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Abstract

Based on Wavelet Positional Encoding of Ngo et al. (2023), we propose HOPE-WavePE
(High-Order Permutation Equivariant Wavelet Positional Encoding) a novel pre-training
strategy for positional encoding that is equivariant under the permutation group and is
sensitive to the length and diameter of graphs downstream tasks. Since our approach relies
solely on the graph structure, it is domain-agnostic and adaptable to datasets from various
domains, therefore paving the wave for developing general graph structure encoders and
graph foundation models. We theoretically demonstrate that such equivariant pretraining
schema can approximate the training target for abitrarily small tolerance. We also evaluate
HOPE-WavePE on graph-level prediction tasks of different areas and show its superiority
compared to other methods. We release our source code upon the acceptance.

Keywords: Topological learning, Permutation Equivariance, Positional Encoding, Graph
Neural Network

1. Introduction

One of the fastest-growing areas in machine learning is graph representation learning, with
impactful applications in biomedicine, molecular chemistry, and network science. Most
graph neural networks (GNNs) rely on the message-passing framework that processes graph-
structured data by exchanging the vectorized information between nodes on graphs along
their edges. Albeit achieving remarkable results in a wide range of tasks on graph data,
message-passing neural networks (MPNNs) possess several fundamental limits, including
expressiveness Xu et al. (2019), over-smoothing Chen et al. (2020), and over-squashing
Topping et al. (2022). In recent years, transformer-based architectures Yun et al. (2019);
Kreuzer et al. (2021); Dwivedi and Bresson (2020); Ying et al. (2021) have emerged as pow-
erful alternatives to address the mentioned issues of MPNN. However, graph transformers
(GTs) and VN-augmented MPNNs disregard the underlying structure of graph data by
altering inherent connections among the nodes (i.e., shortening all paths to two). This
disregard may explain their limitations in several graph-level prediction tasks. To address
this, positional and structural encodings (PSE) are commonly used to enhace structural
information in modern GNNs.

Our work builds on similar approaches to Wang et al. (2022) and Liu et al. (2023),
where we pre-train an encoder to capture node positional information in an unsupervised
setting. However, unlike previous works, our encoder is high-order equivariant, enabling
it to capture multi-scale properties of graph structures using Wavelet positional encodings
Ngo et al. (2023). These learned positional features can be adapted to various downstream
tasks and generalize well to domain-specific datasets.. Furthermore, realizing the limitations
of previous pretraining schema by relying on domain features You et al. (2021); Xu et al.
(2021); Zhu et al. (2021); You et al. (2020); Jiao et al. (2020), we aim to generalize the
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learnability by exploiting the intrinsic structure of graphs, i.e. adjacency matrices. Finally,
unlike structural encodings like random walk whose receptive field is limited to the hop
length, our encoding method aims to be sensitive to the graph size while still capturing
long-range structural information.

In this work, we propose a new pretraining approach on graphs that leverages the recon-
struction of graph structures from the Wavelet signals to generalize structural information
on graph data, thus enabling transfer learning to various downstream tasks across various
domains of different ranges. Our contributions are three-fold as follows:

• We propose a high-order structural pretrained models for graph-structured data and
a loss-masking technique that leverages high-order interactions of nodes on graphs
while being aware of the graph size and diameter.

• We theoretically prove that pretraining by reconstruction with multi-resolutionWavelet
signals can make autoencoder learn node state after an arbitrarily walk of length d,
which can contain both local and global information of graph structures.

• We empirically show that such pretraining scheme can enhance the performance of
supervised models when fine-tuned on downstream datasets of different domains, in-
dicating the generalizabiilty and effectiveness of pretrained structural encoding com-
pared with other domain-specific pretraining methods.

2. Methodology

2.1. Spectral Graph Wavelet Tensors

Given the eigendecomposition of the normalized Laplacian L̃ = UΛUT , where Λ is the
diagonal matrix of eigenvalues. The graph Wavelet transforms construct a set of spectral
graph Wavelet as bases to project the graph signal from the vertex domain to the spectral
domain as:

ψs = UΛsU
T , (1)

here, Λs = diag(g(sλ1), · · · , g(sλn)) is the scaling matrix of the eigenvalues. The scaling
function g takes the eigenvalue λi and an additional scaling factor s as inputs, indicating
how a signal diffuses away from node i at scale s; we select gs(λ) = exp(−sλ) as the heat
kernel. This means that we can vary the scaling parameter s to adjust the neighborhoods
surrounding a center node. For computation efficiency, we use the fast graph wavelet trans-
form Hammond et al. (2011) to approximate these wavelets with complexity O(|E| ×M),
where M is the order of polynomials and E is the set of edges.

2.2. Constructing Long-range Pretraining on Domain-Agnostic Data

Encoder Given a second-order wavelet tensor W ∈ Rn×n×k, the encoder E encodes W
into a latent matrix Z = E(W) ∈ Rn×dℓ , the encoder E can be composed of many equivariant
operators. Furthermore, to reduce redundancy caused by high-order training, we extract
only two equivariant mappings for the encoder, diagonal and row sum.
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Decoder The decoder D lifts Z back to a high-order feature map F = D(Z) ∈ Rn×n×d.
Here, We use the outer product and diagonal operator, which represent structural and po-
sitional informationn respectively. Afterward, we use a channel-wise multi-layer perceptron
(MLP) ϕ : Rn×n×d 7→ Rn×n×r to map F to a concatenated high-degree adjacency matrix
in binary values. Specifically, let Aj be the binary matrix of j-hop neighbor in a graph and

Âj be its prediction. The final MLP network returns the predicted array

ϕ(Z) =
[
Âs1 Âs2 . . . Âsr

]
, (2)

where s1, s2, . . . , sr are natural degrees to be chosen. In this work, we let these values follow
a exponential pattern, which highlights the range-diversity.

Theoretically, we show that with sufficient budget, our pretraining schema can reach
abitraily high accuracy, the full proof is provided at Appendix 8.

Theorem 1 For any ϵ > 0 and real coefficients θ1, θ2, . . . , θd, there exists a high-order
autoencoder network φ : Rn×n×d → Rn×n such that∥∥∥∥∥∥φ(Z)−

r∑
j=1

θjAj

∥∥∥∥∥∥ < ϵ.

In order to build balanced learning in edges and non-edges in each hop length, we
delve into the pair-level connection of each As in the aforementioned adjacency array. In
particular, we mask out random edges and non-edges in the reconstruction loss such that
they are of equal quantity:

LM(Asi , Âsi) = BinCrossEntropy
(
Mi ⊙Asi ,Mi ⊙ Âsi

)
,

where ⊙ is the elementwise matrix product. This masking technique can filter out redundant
adjacencies of graphs. Specifically, Mi filters out Asi if the entries are all ones and are
dependent on the graph structure. By this way, it filters out unnecessary hop lengths for
shorter graphs, preserving the generalizability of these hops for longer graphs. This lets us
combine datasets of different graph sizes and only extract meaningful relevant features.

3. Experiments

Pretraining We pretrained a high-order autoencoder on MolPCBA Wu et al. (2018) and
Peptides-func Dwivedi et al. (2022). During this pretraining stage, the autoencoder focuses
on learning a set of topological hops, represented by the concatenated tensor {Asi}ri=1. By
excluding chemical features during pretraining, we granted the network versatility, enabling
it to adapt to downstream tasks that use different feature representations. To incorporate
multi-scale information, we constructed a 4-channel Wavelet tensor for each graph sample,
with scaling factors of [1, 2, 4, 16]. The autoencoder architecture consisted of an encoder
and a decoder, each containing a three layer MLP. The decoded output undergoes another
three-layer MLP of dimensionality [16, 32, 64, 32, 16] is used to learn the adjacency tensor
{Asi}ri=1. We divide the MolPCBA dataset into a train-valid ratio of 9:1 and use the
prepaired train-valid set for Peptides-func.
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3.1. Results

Since we pretrained our HOPE-WavePE autoencoder on the MolPCA and Peptides-func,
We focus on evaluating the transferrability of HOPE-WavePE to some out-of-distribution
(OOD) datasets. This should highlight the independent of HOPE-WavePE in terms of
domain and indicates the learning continuous spectrum range of our method, motivated by
the continuously decaying nature of the Wavelet transform on graphs. We evaluate HOPE-
WavePE on six diverse datasets from the TUDataset benchmark Morris et al. (2020): a
small molecule dataset (MUTAG), two chemical compound datasets (NCI1 and NCI109), a
macromolecule dataset (PROTEINS) and two social network datasets (IMDB-B and IMDB-
M). The results in 1 demonstrate that GIN augmented with HOPE-WavePE significantly
outperforms other complicated high-order networks like IGN Maron et al. (2019b), CIN,
and PPGNs on three out of six datasets.

Table 1: Experimental results on TU datasets. The methods are evaluated by Accuracy
% (↑). The reported results are means and standard deviations of runnings over
five random seeds. Top 3 results are highlighted, including First, Second, and
Third.

Method MUTAG PROTEINS NCI1 NCI109 IMDB-B IMDB-M

RWK Gärtner et al. (2003) 79.2 ± 2.1 59.6 ± 0.1 >3 days - - -
GK (k = 3) Shervashidze et al. (2009) 81.4 ± 1.7 71.4 ± 0.3 62.5 ± 0.3 62.4 ± 0.3 - -
PK Neumann et al. (2014) 76.0 ± 2.7 73.7 ± 0.7 82.5 ± 0.5 - - -
WL kernel Shervashidze et al. (2011) 90.4 ± 5.7 75.0 ± 3.1 86.0 ± 1.8 - 73.8 ± 3.9 50.9 ± 3.8

DCNN Atwood and Towsley (2016) - 61.3 ± 1.6 56.6 ± 1.0 - 49.1 ± 1.4 33.5 ± 1.4
DGCNN Zhang et al. (2018) 85.8 ± 1.8 75.5 ± 0.9 74.4 ± 0.5 - 70.0 ± 0.9 47.8 ± 0.9
IGN Maron et al. (2019b) 83.9 ± 13.0 76.6 ± 5.5 74.3 ± 2.7 72.8 ± 1.5 72.0 ± 5.5 48.7 ± 3.4
GIN Xu et al. (2019) 89.4 ± 5.6 76.2 ± 2.8 82.7 ± 1.7 - 75.1 ± 5.1 52.3 ± 2.8
PPGNs Maron et al. (2019a) 90.6 ± 8.7 77.2 ± 4.7 83.2 ± 1.1 82.2 ± 1.4 73.0 ± 5.8 50.5 ± 3.6
Natural GN de Haan et al. (2020) 89.4 ± 1.6 71.7 ± 1.0 82.4 ± 1.3 - 73.5 ± 2.0 51.3 ± 1.5
GSN Bouritsas et al. (2023) 92.2 ± 7.5 76.6 ± 5.0 83.5 ± 2.0 - 77.8 ± 3.3 54.3 ± 3.3
SIN Bodnar et al. (2021) - 76.4 ± 3.3 82.7 ± 2.1 - 75.6 ± 3.2 52.4 ± 2.9
CIN Bodnar et al. (2022) 92.7 ± 6.1 77.0 ± 4.3 83.6 ± 1.4 84.0 ± 1.6 75.6 ± 3.7 52.7 ± 3.1

GIN + HOPE-WavePE (ours) 93.6 ± 5.8 79.5 ± 4.81 84.5 ± 2.0 84.1 ± 1.9 76.0 ± 3.7 52.7 ± 2.9

4. Conclusion

We have introduced HOPE-WavePE, a novel high-order permutation-equivariant pretrain-
ing method specifically designed for graph-structured data. Our approach leverages the
inherent connectivity of graphs, eliminating reliance on domain-specific features. This en-
ables HOPE-WavePE to generalize effectively across diverse graph types and domains. The
superiority of HOPE-WavePE is demonstrably proven through both theoretical and empir-
ical analysis. Finally, we have discussed the potential of HOPE-WavePE as a foundation
for a general graph structural encoder. A promising future direction will be to focus on
optimizing the scalability of this approach.

4



Extended Abstract Track
Short Title

References

James Atwood and Don Towsley. Diffusion-convolutional neural networks, 2016.

Cristian Bodnar, Fabrizio Frasca, Yu Guang Wang, Nina Otter, Guido Montúfar, Pietro Liò,
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Michaël Defferrard, Lionel Martin, Rodrigo Pena, and Nathanaël Perraudin. Pygsp: Graph
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Appendix B. Theoretical analysis

Notations. Throughout this section, for X ∈ Rm×n, we denote X[i : j] as the indiced
matrix of X from row i to row j and X[i] as the i-th row of X.

B.1. Preliminary results

The approximation methodology we use is the spline approximation on the eigenvalues of
the laplacians, which later . First we need to define a scalar k-spline function on a bounded
domain [a, b] ⊂ R. Let

a =: η1 < η2 < · · · < ηN+1 := b

such that ηj+1 = ηj + (b − a)/N , these points are called uniform knots in the interval
[a, b]. Assume that Pk is the class of polynomial up degree at most k.

Definition 2 A scalar function f is called a k-spline function in the uniformly-divided
interval [a, b] of N + 1 knots if the follows conditions are satisfied:

• f(x) = pi(x) ∀ x ∈ [ηi, ηi+1], i = 1, N for some pi ∈ Pk,

• Derivative of f up to degree k is continuous.

For convenience, we denote the class of all such functions in Definition 2 as S [a,b]
k,N .

Lemma 3 (spline approximation power) Sande et al. (2020) Given a scalar function u of
smoothness order k + 1 in the range [a, b] divided in uniform knots of length h, there exists

p ∈ S [a,b]
k,N such that

∥u− p∥ ≤
(
h

π

)k ∥∥∥u(k+1)
∥∥∥

where u(k+1) is the (k + 1)-th order derivative of u.

Our proof strategy incorporate the approximation of high degree polymonial with k-
spline methodology. Since both wavelet and random walk second feature embeddings’
largest eigenvalue is 1 and smallest eigenvalue is -1, we can let a = −1 and b = 1 in
our case. Note that in a two-layer MLP, the number of subintervals [ηi, ηi+1] should corre-
spond to the width in the hidden layer, which is equavalent to 1/h. Therefore, Lemma 3
yields the condition in which a tolerance ϵ is satisfied.

Letting u(x) = xd for some d > k, then u is obviously smooth up to arbitrary order,
thus it is also smooth of order k. We will let ∥·∥ be the max norm in the interval [0, 1], then
we have

∥∥∥u(k+1)
∥∥∥1/k = (d(d− 1) . . . (d− k))1/k sup

x∈[0,1]
x

d−k+1
k ≤ d1+

1
k

Combine this with the statement of Lemma 3 we deduce that the error defined by the
max norm will be less than ϵ if

w :=
1

h
≥ π−1ϵ−

1
k d1+

1
k = O

(
ϵ−

1
k d1+

1
k

)
.

From here, we deduce an important lemma:

9
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Lemma 4 Given two natural numbers d and k such that d > k, then there exists a two-

layer MLP f : Rk → R of hidden width O
(
ϵ−

1
k d1+

1
k

)
such that

∣∣∣xd − f
(
x, x2, . . . , xk

)∣∣∣ < ϵ

Lemma 5 (First order extension) For any ϵ > 0 and a given natural number d > k,
there exists a two-layer Sn-equivariant linear MLP : Rn×k → Rn×r network with width

O
(
n

1
k ϵ−

1
k r1+

1
k

)
such that ∥∥∥MLP

(
E

(1)
k

)
−E(1)

r

∥∥∥ ≤ ϵ.

Proof

Assume that Λi is the diagonal matrix containing all eigenvalues of ψi
s. Applying

Lemma 4, we simply see that Λq for q = k + 1, r can be estimated using a two-layer MLP of

width O
(
ϵ−

1
k r1+

1
k

)
with the max norm error less than ϵ. Formally, let ψ̂q

s be the estimation

of ψq
s and ei be the error at the i-th entry along the diagonal, then we have that

∥∥∥ψ̂q
s − ψq

s

∥∥∥ =

∥∥∥∥∥
n∑

i=1

eiuiu
⊤
i

∥∥∥∥∥ ≤
n∑

i=1

|ei|
∥∥∥uiu

⊤
i

∥∥∥ ≤ nϵ

Replacing ϵ with ϵ/n yields the desired result.

With enough first-order informations, i.e. sufficiently large r in Lemma 5, we can re-
construct the second-order features up to arbitrarily high degree.

Theorem 6 (First to second order) Assume that rank(ψs − In) ≤ r and let h : Rn×r →
Rn×n×r be the resolution-wise outer product, then there exists a broadcasted linear feed

forward layer g : Rr → Rd such that (h ◦ g)
(
E

(1)
d

)
= E

(2)
r .

Proof The first order features are aggregated through an outer product operator and
return r square matrices of order n. However, these matrices are all rank one matrices
and cannot represent the initial second order features. Since the rank of a square matrix is
equivalent to its length minus the multiplicity of the eigenvalue zero, we can see that

rank(ψs − In) = rank(ψ2
s − In) = · · · = rank(ψd

s − In) ≤ r

Therefore, for all i = 1, d, the matrix ψi
s − In can be written as a weighted sum of r

rank one matrices produced from the outer product. This concludes the proof.
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B.2. Proof of Theorem 1

Theorem 7 For any ϵ > 0 and real coefficients θ0, θ1, . . . , θd assume that rank(ψs−In) ≤ r,
then there exists an Sn-equivariant AE f : Rn×n×k → Rn×n×r of width O(n1/kr1+1/kϵ−1/k)
and a broadcasted feed forward network g : Rr → R such that

∥(g ◦ f)(Ek)− p(ψs)∥ < ϵ

where p(ψs) =
∑d

j=0 θjψ
j
s.

Proof Encoder. The input tensor is of size n×n×k, representing second order feature in
k different resolutions. The encoder simply operate resolution-wise and take the row-sum
through each square matrix. This encoder will output a first order tensor of size n×k. This
layer is evidently Sn-equivariant.

Latent. For the latent space, i.e. first-order feature space, we apply Lemma 5 to extend

from k resolutions to r resolutions using a two-layer MLP of width O
(
n

1
k ϵ−

1
k r1+

1
k

)
. And

since this MLP is also built upon the broadcasting along the n-axis, it is also Sn-equivariant.
Decoder. Applying the content of Theorem 6 we can conclude the proof.

After proving the reconstructability of these wavelets, we show how this translate to
long-range structure on graphs via the main objective of Theorem 1.

Theorem 8 For any ϵ > 0 and real coefficients θ1, θ2, . . . , θd, there exists a two-layer
ReLU feed forward network φ : Rn×n×d → Rn×n of hidden dimension dh = 2 such that∥∥∥∥∥∥φ(Ed)−

d∑
j=1

θjAj

∥∥∥∥∥∥ < ϵ.

Proof For this proof, we need to consider wavelet and random walk separatedly. Wavelet.
Let ψs = UΛsU

⊤ where Λs = diag(exp(−sλ1), exp(−sλ2), . . . , exp(−sλn)). We first need

to perform a transform on the vector basis E
(2)
d . Essentially, the transformations are done

independent of the eigenvectors U . Formally, we observe that
e−sλi − 1
e−2sλi − 1

...
e−dsλi − 1

 ≈ A


λi − 1

(λi − 1)2

...
(λi − 1)d

 (3)

where A ∈ Rd×d contains the corresponding Chebyshev polynomial expanding coefficients.
Note that (3) is essentially the discrete fourier transform, thus the inversed version is simply

λi − 1
(λi − 1)2

...
(λi − 1)d

 ≈ A−1


e−sλi − 1
e−2sλi − 1

...
e−dsλi − 1

 . (4)
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This means that the power of L̃ up to d can be retrieved via a broadcasted linear layer.

Now let ζ be the scalar step function, meaning ζ(x) = 1 for x > 0 and 0 otherwise. Then,
let φ be a continuous piece-wise linear function such that:

φ(x) =


0 if x < 0
x/ε if 0 ≤ x < 1
1 if x ≥ 1

Since this function is a three-piece linear function, it can be represented as a ReLU-based
feed forward network with hidden dimension two. And evidently,

∥φ− ζ∥ → 0 as ε→ 0.

Furthermore, it yields that ζ
(
(In − L̃)k

)
= Ak for all k. Therefore, we concluded the

proof.

Appendix C. Additional implementation details

C.1. Datasets

Table 2 presents details of all benchmarking datasets used in our experiments. We focus
on improving model performance in graph-level prediction tasks. All datasets contain over
1000 samples, with the average number of nodes per dataset ranging from 13 to over 100.

C.2. Hyperparameter Settings

Pretraining 3 depicts the hyperparameters of our high-order autoencoder and training
settings. In general, we used three layers of IGN Maron et al. (2019b) to build the encoder
hidden dimensions of [8, 16, 32]. The decoder is a reversed of encoder with hidden dimensions
[32, 16, 8]. We used a channel-wise 2-layer MLP to compute the latent Z from the encoder’s
output, and the latent dimension is set to 20. We preprocessed the Wavelet signals of
graph data via the PyGSP Defferrard et al. (2017) software. For each graph, we performed
Wavelet transform to get its 4-resolution Wavelet tensor, where each scale varies in [0.25,
0.5, 0.75, 1]. Finally, the autoencoder is pretrained in 100 epochs with a batch size of 32
and learning rate of 0.0005.

MoleculeNet 4 shows the hyperparameter settings for fine-tuning MPNN on five down-
stream datasets in MoleculeNet benchmark. In general, we used local attetion as proposed
in Shi et al. (2021). To model the global interactions, we augment virtual nodes to the local
models to improve the performances in ToxCast and SIDER.

TUDataset Table 5 summarizes the hyperparameter settings for the transfer learning
experiments on six TUDataset benchmark datasets. For IMDB-B and IMDB-M, which
lack domain node features, we employed HOPE-WavePE as their initial node features. To
create unified node features compatible with the hidden dimensions of the MPNN layers,
we added a 2-layer MLP before the MPNN layers to update the combination of domain and
HOPE-WavePE features. Following Bodnar et al. (2022), we performed 10-fold validations
for each dataset and reported means and standard deviations.
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Dataset # Graphs # Nodes # Edges Pred. level Pred. task Metric

CIFAR10 60,000 117.63 469.10 graph class. (10-way) ACC
MNIST 70,000 70.57 281.65 graph class. (10-way) ACC

ZINC-subset 12,000 23.15 24.92 graph reg. MAE
MolBBBP 2,039 24.06 25.95 graph class. (binary) AUROC
MolBACE 1,513 34.09 36.86 graph class. (binary) AUROC
MolTox21 7,831 18.57 19.29 graph class. (binary) AUROC
MolToxCast 8,576 18.78 19.26 graph class. (binary) AUROC
MolSIDER 2,039 33.64 35.36 graph class. (binary) AUROC

Peptides-func 15,535 150.94 153.65 graph class. (binary) AP
Peptides-struct 15,535 150.94 153.65 graph reg. MAE

MUTAG 188 17.9 39.6 graph class. (binary) ACC
PROTEINS 1,113 39.1 72.8 graph class. (binary) ACC
NCI1 4,110 29.9 32.3 graph class. (binary) ACC
NCI109 4,127 29.7 32.1 graph class. (binary) ACC
IMDB-B 1,000 19.8 96.5 graph class. (binary) ACC
IMDB-M 1,500 13.0 65.9 graph class. (3-way) ACC

Table 2: Dataset details for transferability experiments on image, ZINC, MoleculeNet,
LRGB and TUDataset.

Batch size # Epoch Encoder Decoder Learning rate Scales Latent dim

32 100 [8, 16, 32] [32,16,8] 0.0005 [0.25, 0.5, 0.75, 1.0] 20

Table 3: Hyperparameter settings for pretraining high-order AE.

ZINC, Image Classification Tasks, and LRGB We follow the best hyperparameter
settings issued in previous work of GPS Rampášek et al. (2022) and MPNN+VN Cai et al.
(2023); then, we fine-tuned for better performance. Our full hyperparameter studies of the
benchmarks are shown in Table 6.
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Hyperparameter BBBP BACE Tox21 ToxCast SIDER

Pre MPNN MLP MLP MLP MLP MLP
MPNN type Attention Attention Attention Attention Attention
VN Augmented - - - ✓ ✓
# Layers 5 5 5 3 3
Hidden Dim 300 300 300 512 512
Dropout 0.5 0.5 0.5 0.5 0.5
Pooling type mean mean mean mean mean
Learning rate 1e− 3 1e− 3 1e− 3 1e− 3 1e− 3
Weight decay 1e− 9 1e− 9 1e− 9 1e− 9 1e− 9
# Epochs 50 50 50 100 50
Batch size 32 32 32 32 32

Table 4: Hyperparameter settings for downstream evaluations on the MoleculeNet Bench-
mark.

Hyperparameter MUTAG PROTEINS NCI1 NCI109 IMDB-B IMDB-M

Node Feat Domain + PE Domain + PE Domain + PE Domain + PE PE PE
Pre MPNN MLP MLP MLP MLP MLP MLP
# MPNN Layers 5 5 5 5 5 5
Hidden Dim 32 32 32 128 128 128
# Epochs 100 100 200 200 100 200
Batch size 128 128 128 128 128 128
Learning rate 1e− 3 1e− 3 1e− 3 1e− 3 1e− 3 1e− 3
Dropout 0.5 0.5 0.5 0.5 0.5 0.5
Graph pooling mean mean mean mean mean mean

Table 5: Hyperameter settings for downstream evaluations on the TUDataset benchmark.
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Hyperparameter ZINC (subset) MNIST CIFAR10 Peptides-func Peptides-struct

# Layers 9 3 3 3 3
Global Model Transformer Transformer Transformer Virtual Node Virtual Node
Local Model GINE GatedGCN GatedGCN GINE GINE
Hidden dim 64 50 50 128 128
# Heads 8 4 4 - -
Dropout 0 0.2 0.2 0 0.01
Graph pooling sum mean mean mean mean

PE dim 20 20 20 20 20
Node Update MLP MLP MLP MLP MLP

Batch size 128 128 128 32 32
Learning Rate 0.0005 0.003 0.004 0.0005 0.0005
# Epochs 3000 300 300 100 100
# Warmup epochs 50 5 5 5 5
Weight decay 3e− 5 2e− 4 3e− 5 1e− 5 1e− 5

# Parameters 452,299 150,081 142,093 477,953 432,206

Table 6: Hyperparameter settings for ZINC, MNIST, CIFAR10, Peptides-func and
Peptides-struct dataset
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