
multiple sources has become highly time-consuming. Thus, there is growing interest in developing
automatic tools to process, synthesize, and extract insights from scientific literature [2, 3]. In
particular, large language model (LLM)-based systems could offer a promising solution for supporting
and automating tasks such as conducting systematic reviews (SRs). For example, several LLM-
assisted tools such as Deep Research [4, 13]], Elicit [[6], and Open Evidence [7], have already been
deployed. The momentum behind these technologies is further exemplified by the U.S. Food and
Drug Administration’s launch of an LLM-assisted scientific review pilot on May 2025 [8]].

However, despite multiple deployments and efforts assessing scientific synthesis generation, the
behavior of LL.Ms across key variables that influence generation remains poorly understood. In
particular, their ability to synthesize findings from multiple studies—each varying in study type,
population size, and risk of bias—and to navigate conflicting evidence (as medical findings can often
contradict one another) is not well-characterized. Understanding these behaviors is essential, as
medical knowledge is continually reshaped by new clinical trials, cohort studies, and expert opinions.
Thus, like medical professionals do, LLMs must be capable of integrating the latest findings (e.g.
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Figure 1: Core skills evaluated by MedEvidence including: medical domain expertise across 10
different specialties, synthesizing conflicting evidence, and applying scientific skepticism when
studies exhibit a high risk of bias (e.g. due to small sample sizes or insufficient supporting evidence).

via retrieval augmentation) [9], weighing the strength of varying evidence, and applying appropriate
skepticism when needed to produce reliable, up-to-date recommendations (as shown in Figure|[T).

While prior work has successfully evaluated LLMs on their internal "static" medical knowledge 1O\
11], assessing LLMs’ capability to reason across multiple sources and draw expert-level conclusions
remains a significant challenge. Specifically, previous efforts have often evaluated LLMs’ ability
to generate summaries on a given topic. This approach requires a thorough review of every detail
in the generated content and lacks easily verifiable ground truth; therefore, medical experts are
typically needed to assess output accuracy [[12}[13} 14,15/ [16], making evaluation time-consuming
and hard to scale. To address this, we remove the complexity of evaluating long-format summaries
and retrieving relevant papers to pose an even simpler, but fundamental question: Can LLMs
replicate the individual conclusions of expert-written SRs when provided with the same source
studies? We explore this question in a controlled setting by collecting open-access SRs along with
their associated reference articles. We then extract individual findings and reformat them into a closed
question-answering (QA) task to enable straightforward evaluation. This allows us to test whether
LLMs, when provided with the same evidence selected by experts, can reproduce each conclusion.
To this end, we introduce the following contributions:

e MedEvidence Benchmark We introduce MedEvidence, a human-curated benchmark of 284
questions curated from the conclusions of 100 open-access SRs across 10 medical specialties.
Each question evaluates comparative treatment effectiveness on clinical outcomes. All questions
are manually transformed into closed-form question answering to enable large-scale evaluation.
In addition, human annotators extract evidence quality (based on the SR’s analysis), determine
whether full-text access is necessary, and collect the relevant sources needed to replicate the SR
findings.

* Large-scale evaluation on MedEvidence We leverage MedEvidence to perform an in-depth
analysis of 24 LLMs spanning general-domain, medical-finetuned, and reasoning models. By
utilizing MedEvidence’s metadata, we dissect and examine success and failure modes, helping to
identify targeted directions for future work.
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Table 1: Comparison of factuality and evidence reasoning benchmarks with medical focus. We
compare MedEvidence to prior datasets across attributes relevant to systematic review-style reasoning.
MedEvidence is the only dataset to satisty all criteria.

Expert-Grounded ~ Automated Multiple  Evidence ~ Source-Level

Dataset Size Topic Curation Answer Evaluation Sources  Quality = Concordance
Reason et al. 4 Medicine Human 4 X 4 X X
Schopow et al. 1 Medicine Human 4 X 4 X X
MedREQAL 2786 Medicine LLM v v X 4 X
HealthFC 750  Consumer Health ~ Human 4 v X v X
ConflictingQA 238 Multi-Domain LLM X X 4 X 4
MedEvidence 284 Medicine Human v v v v v

2 Related work

An overview of related works and the key distinct contributions of our current work are summarized
in Table[Il

LLM-based medical systematic review Numerous studies have explored the potential of LLMs to
automate various aspects of scientific literature review, including literature search, query augmenta-
tion, screening, data extraction, bias assessment, narrative synthesis, and answering simple clinical
inquiries [[17,[18]]. However, larger-scale evaluations of LLM-based SR or meta-analyses generation
remain relatively underexplored. Reason et al. [12]] examined the ability of LLMs to extract numerical
data from abstracts and generate executable code to perform meta-analyses. While their results are
promising, the study is limited to just four individual case studies. Schopow et al. [13] and Qureshi et
al. [14] investigate LLM usage across a range of systematic review stages, including meta-review and
narrative evidence synthesis, but also present findings on a very small-case study scale (/N < 10) and
rely on comparison to humans. Overall, these investigations have been limited in scope and require
substantial amounts of review from medical experts, highlighting the need for automated benchmarks
to help evaluate LLMs’ progress.

Verification of medical facts derived from systematic reviews Several studies have leveraged SRs
to benchmarked LLMs’ ability to perform medical fact verification, where a model must decide
whether to support or refute a given claim. For instance, MedREQAL [19] is an LLM-curated closed
QA dataset designed to investigate how reliably models can verify claims derived from Cochrane
SRs. However, it does not provide the sources used by the SRs. Instead, the dataset evaluates
models on their internal knowledge, making the task a form of fact recall. HealthFC [20]], on the
other hand, tasks models with verifying claims analyzed by the medical fact-checking site Medizin
Transparent, but it only provides pre-synthesized analysis from the web portal as evidence. In contrast
to real SR generation, this task primarily involves retrieving information from a pre-synthesized
source, removing the real complexity of reasoning across unsynthesized evidence. Unlike prior work,
MedEvidence requires extracting, reasoning over, and synthesizing relevant information across single
or multiple sources (each with different levels of evidence) to match the expert-derived conclusion of
a SR (without access to the original SR itself). It resembles the intricacies of SR analysis, as the raw
sources (articles/abstracts) are directly provided to the model.

LLM Behavior in the Presence of Conflicting Sources ConflictingQA [21]] examines how models
respond to conflicting arguments supporting or refuting a claim. However, it focuses on inherently
contentious questions without definitive answers, spans domains beyond medicine, and uses diverse
online sources rather than peer-reviewed literature. ClashEval [22]] investigates conflicts between
a model’s internal knowledge and external evidence, including a drug-related (medical) subset, but
limits evaluation to single-source conflicts with artificially perturbed values. ConflictBank [23]] and
KNOT [24] assess model performance on specific conflict types—such as temporal inconsistencies,
misinformation, and logic-based contradictions—but rely on factoid-style questions sourced from
Wikipedia.These benchmarks only leverage relatively small and synthesized inputs.

To the best of our knowledge, no existing studies or datasets provide richly annotated data to
systematically benchmark models’ ability to align with the conclusions of medical systematic reviews
while using the same underlying research documents as the original medical experts.
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Figure 2: Overview of the dataset curation process for MedEvidence.

3 Dataset Curation Process

Data provenance We collect open-source systematic reviews, available via PubMed, conducted by
Cochrane, an international non-profit organization dedicated to synthesizing evidence on healthcare
interventions through contributions from over 30,000 volunteer clinician authors [23]]. Cochrane is a
long-standing and widely respected source of clinical evidence [27), offering open-access content
and analyses presented in a standardized format. Additionally, for each SR, we collect all the cited
studies that are relevant for a given conclusion (we refer to these studies as ‘sources’). When the
source article’s full text is available (i.e. the article is open-source), we obtain it using the existing
BIOMEDICA dataset [28]]; otherwise, abstracts are retrieved directly via PubMed’s Entrez API [29].
All retrieved full-text articles use a CC-BY 4.0 license, which allows for re-distribution.

Dataset curation pipeline The core challenge in creating our dataset is ensuring that an LLM is
provided with sufficient information to reproduce a given conclusion. To ensure a high-quality dataset,
we developed a four-stage pipeline consisting of: (1) systematic review selection, (2) conclusion to
questions conversion, (3) relevant study selection, and (4) question feasibility validation (as shown in

Figure[2).

1. Systematic review selection We use Entrez to retrieve all Cochrane SRs published between
January 1, 2014 to April 4, 2024 [30]. We only include systematic reviews for which all
sourced studies are indexed in PubMed (with at least an abstract available). We additionally
retrieve all data and metadata for the sourced studies, including: full-text via BIOMEDICA
(when it is available), abstract, mesh terms, title, and publish date.

2. Conclusion to question conversion. Cochrane reviews follow a standardized format,
allowing for a systematic conversion process. To identify potential questions, we followed
the protocol below: Human annotators were instructed to review the SR abstract and examine
the "Main Results" subsection (see Appendix Figure[9]for an example) to identify individual
conclusive statements that statistically compare an intervention with a control group. These
individual statements were then converted into question—answer pairs by the annotators, with
answers belonging to a fixed set of classes. To be clear, insufficient data was used for
statements by the SR authors explicitly indicating that no study investigated—or included
sufficient data to analyze—the combination of treatment, control, and outcome; uncertain
effect referred to cases where analysis was performed but definitive conclusions could
not be made (see Appendix Section [B.3|for more conversion details). Evidence certainty
was extracted only when it was explicitly provided by the original SR authors, who use
the standardized GRADE framework to assess the quality of evidence in the included
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studies. This certainty is often stated in the abstract, indicating the strength or quality of
each observation.

3. Relevant study selection To identify relevant studies for a given SR, annotators used the
analysis section provided in the appendix, which "weighs" the contributions of sources
supporting each conclusion. For questions with insufficient data (where it is not possible
to determine weights), reviewers were instructed to include studies cited in the SR that
either (1) discuss the specified treatment and control but not the outcome, or (2) evaluate the
treatment and outcome but compare against a different control.

4. Question feasibility validation Finally, given the question—answer pair and the source
studies, annotators were tasked with determining whether the question was answerable
based on the provided information. A question was considered answerable if at least 75% of
the total weight in the analysis came from "valid" studies included in the meta-analysis. We
define a study as "valid" if it (1) provides numerical data on both the intervention and control
groups specified in the question, and (2) includes statistical or numerical details about the
difference between the groups on the specified outcome—such as raw counts, p-values,
confidence intervals, or risk ratios. The most common reason for discarding conclusions
was when review authors pooled outcome data across studies, but the outcome was omitted
or discussed without clear statistical detail in the abstracts of relevant studies.

In addition to these human-curated metadata, we use an LLMs to assess the percentage of individual
source studies whose answer to the question aligns with the final answer provided in the systematic
review. Thus, to calculate source-level agreement (which we call ‘source concordance’) we prompt
DeepSeekV3 (the strongest model in our benchmark) to answer the question using only one single
relevant source; the source is deemed to ‘agree’ with the final answer if and only if the LLM’s
classification with the one source matches the ground truth classification.

Medical domain taxonomy assignment To identify the relevant medical specialties in our dataset,
we extract the Medical Subject Headings (MeSH terms)—a controlled vocabulary used by PubMed
to index papers—from the 100 systematic reviews included in our dataset. We then feed this list into
DeepSeek to generate a simplified categorization of specialties, resulting in 10 categories. Finally,
we prompt DeepSeek to assign each question to the most relevant category, or to an "Other" category
if no specific specialization is applicable.

4 Dataset Description

Table 2: Sample question from the dataset. Fields marked with an asterisk (*) use LLMs to assist the
generation. Relevant source details are omitted here for brevity.

Question Is stroke prevention higher, lower, or the same when comparing Tran-
scatheter Device Closure (TDC) to medical therapy?
Answer no difference

Relevant Sources (PubMed IDs) 22417252, 23514285, 23514286
Systematic Review (PubMed ID) 26346232

Review Publication Year 2015
Evidence Certainty n/a
Open-Access Full-Text Needed no
*Source Concordance 1.0
*Medical Specialty Surgery

MedEvidence contains a total of 284 questions derived from 100 systematic reviews with 329
referenced individual articles, of which 114 have full-text available (see Appendix Figure 8 for a
cohort diagram of the dataset). Questions were systematically collected by three human annotators
with between one and five years of graduate education. Figure [3 shows the dataset distribution
stratified by specialty, outcome effect, and source concordance with the expert-assessed treatment
outcome effect (i.e. the correct answer). The benchmark covers topics from 10 medical specialties
(e.g. public health, surgery, family medicine, etc.), five different outcome effects (higher, lower, no
difference, uncertain effect, insufficient data), and three broad levels of concordance
between the source paper and the correct answer (full agreement, no agreement, mixed agreement).
Additional characteristic distributions of the dataset can be found in Appendix Figure
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Figure 3: Key statistical characteristics of the questions in MedEvidence. (a) shows the dataset
distribution stratified by medical specialty. (b) presents the distribution stratified by outcome effect.
(c) shows the distribution stratified by source concordance with the expert-assessed treatment outcome
effect (i.e. the correct answer).

Data format. MedEvidence is grouped by question; each question includes core data for evaluation,
metadata, as well as the content details for the relevant sources. The core data consists of: a human-
generated question of the form “Is [quantity of medical outcome] higher, lower, or the same when
comparing [intervention] to [control]?"; the taxonomized answer to the question (higher, lower, no
difference, uncertain effect, insufficient data); and the list of relevant studies (sources)
used by the review authors to perform the analysis, identified by their unique PubMed IDs. We
additionally provide the following metadata: the systematic review from which the question was
extracted; the publication year of the systematic review; the authors’ confidence in their analysis, also
referred to as the ‘evidence certainty’ (high, moderate, low, very low, or n/a if not provided); a
Boolean identification of whether full-text is available and needed to answer the question; the exact
fractional source concordance; and the medical specialty associated with the question. Separately,
for each source, we provide the unique PubMed ID, title, publication date if available, and content
(full-text if available in PMC-OA, abstract otherwise). An individual data point example is shown in
Table

S Benchmarking LLM performance

5.1 Experimental settings

LLM selection We selected 24 LLMs across different configurations, including a variety of sizes
(from 7B to 671B), reasoning and non-reasoning capabilities, commercial and non-commercial licens-
ing, and medical fine-tuning. This selection includes GPT-o1 [32]], DeepSeek R1 [33]], OpenThinker2
[34], GPT-4.1 [33]], Qwen3 [36], Llama 4 [37]], HuatuoGPT-o01 [38]], OpenBioLLM [39], and more
(please see Appendix Table[3]to see details of all selected models). This selection is non-exhaustive;
rather, it is designed to investigate overarching trends across different model types.

Prompting setup

1. Basic prompt We evaluated all models in a zero-shot setting, prompting them to first provide
a rationale for their answer, followed by an ‘answer’ field containing only one option from
the list of five valid treatment outcome effects (higher, lower, no difference, uncertain
effect, or insufficient data). To assess the models’ “natural” behavior, we provided minimal
guidance in the prompt beyond specifying the required response format, and supplied the
abstracts or full text of the relevant studies as context (see Appendix Figure [TT).

Mixed agreement
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Figure 4: (a) Average model accuracy (and 95% interval) on MedEvidence. (b) Average recall by
ground truth treatment outcome effect, aggregated across all models (with overall 95% interval).
Per-model average recall by treatment outcome effect can be found in Appendix Figure
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Figure 5: (a) Accuracy as a function of evidence certainty, shows a monotonically increasing trend.
(b) Accuracy as a function of source concordance, defined as the percentage of relevant sources that
agree with the final systematic review (SR) answer, also exhibits a monotonically increasing trend.

2. Expert-guided prompt LL.Ms may not natively understand how to handle multiple levels
of evidence, which can lead to unfair evaluations. To address this, we explicitly design a
prompt that instructs the LLM to summarize the study design and study population, and to
assign a grade of evidence based on established definitions of grades of recommendation
(see Appendix Figure [I2]for the full prompt).

For both cases, if the input exceeded the LLM’s context window, we used multi-step refinement (via
LangChain’s RefineDocumentsChain [40]]) to iteratively refine the answer based on a sequence of
article chunks. All models were evaluated with zero temperature to maximize reproducibility.

LLM evaluation Model performance was evaluated using accuracy based on an exact match between
the answer field and the ground truth. Model outputs were lower-cased and stripped of whitespace
before comparison. If no ‘answer’ field was provided, or if its content was not an exact rule-based
match with the correct answer, the output was deemed incorrect. Confidence intervals (CIs) were
calculated via bootstrap (95%, N=1000) [41]].

Compute Environment Experiments were performed in a local on-prem university compute environ-
ment using 24 Intel Xeon 2.70GHz CPU cores, 8 Nvidia H200 GPUs, 16 Nvidia A6000 GPUs, and
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40 TB of Storage. Large-scale models that could not be run locally in this environment were queried
in the cloud using public APIs available from together.ai or OpenAl

6 Discussion
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rameters. We explore each of these factors in more
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Figure 6: Medically-finetuned models vs their
base generalist counterparts. Pairs of medical

Model performance decreases as token length in-

creases Generally, performance on MedEvidence drastically reduces as the number of tokens in-
creases (Appendix Figure[T6). Naturally, training LLMs on long contexts does not guarantee improved
long-context understanding, as models may still struggle to utilize information from lengthy inputs
[42]143].

Model performance dependency on treatment outcome effect Figure|4 (b) shows the per-class
recall stratified by treatment outcome effect. Overall, all models perform best on questions where the
correct answer corresponds to higher or lower effects—cases where a strong stance can be taken.
They are slightly less successful on no difference and insufficient data questions, where a
definitive conclusion is available but there is no clear preference for either treatment. Performance is
lowest on the most ambiguous class, uncertain effect. Notably, as shown in Appendix Figure[I5]
models are generally reluctant to express uncertainty, often committing to a more certain outcome that
appears plausible. Notably, previous work has observed LLMs are verbally overconfident [44), 45]]
and shown that reinforcement learning via human feedback (RLHF) amplifies this effect [46].

Model performance improves with increasing levels of evidence We leverage the evidence certainty
levels reported by experts in each systematic review (SR). As shown in Figure[5(a), the overall ability
of models to match SR conclusions improves as the level of evidence increases. We therefore explore
whether model performance is also associated with the level of source concordance. As shown in
Figure [5(b), models’ ability to match human conclusions increases as the proportion of sources
agreeing with the correct answer increases (e.g., DeepSeek V3 achieves 92.45% accuracy at 100%
source agreement vs. 41.21% at 0% source agreement). This suggests that, unlike human experts,
current LLMs struggle to critically evaluate the quality of evidence and to remain skeptical of results.
We observe that this behavior persists even when models are prompted (using the expert-guided
prompt) to consider study design, population, and level of evidence (Appendix Figure[20).

Medical finetuning does not improve performance Figure|6 compares the average performance
of medically finetuned models to their base model counterparts. Across all comparisons, medical
finetuning fails to improve performance (even for medical-reasoning models) and, in most cases,
actually degrades it. Indeed, fine-tuning without proper calibration can harm generalization, some-
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Figure 7: Average model accuracy on MedEvidence as a function of model size. We observe
diminishing returns beyond 70 billion parameters.

times resulting in worse performance than the base model [47, 148} 149]. Similar behavior has been
previously reported in long-context medical applications [[11]].

Model size shows diminishing returns beyond 70B parameters As shown in Figure[7] within the
same model families, increasing size from 7B to 70B parameters yields substantial accuracy gains
on MedEvidence. However, beyond this point, we observe rapidly diminishing returns, both within
specific model families and across our suite of evaluated models more broadly.

Combined, our results suggest that synthesizing information across sources to match individual
systematic reviews’ conclusions eludes current scaling paradigms. Increasing test-time compute (i.e.,
reasoning) does not necessarily improve performance, larger models do not consistently yield greater
gains, and knowledge-based fine-tuning tends to degrade performance. Instead, most models exhibit
similar behavior: model performance tends to degrade as token length increases, their responses show
overconfidence, and all models exhibit a lack of scientific skepticism toward low-quality findings.
These results suggest that more work is still required before LLMs can reliably match the observations
from expert-conducted SRs, even though LLM systems are already deployed and being used by
clinicians.

Limitations Our study has several limitations. First, the dataset is subject to selection bias, as we only
include a SR if all its sources are available (either full text/abstract). Second, while our benchmark
is designed to isolate and provide a controlled environment to test LLMs’ ability to reason over the
same studies experts used to derive conclusions, it does not assess the full SR pipeline, including
literature search, screening, or risk-of-bias assessment. Future work could incorporate multi-expert
consensus or update findings based on newer studies to strengthen benchmark reliability.

7 Conclusion

Benchmarks drive advancements by providing a standard to measure progress and enabling re-
searchers to identify weaknesses in current approaches. While LLMs are already deployed for
scientific synthesis, our understanding of their failure modes still requires broader investigation. In
this work, we present MedEvidence, a benchmark derived from gold-standard medical systematic
reviews. We use MedEvidence to characterize the performance of 24 LLMs and find that, unlike
humans, LLMs struggle with uncertain evidence and cannot exhibit skepticism when studies present
design flaws. Consequently, given the same studies, frontier LLMs fail to match the conclusions of
systematic reviews in at least 37% of evaluated cases. We release MedEvidence to enable researchers
to track progress.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The Abstract and Introduction [I{accurately reflect the main contributions and
scope of this paper. We assess whether large language models can match the conclusions of
medical systematic reviews. To do this, we collect a human-curated dataset of observations
from expert-written and published systematic reviews. We observe that while performance
can be saturated in certain agreement, we also observe that LLMs struggle to be skeptical of
studies with major limitations and struggle to handle different levels of evidence, suggesting
that LLMs struggle to match human experts when they create systematic reviews.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Potential limitations of this work and outlined future directions to enhance our
benchmark are presented in the Limitations section|5.1

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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494 3. Theory assumptions and proofs

495 Question: For each theoretical result, does the paper provide the full set of assumptions and
496 a complete (and correct) proof?

497 Answer: [NA]

498 Justification: This is an empirical study. Thus, theoretical results are not derived.

499 Guidelines:

500 * The answer NA means that the paper does not include theoretical results.

501 * All the theorems, formulas, and proofs in the paper should be numbered and cross-
502 referenced.

503 * All assumptions should be clearly stated or referenced in the statement of any theorems.
504 * The proofs can either appear in the main paper or the supplemental material, but if
505 they appear in the supplemental material, the authors are encouraged to provide a short
506 proof sketch to provide intuition.

507 * Inversely, any informal proof provided in the core of the paper should be complemented
508 by formal proofs provided in appendix or supplemental material.

509 e Theorems and Lemmas that the proof relies upon should be properly referenced.

510 4. Experimental result reproducibility

511 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
512 perimental results of the paper to the extent that it affects the main claims and/or conclusions
513 of the paper (regardless of whether the code and data are provided or not)?

514 Answer: [Yes]

515 Justification: In Sections E and E, we explicitly mention how the dataset was curated, its
516 statistics, and the metrics we used for evaluation, as well as the methods for quantifying
517 uncertainty.

518 Guidelines:

519 » The answer NA means that the paper does not include experiments.

520 * If the paper includes experiments, a No answer to this question will not be perceived
521 well by the reviewers: Making the paper reproducible is important, regardless of
522 whether the code and data are provided or not.

523 * If the contribution is a dataset and/or model, the authors should describe the steps taken
524 to make their results reproducible or verifiable.

525 * Depending on the contribution, reproducibility can be accomplished in various ways.
526 For example, if the contribution is a novel architecture, describing the architecture fully
527 might suffice, or if the contribution is a specific model and empirical evaluation, it may
528 be necessary to either make it possible for others to replicate the model with the same
529 dataset, or provide access to the model. In general. releasing code and data is often
530 one good way to accomplish this, but reproducibility can also be provided via detailed
531 instructions for how to replicate the results, access to a hosted model (e.g., in the case
532 of a large language model), releasing of a model checkpoint, or other means that are
533 appropriate to the research performed.

534 * While NeurIPS does not require releasing code, the conference does require all submis-
535 sions to provide some reasonable avenue for reproducibility, which may depend on the
536 nature of the contribution. For example

537 (a) If the contribution is primarily a new algorithm, the paper should make it clear how
538 to reproduce that algorithm.

539 (b) If the contribution is primarily a new model architecture, the paper should describe
540 the architecture clearly and fully.

541 (c) If the contribution is a new model (e.g., a large language model), then there should
542 either be a way to access this model for reproducing the results or a way to reproduce
543 the model (e.g., with an open-source dataset or instructions for how to construct
544 the dataset).

545 (d) We recognize that reproducibility may be tricky in some cases, in which case
546 authors are welcome to describe the particular way they provide for reproducibility.
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide open access to the code via a GitHub repository and release the
dataset on HuggingFace Datasets. Along with the paper, the provided code and data are
sufficient to reproduce the main results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: While we do not train a model, we do specify the provenance, size, and
statistics of the dataset we used for evaluation in Section . Furthermore, we specify the
parameters used to do inference with the large language models, which was consistent across
all evaluations.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes, we calculate 95% confidence intervals for all metrics via bootstrapping
with N=1000, as mentioned in the main body of the paper.
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Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Section [5.1]details the computational resources used in our experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: No human subjects were used throughout the experiments. Throughout the
curation of this dataset, we focused on the use of open-access reviews and studies that allow
for the redistribution of their materials. We highlight the publication of datasets that have
used systematic reviews from the same source in the Related Work section.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
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11.

12.

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Appendix Section A discusses the social impact of LLMs for systematic review
generation and their implications in clinical practice. In particular, if the technology is used
but produces incorrect results, there is a risk that clinicians or policymakers may rely on
flawed evidence synthesis, potentially causing harm through inappropriate treatments or
misinformed guidelines. Alarmingly, these systems are already deployed and used in the
real world. Therefore, it is highly important to create benchmarks to systematically assess
model performance.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The dataset is derived from de-identified data.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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13.

14.

Answer: [Yes]

Justification: We use open-source data that allows for redistribution; furthermore, for all
data used, we provide the PubMed ID and metadata needed to retrieve the original work.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We thoroughly characterize the dataset characterization process, its statistics,
and its fields

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: The protocol for data collection is shared both as a pipeline in Figure 2 as
well as described in the Dataset Curation section. Dataset curation was performed by
collaborators.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15.

16.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: An IRB was not required to conduct this research, as neither human subjects
nor crowdsourcing were involved.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: LLMs were used to collect some metadata to stratify the dataset; details on all
exact LLM use are described in the main body of the paper.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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