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ABSTRACT

Globalization and multiculturalism have produced diverse speech varieties (such
as Singaporean-accented English and numerous regional Mandarin dialects) that
remain under-represented even within high-resource language data. As a result,
spoken dialogue systems frequently misidentify the user’s input language up to
49.33% of the time, degrading response accuracy regardless of language model
capability. We propose a novel robust ASR framework for handling low-resource
dialectal variance with minimal computational overhead, and lightweight train-
ing costs. Our Convex Language Detection (CLD) algorithm integrates a con-
vex reformulation of a vanilla neural network (NN), and is solved efficiently with
ADMM based methods in JAX. This provides human-level sub-500ms inference
latency, strong convergence guarantees, reduced sample complexity, and practi-
cal possibilities for edge deployment use cases. As a motivating case study, CLD
significantly improves transcription accuracy on mixed-dialect inputs when inte-
grated with Whisper encoders. This demonstrates promising directions for prin-
cipled statistical generalization in spoken dialogue systems for low-resource lan-
guages.

1 INTRODUCTION

Spoken language dialogue systems are increasingly ubiquitous across all cultures, countries, and ap-
plications. The common component in these systems is the critical Automatic Speech Recognition
(ASR) model, which transcribes input user speech into text for downstream Large Language Mod-
els (LLMs) for processing. Without accurate transcription, even the most advanced LLMs cannot
correctly interpret user intent or generate accurate responses. The widely adopted Whisper (Rad-
ford et al., 2022) ASR model series demonstrates strong ability to generalize to many datasets and
domains in a zero-shot setting, yet often misidentifies the input language token due to user dialects
and accents. This occurs since existing voice-transcription datasets typically do not annotate human
accents, resulting in under-representation of regional dialects even within high-resource languages.
For example, although the national language of Singapore is English (arguably the most dominant
language in voice datasets), the unique and prevalent dialect of Singaporean accented English has
led to the colloquial term ”Singlish” (Wee, 2018). The intonation and prosody of Singlish is so
distinct that it has been widely studied by linguists (Goh, 2016), Hoon (2003), Rubdy (2007), yet
state-of-the-art ASR models often mistakenly transcribe it as a foreign language (such as Bahasa
(Le Page, 1984) and Tamil (Rajan, 2018)).

1.1 MOTIVATIONS

In this paper, we aim to take a step towards democratizing the accessibility of spoken dialogue
systems to robustly handle user speech input from multicultural backgrounds. For example, consider
the scope defined by two resource-heavy languages: English and Mandarin, which are composed of
numerous distinctive regional dialects. We introduce the novel Convex Language Detection (CLD)
framework, which achieves global optimality in polynomial time, offers improved sample efficiency,
and improved generalization bounds. As a result, the CLD architecture of only ten neurons is able
to capture more signal with respect to user input sequences, than the standard linear layer in existing
Whisper models. This efficiency is crucial, since end-to-end speech dialogue models require sub-
500ms latency Meyer (2023) to preserve realistic human response time. We further optimize for
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fast training and iteration by implementing our method in JAX Bradbury et al. (2021) and solving
the optimization problem with principled ADMM based techniques (Feng et al., 2024) for Large
Langauge Models (LLMs). To the best of our knowledge, this is the first time convex optimization
reformulations have been practically applied to spoken language dialogue models.

1.2 CONTRIBUTIONS

We introduce and evaluate the effectiveness and practical feasibility of the novel Convex Language
Detection (CLD) layer for low resource dialects in ASR systems:

• We find that even the most widely adopted ASR models do not classify accented dialects
from large language datasets sufficiently accurately. We benchmark against the standard
vanilla NN for language detection (which is currently commonly utilized in practical de-
ployment) and demonstrate the improved classification accuracy, faster training efficiency,
and higher memory efficiency of the CLD.

• We extend the work of Feng et al. (2024) from binary classification of text driven problems
in LLMS, to multiclass problems in spoken dialogue systems. This further lifts the size
constraints for cvxNN applications, since speech datasets are notoriously high-dimensional
and slow to tractably work with. This extension is theoretically supported with statistical
generalization and margin stability analysis.

• We introduce the novel CLD algorithm, and provide theoretically grounded analysis sup-
porting its margin stability and statistical generalization.

• Our custom sourced and formatted dialect and low resource language datasets are provided
for further ongoing research in spoken dialogue systems. In addition, our JAX code base
is open source for replicability at , to help globally democratize voice assistants for all
languages and persons.

The following paper is presented as follows: Section 2 outlines related work, Section 3 intro-
duces the novel Convex Language Detection framework, Section 4 provides theoretical support,
Section 5 gives main experimental results and discussion, finally Section 6 provides conclu-
sions and directions for future work. For additional details and JAX code base, please see
https://anonymous.4open.science/r/CLD-845F/README.md.

2 RELATED WORK

Foundational multilingual ASR models with up to 1550 million parameters and have been trained
on 99+ languages Radford et al. (2022). However the vast majority of these models perform the
best on English, with performance dropping significantly on lower resource languages Graham &
Roll (2024). This has recently encouraged much work in the field of improving low-resource ASR
performance. For example, the authors of Bansal et al. (2018), Khare et al. (2021), Stoian et al.
(2020) propose using transfer learning via pretraining techniques to improve cross-lingual transfer.
This requires expansive amounts of speech data in existing high-resource languages but with text
transliterated to the target low-resource language. Essentially the mapping serves to encourage
increased sharing between the output spaces of both languages, yet the success of pretraining is not
well defined. The high-resource and low-resource language must share a certain amount of unclear
”basis similarity” in linguistics for this to be feasible. During the course of pretraining on extremely
large datasets, the powerful base ASR model also experiences catastrophic forgetting, leading to
overall deterioration in performance.

Even within high resource languages such as English and Mandarin, there exist many distinct di-
alects which state-of-the-art ASR models struggle to identify correctly. The recent works of Li et al.
(2024), Weninger et al. (2019), and Wang et al. (2025) aim to implement prosody-assisted speech
systems, or bidirectional Long-Short-Term Memory networks to better model acoustic context. With
the the rise in popularity of spoken dialogue models, other researchers Reitmaier et al. (2022) have
focused on more clearly identifying the challenges ASR models face with low-resource languages.
These methods share the common weakness of being heavily dependent on large fine-tuning datasets
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with a learning rate that is typically ten times smaller than standard supervised fine-tuning learning
rates Wilson & Martinez (2001), Liu et al. (2024), de Zuazo et al. (2025).

Recently other researchers (Reitmaier et al., 2022) have focused on more clearly defining the chal-
lenges ASR models face with low-resource languages, such as Xhosa or Marathi. Limited training
data is a dominant issue, and authors (Babirye et al., 2022) have worked on building partnerships
to preserve and document valuable linguistic data by remotely engaging local participants to record
themselves, identifying more recording opportunities, and categorizing challenges of ASR in deeply
multicultural communities. This has uncovered valuable implications for collaborations across ASR
and Human Computer Interface (HCI) that advance important discussions, while collecting more
diverse speech datasets. Although promising, this approach also brings up new questions on the
ethics of analyzing community voice recordings through platforms such as WhatsApp Barbosa &
Milan (2019), and is slow to provide clearly annotated data from numerous low-resource languages.

Instead of relying heavily on pretraining, fine-tuning, or gathering more data: our key insight is
that the existing seminal ASR models (such as Whisper (Radford et al., 2022)) have already been
trained on 680,000 hours of speech-transcription data . Therefore we aim to creatively extend tra-
ditional resource intensive techniques by focusing on implementing a fast, efficient and practical
language detection modification layer inside the Whisper architecture, which is capable of robustly
and accurately mapping input dialects to respective languages. Since our method utilizes a convex
reformulation of a multi-layer perceptron (MLP), we can achieve global optimality in polynomial
time without incurring any additional latency at inference time.

3 CONVEX LANGUAGE DETECTION ALGORITHM

In this section we introduce the Convex Language Detection (CLD) architecture for ASR in spoken
dialogue systems. Section 3.1 provides preliminaries on two-layer ReLU networks, Section 3.2
introduces the equivalent convex optimization reformulated problem, Section 3.3 gives background
on the high resource language-low resource dialect problem, and Section 3.4 presents its integration
in the language detection problem to yield the CLD algorithm.

3.1 PRELIMINARIES

The classic two-layer ReLU network is given by:

f(x) =

m∑
j=1

(Θ1jx)+θ2j , (1)

Here x ∈ Rd represents the input, Θ1 ∈ Rm×d, θ2 ∈ Rm are weights of the first and last layers
respectively, and (·)+ = max{·, 0} is the ReLU activation function. Given targets y ∈ Rn, the
network in equation 1 seeks optimality by minimizing the non-convex loss function:

min
Θ1,θ2

ℓ
(
fΘ1,θ2(X), y

)
+

β

2

m∑
j=1

(
||Θ1j ||22 + (θ2j)

2
)
, (2)

where ℓ : Rn 7→ R is the loss function, X ∈ Rn×d is the data matrix, and β ≥ 0 is the regularization
strength. equation 2 presents a challenging non-convex optimization problem, with necessary iter-
ations of hyperparameter grid-search for successful training. This is unprincipled and expensive to
scale, especially in high-dimensional speech datasets that are significantly slower to train and more
resource-intensive Sainath et al. (2013). Our goal is to maintain these expressive capabilities while
still preserving the computational advantages of convex optimization.

3.2 EQUIVALENT CONVEX REFORMULATION

Pilanci & Ergen (2020) have shown equation 2 admits a convex reformulation (cvxNN). Since the
reformulation has the same optimal value as the original non-convex problem, provided m ≥ m∗,
for some m ≥ n+1, no information is lost in equation 2. This is based on enumerating the actions of
all possible ReLU activation patterns on data matrix X . These activation patterns act as separating
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hyperplanes which multiply the rows of X by 0 or 1, and can be represented by diagonal matrices.
For fixed X , the set of all possible ReLU activation patterns may be expressed as

DX =
{
D = diag

(
1(Xv ≥ 0)

)
: v ∈ Rd

}
.

The cardinality ofDX grows as |DX | = O
(
r(n/r)r

)
, where r := rank(X) Pilanci & Ergen (2020).

Since the exponential size of DX Pilanci & Ergen (2020) make its complete enumeration impracti-
cal, we work with a subset based on sampling P patterns from DX :

min
(vi,wi)Pi=1

ℓ

 P∑
i=1

DiX(vi − wi), y

+ β

P∑
i=1

||vi||2 + ||wi||2

s.t. vi, wi ∈ Ki ∀i ∈ [P ].

(3)

It can be shown under mild conditions that equation 3 still has the same optimal solution as equa-
tion 2 Mishkin et al. (2022). The recent work of Kim & Pilanci (2024) also proves that the differ-
ence is negligible even when they are not equal. Therefore, we can work with confidence with the
tractable convex framework in equation 3.

3.3 DEFINING THE LOW RESOURCE DIALECTS PROBLEM

Although large-scale audio–text datasets have recently driven advances in ASR, most speech data
remains expensive to collect and rare to annotate, especially for languages with varied dialects. Even
the seminal corpora that underpins modern ASR systems (e.g., 680,000+ hours in Whisper training)
overwhelmingly focus on a few dominant resource languages such as English and Mandarin, while
leaving their many dialectal and accented forms unlabeled or ignored. This imbalance creates a
critical gap: speakers with regional accents, from Singaporean English (“Singlish”) to Shanghai
Mandarin accents, currently have poor spoken dialogue systems experiences (analysis studies pre-
sented in Table 8) since even foundational ASR models frequently misidentify dialectical speech.

3.4 INTEGRATION WITH SPOKEN DIALOGUE SYSTEMS

Feng et al. (2024) has demonstrated the successful application of cvxNN on high-dimensional text-
based language tasks. Therefore we aim to extend this approach on larger-scale spoken dialogue
systems, by extracting the hidden features from the encoder of Whisper ASR. The Convex Language
Detection (CLD) algorithm is formally presented below, where ŷ represents the language label, t̂
represents the decoded transcript, x is the input audio waveform, and {(xi, yi)}Ni=1 represents the
training set.

Algorithm 1 Convex Language Detection (CLD)

Require: Whisper encoder E , decoder D, penalty parameter ρ, regularization β
Training (offline):
for i = 1 to N do

hi ← E(xi) ▷ Extract hidden states
end for
Train cvxNN on {(hi, yi)} using ADMM with variables (v,w,u)
repeat

(v,w)← argmin ℓ
(∑P

p=1 DpH(vp −wp), y
)
+ β

∑P
p=1

(
∥vp∥2 + ∥wp∥2

)
+ ρ

2∥ · ∥
2
2

u← u+ (primal residual) ▷ Dual variable update
until convergence
Store trained convex detection head f̂cvx

Inference (online):
h← E(x) ▷ Encoder stage
ŷ ← argmax f̂cvx(h) ▷ Lightweight forward pass
Append ŷ as initial language token to D
t̂← D(x ; init token = ŷ) ▷ Decoder stage
return (ŷ, t̂)
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4 CLD THEORETICAL ANALYSIS

4.1 OPTIMIZATION PERSPECTIVE AND STATISTICAL GENERALIZATION

This motivating application of CLD in robust ASR under dialectal variation demonstrates the practi-
cal advantages of our optimization framework in real world settings. In addition to being a valuable
application-specific heuristic in spoken dialogue systems, CLD proves the advantages of principled
convex optimization in the non-convex landscape of deep learning. The instantiation of ADMM
naturally leads to efficient parallelization on multi-GPU platforms, while enabling low latency infer-
ence on par with human speed. From a statistical perspective, convex formulations offer principled
benefits such as stable solutions under perturbations in data. Since convex estimators are less prone
to variance caused by initialization randomness or nonconvex local minima, this results in improved
generalization bounds. The convex reformulation also extracts more signal from limited dialectal
data without requiring large-scale pretraining or extensive fine-tuning, and the lack of dependence
on hyperparameter grid-search reduces variance across runs. This ensures consistent optimal per-
formance rather than depending on fortuitous optimizer trajectories.

4.2 MARGIN STABILITY

Let E : RT → Rd denote the ASR encoder, and h = E(x) ∈ Rd be the hidden features, then
f : Rd → RK is the CLD detection module trained by the convex program in Eq.3. We first
formalize the margin and representation used in the following analysis.
Definition 1 (One-vs-Rest classification margin). For y ∈ {1, . . . ,K} and logits f(h) =
(f1(h), . . . , fK(h)), define the classification margin as

mar(h, y) := fy(h) − max
k ̸=y

fk(h).

Proposition 1 (Two-layer representation for the CLD). Under Eq.3, the optimal detection head
admits a finite two-layer ReLU representation

f(h) =

m∑
j=1

aj [u
⊤
j h]+, aj ∈ RK , uj ∈ Rd, m ≤ n+ 1, (4)

with the same objective value as the convex program (up to negligible approximation from
activation-pattern sampling). Sec. 3.2.
Definition 2 (Variation norm). For f represented as in equation 4, its variation norm is

∥f∥var := inf
{ m∑

j=1

∥aj∥2 ∥uj∥2 : f(h) =

m∑
j=1

aj [u
⊤
j h]+

}
.

Lemma 1 (Logit Lipschitzness). If f admits a representation equation 4, then for any h, h′ ∈ Rd,

∥f(h)− f(h′)∥∞ ≤ ∥f∥var ∥h− h′∥2.

Proof. Write fk(h) =
∑

j aj,k[u
⊤
j h]+. Since t 7→ [t]+ is 1-Lipschitz, |fk(h) − fk(h

′)| ≤∑
j |aj,k| |u⊤

j (h − h′)| ≤
∑

j ∥aj∥2∥uj∥2 ∥h − h′∥2. Maximizing over k and taking the infimum
over representations yields the claim.

Theorem 1 (Margin stability under hidden-feature perturbations). Let f be the detection head given
by Eq. equation 3. For any y ∈ {1, . . . ,K} and any δ ∈ Rd,

mar(h+ δ, y) ≥ mar(h, y) − 2 ∥f∥var ∥δ∥2. (5)

Consequently, if ∥δ∥2 < mar(h, y)/(2∥f∥var), the predicted class is unchanged.

Proof. Let k⋆(h) = argmaxk ̸=y fk(h). Then

mar(h+ δ, y)−mar(h, y) =
(
fy(h+ δ)− fy(h)

)
−
(
max
k ̸=y

fk(h+ δ)− fk⋆(h)(h)
)
.

Each difference is ≤ ∥f∥var∥δ∥2 by Lemma 1, yielding equation 5.

5
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Corollary 2 (End-to-end stability). If the encoder E is LE-Lipschitz, i.e., ∥E(x) − E(x′)∥2 ≤
LE∥x− x′∥2, then

mar(E(x+ η), y) ≥ mar(E(x), y)− 2 ∥f∥var LE ∥η∥2,

and the predicted class is preserved whenever ∥η∥2 < mar(E(x), y)/(2∥f∥varLE).
Proposition 2 (Variation-norm certificate from the convex penalty). Let {(vp, wp)}Pp=1 denote the
variables in Eq. equation 3. Then

∥f∥var ≤ Bcvx with Bcvx :=

P∑
p=1

(
∥vp∥2 + ∥wp∥2

)
,

interpreting ∥ · ∥2 blockwise (e.g., columnwise ℓ2 with a sum across classes). Consequently,

mar(h+ δ, y) ≥ mar(h, y)− 2Bcvx ∥δ∥2.

If the nonconvex two-layer form (Eq. (2)) with penalty β
2

∑
j(∥uj∥22 + ∥aj∥22) is used instead, then

by AM–GM, ∥f∥var ≤ 1
2

∑
j(∥uj∥22 + ∥aj∥22), so larger β tightens the certified radius.

Remark 3 (Group structure). If logits share blocks (group-sparse outputs), one obtains ∥f(h) −
f(h′)∥∞ ≤

∑
g wg∥Ag∥2∥Ug∥2 ∥h − h′∥2, hence the margin bound with ∥f∥var replaced by the

weighted group sum.

Therefore, the CLD module is Lipschitz-stable in hidden features with constant controlled by the
convex regularizer in Eq. 3. Since bounded perturbations of E(x) induce at most linear margin
degradation, sufficiently large initial margin certifies label invariance. Appendix A provides further
derivation details.

5 MAIN EXPERIMENTS

In this section we present the main experimental results and discussion. We note that although
the seminal Word Error Rate (WER) metric Jelinek (1997) often produces approximately the same
results across different runs, the resulting human evaluation for different models dramatically varies
across implementation. This is because evaluation metrics for spoken dialogue systems remain
an approximation for human feedback. Section 5.1 provides details on datasets, in Section 5.6
we go head-to-head with real human feedback in a practical application scenario, and Section 4.1
provides discussion on optimization perspective and statistical generalization. Our baseline model
is (1) vanilla Whisper-Small (244 Million parameters, referred to as WSP). In comparison we also
benchmark against (2) vanilla Whisper-Small finetuned on our dataset (referred to as WSP-SFT),
(3) a two-layer MLP for language detection (referred to as NN), and finally our (4) CLD algorithm
(referred to as CVXNN).

5.1 DATASETS

In this experiment, we compile a dataset of multilingual voice transcriptions across multiple lan-
guages and their respective accents. As a primary source of transcription data, we used the Common
Voice (v23) Dataset (Ardila et al., 2019), but due to the lack of accent and regional variance, we
supplement this with several other accent datasets. For one, we selected the Singaporean English
(Singlish) dialect, which has previously shown high error rates during voice transcription (Fong
et al., 2002). Through the Info-communications and Media Development Authority (IMDA) of
Singapore, we were given direct access to the National Speech Corpus (NCS): the first Singapore
English corpus. In addition, we use the Lahaja dataset, a benchmark comprising 12.5 hours of Hindi
speech from 132 speakers across 83 Indian districts, for regional Hindi dialects (Javed et al., 2024).
We then normalize and augment all audio files via the following techniques: Time stretching, vol-
ume gain, pitch shift, and recorded background noise (via MUSAN Snyder et al. (2015)), which are
all used to simulate real-world variability and improve robustness. Primarily, our experiment is split
into two parts:

Binary Experiment. For the binary classification experiment, we select English and Mandarin
since despite being arguably the highest-resource languages in existing seminal datasets, they still

6
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exhibit low accuracy in language prediction for accented speech due to the high variance of dialects
and accents present (Weninger et al., 2019). In addition, we select different varieties of training
sample sizes spanning from 100 to 10K per language to test the model’s robustness in low-resource
environments.

Multiclass Experiment. For the multiclass classification task, we select a total of five languages:
English, Chinese, Indonesian, Malaysian, Hindi. We selected these languages due to their linguistic
and geographical proximities, as well as the regional influences that certain dialects exert on one
another—for instance, Singlish (Singaporean accented English) is often misidentified as Malay or
Indonesian. This selection ensures the model’s task is challenging and thereby provides a rigorous
evaluation of its performance. In total, we selected 16,000 training samples across 5 languages and
24 accents with approximately 3200 samples per language and 666 samples per accent.

5.2 LOW RESOURCE BINARY EXPERIMENT

Figure 1: Word Error Rate (WER) vs. Sample Size
Figure 2: Language Detection Accuracy vs. Sample
Size

We report the metrics of each model trained on the respective sample sizes in Figures 1 and 2.
Both the vanilla NN and WSP-SFT showcase a similar correlation for lower WER and higher de-
tection accuracy with sample size, requiring significant amounts of data for high performance, often
which not available in low-resource dialects. However, our CLD model maintains consistent per-
formance across all sample sizes, indicating a high sample efficiency and strong resilience against
low-resource. In fact, in larger sample sizes, the CLD experiences a slight decrease in prediction
accuracy, with peak detection accuracy occurring at a sample size of 1K. Therefore, the CLD model
represents a promising direction, as it enables effective inclusion of accents and dialects with ex-
tremely limited speaker data and is an ideal application for low-resource data regimes.

5.3 CLD IS FAST AND EFFICIENT

Table 1: Training Time and Compute Cost (TFLOPs) Across Models for the 1K Sample Size Dataset

Model Training Time (s) TFLOPs
WSP 1096.74 239,528
NN 840.30 183,521
cvxNN 64.45 14,075

Table 1 demonstrates that cvxNN achieves a training time of just 64.45 seconds—approximately
7.7% of the runtime of a standard vanilla NN, while requiring an order of magnitude fewer TFLOPs.
This efficiency derives from the convex reformulation solved via ADMM and implemented in JAX,
which enables highly parallelizable updates and rapid convergence. Unlike the vanilla NN which
requires multiple passes and steps across the dataset for convergence with necessary hyperparameter
grid search, the convex program uses a unique global optimum, thereby allowing us to solve directly
to the global minima. Together, these properties establish CLD as both fast and efficient, offering a
more practical alternative to conventional neural architectures for language detection.

5.4 MULTICLASS EXPERIMENT

Table 2 reports the metrics on the scaled-up multiclass experiment and the confusion matrices for
CVXNN and NN for in Figures 3a 3b respectievly. Compared to its performance in binary ex-

7
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Model Accuracy WER CER F1
WSP 0.7154 139.37 73.85 0.7808
WSP-SFT 0.8033 35.85 22.30 0.8363
NN 0.7581 58.58 37.13 0.7492
CVXNN 0.9715 31.74 17.84 0.9717

Table 2: Performance comparison of models on the multiclass experiment, evaluated with accuracy,
word error rate (WER), character error rate (CER), and F1 score.

periment, the NN model struggles to scale with multiple classes, lagging behind WSP-SFT in all
metrics. In comparison, our CVXNN model still achieves a high accuracy of 97.15% and a F1
score of 0.9717 resulting in a WER of 31.74 and CER of 17.84, comparable with its performance
in the previous binary task. This demonstrates that our model scales robustly to larger class counts,
indicating strong potential for real-world language detection across diverse, in-the-wild conditions.

(a) Confusion matrix of true vs. predicted languages
for CLD (ours)

(b) Confusion matrix of true vs. predicted languages
for vanilla NN

Figure 3: Confusion matrices comparing CLD and NN model performance for language prediction

5.5 REGIONAL DIALECTICAL ACCENTS ANALYSIS

We showcase the language detection metrics of Vanilla Whisper (WSP), Finetuned Whisper (WSP-
SFT), Traditional Neural Network Detection Head (NN), and our Convex Neural Network Detection
head (cvxNN) across all 10 accents and the 10K, 1K, 500, 100 sample size in Table 4, Table 3, Table
5, Table 6 respectively. The respective accent names are listed in Table 7.

It is evident that traditional NN mostly performs well on English accents with consistently high to
perfect accuracy rates, yet under performs on Mandarin accents, especially in lower sample sizes,
achieving as low as 6.32% accuracy in zh-zh (Standard Mainland Mandarin) with a 500 sample size.
This supports our argument where most traditional language models are English centric in a data
perspective and thus achieve high performance exclusively in English, yet drops in performance
on other less data-dominant and low-resource languages. In comparison, our novel CLD frame-
work performs consistently high across all accents and languages with accuracy values all greater
than 90%, demonstrating the model’s robustness and low variance across diverse accents even with
minimally available voice data.

5.6 HUMAN FEEDBACK AND DISCUSSION

Numerical tables of results and plots of WER are presented in Appendix B. Notably, in all cases
varying runs on the same architecture (besides vanilla Whisper-Small) often produce similar WER.
Therefore we perform analysis with real human testers based locally in Singapore and the Peoples
Republic of China. Testers were instructed to assume the position of a general guest in a hospitality

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Performance Comparison for Accent Prediction Across Models @ 1K Sample Size

Accents Samples Size Correctly Predicted Samples Accuracy
WSP WSP-SFT NN CVXNN WSP WSP-SFT NN CVXNN

en-hi 190 18 175 190 185 0.9000 0.9211 1.0000 0.9737
en-my 215 12 115 215 214 0.5714 0.5349 1.0000 0.9953
en-sg 205 16 154 205 203 0.8000 0.7512 1.0000 0.9902
en-ur 189 17 180 189 187 0.9444 0.9524 1.0000 0.9894
en-us 204 17 195 204 203 0.9444 0.9559 1.0000 0.9951
zh-cdo 71 6 30 11 69 0.2727 0.4225 0.1549 0.9718
zh-cpx 216 3 82 47 216 0.2143 0.3796 0.2176 1.0000
zh-hk 184 18 143 53 182 0.6667 0.7772 0.2880 0.9891
zh-tw 181 15 181 33 181 0.8824 1.0000 0.1823 1.0000
zh-zh 205 20 192 45 204 0.8696 0.9366 0.2195 0.9951
Total 1860 122 1447 1192 1844 0.7066 0.7632 0.7062 0.9900

setting requesting an item. This ensures a precise and consistent conversational domain across all
models. One example of vanilla Whisper-Small’s output is below:

Concierge: Hello Mr. Kevin Fong, this is Lucy at the front desk. How may I help
you?
Guest: Baru keadaan seperti seorang seorang seorang seperti seorang, seorang
seorang berada di dalamnya.
Concierge: I apologize, we’ll send someone up right away. Do you need anything
else?
Guest: No, thank you.

Notably, although the guest was a local Singaporean person speaking naturally in his native English,
the Whisper ASR model detected and transcribed this incorrectly into Bahasa. Experiments with
the classic two-layer MLP model increased performance accuracy since errors became constrained
between Singlish and mistakenly transcribed Mandarin characters (and vice versa). However a new
type of error arose from the MLP detection head: local accents and dialects introduced errors such
as the user speaking ‘Both hot and cold settings’ to ‘Both hood and coat setting’. In contrast, our
CLD algorithm produced the fastest and most accurate results: with both minimal word errors and
the smallest numbers of wrong language detections.

6 CONCLUSION

In conclusion we conduct experiments with three variantes of ASR models in order to improve
response accuracy in spoken dialogue systems for low-resource (yet high language) dialects. Vanilla
Whisper-Small demonstrated the highest unstable WER, the vanilla NN constrained itself to the two
languages we are interested in but introduced a different type of word error with frequent inaccurate
transcriptions, and our Convex Language Detection algorithm received the highest human feedback
in satisfaction with the lowest WER, which is particularly significant given its speed. Directions for
future work include deeper analysis on the prosody of dialects within languages, and analysis on
generalization possibilities for low resource dialects. Stronger theoretical interpretability of spoken
dialogue models may also yield more valuable results, especially as scaling resources and training
data become increasingly challenging.
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A PROOF OF MAIN RESULTS AND CERTIFICATES FOR MARGIN STABILITY

This links between the convex program in Eq. (3) and the two-layer ReLU representation used in
Theorem 1, together with computable certificates that translate directly into certified radii.

A.1 ACTIVATION PATTERNS AND PATTERN CONES

For u ∈ Rd and a data matrix H ∈ Rn×d, define the training activation pattern

D(H,u) = diag
(
1{Hu ≥ 0}

)
∈ {0, 1}n×n.

Given a fixed pattern D ∈ {0, 1}n×n, define its associated pattern cone

K(D) :=
{
v ∈ Rd : (2D − I)Hv ≥ 0 (entrywise)

}
.
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Then v ∈ K(D) if and only if D(H, v) = D (up to measure-zero ties on Hu = 0). In particular, for
v ∈ K(D) we have the identity

[Hv]+ = DHv, (6)
where [·]+ is taken entrywise.

A.2 FROM THE CONVEX PROGRAM TO A TWO-LAYER RELU

Recall the sampled-pattern convex model (Eq. (3)):

min
{(vi,wi)}P

i=1

ℓ

 P∑
i=1

Di H (vi − wi), y

 + β

P∑
i=1

(
∥vi∥+ ∥wi∥

)
s.t. vi, wi ∈ K(Di). (7)

Here Di ∈ DH are (sampled) activation patterns. In the multi-class case, take vi, wi ∈ Rd×K

with columns (vi,1, . . . , vi,K) etc., and interpret ∥ · ∥ as either the block ℓ2,1 norm, ∥M∥2,1 =∑K
k=1 ∥M:,k∥2, or the Frobenius norm.

Proposition 3 (Training-set representation). Let {(vi, wi)} be any feasible point of equation 7. Then
the training predictions equal those of a (vector-valued) two-layer ReLU network with at most 2PK
hidden units:

f(H) =

P∑
i=1

K∑
k=1

(
ek [Hvi,k]+ − ek [Hwi,k]+

)
,

where ek are the standard basis vectors in RK . Equivalently, this network has hidden weights
{u+

i,k, u
−
i,k} = {vi,k, wi,k} and output weights {a+i,k, a

−
i,k} = {ek,−ek}.

A.3 VARIATION NORM AND A COMPUTABLE CERTIFICATE

We use the standard two-layer ReLU variation norm:

∥f∥var := inf
{ m∑

j=1

∥aj∥2 ∥uj∥2 : f(h) =

m∑
j=1

aj [u
⊤
j h]+, m ∈ N

}
.

The following result turns any feasible solution of equation 7 into an explicit upper bound on ∥f∥var,
hence a Lipschitz certificate for the logits.
Theorem 4 (cvxNN⇒ variation-norm certificate). Let f be represented as in Proposition 3. Then

∥f∥var ≤ B̂(2,1)cvx :=

P∑
i=1

(
∥vi∥2,1 + ∥wi∥2,1

)
.

If equation 7 uses Frobenius penalties instead, then

∥f∥var ≤
√
K B̂Fcvx with B̂Fcvx :=

P∑
i=1

(
∥vi∥F + ∥wi∥F

)
.

Proof. Using the representation in Proposition 3, build a two-layer network whose hidden units are
the columns {vi,k}i,k and {wi,k}i,k with output weights {+ek} and {−ek} respectively. For each
unit (u, a) in this network, the atom cost is ∥a∥2∥u∥2 = ∥u∥2 because ∥ek∥2 = 1. Summing over
units gives

∑
i,k

(
∥vi,k∥2 + ∥wi,k∥2

)
=

∑
i

(
∥vi∥2,1 + ∥wi∥2,1

)
, which upper bounds ∥f∥var by

definition. For Frobenius penalties,
∑

k ∥M:,k∥2 ≤
√
K∥M∥F yields the stated factor

√
K.

By Lemma 1, ∥f(h) − f(h′)∥∞ ≤ ∥f∥var ∥h − h′∥2; combining with Theorem 1 yields the com-
putable bounds

mar(h+ δ, y) ≥ mar(h, y)− 2 B̂(2,1)cvx ∥δ∥2, mar(h+ δ, y) ≥ mar(h, y)− 2
√
K B̂Fcvx ∥δ∥2,

depending on which penalty is used in Eq. (3). If the encoder E is LE-Lipschitz, replace ∥δ∥2 by
LE∥x− x′∥2 to get the end-to-end certificate.
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A.4 AM–GM LINK TO THE NONCONVEX ℓ22 PENALTY

Consider the two-layer model f(h) =
∑m

j=1 aj [u
⊤
j h]+ trained via the nonconvex penalty of Eq. (2):

(β/2)
∑m

j=1(∥aj∥22 + ∥uj∥22). By AM–GM, 2∥aj∥2∥uj∥2 ≤ ∥aj∥22 + ∥uj∥22, hence

∥f∥var ≤
1

2

m∑
j=1

(
∥aj∥22 + ∥uj∥22

)
=

1

β

β

2

m∑
j=1

(
∥aj∥22 + ∥uj∥22

)
.

Therefore any solution of Eq. (2) yields the certificate

∥f∥var ≤
1

β
Rℓ22

⇒ mar(h+ δ, y) ≥ mar(h, y)− 2

β
Rℓ22
∥δ∥2.

Larger β tightens the bound linearly.

A.5 DETAILS FOR THE LOGIT LIPSCHITZ BOUND

Let f(h) =
∑

j aj [u
⊤
j h]+. Since t 7→ [t]+ is 1-Lipschitz,

|fk(h)−fk(h′)| =
∣∣∣∑

j

aj,k
(
[u⊤

j h]+−[u⊤
j h

′]+
)∣∣∣ ≤∑

j

|aj,k| |u⊤
j (h−h′)| ≤

∑
j

∥aj∥2∥uj∥2 ∥h−h′∥2.

Taking maxk and the infimum over all representations yields ∥f(h)−f(h′)∥∞ ≤ ∥f∥var∥h−h′∥2,
which is the Lemma used in Theorem 1.

B ADDITIONAL EMPIRICAL RESULTS

(a) Character Error Rate versus Sample Size

(b) Accuracy versus Sample Size

Figure 4: Error rates across different model configurations. Top panel shows word-level errors,
middle panel shows character-level errors, bottom panel shows accuracy across all methods.
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Figure 5: Confusion matrix of true vs. predicted languages for WSP-SFT

Figure 6: Confusion matrix of true vs. predicted languages for WSP

Table 4: Performance Comparison for Accent Prediction Across Models @ 10,000 Sample Size

Accents Samples Size Correctly Predicted Samples Accuracy
WSP WSP-SFT NN CVXNN WSP WSP-SFT NN CVXNN

en-hi 190 176 180 187 180 0.9263 0.9474 0.9842 0.9474
en-my 215 136 135 215 194 0.6326 0.6279 1.0000 0.9023
en-sg 205 166 166 204 195 0.8098 0.8098 0.9951 0.9512
en-ur 189 182 185 188 183 0.9630 0.9788 0.9947 0.9683
en-us 204 195 197 204 194 0.9559 0.9657 1.0000 0.9509
zh-cdo 71 7 50 70 71 0.0986 0.7042 0.9859 1.0000
zh-cpx 216 32 198 215 216 0.1481 0.9167 0.9954 1.0000
zh-hk 184 121 170 174 184 0.6576 0.9239 0.9457 1.0000
zh-tw 181 176 181 181 181 0.9724 1.0000 1.0000 1.0000
zh-zh 205 187 195 197 205 0.9122 0.9512 0.9610 1.0000
Total 1860 1378 1657 1815 1803 0.7077 0.8026 0.9162 0.9721
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Table 5: Performance Comparison for Accent Prediction Across Models @ 500 Sample Size

Accents Samples Size Correctly Predicted Samples Accuracy
WSP WSP-SFT NN CVXNN WSP WSP-SFT NN CVXNN

en-hi 190 176 177 190 186 0.9263 0.9316 1.0000 0.9789
en-my 215 136 124 215 214 0.6326 0.5767 1.0000 0.9953
en-sg 205 166 162 205 205 0.8098 0.7902 1.0000 1.0000
en-ur 189 182 182 189 187 0.9630 0.9630 1.0000 0.9894
en-us 204 195 194 204 203 0.9559 0.9510 1.0000 0.9951
zh-cdo 71 7 15 21 63 0.0986 0.2113 0.2958 0.8873
zh-cpx 216 32 56 44 208 0.1481 0.2593 0.2037 0.9630
zh-hk 184 121 132 5 174 0.6576 0.7174 0.0272 0.9457
zh-tw 181 176 179 12 181 0.9724 0.9890 0.0663 1.0000
zh-zh 205 187 190 13 202 0.9122 0.9268 0.0634 0.9854
Total 1860 1378 1411 1088 1823 0.7077 0.7207 0.5576 0.9695

Table 6: Performance Comparison for Accent Prediction Across Models @ 100 Sample Size

Accents Samples Size Correctly Predicted Samples Accuracy
WSP WSP-SFT NN CVXNN WSP WSP-SFT NN CVXNN

en-hi 190 176 93 7 185 0.9263 0.9263 0.0368 0.9737
en-my 215 136 137 7 213 0.6326 0.6372 0.0326 0.9907
en-sg 205 166 166 3 203 0.8098 0.8098 0.0146 0.9902
en-ur 189 182 182 10 186 0.9630 0.9630 0.0529 0.9841
en-us 204 195 195 12 203 0.9559 0.9559 0.0588 0.9951
zh-cdo 71 7 7 67 71 0.0986 0.0986 0.9437 1.0000
zh-cpx 216 32 33 204 213 0.1481 0.1528 0.9444 0.9861
zh-hk 184 121 121 175 175 0.6576 0.6576 0.9511 0.9511
zh-tw 181 176 175 180 181 0.9724 0.9669 0.9945 1.0000
zh-zh 205 187 187 201 199 0.9122 0.9122 0.9805 0.9707

Total 1860 1378 1286 846 1829 0.7077 0.7102 0.3220 0.9742
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Table 7: Mapping of Accent Codes to Accent Names

Code Accent / Dialect Description
en-hi Hindi-accented English
en-my Malaysian-accented English
en-sg Singaporean-accented English (Singlish)
en-ur Pakistan-accented English
en-us American English
zh-cdo Min Dong Chinese / Fuzhou dialect Mandarin
zh-cpx Pu-Xian Chinese
zh-hk Hong Kong Cantonese
zh-tw Taiwanese Mandarin
zh-zh Standard Mainland Mandarin

C BASELINE WHISPER ASR ON LANGUAGE CLASSIFICATION ACCURACY

Table 8: Whisper ASR’s default language detection accuracy by language and accent.

Language Accent Samples Correct Accuracy (%)
ID

Betawi 505 451 89.3
Javanese 182 163 89.6
Jawa Tengah 228 206 90.4
Surakarta 221 200 90.5
Bindeng 221 200 90.5
Tionghoa 221 200 90.5
Medhok 224 203 90.6

EN
Malaysian English 1000 614 61.4
Filipino 1000 745 74.5
Singaporean English 1000 752 75.2
Zimbabwe 1000 831 83.1
Southern African (South Africa, Namibia) 1000 831 83.1
Welsh English 1000 918 91.8
Scandinavian 1000 952 95.2
Pakistan 1000 967 96.7
India and South Asia (India, Sri Lanka) 1000 967 96.7
Scottish English 1000 968 96.8
Lancashire English 1000 970 97.0
Liverpool English 1000 970 97.0
England English 1000 982 98.2
Australian English 1000 984 98.4
United States English 1000 985 98.5
New Zealand English 1000 987 98.7
Hong Kong English 1000 988 98.8
German English 1000 996 99.6
Non native speaker 1000 996 99.6
Irish English 1000 996 99.6
Canadian English 1000 999 99.9
Northern Irish 1000 999 99.9
Low 1000 999 99.9
Demure 1000 999 99.9
Midwestern 1000 1000 100.0
Transatlantic English 1000 1000 100.0

ZH
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Table 9: Human feedback for Vanilla Whisper-Small.

Input Source Language Total Test Prompts Wrong Language
Transcribed

EN (5 human testers in
Singapore)

595 59

ZH (10 human testers in
South-East China)

300 148

Language Accent Samples Correct Accuracy (%)
cdo 1000 103 10.3
cpx 1000 111 11.1
nan-tw 1000 545 54.5
hk 1000 905 90.5
zh 1000 910 91.0
tw 1000 987 98.7

HI
Kashmiri 320 185 57.8
Bodo 380 270 71.1
Malayalam 365 271 74.2
Punjabi 236 178 75.4
Urdu 131 103 78.6
Telugu 474 377 79.5
Tamil 182 145 79.7
Hindi 575 468 81.4
Sindhi 141 116 82.3
Odia 374 311 83.2
Kannada 313 268 85.6
Gujarati 299 257 86.0
Assamese 262 226 86.3
Konkani 422 364 86.3
Nepali 359 311 86.6
Bengali 418 366 87.6
Dogri 219 194 88.6
Maithili 287 255 88.9
Marathi 395 366 92.7

MS
msi 1000 386 38.6
ms 1000 934 93.4

D HUMAN FEEDBACK VALIDATION
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Table 10: Human feedback for vanilla NN detection head.

Input Source
Language

Total Test Prompts Wrong Language
Transcribed

Word Errors in
Transcription

EN (same 5 humans) 450 22 81
ZH (same 10
humans)

450 5 14

Table 11: Human feedback for Convex Language Detection (CLD).

Input Source
Language

Total Test Prompts Wrong Language
Transcribed

Word Errors in
Transcription

EN (same 5 humans) 450 12 26
ZH (same 10
humans)

450 2 14
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