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Abstract

Look-up tables(LUTs)-based methods have recently shown enormous potential
in image restoration tasks, which are capable of significantly accelerating the
inference. However, the size of LUT exhibits exponential growth with the con-
volution kernel size, creating a storage bottleneck for its broader application on
edge devices. Here, we address the storage explosion challenge to promote the
capacity of mapping the complex CNN models by LUT. We introduce an innovative
separable mapping strategy to achieve over 7× storage reduction, transforming
the storage from exponential dependence on kernel size to a linear relationship.
Moreover, we design a dynamic discretization mechanism to decompose the activa-
tion and compress the quantization scale that further shrinks the LUT storage by
4.48×. As a result, the storage requirement of our proposed TinyLUT is around
4.1% of MuLUT-SDY-X2 and amenable to on-chip cache, yielding competitive
accuracy with over 5× lower inference latency on Raspberry 4B than FSRCNN.
Our proposed TinyLUT enables superior inference speed on edge devices with
new state-of-the-art accuracy on both of image super-resolution and denoising,
showcasing the potential of applying this method to various image restoration tasks
at the edge. The codes are available at: https://github.com/Jonas-KD/TinyLUT.

1 Introduction

With image sensors widely used in IoT applications, the demand for image restoration on edge
devices has been stimulated. For decades, classic methods including interpolation [1, 2], sparse
coding [3, 4, 5] and domain transformation [6] have been proposed. In recent years, deep learning
based algorithms [7, 8, 9, 10, 11] have made encouraging progress in restoration quality, while
suffering from high computational load and long inference latency. These issues limit their extensive
applications in resource-constrained IoT terminals. Thus it can be seen, the growing demand for
edge devices (e.g. smartphones and Raspberry Pi) calls for an extremely lightweight solution for
image restoration with high quality. Given this, researchers develop LUT-based methods [12, 13, 14]
to supplant the intensive convolutional computations with direct memory access operation for
accelerating the inference, and exhibiting enormous potential.

In recent research, SRLUT [15] initially transfers the output values of a small trained deep network
with receptive field (RF) size 4 to uniformly sampled LUT. To further improve the super resolution
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Figure 1: Performance comparison of
our TinyLUT and other state-of-the art
LUT-based algorithms. PSNR vs. Vol-
ume on Set5 benchmark dataset for ×4
super resolution task. TinyLUT outper-
forms the competitors in accuracy with
over 10× lower memory consumption.

Table 1: LUT size estimation when storing 8bit data with output entities r = 4. Compared with the
full size, the sampled operation effectively reduces the storage consumption of LUT. Furthermore,
separable mapping strategy(SMS) and trained dynamic discretization mechanism (DDM) achieve an
exaggerated reduction result.

RF LUT Full size SRLUT SMS SMS + DDM
1× 1 pixels 1D 4KB 272B 4KB 0.89KB
2× 2 pixels 4D 64GB 1.27MB 16KB 3.57KB
3× 3 pixels 9D 64ZB 1767GB 36KB 8.04KB

quality, Li et al. [14] increases the RF size through the different kernel shape combination with
multiple LUTs. Meanwhile, Ma et al. [13] constructs a series-parallel LUT framework based on
multiple LUTs cascade to improve the prediction accuracy. However, the existing LUT-based schemes
face the challenge of storage explosion when mapping 8bit image with larger than 2 × 2 kernel
size. The storage explosion invalidates previous methods where the required storage of LUT grows
exponentially as the number of indexing entries (i.e. input entities) increase. For example, 3 × 3
kernel, commonly used in CNNs, will need a tremendous storage up to (28)9 × 8bit= 4ZB and
(24 + 1)9 × 8bit= 110GB in full LUT and uniformly sampled LUT with 8bit data respectively.
Therefore, the issue of storage explosion presents severe challenge when mapping the complex
models by LUT on edge devices.

To overcome the storage explosion challenge, we propose the separable mapping strategy(SMS) and
dynamic discretization mechanism (DDM) to decouple the kernel and activation, respectively. As
reported in Table 1, the reduction of LUT storage reaches exponential levels using SMS and further
achieves a 4.48× times reduction by DDM when the RF size is 3× 3 and storing 8bit data.

From the perspective of kernel decomposition, considering the exponential relationship between the
dimension of input entries and LUT size, we propose the innovative SMS to decouple the convolution
kernel by spatial location relationship. SMS decomposes the convolution weight of n input entities
into the parallelization of n component independent sub-operations, which are instantiated as 1× 1
kernel size respectively to reduce the number of input entries in LUT-based inference, consequently
reducing the dimension of nD LUT. Then according to the additivity of convolutions with compatible
kernel sizes[16], we reconstruct the feature space by averaging each output of n parallel layers.
Finally, each branch with 1× 1 kernel are individually mapped by 1-dimension LUT (1D LUT) with
1 input entity for s possible values. This approach reduces the size of nD LUT from sn to s× n and
allows vanilla convolution to be LUT-mapped on resource-constrained devices.

As for the activation compression, previous methods [15, 14, 17] uniformly sample the input values
to reduce the possible values of s and apply interpolation to recover the inference accuracy. We
analyze the advantages of SPLUT [13] and propose dynamic discretization mechanism (DDM) to
decompose the activation into Most Significant Bits (MSBs) and Least Significant Bits (LSBs).
Moreover, inspired by the activation quantization methods[18, 19], DDM introduces the learnable
clipping parameters to explicitly compress the quantization scale of MSBs and LSBs activation,
thereby reducing the possible pixels values and decreasing LUT scales.
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As illustrated in Fig 1, we take the classic image restoration task single image super resolution (SISR)
as an example. Our proposed TinyLUT-F consumes only 4.1% storage of MuLUT-SDY-X2[14]
to achieve over 0.58dB PSNR increase in Set5 testset. Compared to other LUT-based methods,
TinyLUT significantly reduces storage overhead while improving accuracy, expanding the application
of LUT-based approaches on edge devices.

The main contributions can be summarized as follows:

• We reveal the scheme of storage explosion, being the key problem that limits the application
of LUT in edge devices. Focus on this, we propose an innovative separable mapping
strategy(SMS) to realize dimensional reduction of LUT and solve the storage explosion
problem.

• We design a dynamic discretization mechanism(DDM) to decompose the activation and
compress the corresponding quantization scale, further shrinking the storage requirement
without considerable accuracy loss.

• Our comprehensive experiments demonstrate that TinyLUT, constructed by SMS and DDM,
achieves significant restoration accuracy over previous LUT methods with minimal storage
consumption, showing its potential for application on edge devices.

2 Related Works

Deep Learning for Image Restoration: In recent years, image restoration performance has been
rapidly developed through deep learning methods [20, 8, 21, 22, 10, 7, 11, 23, 24, 12, 25, 26] and
achieved outstanding accuracy. The authors of [24] presented a super resolution method using very
deep networks and residual learning. Zhang et al. [7] proposed a deep convolutional neural network
with residual learning to handle image restoration tasks such as denoising and SISR. FFDNet [10]
achieves more efficient and flexible than DnCNN [7] by down-sampled method. Also it have the
ability to robustly control the trade-off between noise reduction and detail preservation. As a fast
and memory-efficient network, FMEN [23] is constructed by enhanced residual block and high-
frequency attention block. Dong et al. [8] explored a more efficient network by re-designing the
SRCNN structure. In [27] author proposed a deep convolutional network within a Laplacian pyramid
framework for fast and accurate image super-resolution. Denoising results of FastDVDnet [28] feature
remarkable temporal coherence, very low flickering, and excellent detail preservation. However,
these CNN methods suffer form intensive computations of convolutional operator, which limits their
deployment on edge devices.

Lookup Table for Image Restoration: LUT-based methods are commonly used in hardware
systems[29] and some embedded devices[30] to accelerate CNNs by pre-storing the results of complex
functions with high efficient retrieval operations. In image restoration tasks, LUTs are commonly
used in video coding [31, 32], tone-mapping [33] and image enhancement [17]. Furthermore, deep
learning methods based on LUTs have also emerged in SISR[15, 14, 13] and gradually garnered
attention. SRLUT[15] establishes a spatial mapping from a local RF block to the corresponding high-
resolution pixel. In MuLUT[14] and SPLUT[13], the authors proposed the collaborating structure
by multiple LUTs to increase the model’s RF and improve the inference accuracy. Furthermore,
Liu et al.[34] found that the interaction of space and channel features in vanilla convolution allows
previous methods to increase the RF at the cost of linearly increasing the LUT size. They proposed
RCLUT based on the Reconstructed Convolution(RC) module to enlarge the RF, achieving significant
performance with less storage. Realizing the dilemma between the performance improvement
and storage of LUT-based models, Li et al.[35] introduce the Diagonal-First Compression(DFC)
framework to achieve a better trade-off between storage size and performance for image restoration.
Additionally, they also designed a new structure, SPF-LUT, to further improve the performance
of LUT-based models. However, the RF and channels of LUT-based methods are limited to adapt
the trade-off between storage and accuracy. In comparison, our work is focused on developing a
lightweight LUT-based framework to improve the image restoration accuracy.
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(a) Network Architecture of TinyLUT (b) PwBlock

(c) TinyLUT

Figure 2: (a)The network overview of TinyLUT. (b)The structure of PwBlock. (c)The LUT framework
overview of TinyLUT.

3 Method
3.1 Overview of TinyLUT

The structure of TinyLUT and foundational components are depicted in Fig 2. We design two
parallel branches with cascaded LUTs to process Most Significant Bits (MSBs) and Least Significant
Bits (LSBs) data respectively, and introduce separable mapping strategy and dynamic discretization
mechanism.

According to the previous LUT-based methods we follow two simple design rules:(i) to improve
model accuracy, the RF size needs to be increased; and (ii) the number and storage requirement of
LUTs need to be reduced to adapt edge devices. Therefore, our CNN network (Fig 2(a)) is mainly
inspired by the architecture of SRLUT [15] and DnCNN [7]. Specifically, the CNN model is built
on standard convolution, depthwise convolution (DwConv) and PwBlock. The PwBlock 2(b) is a
channel combining module based on SMS and described in Section 3.2. Based on SMS and DDM,
the standard convolution, DwConv and PwBlock are mapped by LUT respectively to build standard
convolution mapped LUT (ScLUT) , depthwise LUT (DwLUT) and pointwise LUT (PwLUT). In
particular, we refer the philosophy of depthwise separable convolutions[36] to combine DwLUT and
PwLUT to depthwise separable LUT(DSLUT). The mapping details for DwLUT and PwLUT are
described in Section 3.2 and Section 3.3.

As in depthwise separable convolutions[36], the DwLUT optimizes the LUT size while maintaining
a large effective RF. The PwLUT is used for cross-channel feature information integration and model
channel number transformation. We introduce skip connections to fuse the real-value inputs and
the retrieval outputs between DwLUT and PwLUT to avoid the degradation. The RF and output
channels are set to 3× 3 and 16. Due to each color channel having to be processed independently as
in SRLUT [15], the input channel of ScLUT is set to 1.

According to the different number of DSLUT serial stacks, we build TinyLUT-F with 7 stacked.
TinyLUT-S is built by ScLUT and double PwLUTs. As shown in Fig 2(c), TinyLUT is constructed
by DwLUT and PwLUT in each branch. An additional PwLUT is added at the end of each branch
to adjust the number of output channels of different image restoration task. In super resolution, the
output channel number of the last PwLUT is r2 to adapt to the pixelshuffle [21], where r is the
upscaling factor. In order to further expand the RF size, we introduce rotational ensemble trick [15]
in the inference.

3.2 Separable Mapping Strategy

In Table 1, we provide an estimation of the LUT size of four output channels and single input. It is
evident that the SRLUT continues to face the issue of storage explosion, resulting in approximately
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Figure 3: Left: Existing LUT-based method maps the 2× 2 input convolution to a 4-dimensional
LUT (4D LUT). SMS decomposes the convolution kernel to reduce the storage from 2564 × 8bit to
256× 4× 8bit. Right: The dynamic discretization mechanism (DDM) decouples the activation and
compress the precision to reduce the storage to (αm × 64 + αl × 4)× 8bit using αm, αl ∈ [0, 1].

1767GB of memory overhead when processing 3× 3 pixels of input simultaneously. In contrast, the
proposed separable mapping strategy (SMS) alleviates the memory bottleneck associated with a large
RF and reduces the required volume to just 36KB. Therefore, we enable the transfer of more deep
convolutional network model into efficient LUT framework with fewer hardware cost.

The left image in Fig 3 illustrates 4-dimensional LUT(4D LUT) mapping the convolution 2 × 2
kernel with single output in existing methods [15, 14, 13]. It requires 2564 × 8bit= 4GB and exceeds
the storage capacity of edge devices. Therefore, we propose separable mapping strategy(SMS)
to decouple 2 × 2 kernel into four 1 × 1 kernels which reduces the size of the LUT required to
256 × 4 × 8bit= 1KB. Therefore, we propose the DwLUT. Firstly, from the original depthwise
convolution operation, it can be obtained by:

Fout =

n−1∑
i=0

n−1∑
j=0

Ii,j ∗ wi,j (1)

The xi,j represents the input feature data, and Fout represents the output feature and wi,j stands
for the convolution kernel, while n × n denotes the size. After transferring by original multiple
dimensions LUTs, the retrieval process can be represented as:

Fout = LUT [x(0,0), . . . , x(n−1,n−1)] (2)

In DwLUT, we utilize multiple 1× 1 convolution kernels to build depthwise convolutions. As shown
in Fig 3, we decompose the convolution kernel into n2 of size Cout × 1× 1× 1. Mapping by 1D
LUTs, the original LUT retrieval process can be reconstructed as:

F̂out =
1

n2

n−1∑
i=0

n−1∑
j=0

LUT(i,j)[x(i,j)] (3)

After decomposing and mapping, the storage consumption reduces from 256n
2 × Cout × 8bit to

256× n× n× Cout × 8bit. Meanwhile, the output of the multiple 1D LUTs is averaged to achieve
an approximation of the standard LUT inference.

The pointwise convolution applies a 1× 1 convolution to combine the outputs the depthwise convolu-
tion [36]. The operation of pointwise convolution with a kernel size of Cout ×Cin × 1× 1 is defined
as:

Fout =

Cin∑
c=0

Cout∑
t=0

xc · wc,t (4)

In this context, x represents the input data and w represents weights. It still faces the problem of
exponential size increase in the LUT mapping process due to multiple channels input simultaneously.
Then we decouple the input channels in pointwise convolution. Subsequently, it is decoupled into
Cin number of Cout × 1× 1× 1 convolution kernel. The storage space required for the pointwise
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convolution, is reduced from (256Cin)× Cout × 8bit to 256× Cin × Cout × 8bit. The final output
channel is set to Cout. At this point, the original cross-channel per-pixel LUT retrieval operation is
reconstructed as:

F̂out =
1

C2
in

Cin∑
c=0

LUTc[xc] (5)

As depicted in Eq 5, the quantity of LUTs is denoted as Cin. Additionally, the number of output
channels for each LUT retrieval is represented as Cout. According to Eq 4 and Eq 5, the PwBlock in
Fig 2(b) consists of several parallel branches with the number of channels. Each branch includes 3
pointwise convolutions followed by ReLU except for the last layer. The channels in the pointwise
convolution is set to 64 and that of the last layer is set to 16.

3.3 Dynamic Discretization Mechanism

In previous methods, in order to further reduce the volume requirement of LUT, it is common to
sample the indexing entries. Related algorithms [15, 14, 37] use interpolation methods to restore
accuracy after table retrieval. However interpolating in large RF and multiple channels will inevitably
result in a significant amount of computation. To address this issue, we proposes the dynamic dis-
cretization mechanism (DDM). It adaptively explores the parameterized clipping level of quantization
range for each channel based on the gradients with Straight-Through Estimator (STE)[38, 39], which
significantly optimize the equilibrium of accuracy and LUT size.

As shown in Fig 2, an 8bit input data is decomposed into MSBs and LSBs, then obtain output results
through their respective branches and add them. It should be noted that the 8bit data stored in the
LUT is defined in the domain of −128 to 127, while the data range of MSBs data is [−m,m− 1],
and the data range of LSBs data is [0, k]. Therefore, in Eq 3 mapping depthwise convolution to LUTs
for the MSBs branch, the LUTs size can be obtained by:

Size(MSB) = (2×m)× n2 × r2 (6)

and the size of LUT in LSBs branch:

Size(LSB) = (k + 1)× n2 × r2 (7)

This operation reduces the index range of the LUT, realizes the discretization of the LUT and reduces
the size.

The index range is 24 due to the activation data range are equal to LUTs indexes range in the mapping
process. Therefore, inspired by activation quantization [18, 19], we use the learnable clipping
parameter α to constrain the bit width of features. Specifically, αmy and αly are used to constrain the
MSBs and LSBs of the layer y, respectively, to control the size of the LUT. For example, using F to
denote feature data, this operation can be calculated as:

Fq = round(F ∗ αy) (8)

The LUT size is written as :

Size = (max(Fq)−min(Fq))× n2 × r2 (9)

In Eq 9, n2 denotes the input entries and r2 denotes the output entries respectively. In order to reduce
the index number of LUTs, we initialize α to 0.8 and then apply L2-regularization for α with the
0.1× regularization parameter λ used to compress the activation precision scale in each layer.

4 Experiments

4.1 Implementation Details

Training Settings To demonstrate the effectiveness of our framework, we evaluate TinyLUT on
multiple datasets for SISR. The CNN model of TinyLUT is trained in an end-to-end manner. We
use DIV2K [40] dataset which has been widely applied in image processing tasks. TinyLUT model
is trained for 200000 iterations with Pytorch [41] on Nvidia 3090 GPU. We employed the Adam
optimizer [42], where β1 = 0.9, β2 = 0.999. The learning rate is set at 5×10−3 and was dynamically
adjusted using a cosine annealing mechanism [43]. We randomly cropped degraded data into 48× 48
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Table 2: Quantitative comparisons on 5 standard SISR test sets for an upscaling factor of 4. The
size of TinyLUTs are smaller than other LUT methods and achieves better PSNR and SSIM average
values with a good margin. ∗: The storage overhead of weight parameters in the DNN. The inference
latency evaluation environments are the same as [15, 14]

Method Storage
Runtime

Set5 Set14 Urban100 BSD100 Manga109 Average
Xiaomi 11 Raspberry 4B

LUTs

SRLUT-S [15] 1304KB 137ms 247ms 29.82/0.8478 27.01/0.7355 24.02/0.6990 26.53/0.6953 26.80/0.8380 26.84/0.7631
SPLUT-L [13] 18432KB 265ms 456ms 30.52/0.8630 27.54/0.7520 24.46/0.7191 26.87/0.7090 27.70/0.8581 27.42/0.7802
MuLUT-SDY-X2 [14] 4159KB 242ms 403ms 30.60/0.8653 27.60/0.7541 24.46/0.7194 26.86/0.7110 27.90/0.8633 27.48/0.7808
RCLUT [34] 1549KB 232ms - 30.72/0.8677 27.67/0.7577 24.57/0.7253 26.95/0.7154 28.05/0.8655 27.59/0.7863
SPF-LUT+DFC [35] 2066KB - - 31.05/0.8755 27.88/0.7632 24.81/0.7357 27.08/0.7190 28.58/0.8779 27.88/0.7943
TinyLUT-S 37KB 29ms 88ms 30.22/0.8535 27.33/0.7450 24.19/0.7066 26.71/0.7042 27.21/0.8458 27.13/0.7710
TinyLUT-F 171KB 146ms 387ms 31.18/0.8771 28.01/0.7630 24.92/0.7397 27.13/0.7184 28.83/0.8798 28.01/0.7956

DNN

SRCNN [12] 228KB* - 27448ms 30.48/0.8628 27.50/0.7513 24.52/0.7221 26.90/0.7101 27.10/0.8457 27.30/0.7784
VDSR [24] 2660KB* - 106972ms 31.35/0.8830 28.02/0.7680 25.18/0.7540 27.29/0.7260 28.50/0.8812 28.07/0.8024
FSRCNN [8] 48KB* 350ms 2143ms 30.71/0.8656 27.60/0.7543 24.61/0.7263 26.96/0.7129 27.90/0.8610 27.56/0.7840
CARN-M [26] 1648KB* 3300ms 17609ms 31.82/0.8898 28.29/0.7747 25.62/0.7694 27.42/0.7350 29.85/0.8993 28.60/0.8136

Bicubic SRLUT [15] MuLUT [14] SPLUT [13] FSRCNN [8] TinyLUT HR

Figure 4: Qualitative comparisons of bicubic interpolation, SRLUT [15], MuLUT [14], SPLUT [13],
FSRCNN [8], our TinyLUT and HR images.

patches with a batch size of 32. Data augmentation was performed through random rotations and
flips. Throughout the experimental process, we employed PSNR and SSIM [44] as evaluation metrics
for restoration accuracy. Besides, we measured and reported the runtime on multiple edge devices
including Xiaomi 11 smartphones with a Qualcomm Snapdragon 888 CPU and Raspberry 4B.

Evaluation Settings For single-image super resolution, assessed the effectiveness of our method on
five widely used benchmark datasets: Set5, Set14, BSD100 [45], Urban100 [46], and Manga109 [47].
We compare our method with various SISR algorithms based on interpolation which include methods
based on deep learning including FSRCNN [8], VDSR [24], RCAN [25] and CARN-M [26], and SR
methods based on LUTs, SRLUT [15], MuLUT [14], RCLUT [34], SPF-LUT [35] and SPLUT [13].
In tables, the best result is highlighted in bold.

4.2 Evaluation on Image Super Resolution

Accuracy and Storage The quantitative results of image super resolution are shown in Table 2. For
single image super resolution task, the SSIM and PSNR values are computed at the Y-channel in the
YCbCr color space. As reported in Table 2, we build a series of TinyLUT models with volume from
37KB to 171KB to fit various edge devices. Our TinyLUT-F model achieves 0.58dB PSNR increase
with nearly 24× storage reduction of MuLUT-SDY-X2 [14]. Even for the compact TinyLUT-S model,
it only consumes 2.83% memory overhead and achieves 0.4dB PSNR and 0.02 SSIM improvement
compared to SRLUT-S [15]. The qualitative results in Fig 4 of MuLUT-SDY-X2 [14] and SPLUT-
L [13] have severe ringing artifacts in the white area. On the contrary, our method generates more
natural textures and fewer artifacts. As shown in Table 2, TinyLUT-F achieves much higher PSNR
with 9× and 12× lower storage consumption than RCLUT [34] and SPF-LUT+DFC [35], respectively.
While TinyLUT achieves restoring clearer edges and 5× lower latency on Raspberry 4B compared
with computation-heavy method(FSRCNN[8]).
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Table 3: Quantitative comparisons on Set12 and BSD68. The size of TinyLUTs are smaller than
other LUT methods and achieves better PSNR and SSIM values with a good margin. ∗: The storage
overhead of weight parameters in DNN. The evaluation environments are the same as [48]

Method Storage
Runtime Set12 BSD68

Average
Xiaomi 11 Raspberry 4B 15 25 50 15 25 50

SRLUT [15] 82KB 7ms 21ms 30.42 27.19 22.62 29.78 26.85 22.39 26.54
MuLUT-SDY-X2 [14] 289KB 26ms 44ms 31.50 28.94 25.46 30.63 28.18 24.97 28.28
MuLUT-SDYEHO-X2 [48] 978KB 51ms 89ms 31.77 29.18 25.47 30.89 28.34 24.96 28.44
TinyLUT-S 22KB 20ms 27ms 31.10 28.26 24.29 30.24 27.48 23.83 27.53
TinyLUT-F 187KB 146ms 254ms 32.22 29.69 26.27 31.20 28.65 25.53 28.93
DnCNN [7] 2220KB* 635ms 6859ms 32.86 30.44 27.18 31.73 29.23 26.23 29.61

GT Noisy DnCNN TinyLUT

Figure 5: Qualitative comparisons of ground truth, noise image, DnCNN [7] and our TinyLUT.

Running Time Inference speed is also an important impact for edge devices deployment. In the
view of Table 2, we report the runtime of LUT-base methods and other schemes. Results are obtained
by averaging across 20 runs. Our approach achieves 4× and 10× acceleration on SISR compared
to the fastest LUT-based and CNN method respectively. Meanwhile TinyLUT obtains absolute
accuracy advantage compared to LUT-based methods. Overall the experiments indicate that the SMS
is achieving significant storage reduction while organizing the model in a more flexible manner, thus
capable of improving accuracy. TinyLUT achieves accuracy close to CNN and exhibits the enormous
application potential of LUT-based method.

4.3 Evaluation on Image Denoising

In order to further show the capacity of the proposed TinyLUT framework, we remove the pixelshuffle
and set the out channels of the last PwLUT to 1. Meanwhile, we adopt the residual learning
formulation such as DnCNN [7] to accelerate model training. For additive white Gaussian noise
(AWGN), we use Set12 and BSD68 benchmark datasets with noise level 15, 25 and 50. We compare
our method with classical DNN method [7] and LUT methods [15, 48].

The quantitative results of image denoising is shown in Table 3. Compare with LUT-based methods,
our method significantly improves PSNR with the minimal storage in image denoising. Meanwhile,
TinyLUT-S achieves the fastest inference speed with only 22KB storage overhead compare with
DNN based denoising schemes. The denoising results in Fig 5 illustrate that our TinyLUT is able to
obtain similar visual quality to DnCNN [7]. The quantitative and qualitative experiments prove the
effectiveness of storage reduction and inference acceleration of our approach.

4.4 Evaluation on Image Deblocking

In this subsection, image deblocking is used to further assess the generality of TinyLUT in image
restoration tasks. Table 4 reports the comparison results of PSNR-B for LUT-based methods on
Classic5[49] and LIVE1[50]. We also refer to the classical methods and DNN algorithms, including
SA-DCT[51] and ARCNN[52]. TinyLUT-F achieves comparable PSNR-B results to the DNN method
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Figure 6: Illustration of the storage overhead and
PSNR result for different combinations of MSBs
and LSBs in TinyLUT-S for single image super
resolution task.

Figure 7: Illustration of the input entities precision
range clipping by parameter αMSB when mapping
process in TinyLUT-S-α in SISR. TinyLUT-S-E
indicates the input entities range of PwLUT as a
statistical result.

and better than other LUT-based methods. The results indicate the generality of our TinyLUT to
deblocking.

Table 4: The quantitative comparisons of PSNR-B on standard benchmark datasets for image
deblocking under a quality factor of 10.

Classical DNN LUT-based
JPEG SA-DCT[51] ARCNN[52] SRLUT[15] MuLUT[14] SPF-LUT[35] SPF-LUT+DFC[35] TinyLUT-F

Storage - - 415KB 81KB 489KB 3017KB 595KB 187KB
Classic5 25.21 28.15 28.76 27.58 28.29 28.63 28.62 28.74
LIVE 1 25.33 28.01 28.77 27.69 28.39 28.62 28.61 28.67

4.5 Ablation Studies

We perform several ablation experiments for single image super resolution to demonstrate that our
contributions in TinyLUT provides quality improvements.

The effectiveness of SMS We conduct an experiment with combinations of SMS and TinyLUT-
S. In Table 5, SMS denotes the TinyLUT-S includes SMS without DDM when constructed the
model with 8bit data values. Original denotes the TinyLUT-S without SMS and evaluates using the
quantized CNN model due to the excessive storage overhead of its LUT model. The accuracy of SMS
is competitive with corresponding mapped neural network with 8bit data in SISR. In particular, SMS
scheme achieves significant accuracy improvement compared to uniformly sampled method [15]
with sampling interval size of 24, while yielding over 7× storage reduction. This demonstrates the
effectiveness of storage reduction using SMS with minimal loss of accuracy.

Table 5: Impact of SMS. Ablation studies on TinyLUT-S for 4× SISR.

Model Method Set5 Set14 Urban100 BSD100 Manga109 LUT Size

TinyLUT-S
Original 30.35 27.42 26.77 24.31 27.41 9.7× 1024PB
Uniformly Sampled [15] 29.82 27.01 26.53 24.02 26.80 1.274MB
SMS 30.24 27.33 26.72 24.19 27.23 164KB

The effectiveness of DDM As shown in Fig 6, the PSNR results of super resolution and image
denoising are approximately equal to the global maximum at 6 MSBs and 2 LSBs (6M2L). Meanwhile
the storage overhead is much smaller than the combination of 5 MSBs and 3 LSBs. Therefore we set
the activation precision for the two branches of TinyLUT to 6 MSBs and 2 LSBs respectively.

As shown in Table 6, compared with the full LUT with 28 entries for each input pixel, DDM reduces
TinyLUT storage overhead while ensuring accuracy in super resolution. The results prove that the
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Table 6: Effects of DDM. Ablation studies for DDM with 4× SISR.

Model Method Set5 Set14 Urban100 BSD100 Manga109 LUT Size

TinyLUT-S Full LUT 30.24 27.33 26.72 24.19 27.23 164KB
DDM 30.22 27.33 26.71 24.19 27.21 37KB

LUT sampling method based on DDM has higher compression ratio of storage than the 8bit full
sampling LUT, and achieves a better trade-off between storage and accuracy.

As shown in Fig 7, the precision range of the MSBs activation data is adjusted more adaptively by
clipping parameter α in SISR, which reduces the possible value range of the input entities of PwLUT
in TinyLUT-S, and then reduces the size in MSBs branch. As a comparison, the marked red line in
the figure is the s value when the input entities range is fixed to 6bit during mapping in the MSBs of
PwLUT. It can be observed from the figure that compressed by the DDM, not only the LUT size is
reduced, but also all possible values of input entities are covered in the mapping process. Compared
with the 43.6KB of TinyLUT-S-6M2L with a fixed combination of 6 MSBs and 2 LSBs, the size
of TinyLUT-S-E is reduced to 36.6KB via the adjustment of DDM, achieving a reduction of 15%.
Therefore, DDM yields additional storage reduction compared to decomposing data into fixed MSBs
and LSBs [13]. More intuitively, the interpretability of DDM is also illustrated in Fig 7.

5 Limitations and Future Direction

The method in this paper achieves significant reduction in storage with high compatibility when
mapping convolutional neural network. However, there are difficulties in mapping other models such
as Mamba [53] and Transformer [54, 55] using TinyLUT. This can be further explored the unified
mapping approach for other model. Exploring additional image restoration tasks on edge devices
using LUTs would also contribute to the community.

6 Conclusion

In this paper, we analyze previous successful LUT-based deep learning approaches and summarize the
key problem of storage explosion, which limits the further popularization of LUT in image restoration
on edge devices. To address the storage explosion, we propose the separable mapping strategy (SMS)
and dynamic discretization mechanism(DDM) to decompose the kernel and activation, respectively.
In particular, we design the TinyLUT framework based on SMS and DDM. By seamlessly integrating
these innovations, TinyLUT-F sets a new record for SISR by achieving over 31dB PSNR on the Set5
dataset at just 171KB LUT storage. Overall, extensive experiments across seven benchmark datasets
and two classic image restoration tasks demonstrate the effectiveness and efficiency of TinyLUT on
resource-constrained devices.
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8 NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main contributions have been clearly summarized in the abstract and
Section 1.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the work are discussed in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Deduction and experiments in Section ?? and Section 4 demonstrate the
validity of theoretical assumptions.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We clarify the main setups of our method in Section ?? and settings of
experiments in Section 4 for the reproducibility in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Upon publication, we intend to release the code for broader community access.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify the main training and test details in Section 4 to understand the
results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The benchmark result in Section 4 is already obtained by multiple testsets and
noise level, and other previous works didn’t reported the full experiment with the error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The main hardware devices used in this paper are listed in Section 4

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conduct in this paper conform, in every respect, with the NeurlPS
Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Upon publication, we intend to supplement the discussion of the broader
implications.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The data and methods used in the paper are properly credited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Upon publication, we intend to release the well documented code and data for
broader community access.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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