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Abstract

Existing continual relation learning (CRL)001
methods rely on plenty of labeled training data002
for learning a new task, which can be hard to003
acquire in real scenario as getting large and004
representative labeled data is often expensive005
and time-consuming. It is therefore necessary006
for the model to learn novel relational patterns007
with very few labeled data while avoiding catas-008
trophic forgetting of previous task knowledge.009
In this paper, we formulate this challenging010
yet practical problem as continual few-shot re-011
lation learning (CFRL). Based on the finding012
that learning for new emerging few-shot tasks013
often results in feature distributions that are014
incompatible with previous tasks’ learned dis-015
tributions, we propose a novel method based on016
embedding space regularization and data aug-017
mentation. Our method generalizes to new few-018
shot tasks and avoids catastrophic forgetting of019
previous tasks by enforcing extra constraints on020
the relational embeddings and by adding extra021
relevant data in a self-supervised manner. With022
extensive experiments we demonstrate that our023
method can significantly outperform previous024
state-of-the-art methods in CFRL task settings.1025

1 Introduction026

Relation Extraction (RE) aims to detect the re-027

lationship between two entities in a sentence, for028

example, predicting the relation birthdate in the029

sentence “Kamala Harris was born in Oakland,030

California, on October 20, 1964.” for the two enti-031

ties Kamala Harris and October 20, 1964. It serves032

as a fundamental step for downstream tasks such as033

search and question answering (Dong et al., 2015;034

Yu et al., 2017). Traditionally, RE methods were035

built by considering a fixed static set of relations036

(Miwa and Bansal, 2016; Han et al., 2018a). How-037

ever, similar to entity recognition, RE is also an038

open-vocabulary problem (Sennrich et al., 2016),039

1Code and models are available at <redacted>

where the relation set keeps growing as new rela- 040

tion types emerge with new data. 041

A potential solution is to formalize RE as Contin- 042

ual Relation Learning or CRL (Wang et al., 2019). 043

In CRL, the model learns relational knowledge 044

through a sequence of tasks, where the relation 045

set changes dynamically from the current task to 046

the next. The model is expected to perform well 047

on both the novel and previous tasks, which is chal- 048

lenging due to the existence of Catastrophic Forget- 049

ting phenomenon (McCloskey and Cohen, 1989; 050

French, 1999) in continual learning. In this phe- 051

nomenon, the model forgets previous relational 052

knowledge after learning new relational patterns. 053

Existing methods to address catastrophic forget- 054

ting in CRL can be divided into three categories: 055

(i) regularization-based methods, (ii) architecture- 056

based methods, and (iii) memory-based methods. 057

Recent work shows that memory-based methods 058

which save several key examples from previous 059

tasks to a memory and reuse them when learning 060

new tasks are more effective in NLP (Wang et al., 061

2019; Sun et al., 2020). Successful memory-based 062

CRL methods include EAEMR (Wang et al., 2019), 063

MLLRE (Obamuyide and Vlachos, 2019), EMAR 064

(Han et al., 2020), and CML (Wu et al., 2021). 065

Despite their effectiveness, one major limitation 066

of these methods is that they all assume plenty 067

of training data for learning new relations (tasks), 068

which is hard to satisfy in real scenario where con- 069

tinual learning is desirable, as acquiring large la- 070

beled datasets for every new relation is expensive 071

and sometimes impractical for quick deployment 072

(e.g., RE from news articles during the onset of an 073

emerging event like Covid-19). In fact, one of the 074

main objectives of continual learning is to quickly 075

adapt to new environments or tasks by exploiting 076

previously acquired knowledge, a hallmark of hu- 077

man intelligence (Lopez-Paz and Ranzato, 2017). 078

If the new tasks are few-shot, the existing meth- 079

ods suffer from over-fitting as shown later in our 080
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experiments (§4). Considering that humans can ac-081

quire new knowledge from a handful of examples,082

it is expected for the models to generalize well on083

the new tasks with few data. We regard this prob-084

lem as Continual Few-shot Relation Learning or085

CFRL (Appendix A.1). Indeed, in relation to CFRL,086

Zhang et al. (2021), Zhu et al. (2021) and Chen and087

Lee (2021) recently introduce methods for incre-088

mental few-shot learning in Computer Vision.089

Based on the observation that the learning of090

emerging few-shot tasks may result in distorted091

feature distributions of new data which are incom-092

patible with previous embedding space (Ren et al.,093

2020), this work introduces a novel model based094

on Embedding space Regularization and Data Aug-095

mentation (ERDA) for CFRL. In particular, we096

propose a multi-margin loss and a pairwise mar-097

gin loss in addition to the cross-entropy loss to im-098

pose further relational constraints in the embedding099

space. We also introduce a novel contrastive loss100

to learn more effectively from the memory data.101

Our proposed data augmentation method selects102

relevant samples from unlabeled text to provide103

more relational knowledge for the few-shot tasks.104

The empirical results show that our method can105

significantly outperform previous state-of-the-art106

methods. In summary, our main contributions are:107

• To the best of our knowledge, we are the first one108

to consider CFRL. We define the CFRL problem109

and construct a benchmark for the problem.110

• We propose ERDA, a novel method for CFRL111

based on embedding space regularization and112

data augmentation.113

• With extensive experiments, we demonstrate the114

effectiveness of our method compared to existing115

ones and analyse our results thoroughly.116

2 Related Work117

Conventional RE methods include supervised (Ze-118

lenko et al., 2002; Liu et al., 2013; Zeng et al., 2014;119

Miwa and Bansal, 2016), semi-supervised (Chen120

et al., 2006; Sun et al., 2011; Hu et al., 2020) and121

distantly supervised methods (Mintz et al., 2009;122

Yao et al., 2011; Zeng et al., 2015; Han et al.,123

2018a). These methods rely on a predefined rela-124

tion set and have limitations in real scenario where125

novel relations are emerging. There have been126

some efforts which focus on relation learning with-127

out predefined types, including open RE (Shinyama128

and Sekine, 2006; Etzioni et al., 2008; Cui et al.,129

2018; Gao et al., 2020) and continual relation learn-130

ing (Wang et al., 2019; Obamuyide and Vlachos, 131

2019; Han et al., 2020; Wu et al., 2021). 132

Continual Learning (CL) aims to learn knowl- 133

edge from a sequence of tasks. The main problem 134

CL attempts to address is catastrophic forgetting 135

(McCloskey and Cohen, 1989), i.e., the model for- 136

gets previous knowledge after learning new tasks. 137

Existing methods to alleviate this problem can be 138

divided into three categories. First, regularization- 139

based methods impose constraints on the update of 140

neural weights important to previous tasks to alle- 141

viate catastrophic forgetting (Li and Hoiem, 2017; 142

Kirkpatrick et al., 2017; Zenke et al., 2017; Ritter 143

et al., 2018). Second, architecture-based meth- 144

ods dynamically change model architectures to ac- 145

quire new information while remembering previous 146

knowledge (Chen et al., 2016; Rusu et al., 2016; 147

Fernando et al., 2017; Mallya et al., 2018). Finally, 148

memory-based methods maintain a memory to save 149

key samples of previous tasks to prevent forgetting 150

(Rebuffi et al., 2017; Lopez-Paz and Ranzato, 2017; 151

Shin et al., 2017; Chaudhry et al., 2019). 152

Few-shot Learning (FSL) aims to solve tasks con- 153

taining only a few labeled samples, which faces 154

the issue of over-fitting. To address this, exist- 155

ing methods have explored three different direc- 156

tions: (i) data-based methods use prior knowledge 157

to augment data to the few-shot set (Santoro et al., 158

2016; Benaim and Wolf, 2018; Gao et al., 2020); 159

(ii) model-based methods reduce the hypothesis 160

space using prior knowledge (Rezende et al., 2016; 161

Triantafillou et al., 2017; Hu et al., 2018); and 162

(iii) algorithm-based methods try to find a more 163

suitable strategy to search for the best hypothesis in 164

the whole hypothesis space (Hoffman et al., 2013; 165

Ravi and Larochelle, 2017; Finn et al., 2017). 166

Summary. Existing work in CRL which involves 167

a sequence of tasks containing sufficient training 168

data, mainly focuses on alleviating the catastrophic 169

forgetting of previous relational knowledge when 170

the model is trained on new tasks. The work in few- 171

shot learning mostly leverages prior knowledge to 172

address the over-fitting of novel few-shot tasks. In 173

contrast to these lines of work, we aim to solve a 174

more challenging yet more practical problem CFRL 175

where the model needs to learn relational patterns 176

from a sequence of few-shot tasks continually. 177

3 Methodology 178

In this section, we first formally define the CFRL 179

problem. Then, we present our method for CFRL. 180
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3.1 Problem Definition181

CFRL involves learning from a sequence of tasks182

T = (T 1, . . . , T n), where every task T k has its183

own training set Dk
train, validation set Dk

valid, and184

test set Dk
test. Each dataset D contains several sam-185

ples {(xi, yi)}|D|
i=1, whose labels yi belong to the186

relation set Rk of task T k. In contrast to the previ-187

ously addressed continual relation learning (CRL),188

CFRL assumes that except for the first task which189

has enough data for training, the subsequent new190

tasks are all few-shot, meaning that they have only191

few labeled instances (see Appendix A.1). For192

example, consider there are three relation learn-193

ing tasks T 1, T 2 and T 3 with their corresponding194

relation sets R1, R2, and R3, each having 10 rela-195

tions. In CFRL, we assume the existing task T 1 has196

enough training data (e.g., 100 samples for every197

relation in R1), while the new tasks T 2 and T 3 are198

few-shot with only few (e.g., 5) samples for every199

relation in R2 and R3. Assuming that the relation200

number of each few-shot task is N and the sample201

number of every relation is K, we call this setup N -202

way K-shot continual learning. The problem setup203

of CFRL is aligned with the real scenario, where we204

generally have sufficient data for an existing task,205

but only few labeled data as new tasks emerge.206

The model in CFRL is expected to first learn T 1207

well, which has sufficient training data to obtain208

good ability to extract the relation information in209

the sentence. Then at time step k, the model will210

be trained on the training set Dk
train of few-shot task211

T k. After learning T k, the model is expected to212

perform well on both T k and the previous k−1213

tasks, as the model will be evaluated on D̂k
test =214

∪k
i=1D

i
test consisting of all known relations after215

learning T k, i.e., R̂k = ∪k
i=1R

i. This requires the216

model to overcome the catastrophic forgetting of217

previous knowledge and to learn new knowledge218

well with very few labeled data.219

To overcome the catastrophic forgetting problem,220

a memory M =
{
M1,M2, ...

}
, which stores221

some key samples of previous tasks is maintained222

during the learning. When the model is learning223

T k, it has access to the data saved in memory224

M1, ...,Mk−1. As there is no limit on the number225

of tasks, the size of memory Mk is constrained to226

be small. Therefore, the model has to select only227

key samples from the training set Dk
train to save228

them in Mk. In our CFRL setting, only one sample229

per relation is allowed to be saved in the memory.230

Figure 1: Our framework for CFRL. The Data Augmentation
component is used only for few-shot tasks (k > 1).

3.2 Overall Framework 231

Our framework for CFRL is shown in Fig. 1 and 232

Alg. 1 describes the overall training process (see 233

Appendix A.2 for a block diagram). At time step 234

k, given the training data Dk
train for the task T k, 235

depending on whether the task is a few-shot or 236

not, the process has four or three working modules, 237

respectively. The general learning process (§3.3) 238

has three steps that apply to all tasks. If the task 239

is a few-shot task (k > 1), we apply an additional 240

step to create an augmented training set D̃k
train. For 241

the initial task (k = 1), we have D̃k
train = Dk

train. 242

For any task T k, we use a siamese model to en- 243

code every new relation ri ∈ Rk into ri ∈ IRd 244

as well as the sentences, and train the model on 245

D̃k
train to acquire relation information of the new 246

data (§3.3.2). To overcome forgetting, we select the 247

most informative sample for each relation ri ∈ Rk 248

from Dk
train and update the memory M̂k (§3.3.3). 249

Finally, we combine D̃k
train and M̂k as the train- 250

ing data for learning new relational patterns and 251

remembering previous knowledge (§3.3.4). We 252

also simultaneously update the representation of all 253

relations in R̂k, which involves making a forward 254

pass through the current model. The learning and 255

updating are done iteratively for convergence. 256

For data augmentation in few-shot tasks (§3.4), 257

we select reliable samples with high relational sim- 258

ilarity score from an unlabelled Wikipedia cor- 259

pus using a fine-tuned BERT (Devlin et al., 2019), 260

which serves as the relational similarity model Sπ. 261

In the interests of coherence, we first present the 262

general learning method followed by the augmen- 263

tation process for few-shot learning. 264

3.3 General Learning Process 265

We first introduce the encoder network as it is the 266

basic component of the whole framework. 267

3.3.1 The Encoder Network 268

The siamese encoder (fθ) aims at extracting generic 269

and relation related features from the input. The 270
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Algorithm 1 Training process at time step k

Require: the training set Dk
train and the relation set Rk of

the current task T k, the current memory M̂k−1 and the
known relation set R̂k−1, the model θ, the similarity
model Sπ , and the unlabeled text corpus C.

1: if k == 1 then ▷ initial task
2: D̃k

train = Dk
train

3: else ▷ few-shot task
4: SELECT similar samples from C using Sπ for every

sample in Dk
train and store them in A

5: D̃k
train = A ∪Dk

train
6: end if
7: INITIALIZE ri for every relation ri ∈ Rk

8: for i = 1, . . . , iter1 do
9: UPDATE θ with Lnew on D̃k

train ▷ Train on new task
10: end for
11: SELECT key samples from Dk

train for every relation ri ∈
Rk to save in Mk

12: R̂k = R̂k−1 ∪Rk

13: M̂k = M̂k−1 ∪Mk ▷ Update memory
14: H̃k = D̃k

train ∪ M̂k ▷ Combine two data sources
15: for i = 1, . . . , iter2 do
16: UPDATE θ with Lmem on H̃k

17: UPDATE ri for every relation ri ∈ R̂k

18: end for

input can be a labeled sentence or the name of a271

relation. We adopt two kinds of encoders:272

• Bi-LSTM To have a fair comparison with pre-273

vious work, we use the same architecture as Han274

et al. (2020). It takes GloVe embeddings (Pen-275

nington et al., 2014) of the words in a given input276

and produces a vector representation through a Bi-277

LSTM (Hochreiter and Schmidhuber, 1997).278

• BERT We adopt BERTbase which has 12 lay-279

ers and 110M parameters. As the new tasks are few-280

shot, we only fine-tune the 12-th encoding layer281

and the extra linear layer. We include special to-282

kens around the entities (‘#’ for the head entity and283

‘@’ for the tail entity) in a given labeled sentence284

to improve the encoder’s understanding of relation285

information. We use the [CLS] token features as286

the representation of the input sequence.287

3.3.2 Learning with New Data288

At time step k, to have a good understanding of the289

new relations, we fine-tune the model on the ex-290

panded dataset D̃k
train. The model fθ first encodes291

the name of each new relation rj ∈ Rk into its292

representation rj ∈ IRd by making a forward pass.293

Then, we optimize the parameters (θ) by minimiz-294

ing a loss Lnew that consists of a cross entropy loss,295

a multi-margin loss and a pairwise margin loss.296

The cross entropy loss Lce is used for relation297

classification as follows. 298

−
∑

(xi,yi)∈D̃k
train

|R̂k|∑
j=1

δyi,rj× log
exp(g(fθ(xi), rj))∑|R̂k|
l=1 exp(g(fθ(xi), rl))

(1) 299

where R̂k is the set of all known relations at step 300

k, g(, ) is a function used to measure similarity 301

between two vectors (e.g., cosine similarity or L2 302

distance), and δa,b is the Kronecker delta function– 303

δa,b = 1 if a equals b, otherwise δa,b = 0. 304

In inference, we choose the relation label that 305

has the highest similarity with the input sentence 306

(Eq. 8). To ensure that an example has the highest 307

similarity with the true relation, we additionally 308

design two margin-based losses, which increase 309

the score between an example and the true label 310

while decreasing the scores for the wrong labels. 311

The first one is a multi-margin loss defined as: 312

Lmm =
∑

(xi,yi)∈D̃k
train

|R̂k|∑
j=1,j ̸=ti

max
(
0,

m1 − g(fθ(xi), rti) + g(fθ(xi), rj)
) (2) 313

where ti is the correct relation index in R̂k satis- 314

fying rti = yi and m1 is a margin value. The 315

Lmm loss attempts to ensure intra-class compact- 316

ness while increasing inter-class distances. The 317

second one is a pairwise margin loss Lpm: 318∑
(xi,yi)∈D̃k

train

max
(
0,m2 − g(fθ(xi), rti) + g(fθ(xi), rsi)

)
(3) 319

where m2 is the margin for Lpm and si = 320

argmaxs g(fθ(xi), rs) s.t. s ̸= ti, the closest 321

wrong label. The Lpm loss penalizes the cases 322

where the similarity score of the closest wrong 323

label is higher than the score of the correct label 324

(Yang et al., 2018). Both Lmm and Lpm improve 325

the discriminative ability of the model (§4.4). 326

The total loss for learning on T k is defined as: 327

Lnew = λceLce + λmmLmm + λpmLpm (4) 328

where λce, λmm and λpm are the relative weights of 329

the component losses, respectively. 330

3.3.3 Selecting Samples for Memory 331

After training the model fθ with Eq. (4), we use it 332

to select one sample per new relation. Specifically, 333

for every new relation rj ∈ Rk, we obtain the 334

centroid feature cj by averaging the embeddings 335

of all samples labeled as rj in Dk
train as follows. 336

cj =
1

|Dk
rj |

∑
(xi,yi)∈Dk

rj

fθ(xi) (5) 337
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where Dk
rj = {(xi, yi)|(xi, yi) ∈ Dk

train, yi = rj}.338

Then we select the instance closest to cj from Dk
rj339

as the most informative sample and save it in mem-340

ory Mk. Note that the selection is done from Dk
train,341

not from the expanded set D̃k
train.342

3.3.4 Alleviating Forgetting through Memory343

As the learning of new relational patterns may344

cause catastrophic forgetting of previous knowl-345

edge (see baselines in §4), our model needs to346

learn from the memory data to alleviate forget-347

ting. We combine the expanded set D̃k
train and the348

whole memory data M̂k = ∪k
j=1Mj into H̃k to349

allow the model to learn new relational knowledge350

and consolidate previous knowledge. However, the351

memory data is limited containing only one sample352

per relation. To learn effectively from such limited353

data, we design a novel method to generate a hard354

negative sample set Pi for every sample in M̂k.355

The negative samples are generated on the fly.356

After sampling a mini-batch Bt from H̃k, we con-357

sider all memory data in Bt as MBt . For every sam-358

ple (x̂i, ŷi) in MBt , we replace its head entity ehi or359

tail entity eti with the corresponding entity of a ran-360

domly selected sample in the same batch Bt to get361

the hard negative sample set Pi = {(x̂Pi
j , ŷi)}|Pi|

j=1.362

Then (x̂i, ŷi) and Pi are used to calculate a margin-363

based contrastive loss Lcon as follows.364

Lcon =
∑

(x̂i,ŷi)∈MBt

max
(
0,m3 − g(fθ(x̂i), rt̂i)+∑

(x̂
Pi
j ,ŷi)∈Pi

g(fθ(x̂
Pi
j ), rt̂i)

) (6)365

where t̂i is the relation index satisfying rt̂i = ŷi366

and m3 is the margin value for Lcon. This loss367

forces the model to distinguish the valid relations368

from the hard negatives so that the model learns369

more precise and fine-grained relational knowledge.370

In addition, we also use the three losses Lce and371

Lmm and Lpm defined in §3.3.2 to update θ on Bt.372

The total loss on the memory data is:373

Lmem = λceLce + λmmLmm + λpmLpm + λconLcon (7)374

where λce, λmm, λpm and λcon are the relative375

weights of the corresponding losses.376

Updating Relation Embeddings After training377

the model on H̃k for few steps, we use the mem-378

ory M̂k to update the relation embedding ri of all379

known relations. For a relation ri ∈ R̂k, we aver-380

age the embeddings (obtained by making a forward381

pass through fθ) of the relation name and memory382

data to obtain its updated representation ri. The 383

training of θ and updating of ri is done iteratively 384

to grasp new relational patterns while alleviating 385

the catastrophic forgetting of previous knowledge. 386

3.3.5 Inference 387

For a given input xi in D̂k
test, we calculate the simi- 388

larity between xi and all known relations, and pick 389

the one with the highest similarity score: 390

y∗i = argmax
r∈R̂k

g(fθ(xi), r) (8) 391

3.4 Data Augmentation for Few-shot Tasks 392

For each few-shot task T k, we aim to get more data 393

by selecting reliable samples from an unlabeled cor- 394

pus C with tagged entities before the general learn- 395

ing process (§3.3) begins. We achieve this using a 396

relational similarity model Sπ and sentences from 397

Wikipedia as C. The model Sπ (described later) 398

takes a sentence as input and produces a normal- 399

ized vector representation. The cosine similarity 400

between two vectors is used to measure the rela- 401

tional similarity between the two corresponding 402

sentences. A higher similarity means the two sen- 403

tences are more likely to have the same relation 404

label. We propose two novel selection methods, 405

which are complementary to each other. 406

(a) Augmentation via Entity Matching For 407

each instance (xi, yi) in Dk
train, we extract its entity 408

pair (ehi , e
t
i) with ehi being the head entity and eti be- 409

ing the tail entity. As sentences with the same entity 410

pair are more likely to express the same relation, we 411

first collect a candidate set Q = {x̃j}|Q|
j=1 from C, 412

where x̃j shares the same entity pair (ehi , e
t
i) with 413

xi. If Q is a non-empty set, we pair all x̃j in Q 414

with xi, and denote each pair as ⟨x̃j , xi⟩. Then we 415

use Sπ to obtain a similarity score sj for ⟨x̃j , xi⟩. 416

After getting scores for all pairs, we pick the in- 417

stances x̃j with similarity score sj higher than a 418

predefined threshold α as new samples and label 419

them with relation yi. The selected instances are 420

then augmented to Dk
train as additional data. 421

(b) Augmentation via Similarity Search The 422

hard entity matching could be too restrictive at 423

times. For example, even though the sentences 424

“Harry Potter is written by Joanne Rowling” and 425

“Charles Dickens is the author of A Tale of Two 426

Cities” share the same relation author, hard match- 427

ing fails to find any relevance. Therefore, in cases 428

when entity matching returns an empty Q, we re- 429

sort to similarity search using Faiss (Johnson et al., 430
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2017). Given a query vector qi, it can efficiently431

search for vectors {vj}Kj=1 with the top-K highest432

similarity scores in a large vector set V . In our case,433

qi is the representation of xi and V contains the434

representations of the sentences in C. We use Sπ435

to obtain these representations; the difference is436

that V is pre-computed while qi is obtained dur-437

ing training. We labeled the top-K most similar438

instances with yi and augment them to Dk
train.439

Similarity Model To train Sπ, inspired by Soares440

et al. (2019), we adopt a contrastive learning441

method to fine-tune a BERTbase model on C,442

whose sentences are already tagged with entities.443

Based on the observation that sentences with the444

same entity pair are more likely to encode the same445

relation, we use sentence pairs containing the same446

entities in C as positive samples. For negatives,447

instead of using all sentence pairs containing dif-448

ferent entities, we select pairs sharing only one449

entity as hard negatives (i.e., pair (xi, xj) where450

ehi = ehj and eti ̸= etj or eti = etj and ehi ̸= ehj ).451

We randomly sample the same number of negative452

samples as the positive ones to balance the training.453

For an input pair (xi, xj), we compute the simi-454

larity score based on the following formula.455

σ(xi, xj) =
1

1 + exp(−Sπ(xi)TSπ(xj))
(9)456

where Sπ(x) is the normalized representation of x457

obtained from the final layer of BERT. Then we458

optimize the parameters π of Sπ by minimizing a459

binary cross entropy loss Lpretrain as follows.460

−
∑

(xi,xj)∈Cp

log σ(xi, xj)−
∑

(x′
i,x

′
j)∈Cn

log(1− σ(x′
i, x

′
j)) (10)461

where Cp is a positive batch and Cn is a negative462

batch. This objective tries to ensure that sentence463

pairs with the same entity pairs have higher cosine464

similarity than those with different entities.465

4 Experiment466

We define the benchmark and evaluation metric for467

CFRL before presenting our experimental results.468

4.1 Benchmark and Evaluation Metric469

Benchmark As the benchmark for CFRL needs470

to have sufficient relations as well as data and be471

suitable for few-shot learning, we create the CFRL472

benchmark based on FewRel (Han et al., 2018b).473

FewRel is a large-scale dataset for few-shot RE,474

which contains 80 relations with hundreds of sam- 475

ples per relation. We randomly split the 80 relations 476

into 8 tasks, where each task contains 10 relations 477

(10-way). To have enough data for the first task 478

T 1, we sample 100 samples per relation. All the 479

subsequent tasks T 2, ..., T 8 are few-shot; for each 480

relation, we conduct 2-shot, 5-shot and 10-shot ex- 481

periments to verify the effectiveness of our method. 482

In addition, to demonstrate the generalizability 483

of our method, we also create a CFRL benchmark 484

based on the TACRED dataset (Zhang et al., 2017) 485

which contains only 42 relations. We filter out the 486

special relation “n/a” (not available) and split the 487

remaining 41 relations into 8 tasks. Except for the 488

first task that contains 6 relations, all other tasks 489

have 5 relations (5-way). Similar to FewRel, we 490

randomly sample 100 examples per relation in T 1 491

and conduct 5-shot and 10-shot experiments. 492

Metric At time step k, we evaluate the model 493

performance through relation classification accu- 494

racy on the test sets D̂k
test = ∪k

i=1D
i
test of all seen 495

tasks {T i}ki=1. This metric reflects whether the 496

model can alleviate catastrophic forgetting while 497

acquiring novel knowledge well with very few data. 498

Since the model performance might be influenced 499

by task sequences and few-shot training samples, 500

we run every experiment 6 times each time with a 501

different random seed to ensure a random task or- 502

der and model initialization, and report the average 503

accuracy along with variance. We perform paired 504

t-test for statistical significance. 505

4.2 Model Settings & Baselines 506

The model settings are shown in Appendix A.3. We 507

compare our approach with the following baselines: 508

• SeqRun fine-tunes the model only on the training 509

data of the new tasks without using any memory 510

data. It may face serious catastrophic forgetting 511

and serves as a lower bound. 512

• Joint Training stores all previous samples in the 513

memory and trains the model on all data for each 514

new task. It serves as an upper bound in CRL. 515

• EMR (Wang et al., 2019) maintains a memory 516

for storing selected samples from previous tasks. 517

When training on a novel task, EMR combines 518

the new training data and memory data. 519

• EMAR (Han et al., 2020) is the state-of-the-art 520

on CRL, which adopts memory activation and re- 521

consolidation to alleviate catastrophic forgetting. 522

• IDLVQ-C (Chen and Lee, 2021) introduces 523
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Method Task index

1 2 3 4 5 6 7 8

SeqRun 92.78 52.11 30.08 24.33 19.83 16.90 14.36 12.34
Joint Train 92.78 76.29 69.39 64.75 60.45 57.64 52.80 50.03

EMR 92.78 69.14 56.24 50.03 46.50 43.21 39.88 37.51
EMAR 85.20 62.02 52.45 48.95 46.77 44.33 40.75 39.04
IDLVQ-C 92.23 69.15 57.42 51.66 49.31 46.24 42.25 40.56

ERDA 92.57 79.17 70.43 65.01 61.06 57.54 54.88 53.23

Table 1: Accuracy (%) of different methods at every time
step on FewRel benchmark for 10-way 5-shot CFRL. ERDA
is significantly better than IDLVQ-C with p-value < 0.001.
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Figure 2: Comparison results at each time step on FewRel
benchmark for 10-way 2-shot and 10-shot settings. For both
settings, ERDA is significantly better than IDLVQ-C with p-
value < 0.001. The variance is reported as light color region.

quantized reference vectors to represent previous524

knowledge and mitigates catastrophic forgetting525

by imposing constraints on the quantized vectors526

and embedded space. It was originally proposed527

for image classification with state-of-the-art re-528

sults in incremental few-shot learning.529

4.3 Main Results530

We compare the performance of different methods531

using the same setting as EMAR (Han et al., 2020),532

which uses a Bi-LSTM encoder. We report the533

results with a BERT encoder in Appendix A.4.534

FewRel Benchmark We report our results on535

10-way 5-shot in Table 1, while Fig. 2 shows the536

results on the 10-way 2-shot and 10-way 10-shot537

settings.2 From the results, we can observe that:538

• Our proposed ERDA outperforms previous base-539

lines in all CFRL settings, which demonstrates the540

superiority of our method. Simply fine-tuning the541

model with new few-shot examples leads to rapid542

drops in accuracy due to severe over-fitting and543

catastrophic forgetting. Although EMR and EMAR544

adopt a memory module to alleviate forgetting,545

their performance still decreases quickly as they546

require plenty of training data for learning a new547

task. Compared with EMR and EMAR, IDLVQ-C548

2To avoid visual clutter, we report only mean scores over
6 runs in Table 1 and refer to Table 6 and Table 4 in Appendix
for variance and elaborate results for different task order.

Figure 3: t-SNE visualization of IDLVQ-C and ERDA at
two stages. Colors represent different relation classes with
numbers being the relation indices. The initial embeddings
of four base classes after learning the first task are shown
in the upper row. As the data for the first task is sufficient,
both methods can obtain separable embedding space. The
lower row shows the embeddings of four base classes and two
novel classes (Id 5 and 9) after learning a new few-shot task.
Compared with IDLVQ-C, ERDA shows better intra-class
compactness (circled regions) and larger inter-class distances
(see the distances between 5 and 9, and 9 and 65).

is slightly better as it introduces quantized vectors 549

that can better represent the embedding space of 550

few-shot tasks. However, IDLVQ-C does not nec- 551

essarily push the samples from different relations 552

to be far apart in the embedding space and the up- 553

dating method for the reference vectors may not be 554

optimal. ERDA outperforms IDLVQ-C by a large 555

margin through embedding space regularization 556

and self-supervised data augmentation. To verify 557

this, we show the embedding space of IDLVQ- 558

C and ERDA using t-SNE (Van der Maaten and 559

Hinton, 2008). We randomly choose four classes 560

from the first task of FewRel and two classes from 561

the new task, and visualize the test data of these 562

classes in Fig. 3. As can be seen, the embedding 563

space obtained by ERDA shows better intra-class 564

compactness and larger inter-class distances. 565

• Unlike CRL, joint training does not always serve 566

as an upper bound in CFRL due to the extremely 567

imbalanced data distribution. Benefiting from the 568

ability to learn feature distribution with very few 569

data, both ERDA and IDLVQ-C perform better 570

than joint training in the 2-shot setting. However, 571

as the number of few-shot samples increases, the 572

performance of IDLVQ-C falls far behind joint 573

training, while ERDA still performs better. In the 574

5-shot setting, ERDA could achieve better results 575

than joint training which verifies the effectiveness 576

of self-supervised data augmentation (more on this 577

in §4.4). Although ERDA performs worse than 578

joint training in the 10-shot setting, its results are 579

7
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Figure 4: Comparison results at every time step on TACRED
benchmark for 5-way 5-shot and 10-shot settings. ERDA is
significantly better than IDLVQ-C with p-value < 0.001 for
both settings. The variance is reported as light color region.

still much better than other baselines.580

• After learning all few-shot tasks, ERDA outper-581

forms IDLVQ-C by 9.69%, 12.67% and 11.49% in582

the 2-shot, 5-shot and 10-shot settings, respectively.583

Moreover, the relative gain of ERDA keeps grow-584

ing with the increasing number of new few-shot585

tasks. This demonstrates the ability of our method586

in handling a longer sequence of CFRL tasks.587

TACRED Benchmark Fig. 4 shows the 5-way588

5-shot and 5-way 10-shot results on TACRED. We589

can see that here also ERDA outperforms all other590

methods by a large margin which verifies the strong591

generalization ability of our proposed method.592

4.4 Ablation Study593

We conduct several ablations to analyze the contri-594

bution of different components of ERDA on the595

FewRel 10-way 5-shot setting. In particular, we in-596

vestigate seven other variants of ERDA by remov-597

ing one component at a time: (a) the multi-margin598

loss Lmm, (b) the pairwise margin loss Lpm, (c) the599

margin-based contrastive loss Lcon, (d) the whole600

2-stage data augmentation module, (e) the entity601

matching method of augmentation, (f) the similarity602

search method of augmentation, and (g) memory.603

From the results in Table 2, we can observe that604

all components improve the performance of our605

model. Specifically, Lmm yields about 1.51% per-606

formance boost as it brings samples of the same607

relation closer to each other while enforcing larger608

distances among different relation distributions.609

The Lpm improves the accuracy by 3.18%, which610

demonstrates the effect of contrasting with the near-611

est wrong label. The adoption of Lcon leads to612

1.28% improvement, which shows that generating613

hard negative samples for memory data can help to614

better remember previous relational knowledge. To615

better investigate the influence of Lcon, we conduct616

experiments with different λcon. The results and617

analysis are shown in Appendix A.8.618

Method Task index

1 2 3 4 5 6 7 8

ERDA 92.57 79.17 70.43 65.01 61.06 57.54 54.88 53.23
w.o. Lmm 91.67 78.38 70.21 63.77 60.23 56.32 53.45 51.72
w.o. Lpm 91.37 75.80 67.11 61.13 57.14 54.04 51.59 50.05
w.o. Lcon 91.63 79.05 69.28 63.86 59.66 56.68 54.12 51.95
w.o. DA 92.57 77.84 69.76 63.74 58.31 56.12 53.21 51.51
w.o. EM 92.57 78.33 70.17 64.18 59.63 57.10 54.18 52.39
w.o. SS 92.57 78.56 69.94 63.98 59.85 56.92 53.75 52.27
w.o. M 91.95 77.59 66.47 57.08 51.08 47.36 43.88 40.32

Table 2: Ablations on FewRel benchmark (10-way 5-shot).
The variance over 6 runs is reported in Table 7 in Appendix.
We show the analysis of ‘w.o. M’ in Appendix A.7.

The data augmentation module improves the per- 619

formance by 1.72% as it can extract informative 620

samples from unlabeled text which provide more re- 621

lational knowledge for few-shot tasks. The results 622

of variants without entity matching or similarity 623

search verify that the two data augmentation meth- 624

ods are generally complementary to each other. 625

One could argue that the data augmentation mod- 626

ule increases the complexity of ERDA compared to 627

other models. However, astute readers can find that 628

even without data augmentation, ERDA outper- 629

forms IDLVQ-C significantly for all tasks (compare 630

‘ERDA w.o. DA’ with the baselines in Table 1). 631

ERDA’s Performance under CRL Although 632

ERDA is designed for CFRL, we also evaluate the 633

embedding space regularization (‘ERDA w.o. DA’) 634

in the CRL setting. We compare our method with 635

EMAR. The results are shown in Appendix A.6. 636

We can see that ERDA outperforms EMAR in all 637

tasks by 1.25 - 4.95% proving that the embedding 638

regularization can be a general method for CRL. 639

5 Conclusion 640

We have introduced continual few-shot relation 641

learning (CFRL), a challenging yet practical prob- 642

lem where the model needs to learn new relational 643

knowledge with very few labeled data continually. 644

We have proposed a novel method, named ERDA, 645

to alleviate the over-fitting and catastrophic forget- 646

ting problems which are the core issues in CFRL. 647

ERDA imposes relational constraints in the em- 648

bedding space with innovative losses and adds ex- 649

tra informative data for few-shot tasks in a self- 650

supervised manner to better grasp novel relational 651

patterns and remember previous knowledge. Ex- 652

tensive experimental results and analysis show that 653

ERDA significantly outperforms previous methods 654

in all CFRL settings investigated in this work. In 655

the future, we would like to investigate ways to 656

combine meta-learning with CFRL. 657
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A Appendix1005

A.1 Difference between CRL and CFRL1006

Figure 5: Except for the first task which has enough training
data, the subsequent new tasks are all few-shot in CFRL. In
contrast, CRL assumes enough training data for every task.

A.2 Block Diagram of ERDA Training1007

Figure 6: The block diagram of ERDA’s training at time
step k.

A.3 Hyperparameter Search1008

We follow the settings in Han et al. (2020) for the1009

Bi-LSTM encoder to have a fair comparison. For1010

data augmentation, we set the threshold α = 0.651011

and the number of samples selected by Faiss (K)1012

as 1. We adopt 0.2, 0.2 and 0.01 for the three mar- 1013

gin values m1,m2 and m3, respectively. The loss 1014

weights λce, λmm, λpm and λcon are set to 1.0, 1.0, 1015

1.0 and 0.1, respectively. In Alg. 1, we set 1 for 1016

iter1 and 2 for iter2. Hyperparameter search is 1017

done on the validation sets. We follow EMAR 1018

(Han et al., 2020) and use a grid search to select the 1019

hyperparameters. Specifically, the search spaces 1020

are: 1021

• Search range for α is [0.3, 0.8] with a step size 1022

of 0.05. 1023

• Search range for K is [1, 3] with a step size of 1. 1024

• Search range for m1 and m2 is [0.1, 0.3] with a 1025

step size of 0.1. 1026

• Search range for m3 is [0.01, 0.03] with a step 1027

size of 0.01. 1028

• Search range for iter2 in Alg. 1 is [1, 3] with a 1029

step size of 1. 1030

A.4 Results with a BERT Encoder 1031

We report the performance of different CFRL meth- 1032

ods with a BERT (Devlin et al., 2019) encoder in 1033

this section. 1034

• FewRel Benchmark We show the results of 1035

different methods on FewRel benchmark in Table 3 1036

(10-way 5-shot) and Fig. 7 (10-way 2-shot and 10- 1037

shot). 1038

• TACRED Benchmark The results of different 1039

methods on TACRED benchmark are shown in 1040

Fig. 8 (5-way 5-shot and 10-shot). 1041

From the results, we can observe that ERDA 1042

outperforms previous baselines in all CFRL settings 1043

with a BERT encoder. 1044

A.5 The Influence of Task Order 1045

To evaluate the influence of the task order, we show 1046

the results (ERDA and IDLVQ-C) of six different 1047

runs with different task order on the FewRel bench- 1048

mark for 10-way 5-shot setting in Table 4. From 1049

the results, we can see that the order of tasks will 1050

influence the performance. For example, ERDA 1051

achieves 55.59 accuracy after learning task8 on the 1052

second run while the accuracy after learning task8 1053

on the fifth run is only 51.35. More importantly, 1054

ERDA outperforms IDLVQ-C by a large margin in 1055

all six different runs. 1056
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Method Task index

1 2 3 4 5 6 7 8

SeqRun 96.35±0.25 70.23±2.42 58.13±2.08 54.17±1.90 48.82±3.42 43.52±2.45 37.90±1.93 33.97±1.53

Joint Training 96.35±0.25 87.85±2.25 82.87±2.69 80.05±2.61 77.62±1.89 74.69±1.04 72.23±0.68 69.74±0.34

EMR 96.35±0.25 88.02±2.09 78.83±2.80 75.15±2.85 72.00±2.23 69.41±2.06 66.70±1.57 63.68±1.47

EMAR 92.03±1.98 78.87±3.72 72.81±5.25 69.19±4.45 68.05±4.08 66.23±1.95 63.68±2.55 61.77±1.48

IDLVQ-C 96.03±0.12 87.18±2.51 76.63±3.97 73.57±4.43 67.74±3.60 65.16±2.96 62.64±1.87 60.32±1.75

ERDA 96.38±0.35 88.91±1.96 83.10±1.80 79.73±2.69 74.83±3.06 72.84±1.75 70.28±1.79 68.07±1.94

Table 3: Accuracy (%) of different methods with a BERT encoder on FewRel benchmark for 10-way 5-shot setting. ERDA is
significantly better than EMR with p-value = 0.003.
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Figure 7: Comparison results of different methods with a BERT encoder on FewRel benchmark for 10-way 2-shot and 10-shot
settings. ERDA is significantly better than IDLVQ-C with p-value = 0.005 for 2-shot setting and is significantly better than
EMR with p-value = 0.002 for 10-shot setting.

Run index Task index

1 2 3 4 5 6 7 8

1
93.42 77.60 68.13 65.77 62.66 59.72 52.09 54.39
91.40 65.30 50.00 49.23 50.28 46.22 41.64 42.96

2
91.02 76.55 68.03 62.32 57.26 54.73 56.97 55.59
92.10 61.10 49.37 44.88 40.90 43.72 42.43 38.47

3
93.32 81.30 74.37 68.77 66.00 58.47 55.70 52.76
92.30 76.40 66.70 52.11 50.12 45.92 42.16 39.64

4
92.42 77.50 64.50 57.90 60.12 52.87 52.53 53.65
92.20 62.65 57.30 51.73 51.26 46.00 42.81 40.04

5
93.02 82.10 73.83 66.60 59.98 60.78 56.09 51.35
92.30 72.45 60.47 51.25 46.82 45.27 39.19 38.36

6
92.22 80.00 73.73 68.70 60.36 58.67 55.90 51.64
93.10 77.00 60.67 60.75 56.48 50.32 45.26 43.89

Table 4: Accuracy (%) of six different runs with different task order on FewRel benchmark for 10-way 5-shot setting. For
every run, the upper row is the result of ERDA and the lower row shows the performance of IDLVQ-C.

A.6 Relation Extraction Results for ERDA1057

and EMAR in the CRL Setting1058

The comparison between ERDA and EMAR in the1059

continual relation learning (CRL) setting is shown1060

in Fig. 9. We randomly split the 80 relations into 8 1061

tasks and sample 100 examples per relation. From 1062

the figure, we can see that ERDA also outperforms 1063

EMAR with enough training data. 1064
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Figure 8: Results of different methods with a BERT encoder on TACRED benchmark for 5-way 5-shot and 10-shot settings.
ERDA is significantly better than EMR with p-value = 0.004 for 5-shot setting and is significantly better than EMAR with
p-value = 0.02 for 10-shot setting.
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Figure 9: Relation extraction results for ERDA (our) and
EMAR (Han et al., 2020) on the FewRel benchmark under the
CRL setting. We randomly split the 80 relations into 8 tasks,
where each task contains 10 relations. And we sample 100
examples per relation. From this figure, we can observe that
ERDA outperforms EMAR in all CRL tasks.

A.7 The Contribution of Memory1065

We conduct the ablation without memory (‘w.o.1066

M’) to analyze the contribution of the memory1067

module on the FewRel 10-way 5-shot setting. From1068

the results in Table 7, we can observe that ERDA1069

shows much better performance than ‘w.o. M’,1070

which verifies the importance of the memory mod-1071

ule. In addition, comparing the results of ‘w.o. M’1072

and ‘SeqRun’ in Table 1, we can find that ‘w.o. M’1073

achieves much better accuracy. This demonstrates1074

the effectiveness of improving the representation1075

ability of the model through margin-based losses.1076

A.8 The Influence of Different λcon1077

We conduct experiments with different λcon to bet-1078

ter investigate the influence of the margin-based1079

contrastive loss Lcon. As shown in Table 5, the1080

model achieves the best accuracy 53.38 with λcon1081

0.02 while the accuracy is only 52.13 with λcon 0.5.1082

In addition, the performance of the variant without 1083

Lcon is worse than the performance of all other 1084

variants, which demonstrates the effectiveness of 1085

Lcon. 1086
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λcon 0 0.01 0.02 0.05 0.1 0.2 0.5 1.0

Accuracy (%) 51.95±1.15 52.66±1.23 53.38±0.63 53.10±0.69 53.23±1.49 52.99±0.79 52.13±1.50 52.27±1.07

Table 5: Accuracy (%) after learning all tasks with different λcon on FewRel benchmark (10-way 5-shot).

Method Task index

1 2 3 4 5 6 7 8

SeqRun 92.78±0.76 52.11±2.06 30.08±1.75 24.33±2.38 19.83±0.99 16.90±0.99 14.36±0.69 12.34±0.61

Joint Training 92.78±0.76 76.29±3.47 69.39±3.18 64.75±2.48 60.45±1.67 57.64±0.84 52.80±0.99 50.03±1.17

EMR 92.78±0.76 69.14±2.74 56.24±3.32 50.03±2.91 46.50±2.30 43.21±1.47 39.88±1.25 37.51±1.53

EMAR 85.20±4.15 62.02±3.34 52.45±3.75 48.95±5.46 46.77±2.56 44.33±2.83 40.75±2.60 39.04±2.05

IDLVQ-C 92.23±0.50 69.15±6.42 57.42±6.14 51.66±4.74 49.31±4.72 46.24±2.00 42.25±1.79 40.56±2.13

ERDA 92.57±0.82 79.17±2.08 70.43±3.75 65.01±3.84 61.06±2.71 57.54±2.80 54.88±1.86 53.23±1.49

Table 6: Accuracy (%) and variance of different methods at every time step on FewRel benchmark for 10-way 5-shot CFRL.

Method Task index

1 2 3 4 5 6 7 8

ERDA 92.57±0.82 79.17±2.08 70.43±3.75 65.01±3.84 61.06±2.71 57.54±2.80 54.88±1.86 53.23±1.49

w.o. Lmm 91.67±1.00 78.38±2.70 70.21±4.23 63.77±4.03 60.23±2.78 56.32±3.13 53.45±2.11 51.72±1.27

w.o. Lpm 91.37±0.60 75.80±3.82 67.11±4.63 61.13±2.47 57.14±2.81 54.04±2.36 51.59±2.30 50.05±1.14

w.o. Lcon 91.63±0.64 79.05±2.46 69.28±1.95 63.86±2.77 59.66±3.14 56.68±2.55 54.12±1.18 51.95±1.15

w.o. DA 92.57±0.82 77.84±4.07 69.76±2.62 63.74±3.89 58.31±2.38 56.12±2.97 53.21±2.32 51.51±0.70

w.o. EM 92.57±0.82 78.33±2.73 70.17±4.34 64.18±2.82 59.63±2.22 57.10±1.73 54.18±1.79 52.39±0.66

w.o. SS 92.57±0.82 78.56±3.64 69.94±3.04 63.98±2.56 59.85±2.18 56.92±2.56 53.75±2.05 52.27±0.98

w.o. M 91.95±0.82 77.59±2.28 66.47±2.04 57.08±3.08 51.08±2.60 47.36±4.88 43.88±1.29 40.32±2.22

Table 7: Accuracy (%) and variance of the ablations on FewRel benchmark (10-way 5-shot).
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