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Abstract
Background and objective Rapid advances in computer vision (CV) have the potential to facilitate the examination, diag-
nosis, and treatment of diseases of the kidney. The bibliometric study aims to explore the research landscape and evolving 
research focus of the application of CV in kidney medicine research.
Methods The Web of Science Core Collection was utilized to identify publications related to the research or applications 
of CV technology in the field of kidney medicine from January 1, 1900, to December 31, 2022. We analyzed emerging 
research trends, highly influential publications and journals, prolific researchers, countries/regions, research institutions, 
co-authorship networks, and co-occurrence networks. Bibliographic information was analyzed and visualized using Python, 
Matplotlib, Seaborn, HistCite, and Vosviewer.
Results There was an increasing trend in the number of publications on CV-based kidney medicine research. These publi-
cations mainly focused on medical image processing, surgical procedures, medical image analysis/diagnosis, as well as the 
application and innovation of CV technology in medical imaging. The United States is currently the leading country in terms 
of the quantities of published articles and international collaborations, followed by China. Deep learning-based segmentation 
and machine learning-based texture analysis are the most commonly used techniques in this field. Regarding research hotspot 
trends, CV algorithms are shifting toward artificial intelligence, and research objects are expanding to encompass a wider 
range of kidney-related objects, with data dimensions used in research transitioning from 2D to 3D while simultaneously 
incorporating more diverse data modalities.
Conclusion The present study provides a scientometric overview of the current progress in the research and application of 
CV technology in kidney medicine research. Through the use of bibliometric analysis and network visualization, we elucidate 
emerging trends, key sources, leading institutions, and popular topics. Our findings and analysis are expected to provide 
valuable insights for future research on the use of CV in kidney medicine research.
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Introduction

The kidney plays a pivotal role in maintaining homeosta-
sis within the human body through various physiological 
processes, including filtration of blood, excretion of meta-
bolic wastes, and regulation of electrolyte balance. Regret-
tably, kidney diseases have become a global health issue 
that causes widespread morbidity and mortality [1, 2]. For 
instance, chronic kidney disease (CKD) affects approxi-
mately 700 million people globally [3]. The incidence of 
acute kidney injury can reach 10–60% in hospitalized indi-
viduals [4]. More than 250 million cases of urologic can-
cer in latest Global Cancer Statistics [5]. Kidney diseases 
can lead to severe conditions, including premature deaths, 
cardiovascular diseases, electrolyte disorders, anemia, and 
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bone and mineral disorders, among others, therefore posing 
a significant threat to human health. This emphasizes the 
need for efficient diagnosis and treatment in clinical practice, 
particularly when the health system is overloaded [6].

Computer vision (CV) is the science dedicated to ena-
bling machines to perceive visual information. It entails 
utilizing imaging equipment and computational methods 
in lieu of human eyes to detect, track, and measure tar-
gets. Moreover, it involves image processing and analysis, 
wherein computer algorithms enhance images for human 
observation or transmit them for instrument-based detection. 
Leveraging advanced image processing and artificial intel-
ligence (AI) algorithms, CV provides a noninvasive, rapid, 
and precise approach to diagnosing and analyzing kidney 
diseases using medical images. Consequently, it enhances 
diagnostic and therapeutic efficiency [6, 7]. These benefits 
have spurred a burgeoning interest among researchers to uti-
lize CV technology for kidney disease-related applications. 
Furthermore, the rapid development of CV techniques and 
the continuous improvement of computing power in recent 
years have brought new researchers into the field of kidney 
medicine, resulting in substantial breakthroughs and setting 
off an upsurge of research with unprecedented attention. 
However, it is noteworthy that no bibliometric analyses have 
been conducted on the subject to date.

Bibliometric analysis is a quantitative research methodol-
ogy that aims to examine the utilization, dissemination, and 
influence of publications [8]. It reveals the developmental 
tendencies and patterns of academic fields, research topics, 
and researchers by statistical analyses of particular indica-
tors within publications [9–11]. Consequently, bibliometric 
analysis serves as a basis for scientific research, academic 
evaluation, and management decision-making [12]. Our 
study aims to reveal the research trends and current and 
evolving focus of CV in the field of kidney medicine through 
bibliometric analysis.

Methods

Search strategy and inclusion of publications

Relevant publications were sought from the Web of Science 
(WOS) Core Collection (Clarivate Analytics, USA) [13], 
one of the most influential and comprehensive international 
scientific literature databases [10, 11]. We established inclu-
sion criteria as follows: (1) publications published between 
January 1, 1900, and December 31, 2022; (2) publications 
categorized as original articles, review articles, or clinical 
trials; (3) publications limited to the English language; and 
(4) publications with a thesis of the kidney (i.e., examination 
and testing of the kidney, and diagnosis and treatment of 
diseases involving the kidney) and CV techniques (Appendix 

A). We restricted the search query to the "Topic" field. The 
search was performed on March 1, 2023.

Following data collection using the search strategy, 5371 
records were originally obtained. Subsequently, two authors 
independently and manually reviewed the titles, abstracts, 
and full texts of the retrieved publications. The third author 
was consulted for a final decision when disagreements 
occurred. Finally, a total of 1322 records were selected. A 
depiction of the screening process can be found in Fig. 1.

Bibliometric analysis

The WOS [13] was utilized to acquire fundamental publica-
tion details comprising the year of publication, the institu-
tion of authors, titles of publications, research areas, and 
the countries/regions where the research was conducted. 
Furthermore, to facilitate summarizing publication trends, 
we utilized Matplotlib [14] and Seaborn [15], Python-based 
tools, for visual analysis of the aforementioned data.

We utilized Histcite software [16] to conduct citation 
analysis for publications. The software assesses the sig-
nificance of a publication by measuring various metrics, 
including global citation score (GCS), global citation score 
per year (GCS/t), local citation score (LCS), local citation 
score per year (LCS/t), local cited references (LCR), and 
cited references (CR). Specifically, GCS shows the citation 
frequency based on the total count in the WOS, while LCS 
is the number of times a paper is cited by other papers in 
the local collection, such as the 1322 included publications 
in our study. Notably, it is important to consider that publi-
cations typically attract attention progressively, potentially 

Fig. 1  Flow diagram of the publications screening process used in the 
study
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limiting widespread recognition during their initial years of 
publication. To mitigate this problem, we averaged the GCS 
and LCS based on the number of years. Consequently, our 
study employs not only GCS and LCS but also incorporates 
GCS/t and LCS/t as benchmark metrics, aiming to facilitate 
a comparably equitable assessment. Furthermore, to expose 
the reciprocal citation relationships between scientific pub-
lications, facilitate researchers’ quick and in-depth compre-
hension of the evolution of scientific research themes, and 
provide insights into past developments, present status, and 
future prospects, we employed LCS values sorting to plot a 
citation map for the foremost 30 publications via Histcite 
software. The citation map displays references as circles, 
with each circle corresponding to a reference number. The 
size of the circle reflects the LCS size. Arrows signify the 
connections between references and facilitate contextual 
organization within this field.

Moreover, our study employs VOSviewer software [17], 
Python, and R software to create a visual representation of 
a co-authorship network for authors, a chord diagram for 
cooperation between countries, and a co-occurrence network 
for keywords. In the co-authorship network, the relatedness 
of items is determined based on the number of co-authored 
publications, with larger nodes signifying a greater number 
of publications by those authors. This analysis was restricted 
to authors with at least three publications in the co-author-
ship network. The co-occurrence network determines the 
relatedness of keywords by analyzing the number of publi-
cations where they occur together, utilizing edges between 
nodes to represent word co-occurrence, and identifying 
research hotspots within a field. A minimum of five occur-
rences of a keyword was set as a threshold for inclusion in 
this study. The size of a node is indicative of its relative sig-
nificance. Shorter distances between nodes correspond with 
stronger relationships. Thicker appearing lines are indicative 
of greater co-occurrence between two keywords [18]. Spe-
cifically, the original keywords and keywords plus provided 
by the author were extracted as keywords. Where author key-
words are absent, we substituted them for a keyword plus, 
which is deemed to be comparably efficacious to author key-
words [19]. Notably, in the initial co-occurrence network, we 
observed certain keywords with synonymous meanings (e.g., 
"kidney cancer" versus "renal cancer") or differing singular 
and plural forms (e.g., "convolutional neural network" versus 
"convolutional neural networks"). We analyzed the top 500 
co-occurring keywords and combined them appropriately 
(Appendix B). Furthermore, to enhance the network’s visual 
clarity and brevity, we narrowed our focus to the top 100 
keywords with the strongest associations and restructured 
the co-occurrence network accordingly. Remarkably, the 
core concept of the vos layout technique and vos cluster-
ing technique [17] for the co-authorship network of authors 
and the co-occurrence network of keywords revolves around 

"co-occurrence clustering." This principle implies that the 
concurrent presence of two items signifies their correlation. 
This clustering methodology is predominantly utilized for 
analyzing literature data, specifically tailored for the exami-
nation of undirected one-mode networks, with a key empha-
sis on the visualization of scientific knowledge.

Results

Publication analysis

Figure 2 illustrates the annual publication count of the 
included publications. CV has been applied in the field of 
kidney medicine since 1990, with only a small number of 
publications each year until the late 2000s, when there was 
a general increase in the annual publication rate. The rate of 
growth regarding the annual publication count has experi-
enced a substantial boost since 2016. The annual publication 
count exceeded 200 in 2021 and 2022.

Figure 3 depicts top 25 across the various fundamen-
tal research information categories (author’s institution, 
the publication title, the research area, and the countries/
regions). The top five institutions that had the highest num-
ber of publications were all from the US. The National Insti-
tutes of Health USA (NIH), with 42 publications, ranked 
first, followed by Harvard University, University of Cali-
fornia System, Mayo Clinic, and Harvard Medical School. 
The United States (US, n = 470 ), China ( n = 296 ), and 
Germany ( n = 127 ) ranked at the top in terms of countries/
regions. Proceedings of SPIE, Lecture Notes In Computer 
Science (LNCS), IEEE Transactions on Medical Imaging 
(TMI), IEEE Engineering in Medicine and Biology Soci-
ety Conference Proceedings (EMBC), and Medical Physics 
were among the journals that published the highest number 
of included papers. Regarding research areas, Radiology 
Nuclear Medicine Medical Imaging has the highest number 
of publications exceeding 100, followed by Engineering, 
Computer Science, Optics, and Imaging Science Photo-
graphic Technology.

Citation analysis

Influence of included publications

Considering that early published papers are innately more 
likely to have higher LCS and GCS values than later pub-
lished papers, in citation analysis, we prioritized the LCS/t 
and GCS/t metrics to ensure the proper assessment of recent 
publications. When evaluating the citation frequency in the 
1322 included publications denoting the field of computer-
vision-based kidney medicine, five [6, 20–22, 25] of the top 
ten publications with the highest LCS/t scores pertained 
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to deep learning-based segmentation, and three publica-
tions [24, 26, 28] pertained to machine learning-based tex-
ture analysis (Table 1). When evaluating the overall impact 
of the included publications in WOS, similarly, half of the 

top publications with the highest GCS/t involve image seg-
mentation, while texture analysis accounts for only one pub-
lication (Table 1).

Fig. 2  Annual publication num-
bers by year

Fig. 3  Top 25 across the various fundamental research information categories (author’s institution, the publication title, the research area, and 
the countries/regions)
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Author influence

A total of 5802 authors were identified for the included 
publications. Table 2 displays the top ten authors with the 
highest number of publications. Summers RM was the most 
productive author and remained research active between 
2009 and 2022 (Table 2). Ronald Summers [36], Ayman 
El-Baz [37], and Marius George Linguraru [38] ranked at 

the top and have been active in this field since 2005. For 
the evaluation by citation frequency, publications by Ozgur 
Kilickesmez [46], with the highest total local citation score 
per year (TLCS/t), had been cited most in the local dataset 
of the current study, which included 1322 papers. Ming Y. 
Lu [50] turned out to be the top influential author in terms 
of TGCS/t in WOS.

Table 1  Top 10 publications according to the LCS/t and GCS/t values, respectively

The publications were sorted in descending order based on their LCS/t values (i.e., LCS/t ≥ 4.20) and GCS/t values (i.e., GCS/t ≥ 21.83), respec-
tively
The bold font and italic font highlight those publications that also appear in the top 10 of the LCS value (i.e., LCS ≥ 32) and GCS value (i.e., 
GCS ≥ 150) in descending order, respectively

# Document Year LCS LCS/t ↑ GCS GCS/t LCR CR

1 Deep Learning-Based Histopathologic Assessment of Kidney Tissue [6] 2019 53 10.60 135 27.00 2 21
2 Computational Segmentation and Classification of Diabetic Glomerulosclerosis [20] 2019 38 7.60 88 17.60 3 32
3 Development and evaluation of deep learning-based segmentation of histologic structures 

in the kidney cortex with multiple histologic stains [21]
2021 20 6.67 43 14.33 8 53

4 Automatic Multi-Organ Segmentation on Abdominal CT With Dense V-Net-
works [22]

2018 36 6.00 304 50.67 3 54

5 Region-Based Convolutional Neural Nets for Localization of Glomeruli in Tri-
chrome-Stained Whole Kidney Sections [23]

2018 34 5.67 59 9.83 0 24

6 Machine learning-based quantitative texture analysis of CT images of small renal 
masses: Differentiation of angiomyolipoma without visible fat from renal cell 
carcinoma [24]

2018 33 5.50 131 21.83 1 40

7 Deep Learning-Based Segmentation and Quantification in Experimental Kidney Histopa-
thology [25]

2021 15 5.00 37 12.33 5 31

8 Textural differences between renal cell carcinoma subtypes: Machine learning-based 
quantitative computed tomography texture analysis with independent external valida-
tion [26]

2018 28 4.67 67 11.17 1 35

9 Association of Pathological Fibrosis With Renal Survival Using Deep Neural Net-
works [27]

2018 27 4.50 83 13.83 0 51

10 Clear Cell Renal Cell Carcinoma: Machine Learning-Based Quantitative Computed 
Tomography Texture Analysis for Prediction of Fuhrman Nuclear Grade [28]

2019 21 4.20 81 16.20 1 46

 # Document Year LCS LCS/t GCS GCS/t ↑ LCR CR

1 Data-efficient and weakly supervised computational pathology on whole-slide 
images [29]

2021 4 1.33 172 57.33 1 44

2 Automatic Multi-Organ Segmentation on Abdominal CT With Dense V-Networks [22] 2018 36 6.00 304 50.67 3 54
3 Data augmentation using generative adversarial networks (CycleGAN) to improve gener-

alizability in CT segmentation tasks [30]
2019 0 0.00 211 42.20 0 19

4 Virtual histological staining of unlabelled tissue-autofluorescence images via deep learn-
ing [31]

2019 34 0.80 206 41.20 0 40

5 Pathomic Fusion: An Integrated Framework for Fusing Histopathology and Genomic 
Features for Cancer Diagnosis and Prognosis [32]

2022 2 1.00 75 37.50 0 81

6 The state of the art in kidney and kidney tumor segmentation in contrast-enhanced CT 
imaging: Results of the KiTS19 challenge [33]

2021 0 0.00 95 31.67 0 67

7 Unified Focal loss: Generalizing Dice and cross entropy-based losses to handle class 
imbalanced medical image segmentation [34]

2022 0 0.00 55 27.50 2 71

8 Deep Learning-Based Histopathologic Assessment of Kidney Tissue [6] 2019 53 10.60 135 27.00 2 21
9 PhaseStain: the digital staining of label-free quantitative phase microscopy images using 

deep learning [35]
2019 0 0.00 126 25.20 0 48

10 Machine learning-based quantitative texture analysis of CT images of small renal masses: 
Differentiation of angiomyolipoma without visible fat from renal cell carcinoma [24]

2018 33 5.50 131 21.83 1 40
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Journal influence

The total number of articles published in TMI peaked at 39 
by 2022 (Table 3), indicating that TMI is one of the pioneer-
ing journals in publishing kidney medical research utilizing 
CV technology, which also had the highest TLCS/t based 
on data collected from WOS. The following journals with 
the highest volume of publications were Medical Physics 
(32) and International Journal of Computer Assisted Radi-
ology and Surgery (IJCARS) (30). When restricted to the 
local dataset of the 1322 included publications, the TLCS/t 

value of the Journal of the American Society of Nephrol-
ogy (JASN) was 33.20, at the top among all the journals 
(Table 3).

Citation map

Figure 4 shows the inter-citation relationships among the 
included publications based on LCS. The largest connected 
graph (see the upper left part of Fig. 4) primarily studies 
medical image segmentation of kidney organs, while the 
second-largest connected graph (see the lower right part 

Table 2  Top 10 authors according to the publication volume, TLCS/t and TGCS/t values, respectively

The authors were sorted in descending order based on their publication volume (i.e., Volume ≥ 11), TLCS/t values (i.e., TLCS/t ≥ 12.10), and 
TGCS/t values (i.e., TGCS/t ≥ 74.02), respectively
The bold font and italic font highlight those authors that also appear in the top 10 of the TLCS value (i.e., TLCS ≥ 67) and TGCS value (i.e., 
TGCS ≥ 369) in descending order, respectively

# Author RPY Volume ↑ TLCS TLCS/t TGCS TGCS/t

1 Summers RM (Summers, Ronald M.) [36] [2009, 2022] 21 105 10.09 581 79.73
2 El-Baz A (El-Baz, Ayman) [37] [2005, 2022] 19 58 5.37 309 35.23
3 Linguraru MG (Linguraru, Marius George) [38] [2009, 2016] 19 117 10.90 375 35.46
4 Sarder P (Sarder, Pinaki) [39] [2016, 2021] 19 71 15.83 268 56.393
5 Tomaszewski JE (Tomaszewski, John E.) [40] [2016, 2021] 13 55 11.00 227 43.72
6 Yao JH (Yao, Jianhua) [41] [2009, 2017] 13 54 5.33 261 23.62
7 Chen XJ (Chen, Xinjian) [42] [2011, 2019] 12 77 7.85 326 30.05
8 Fogo AB (Fogo, Agnes B.) [43] [2019, 2022] 12 56 13.77 146 38.27
9 Ginley B (Ginley, Brandon) [44] [2016, 2021] 11 65 14.33 205 44.58
10 Huo YK (Huo, Yuankai) [45] [2018, 2022] 11 8 2.83 65 17.50

 # Author RPY Volume TLCS TLCS/t ↑ TGCS TGCS/t

1 Kilickesmez O (Kilickesmez, Ozgur) [46] [2018, 2020] 8 83 16.07 361 74.02
2 Kocak B (Kocak, Burak) [46] [2018, 2020] 8 83 16.07 361 74.02
3 Sarder P (Sarder, Pinaki) [39] [2016, 2021] 19 71 15.83 268 56.393
4 Ginley B (Ginley, Brandon) [44] [2016, 2021] 11 65 14.33 205 44.58
5 Jain S (Jain, Sanjay) [44] [2016, 2021] 8 65 14.33 225 47.13
6 Jen KY (Jen, Kuang-Yu) [47] [2018, 2021] 11 65 14.33 219 52.47
7 Fogo AB (Fogo, Agnes B.) [43] [2019, 2022] 12 56 13.77 146 38.27
8 Boor P (Boor, Peter) [48] [2017, 2022] 9 53 13.65 166 46.23
9 Kers J (Kers, Jesper) [49] [2019, 2022] 3 60 13.43 157 36.33
10 Florquin S (Florquin, Sandrine) [49] [2019, 2022] 2 56 12.10 147 33.00

 # Author RPY Volume TLCS TLCS/t TGCS TGCS/t ↑

1 Lu MY (Lu, Ming Y.) [50] [2021, 2022] 3 6 2.33 260 101.33
2 Mahmood F (Mahmood, Faisal) [50] [2021, 2022] 3 6 2.33 260 101.33
3 Chen RJ (Chen, Richard J.) [51] [2021, 2022] 2 6 2.33 247 94.83
4 Williamson DFK (Williamson, Drew F. K.) [51] [2021, 2022] 2 6 2.33 247 94.83
5 Summers RM (Summers, Ronald M.) [36] [2009, 2022] 21 105 10.09 581 79.73
6 de Haan K (de Haan, Kevin) [52] [2019, 2021] 3 4 0.80 369 78.73
7 Ozcan A (Ozcan, Aydogan) [52] [2019, 2021] 3 4 0.80 369 78.73
8 Rivenson Y (Rivenson, Yair) [52] [2019, 2021] 3 4 0.80 369 78.73
9 Kilickesmez O (Kilickesmez, Ozgur) [46] [2018, 2020] 8 83 16.07 361 74.02
10 Kocak B (Kocak, Burak) [46] [2018, 2020] 8 83 16.07 361 74.02
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of Fig. 4) mainly focuses on the medical image analysis of 
kidney-related structures, including glomeruli and the renal 
cortex. The connected graph comprising node 70, node 103, 
and node 142 has publications involving two-dimensional 
segmentation and three-dimensional segmentation. Last, the 
connected graph consisting of Node 516, Node 547, and 
Node 602 is primarily focused on texture analysis based on 
machine learning.

Co‑authorship analysis

Authors. The collaboration relationships among authors 
who have coauthored at least three articles are presented in 
Fig. 5. Some of the 395 items in the co-authorship network 
for authors are not connected to each other. The largest set 
of connected items consists of 58 items (Fig. 5(b)). In sum-
mary, Summers [36], Linguraru [38], Yao [41] appeared to 
be the most collaborative authors.

Table 3  Top 10 journals according to the publication volume, TLCS/t and TGCS/t values, respectively

The journals were sorted in descending order based on their publication volume (i.e., Volume ≥ 15), TLCS/t values (i.e., TLCS/t ≥ 8.24), and 
TGCS/t values (i.e., TGCS/t ≥ 63.54), respectively
The bold font and italic font highlight those journals that also appear in the top 10 of the TLCS value (i.e., TLCS ≥ 51) and TGCS value (i.e., 
TGCS ≥ 379) in descending order, respectively

# Journal RPY Volume ↑ TLCS TLCS/t TGCS TGCS/t

1 IEEE Transactions on Medical Imaging [2002, 2022] 39 263 26.74 2030 239.77
2 Medical Physics [2005, 2022] 32 108 18.08 616 101.65
3 International Journal of Computer Assisted Radiology 

and Surgery
[2006, 2022] 30 51 7.47 459 63.54

4 Scientific Reports [2012, 2022] 30 0 0.00 894 162.63
5 Medical Image Analysis [2005, 2022] 28 98 10.69 1100 162.64
6 Computerized Medical Imaging and Graphics [2004, 2022] 26 107 9.14 510 83.69
7 Computer Methods and Programs in Biomedicine [2002, 2022] 24 45 5.94 206 45.09
8 Computers in Biology and Medicine [2007, 2022] 22 23 3.36 296 66.43
9 IEEE Journal of Biomedical and Health Informatics [2013, 2022] 17 22 4.22 231 35.88
10 Physics in Medicine and Biology [2012, 2022] 15 9 1.02 111 19.01

 # Journal RPY Volume TLCS TLCS/t ↑ TGCS TGCS/t

1 Journal of the American Society of Nephrology [2018, 2022] 8 152 33.20 354 79.93
2 IEEE Transactions on Medical Imaging [2002, 2022] 39 263 26.74 2030 239.77
3 Medical Physics [2005, 2022] 32 108 18.08 616 101.65
4 European Radiology [2012, 2022] 13 85 17.42 398 81.62
5 Kidney International [2017, 2021] 6 37 11.42 130 34.71
6 Journal of Digital Imaging [2010, 2022] 14 75 11.16 256 40.41
7 Medical Image Analysis [2005, 2022] 28 98 10.69 1100 162.64
8 Computerized Medical Imaging and Graphics [2004, 2022] 26 107 9.14 510 83.69
9 American Journal of Roentgenology [2008, 2022] 11 57 8.98 241 43.49
10 Abdominal Radiology [2017, 2022] 13 32 8.24 103 23.81

 # Journal RPY Volume TLCS TLCS/t TGCS TGCS/t ↑

1 IEEE Transactions on Medical Imaging [2002, 2022] 39 263 26.74 2030 239.77
2 Medical Image Analysis [2005, 2022] 28 98 10.69 1100 162.64
3 Scientific Reports [2012, 2022] 30 0 0.00 894 162.63
4 Nature Biomedical Engineering [2019, 2021] 4 9 2.47 419 111.87
5 Medical Physics [2005, 2022] 32 108 18.08 616 101.65
6 Computerized Medical Imaging and Graphics [2004, 2022] 26 107 9.14 510 83.69
7 European Radiology [2012, 2022] 13 85 17.42 398 81.62
8 Journal of the American Society of Nephrology [2018, 2022] 8 152 33.20 354 79.93
9 Computers in Biology and Medicine [2007, 2022] 22 23 3.36 296 66.43
10 International Journal of Computer Assisted Radiology 

and Surgery
[2006, 2022] 30 51 7.47 459 63.54
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Countries. As listed in Fig. 6, the United States collabo-
rated with numerous countries, including China, Germany, 
Canada, France, India, and Egypt. China was the leading 
country in terms of publications produced in cooperation 
with the United States.

Co‑occurrence analysis

Of the 4206 keywords of the included publications, 281 had 
a minimum of five occurrences and were included for fur-
ther analysis. To enhance the clarity of the visualization, 

Fig. 4  Citation map. The size of a node is proportional to the LCS 
value computed by HistCite software for the corresponding docu-
ment. For more details about the nodes, please refer to Appendix C. 
The Histcite software was utilized to visualize a citation map from 

the 30 highest-ranking publications, which were sorted in descending 
order based on their LCS values (i.e., LCS ≥ 18). An arrow emitted 
by a node signifies that the document it represents references the doc-
ument represented by the pointed node
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Fig. 5  Network visualization map of the co-authorship network for authors. The collaborative relationships between all items (i.e., 395 authors) 
are depicted in subgraph (a). Subgraph (b) displays the largest set of connected items within subgraph (a)

Fig. 6  Chord diagram for 
cooperation between countries. 
The thicker the arc, the more 
cooperation.
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we utilized VOSviewer software to display the top 100 key-
words based on their frequency (Fig. 7).

In Figure 7(a) of the keyword co-occurrence, "segmenta-
tion" had the highest frequency node, followed by "CT", 
"deep learning", "kidney", and others. This suggests that 
these keywords were frequently mentioned, and the focus 
of research in CV-based kidney medicine was primarily on 
using deep learning techniques for segmentation tasks from 
CT images. Furthermore, the keywords can be divided into 
four clusters to better reflect research topics (Fig. 7(a)). The 
red cluster included main keywords such as "segmentation", 
"kidney", "models", "CT", "MRI", "registration", "motion 
correction", "volume", and "shape". This cluster showed the 
relationship between the keywords in medical image pro-
cessing tasks. The yellow cluster included main keywords 
such as "ultrasound", "system", "image-guided surgery", 
"surgery", "augmented reality", "tracking", and "partial 
nephrectomy", presenting the relationship between keywords 
in surgical treatment tasks, and featured the application of 
ultrasound technology. The green cluster includes main key-
words such as "texture analysis", "features", "tumors", "fat", 
"kidney cancer", "angiomyolipoma", "clear cell renal cell 
carcinoma", and "prediction". This cluster indicates the rela-
tionship between keywords in medical image analysis/diag-
nosis tasks related to diseases in kidney medicine, especially 
tumors. Finally, the blue cluster consists of main keywords 
including "deep learning", "machine learning", "neural net-
works", "convolutional neural networks", "computer-aided 
diagnosis", and "pathology". This cluster demonstrated the 

relationship between keywords regarding the technology and 
the application and innovation of CV technology in medical 
images such as pathology.

In addition, we visualize the keywords based on the aver-
age publication time. Figure 7(b) depicts the frequency of 
keyword occurrences between 2012 and 2022, enabling the 
assessment of research focus trends over time. The nodes’ 
color shifts gradually from white to bold to italic, signifying 
the earliest to the most recent periods of keywords utilized in 
publications. This analysis can reflect the popular keywords 
in recent years and infer future hotspot trends. We found that 
before 2012, traditional CV techniques, including "graph 
cuts", "motion correction", "active contours" and "shape", 
were the preferred methods for image processing tasks. 
Around 2016, the kidney medicine field started studying sur-
gical treatment tasks that utilized CV technology, utilizing 
keywords such as "surgery", "laparoscopic partial nephrec-
tomy", "tracking", and "augmented reality". From 2016 to 
2018, mainstream research shifted toward kidney-related 
segmentation tasks from medical images such as CT, MRI, 
and ultrasound. We found that from 2018 to 2022, cutting-
edge CV technologies such as "machine learning", "deep 
learning" and "convolutional neural networks" emerged as 
research hotspots.

Methodological analysis

We analyzed the CV-based methodologies involved in the 
publications included in this study and classified them into 

Fig. 7  Network visualization map of the keyword co-occurrence network
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three categories: manual feature-based methodologies, 
machine learning-based methodologies, and deep learning-
based methodologies. Methodologies utilizing manual fea-
tures involve the manual design and selection of features, 
in conjunction with traditional CV techniques such as the 
watershed algorithm, Gabor filters, scale-invariant feature 
transform (SIFT), and Fourier transform for medical image 
feature extraction and analysis [53–58]. They often require 
domain expertise and professional experience, with feature 
selection potentially guided by domain experts. Machine 
learning-based methodologies extract feature representa-
tions or patterns from medical images using algorithms 
like k-means, k-nearest neighbor (K-NN), support vector 
machines (SVM), bayesian, and random forests, leveraging 
acquired knowledge to perform medical image tasks [24, 
26, 28, 59, 60]. Deep learning-based methodologies employ 
deep neural networks and their variations to autonomously 
learn high-level feature representations from medical images 
in an end-to-end manner [6, 21, 22, 25, 61]. It’s noteworthy 
that these data-driven deep learning approaches excel in han-
dling extensive datasets and intricate tasks.

Discussion

In the current study, we conducted a bibliometric analysis to 
reveal the research and application of CV in the field of kid-
ney medicine. Our study not only analyzed highly regarded 
publications and journals and prolific researchers but also 
uncovered focal points of the research and application of CV 
in the kidney medicine field. These findings are expected to 
provide beneficial insights for upcoming clinical practices 
and research directions.

We noticed that the volume of publications addressing 
CV in the kidney field rose in several stages, which might 
correspond to the technological improvements at the same 
time points. For instance, the increasing trend of publica-
tion volume after 2000 suggests a growing interest among 
researchers in CV technology. The annual publication vol-
ume exceeded 40 in 2012, suggesting an increase in research 
activity. This might be attributed to the breakthrough in arti-
ficial intelligence-based CV technology around 2012 when 
the victory of AlexNet [62] in the ImageNet [63] competi-
tion prompted a surge of research on convolutional neural 
networks in the field of CV. Our finding that the annual 
growth rate of publication volume further surged after 2016 
indicated that CV has been a hot topic in the field of kid-
ney medicine research. From the point of view of computer 
science, at this stage, the UNet [64] model began to play a 

crucial role in promoting the development of medical image 
segmentation, with numerous variants being researched and 
applied in the field of medical image analysis or process-
ing [65–67]. The annual publication volume exceeding 200 
between 2021 and 2022 signifies the increased attention 
given to CV technology in recent years.

We found that the United States is currently at the fore-
front of research and application of CV technology in the 
field of kidney medicine. In addition, the most prominent 
research institutions and countries, mainly originate from 
developed nations, such as the USA and CNRS in France. 
This observation suggests a more dynamic engagement in 
the field by developed nations and their institutions com-
pared to developing countries, where studies with high 
impact are less prevalent. The variation in academic publi-
cation output between developing and developed countries 
and their respective institutions may stem from multiple fac-
tors, such as inadequate research resources in developing 
countries [68], generous funding, and leading researchers in 
developed nations [69], linguistic and writing hurdles, and 
editorial prejudice [70]. Notably, developing countries, such 
as China and India which rank high in publication volume, 
have also made great contributions to the field of CV-based 
renal medicine. As a result, collaboration between developed 
and developing countries is essential.

The Proceedings of SPIE collect the most recent research 
findings in a range of fields, including physics, electronics 
and electrical engineering, computer and control engineer-
ing, information technology, and mechanical and manufac-
turing engineering, with the largest number of published 
works at present. This finding suggests that the principal 
application of CV technology in kidney medicine, cur-
rently, is for clinical imaging, particularly for supporting 
research on renal cells [24]. TMI and Medical Image Analy-
sis (MedIA) are globally considered the most renowned and 
favored journals in the artificial intelligence field, with high 
publication rankings. This reflects the growing popularity of 
CV technology based on artificial intelligence. Our analysis 
reveals that the cause of the relatively low publication vol-
ume of TMI and MedIA is twofold: the rise of CV technol-
ogy based on artificial intelligence since 2012 and the lower 
annual publication volume of TMI and MedIA. Regarding 
research areas, we found that the vast majority of publica-
tions on CV-based kidney medicine are in the fields of radi-
ology nuclear medicine medical imaging, engineering, and 
computer science, suggesting that such research thrives in 
interdisciplinary domains of medical engineering.

Through citation analyses, we found that publications 
using deep learning-based methodologies exert more influ-
ence than machine learning-based methodologies. Based 



3372 International Urology and Nephrology (2024) 56:3361–3380

on our analyses, machine learning algorithms excel in tex-
ture analysis, while deep learning methods are commonly 
employed for more complex tasks such as semantic segmen-
tation. We hypothesize that the effectiveness of deep learn-
ing methods in these tasks stems from their capability to 
extract high-dimensional and complex features. We noticed 
that deep learning approaches are held in high esteem in 
CV-based kidney medicine [6], whereas weakly supervised 
learning methods are highly regarded across all fields [29]. 
We attribute this phenomenon to the fact that although 
deep learning algorithms yield outstanding results, medi-
cal images requiring extensive manual annotations heavily 
rely on expert experience, making data annotation labor-
intensive. Weakly supervised learning has garnered attention 
across diverse fields due to its capability to mitigate the rig-
orous data labeling process. Notably, three publications [6, 
22, 24] had high scores in Table 1 (i.e., LCS/t ≥ 4.20 and 
GCS/t ≥ 21.83), indicating that a current focus of research 
in the field of kidney medicine and other related fields is the 
segmentation of multiple organs [22], including the kidneys, 
from CT images and that CV techniques utilizing machine 
learning and deep learning are playing a significant role [6, 
21, 28]. These findings imply that influential publications in 
CV-based renal medicine research can also enjoy recognition 
across other research domains.

Our findings confirm that CV technology has recently 
received more emphasis in top journals in the nephrology 
field, including JASN and Kidney International, demon-
strating the embracement of CV technology by the nephrol-
ogy society. Furthermore, we discovered that the TMI and 
MedIA journals have a significant influence in all areas of 
study. This is because the research topics covered by TMI 
and MedIA relate to the expansive and prevalent area of 
artificial intelligence. In addition, Nature Biomedical Engi-
neering, Medical Physics, European Radiology, and Com-
puterized Medical Imaging and Graphics have been listed 
as some of the most popular journals, indicating that the 
topic being discussed is predominantly associated with the 
interdisciplinary realm of computer science, biomedical 
engineering, and medicine.

We examined the trends in CV-based kidney medical 
research by analyzing the citation map, as shown in Fig-
ure 4. In particular, we found that expert-based methods 
are evolving toward fully automatic deep learning-based 
methods [21]. It is noteworthy that texture analysis is cur-
rently popular and uses machine learning techniques [26, 
28]. Additionally, we observed that the objects for segmen-
tation are becoming increasingly varied. Furthermore, the 

segmentation of kidney organs is shifting toward kidney-
related objects such as renal cells [24], glomeruli [20], and 
the renal cortex [21]. We also noted that the dimension of 
kidney-related segmentation has shifted from 2D to 3D [71]. 
However, despite this shift, 2D image data remain prevalent 
in current research. We speculate that this may be due to 
challenges in acquiring data sources and concerns related 
to privacy and ethics. Finally, we found that the mode of 
data used in current research is also becoming increasingly 
diverse, such as computed tomography (CT) images [72] 
and ultrasound images  [73], magnetic resonance (MR) 
images [73], and pathological images [27].

Based on the findings depicted in Figure 5, we observe a 
numerous and dispersed research community in CV-based 
kidney medicine. We attribute this dispersion partly to the 
isolation among various research groups, with the privacy 
and confidentiality of medical data emerging as one potential 
contributing factor. Notably, visualizing the co-authorship 
network for authors can assist researchers in pinpointing 
bridges for direct or indirect communication with specific 
authors. Nevertheless, the isolation of research groups 
within the co-authorship network for authors implies that 
while it fosters diverse study, it also requires researchers 
to strengthen cooperation and communication for mutually 
beneficial results.

Based on the outcomes presented in Figure 6, it is evident 
that almost all countries exhibit a preference for intra-coun-
try collaboration. We find that the United States has estab-
lished collaborations with numerous nations and suggests 
a high degree of expertise in CV-based kidney medicine 
research. Additionally, China demonstrates a keen interest 
in cooperating with other countries. Of particular interest is 
the observation that the Netherlands, Norway, and several 
other countries collaborate more frequently with Germany 
than with the United States. One plausible explanation for 
this trend may be their geographical proximity and shared 
membership in the European continent. In the current trans-
national cooperation, the collaboration between China and 
the United States holds a predominant position. Unlike many 
European countries, this cross-continental collaboration 
has been facilitated by the robust presence of China and the 
United States in the realm of CV-based kidney medicine, 
alongside their sustained collaborative endeavors aimed at 
fostering ongoing advancements in the field. We posit that 
these findings may serve as inspiration for other nations to 
engage in greater transnational collaboration, particularly 
with countries such as China and the United States, to foster 
mutually beneficial outcomes.
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The keyword co-occurrence analysis indicates that CV-
based kidney medical research can be classified into four 
research directions (Fig.  7(a)), namely, medical image 
processing tasks, surgical treatment tasks, medical image 
analysis/diagnosis tasks, and the application and innova-
tion of CV technology in medical images. Image process-
ing methods and algorithms, such as deep learning, in CV 
technology are believed to form the basis for the analysis/
diagnosis and surgical treatment of medical images related 
to the kidneys. Additionally, the most frequent keywords, 
such as "segmentation", "ct", "deep learning", and "kidney", 
indicate that CV-based kidney medical research primarily 
concentrates on segmentation tasks from medical images 
utilizing deep learning techniques. The color-coding of these 
nodes in Fig. 7(b) signifies that they emerged after 2016. We 
speculate that one potential explanation for this trend is the 
surge in the volume of publications after 2016 following 
the introduction of the UNet model [64], which initiated a 
research surge. These results indicate that modern CV tech-
nologies, including machine learning and deep learning, are 
extensively employed for the analysis and diagnosis of medi-
cal images relevant to the kidney [20, 24]. Furthermore, the 
co-occurrence analysis of keywords reveals that CV-based 
kidney medical research is trending toward analyzing and 
diagnosing medical images (e.g., renal cell pathology analy-
sis) rather than just processing them (e.g., segmentation). 
This analysis also highlights the shift in CV technology 
from traditional feature engineering methods, which rely on 
hands-on design, to deep learning techniques, which utilize 
automated feature extraction.

Through citation analysis (see Table 1 and Fig. 4) and co-
occurrence analysis (see Fig. 7), we observe the transition of 
CV algorithms towards artificial intelligence (AI). To delve 
deeper into this transformation, we categorize AI algorithms 
into machine learning [59, 60] and deep learning [22, 25, 
61]. Machine learning facilitates intelligent decision-making 
by discerning patterns and laws from data, while deep learn-
ing extends this capability further by enabling more intricate 
and abstract feature learning through deep neural networks, 
leading to significant advancements in medical image tasks. 
Due to their ability to learn complex feature representations 
in a data-driven manner without expert intervention, AI 
algorithms have been extensively utilized in CV-based kid-
ney medicine research over the past decade. Generally, deep 
learning exhibits superior feature representation capabilities 
compared to machine learning, making it widely adopted 
for complex tasks such as medical segmentation. However, 
as deep learning heavily relies on high-quality data, it is not 
the only solution, and many studies still employ machine 

learning methods, particularly for tasks like texture analysis. 
Given the challenges in acquiring and labeling pathological 
images compared to CT or MRI images, the use of machine 
learning algorithms, such as weak supervision, to address 
data quality issues has garnered widespread attention across 
various domains. With the increase in both data quantity and 
quality, deep learning often surpasses machine learning in 
performance. We anticipate that deep learning will continue 
to dominate in the future as data quality improves further.

In order to delve deeper into the development and con-
straints of deep learning-based CV technology in kidney 
medicine, we conducted an exhaustive review of the pub-
lications identified in this study, scrutinizing it across three 
dimensions: algorithms, data, and applications. Regarding 
algorithms, we observe a predominant reliance on con-
volutional neural networks (CNNs) [62], including UNet 
and its variants [74]. This preference is driven by CNNs’ 
robust inductive bias, enabling the effective capture of 
local information vital for medical image feature extrac-
tion. Nonetheless, CNNs struggle with long-range informa-
tion due to their limited local receptive field, resulting in 
a suboptimal representation of global features. Addressing 
this, vision transformer (ViT) [75] employs a self-attention 
mechanism to enhance awareness of global information, 
offering promising avenues for future research and appli-
cation. Although ViT is excellent at global modeling, its 
implementation incurs a high computational overhead, 
particularly in tasks like medical image segmentation. To 
mitigate this, the state spaces model-based (SSM) vision 
mamba [76] emerges as a potential solution, offering inno-
vative solutions by establishing distant dependencies while 
maintaining linear complexity. Regarding data, the scarcity 
of high-quality kidney medicine images persists, hindering 
progress. Fundamental models like the medical segmenta-
tion large model (e.g., MedSAM [77]) demonstrate promise, 
yet their direct applicability remains limited due to data dis-
tribution inconsistencies. Sustained efforts in large model 
research are imperative, alongside continued exploration of 
semi-supervised and weakly supervised learning. Regarding 
applications, in limited-resource settings, deploying mod-
els with high complexity poses challenges for health equity. 
We have examined the publications identified in this study 
and posit that they offer novel insights into the domain of 
CV-based kidney medicine. We anticipate that forthcoming 
research in renal medicine will emphasize the development 
of robust models to enhance their usability in embedded 
surgical devices and to improve the real-time performance 
of medical image tasks.



3374 International Urology and Nephrology (2024) 56:3361–3380

This study presents the first bibliometric analysis of CV-
based kidney medicine research. Although our study has 
several advantages, it also has certain limitations. First, only 
English literature was included in the study. While English 
is widely used globally, this limitation may have resulted 
in missing critical articles published in other languages. 
Second, all data used in this study were obtained from the 
Web of Science Core Collection, which is a comprehen-
sive literature database that provides publication indicators 
ideal for bibliometric analysis. However, the limited cover-
age of the Web of Science Core Collection restricts access 
to publications found in other databases, such as Scopus 
and PubMed. Finally, citation analysis was primarily used 
to determine the extent of influence of publications, authors, 
and journals based on the number of citations. However, 
this approach may not fully reflect their actual influence, as 
some publications, authors, or journals can have a significant 
influence despite having few citations. On the other hand, 
self-citation may also introduce bias into the analysis [10, 
78]. Furthermore, employing GCS/t and LCS/t as evaluation 
metrics in citation analysis could lead to inaccuracies when 
assessing recently published works, given that some publi-
cations may require several years to gain traction. Hence, 
in forthcoming studies, we will differentiate between early 
movers, mid movers, and late movers regarding publications 
to facilitate a more equitable comparison. To our knowledge, 
this advancement would be the inaugural endeavor at bib-
liometric analysis.

Conclusion

CV has achieved significant progress in the field of kidney 
medicine, providing robust assistance in kidney medicine for 
image processing, analysis/diagnosis, and surgeries associ-
ated with kidney diseases. We conducted a comprehensive 
investigation of the research trends and focal points in this 
field using bibliometric analysis methods for the first time, 
analyzing highly influential publications and journals, pro-
lific researchers, countries/regions, research institutions, a 
citation map, a co-authorship network, and a co-occurrence 
network. CV-based kidney medicine research is on the rise, 
especially in medical imaging, surgery, and analysis/diag-
nosis. Journals like TMI and MedIA are pivotal not only in 
renal medicine but also in computer science and artificial 
intelligence. The USA leads in terms of publications and 

collaborations, with China closely following behind. Deep 
learning segmentation and machine learning texture analysis 
are key techniques. CV algorithms are advancing towards 
AI, focusing on kidney-related topics. Data used in the 
research is transitioning from 2D to 3D, with more diverse 
modalities. Our research findings and analysis are expected 
to contribute to the development and advancement of future 
CV-based kidney medicine research. With the advancing 
intersection of medical science and engineering and the 
expanding range of application scenarios, CV research and 
application in the field of kidney medicine will continue to 
encounter both challenges and opportunities.

Appendix A: Search query

Following thorough deliberations between computer 
and clinical medical experts specialized in nephrology, 
the resulting retrieval search query is presented below: 
(TS=(kidney* OR nephr* OR glomerul* OR renal)) AND 
(TS=("Computer Vision" OR "Object Detection" OR 
"Lesion Detection" OR Segmentation OR "Image Clas-
sification" OR "Image Recognition" OR "Image Recon-
struction" OR "Image Registration" OR "Image-to-image 
Translation" OR "Image Fusion" OR "Image Denois-
ing" OR Medical-Image-Analysis) OR TS=(Neural-
Network* OR Federated-Learning OR Transfer-Learning 
OR Supervised-Learning OR Unsupervised-Learning 
OR Semi-Supervised OR Weakly-Supervised OR Self-
Supervised OR "Active Learning" OR Domain-Adapta-
tion OR Meta-Learning OR Few-shot-Learning OR One-
Shot-Leaning OR Zero-Shot-Learning OR AutoEncoder 
OR Auto-encoder OR Recursive-Neural-Network* OR 
"Long-Short-Term Memory" OR Recurrent-Neural-Net-
work* OR Convolutional-Neural-Network* OR LeNet OR 
AlexNet OR VGG OR GoogLeNet OR InceptionV* OR 
ResNet OR DenseNet OR MobileNet OR ShuffleNet OR 
Generative-Adversarial-Network* OR UNet OR U-Net OR 
YOLOv* OR Single-Shot-MultiBox-Detector OR Region-
CNN OR RCNN OR R-CNN OR Vision-Transformer* OR 
Diffusion-Model))

Appendix B: Thesaurus terms

See Table 4.
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Appendix C: Nodes details for the citation 
map

Table 5 shows the details of the nodes in Fig. 4. 
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Table 5  Nodes details for the citation map (i.e., Fig. 4.)

NodeID Document Year LCS LCS/t GCS GCS/t LCR CR

36 An automated segmentation method of kidney using statistical information 2002 19 0.86 29 1.32 0 14
48 Construction of an abdominal Probabilistic atlas and its application in segmentation 2003 39 1.86 259 12.33 1 55
62 Computer-aided detection of kidney tumor on abdominal computed tomography scans 2004 18 0.90 33 1.65 0 14
70 Segmentation of kidney from ultrasound images based on texture and shape priors 2005 49 2.58 146 7.68 0 41
85 Computer-aided kidney segmentation on abdominal CT images 2006 56 3.11 97 5.39 1 24
92 Graph cuts framework for kidney segmentation with prior shape constraints 2007 25 1.47 62 3.65 0 12
103 Performance of an automated segmentation algorithm for 3D MR renography 2007 25 1.47 62 3.65 3 30
140 Segmentation of kidneys using a new active shape model generation technique based 

on non-rigid image registration
2009 32 2.13 49 3.27 1 21

142 Assessment of 3D DCE-MRI of the kidneys using non-rigid image registration and 
segmentation of voxel time courses

2009 34 2.27 91 6.07 1 45

147 Augmented Reality: A New Tool To Improve Surgical Accuracy during Laparoscopic 
Partial Nephrectomy? Preliminary In Vitro and In Vivo Results

2009 20 1.33 133 8.87 0 21

155 Non-parametric Iterative Model Constraint Graph min-cut for Automatic Kidney 
Segmentation

2010 25 1.79 31 2.21 3 17

184 3D Kidney Segmentation from CT Images Using a Level Set Approach Guided by a 
Novel Stochastic Speed Function

2011 19 1.46 42 3.23 4 14

219 Automatic Detection and Segmentation of Kidneys in 3D CT Images Using Random 
Forests

2012 32 2.67 107 8.92 4 17

228 Prior Shape Level Set Segmentation on Multistep Generated Probability Maps of MR 
Datasets for Fully Automatic Kidney Parenchyma Volumetry

2012 20 1.67 38 3.17 8 36

239 Statistical 4D graphs for multi-organ abdominal segmentation from multiphase CT 2012 18 1.50 85 7.08 5 62
288 Automated Abdominal Multi-Organ Segmentation With Subject-Specific Atlas Gen-

eration
2013 24 2.18 190 17.27 6 39

396 Abdominal multi-organ segmentation from CT images using conditional shape-loca-
tion and unsupervised intensity priors

2015 19 2.11 99 11.00 11 59

465 Performance of an Artificial Multi-observer Deep Neural Network for Fully Auto-
mated Segmentation of Polycystic Kidneys

2017 27 3.86 77 11.00 2 30

485 Convolutional networks for kidney segmentation in contrast-enhanced CT scans 2018 23 3.83 57 9.50 5 24
511 Association of Pathological Fibrosis With Renal Survival Using Deep Neural Net-

works
2018 27 4.50 83 13.83 0 51

515 Kidney segmentation in ultrasound, magnetic resonance and computed tomography 
images: A systematic review

2018 22 3.67 45 7.50 31 114

516 Machine learning-based quantitative texture analysis of CT images of small renal 
masses: Differentiation of angiomyolipoma without visible fat from renal cell carci-
noma

2018 33 5.50 131 21.83 1 40

518 Deep feature classification of angiomyolipoma without visible fat and renal cell car-
cinoma in abdominal contrast-enhanced CT images with texture image patches and 
hand-crafted feature concatenation

2018 21 3.50 46 7.67 1 32

536 Automatic Multi-Organ Segmentation on Abdominal CT With Dense V-Networks 2018 36 6.00 304 50.67 3 54
537 Region-Based Convolutional Neural Nets for Localization of Glomeruli in Trichrome-

Stained Whole Kidney Sections
2018 34 5.67 59 9.83 0 24

547 Textural differences between renal cell carcinoma subtypes: Machine learning-based 
quantitative computed tomography texture analysis with independent external 
validation

2018 28 4.67 67 11.17 1 35

602 Clear Cell Renal Cell Carcinoma: Machine Learning-Based Quantitative Computed 
Tomography Texture Analysis for Prediction of Fuhrman Nuclear Grade

2019 21 4.20 81 16.20 1 46

651 Computational Segmentation and Classification of Diabetic Glomerulosclerosis 2019 38 7.60 88 17.60 3 32
652 Deep Learning-Based Histopathologic Assessment of Kidney Tissue 2019 53 10.60 135 27.00 2 21
880 Development and evaluation of deep learning-based segmentation of histologic struc-

tures in the kidney cortex with multiple histologic stains
2021 20 6.67 43 14.33 8 53
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